
AN EXACTLY SOLVABLE MODEL FOR NONLINEAR RESONANT SCATTERING

S. P. Shipman†,∗, S. Venakides‡,∗
†Department of Mathematics, Louisiana State University; Baton Rouge, LA, USA

‡Department of Mathematics, Duke University; Durham, NC, USA
†‡G. Millán Institute, Universidad Carlos III de Madrid; Leganés, Spain

∗Email: shipman@math.lsu.edu, ven@math.duke.edu

Abstract of Presentation
The interaction of radiation with an open resonator is

known to result in highly sensitive frequency dependence
of the response field. This resonant behavior in the lin-
ear setting has been analyzed theoretically in a variety
of continuous and discrete systems (e.g., [1], [2], [3]).
When nonlinearity is introduced into the structure, bista-
bility emerges [4]. This means that the system admits
multiple responses to the same exterior source field, at a
fixed frequency and intensity. The purpose of this work is
to provide an exactly solvable model in which bistability
can be demonstrated analytically. Specifically, we study
the effects of introducing nonlinearity into a system that,
in the linear setting, exhibits resonance due to the pertur-
bation of a system with an embedded eigenvalue.

The Model
A nonlinear resonator is excited through coupling to

a point mass in a transmission line at the point x = 0,
where x denotes the position along the line.

System equations
The system equations are

iut + uxx = 0 for x 6= 0, (transmission line) (1)

y(t) = u(0, t), (point mass on the line) (2)

iẏ = γz − (ux(0+, t)− ux(0−, t)), (3)

iż = γy + E0z + λ|z|2z + ε(t). (resonator) (4)

The field u(x, t) on the transmission line is continuous
at the point of coupling to the resonator, u(0+, t) =
u(0−, t). The field y(t) of the mass at the coupling point
on the string is driven by the resonator amplitude z(t)
and by the jump of the field gradient ux at x=0 accord-
ing to (3). The evolution of the resonator amplitude is
given by (4). The number E0 represents the natural fre-
quency of the uncoupled, linearized resonator. The re-
maining three terms in (4) represent the coupling to the
line, the nonlinearity, and an external forcing.

An incident wave uinc of frequency ω > 0 in the trans-
mission line is scattered at the coupling point,

uinc(x, t) = Jeikx−iωt, k > 0, k2 = ω. (5)

The composite parameter of nonlinearity

µ=λJ2

arises naturally in the analysis of the system.

Central Ideas
We are interested in time-harmonic scattering solutions

and their stability. These exist due to the modulus in the
nonlinear term λ|z|2z. In the analysis of their stability, the
temporally localized forcing ε(t) in the resonator serves
as a perturbative mechanism.

The system admits a time-harmonic bound state when
the γ= 0 and for no other value of γ. This state consists
simply of the resonator in oscillatory motion while the
transmission line remains at rest. A nonzero γ destroys
the bound state and results in resonance. For λ = 0, this
is the result of the destruction of a linear bound state of an
eigenvalue embedded in the continuous spectrum, as the
eigenvalue is destroyed by a perturbation.

We discuss two distinguished asymptotic regimes in γ
and µ, when both of these parameters are small. In the
regime γ4/µ ∼ C, the nonlinearity is just large enough to
produce multiple responses to harmonic source fields near
the resonant frequency E0 and for very large frequencies.
The regime γ2/µ ∼ C is the threshold at which the non-
linearity is large enough to produce multiple responses at
all frequencies above ω ≈ E0.

Linear stability analysis about harmonic solutions in
the Laplace variable demonstrates the stability of scatter-
ing states when only one response is admitted and, in the
case of three possible responses, the stability of the states
with the largest and smallest response amplitudes and the
instability of the intermediate one.

Time-Harmonic Scattering Fields
Response to harmonic forcing

The response of the resonator to the incident field (5)
is defined as

R =
∣∣∣ z
J

∣∣∣2 . (6)

We derive below the multi-valued response as well as the
complex amplitude of the transmitted field, that is, the



field u(x, t) for x > 0. A calculation reveals that the re-
sponse satisfies a real cubic polynomial equation that in-
volves the parameters γ, µ, ω, and E0:

R
(
µR+ γ2

ω+4 − (ω − E0)
)2

+ 4γ4

ω(ω+4)2
R− 4γ2

ω+4 = 0.
(7)

Evidently, the system admits either one or three responses
R to the incident field Jeikx−iωt, with two responses at
threshold frequencies. The topology of the graph of the
multi-valued functionR=R(ω) takes two forms depend-
ing on the value of the parameters, and we investigate
these forms in the limit of small µ and γ, in which reso-
nant phenomena are most pronounced. The passage from
one form to the other occurs when ω2 = ω3 in Fig. 1, in
which |T/J |2 instead of R is shown for easier viewing.
In the graph of R vs. ω, the branches do not cross.
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Figure 1: |T/J |2 vs. ω showing the frequencies ω1, ω2,
and ω3 that separate regions of single and multiple

solutions. The top graph is just after emergence of ω1

and ω2 and the bottom just after emergence of ω2 and ω3.

Specifically, we seek harmonic solutions to the prob-
lem of scattering of a sinusoidal wave in the transmission
line by the resonator/defect pair, with ε(t) = 0. These
solutions have the form

u(x, t) =

{
Jeikx−iωt +Re−ikx−iωt, x < 0,
T eikx−iωt, x > 0,

(8)

y(t) = Te−iωt, (9)

z(t) = Ae−iωt, (10)

in which J , R, T , and A are complex constants and
k2 = ω. By the continuity of u at x = 0, J+R = T ,

and it follows that

ux(0+, t)− ux(0−, t) = 2ik(T−J)e−iωt. (11)

Inserting this form into equations (3,4) yields

ωT = γA− 2ik(T − J), (12)

ωA = E0A+ γT + λ|A|2A, (13)

whence(
ω−E0 −

γ2

ω + 2ik
− λ|A|2

)
A =

2ikγJ
ω + 2ik

, (14)

T =
γA+ 2ikJ
ω + 2ik

. (15)

The first of these equations results in the polynomial
equation (7) for R. By putting |A|2 = RJ2 into (14),
for any solutionR of (7), one can solve for A, and then T
is determined by (15).

Asymptotics of Response
The change of variable

P =
µR
a
, a := ω − E0 −

γ2

ω + 4
,

transforms equation (7) into

P (P − 1)2 + αP − β = 0, (16)

in which

α :=
4γ4

ω ((ω − E0)(ω + 4)− γ2)2
, (17)

β :=
4γ2µ(ω + 4)2

((ω − E0)(ω + 4)− γ2)3
. (18)

The points ωi in Fig. 1 are characterized by both (16)
and the vanishing of the derivative with respect to P of
the left-hand side of (16). This pair of conditions can be
expressed equivalently as the pair

α = −3P 2 + 4P − 1, (19)

β = −2P 3 + 2P 2. (20)

The quantities α and β as functions of P are depicted in
Fig. 2 via their graphs as well as in the (α, β)-plane as
a curve parameterized by P . Because α > 0, the values
of P must be restricted to the interval (1/3, 2/3). The
graphs of α and β intersect tangentially at their common
root of P =1, and both reach their maximal point at P =
2/3. This latter observation is the reason for the cusp at
(1/3, 8/27) on the curve (α(P ), β(P )).

The intersection of this parameter-independent curve
with the parameter-dependent curve (α(ω), β(ω)) de-
fined by (17,18) determines the frequencies ωi.
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Figure 2: Top: Graphs of α(P ) and β(P ) vs. P .
Bottom: The parameterized curve (α(ω), β(ω)) for

particular values of γ, µ, and E0, and the
parameter-independent curve (α(P ), β(P )).

The ω1-ω2 bifurcation
This bifurcation occurs when (α(ω), β(ω)) intersects

the cusp. Setting α = 1
3 and β = 8

27 in (17,18) leads to

γ2 =
k(k2 − E0)(k2 + 4)

2
√

3 + k
, (21)

µ =
16
√

3(k2 − E0)2

9k(2
√

3 + k)2
. (22)

It is interesting that, for each frequency ω = k2 > E0,
there are values of γ and µ, satisfying γ4/µ =
3
√

3k3(k2 + 4)2/16, for which the ω1-ω2 bifurcation oc-
curs at ω. We are interested in the case of small µ and γ,
for which the second equation of (21) shows that the
bifurcation occurs close to the resonant frequency, E0.
Thus a fourth-power relation between γ and µ emerges,

γ4

µ
∼ 3

√
3

16
E

3/2
0 (E0 + 4)2, when ω1 = ω2, µ→ 0.

Meanwhile, as this bifurcation takes place, the frequency
ω3 is far away. Indeed, when ω1 = ω2, one finds that,
as µ → 0, α and β tend to zero if ω > E0 is bounded
away from E0. Thus, P → 1, and, because their graphs
intersect tangentially at P = 1, the ratio of α and β tends

to unity and one obtains finally

ω3 ∼
C

γ2
when ω1 = ω2, µ, γ → 0. (23)

Here, C is equal to the asymptotic value of γ4/µ above.

The ω2-ω3 bifurcation
Analysis of this bifurcation is a bit more delicate; it

occurs when the curve (α(ω), β(ω)) intersects the curve
(α(P ), β(P )) tangentially very very near the origin. The
main result is the power law

γ2

µ
∼ const, when ω2 = ω3, µ→ 0.

In this regime, nonlinearity is much stronger in relation to
the coupling than in the regime of the ω1-ω2 bifurcation.

Stability of Harmonic Solutions
Let us assume that, for t ≤ 0, the system is in a har-

monic scattering state (uh(x, t), yh(t), zh(t)) of the form
(8,9,10). The state is perturbed at t > 0, by forcing
the resonator by a small-amplitude, temporally localized
function ε(t). Write the solution to (1–4) as

u(x, t) = uh(x, t) + q(x, t),
y(t) = yh(t) + η(t),
z(t) = zh(t) + ζ(t),

in which q(x, t) satisfies an outgoing condition as
|x| → ∞. The deviation (q(x, t), η(t), ζ(t)) of the so-
lution from the harmonic one vanishes at t = 0, as does
ε(t), and it satisfies the system

iqt + qxx = 0 for x 6= 0, (24)

η(t) = q(0, t), (25)

iη̇ = γζ − (qx(0+, t)− qx(0−, t)), (26)

iζ̇ = E0ζ + γη + λ
(
2|zh|2ζ + z2

hζ̄ +
+2zh|ζ|2 + z̄hζ

2 + |ζ|2ζ
)

+ ε(t). (27)

It is generally understood that, at frequencies for which
the system admits only one harmonic solution (for a given
system and source-field amplitude J), this field is stable,
that is, u relaxes back to the original harmonic solution,
or q(x, t) → 0, as t→∞. At frequencies for which there
are three harmonic solutions, one should have bistabil-
ity, that is, two solutions are stable and one unstable, the
unstable one being that with intermediate response ampli-
tude (see, e.g., [4]). Moreover, u should tend to one of the
stable scattering solutions as t→∞.

Toward the end of making these ideas rigorous, we
carry out the linear stability analysis about harmonic scat-
tering fields.



Reduction of the system to the resonator
Because of the radiation condition on q(x, t) and the

continuity at x = 0, q is spatially symmetric, that is,
q(x, t) = q(−x, t) and therefore

qx(0+, t)− qx(0−, t) = 2qx(0+, t). (28)

This can be seen more clearly through the Laplace trans-
form, isq̂ + qxx = 0, which yields, due to the radiation
condition,

q̂x =

{
−i3/2√s q̂ x < 0,
i3/2√s q̂ x > 0,

in which arg(i3/2) = 3π/4. Thus,

L
[
qx(0+, t)− qx(0−, t)

]
= 2i3/2√s η̂ (29)

Equation (26) now yields a relation between η and ζ,

η(t) = γL−1
[
ĝ(s)ζ̂

]
(t) = γ(g ∗ ζ)(t), (30)

in which
ĝ(s) =

−i
s+ 2

√
is

(31)

with the branch cut for √ along x ≤ 0. The relation
(30) allows one to project the system onto the resonator
by considering equation (27) for ζ alone.

Linearization about a harmonic solution
Equation (27) is linearized by eliminating the quadratic

and cubic terms in ζ and replacing ζ(t) with the solution
ξ(t) of the resulting linear equation. It is convenient to
deal with the field ψ(t) = ξ(t)eiωt. Keeping in mind that
zh = Ae−iωt, one arrives at the following equation for ψ:

iψ̇ + ωψ = E0ψ + γp ∗ ψ+

+ λ
(
2|A|2ψ +A2ψ̄

)
ε(t) + eiωt, (32)

in which p(t) = g(t)eiωt. In the Laplace variable, this is(
is+ ω−E0 − γp̂− 2λ|A|2

)
ψ̂ − λA2ψ̂ = ε̂|s−iω, (33)(

−is+ ω−E0 − γp̂− 2λ|A|2
)
ψ̂ −λĀ2ψ̂ = ε̂|s+iω.(34)

The second equation is obtained by conjugating the first,
replacing s with s̄, and then using the rule ˆ̄f(s) = ¯̂

f(s̄).
All quantities are analytic in s within their domain of def-
inition. The determinant of this system is

D(s) = 3λ2|A|4 − 4λ|A|2
(
ω − E0 − γ(R̂e p)

)
+

+ (−is+ ω − E0 − γ ˆ̄p)(is+ ω − E0 − γp̂). (35)

In this expression, we must keep in mind that

p̂(s) =
−i

s− iω + 2i1/2
√
s− iω

,

ˆ̄p(s) =
i

s+ iω + 2(−i)1/2
√
s+ iω

.

Thus D(s) has two branch cuts along the half-lines {x±
iω, x ≤ 0}.

Whether ψ(t) grows or decays as t → ∞, that is, the
linear stability of the system about a scattering solution,
depends on the roots of D. Roots in the right-half s-
plane indicate exponential growth, and roots in the left-
half plane indicate decay.

In terms of the quantity P = µR/a = λ|A|2/a, with
a = ω−E0 − γ2/(ω + 4), D has the form

D = 3P 2 − 4P
1
a

(
ω − E0 −

γ

2
(p̂+ ˆ̄p)

)
+

+
1
a2

(ω − E0 − is− γ ˆ̄p)(ω − E0 + is− γp̂). (36)

An analysis of the roots of D(s) at the values of P that
solve (16) is forthcoming. So far, numerical computa-
tions corroborate the expectation that the intermediate so-
lution P of (16) corresponds to an unstable scattering
state whereas the lower and upper solutions correspond
to stable states, as do solutions in regimes of unique re-
sponse.
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