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Abstract

This work analyses the effects of cubic nonlinearities on certain resonant
scattering anomalies associated with the dissolution of an embedded eigenvalue
of a linear scattering system. These sharp peak-dip anomalies in the frequency
domain are often called Fano resonances. We study a simple model that
incorporates the essential features of this kind of resonance. It features a linear
scatterer attached to a transmission line with a point-mass defect and coupled to
anonlinear oscillator. We prove two power laws in the small coupling (y — 0)
and small nonlinearity (u — 0) regime. The asymptotic relation u ~ Cy*
characterizes the emergence of a small frequency interval of triple harmonic
solutions near the resonant frequency of the oscillator. As the nonlinearity
grows or the coupling diminishes, this interval widens and, at the relation
w ~ Cy?, merges with another evolving frequency interval of triple harmonic
solutions that extends to infinity. Our model allows rigorous computation of
stability in the small p and y limit. The regime of triple harmonic solutions
exhibits bistability—those solutions with largest and smallest response of the
oscillator are linearly stable and the solution with intermediate response is
unstable.

Mathematics Subject Classification: 70K30, 70K40, 70K42, 70K50

(Some figures may appear in colour only in the online journal)

1. Introduction of the nonlinear model

The interaction between a resonant scatterer and an extended system that admits a spectral
continuum of states is a fundamental problem in classical and quantum systems. A variety
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of simple models have been devised to elucidate this interaction, and they have the advantage
of providing clean mathematical treatments of specific phenomena. Lamb [8] observed in
1900 that, if a simple harmonic oscillator is attached to a point on a string, the loss of energy
by radiation into the string effectively results in the usual damped oscillator. Komech [7]
extended the analysis to a general simple nonlinear oscillator and proved that finite-energy
solutions tend to an equilibrium state of the oscillator and in fact that transitions between
any two equilibrium states are possible. In the frequency domain, resonance effects of an
oscillator on extended time-harmonic states were treated by Fano [4], in order to explain
peak-dip anomalies (the ‘Fano line shape’) observed in the scattering of electrons by the
noble gases. These sharp resonances are a result of a weak coupling of a bound state to a
continuum of extended states. The frequency of the bound state is realized as an eigenvalue
of the equations of the extended system, embedded in the continuous spectrum, and this
eigenvalue is unstable with respect to perturbations of the system. An analogous phenomenon
occurs in the scattering of an EM plane wave by a photonic crystal slab. Sharp peak-dip
anomalies in the transmission of energy across the scatterer (similar to those in figure 2
and often referred to as resonances of Fano type) are due to the resonant excitation, by
the incident wave, of the state that is localized in the slab [1,2,17]. These resonances can
be analysed rigorously by means of a complex-analytic perturbation theory of the scattering
problem about the parameters of the bound state, and one obtains asymptotic formulae that
reveal fine details of the anomalies [15, 18]. The analysis is applicable quite generally to
scattering problems that admit unstable bound states, including continuous as well as lattice
models [14, 16].

Kerr (cubic) nonlinearity in models of resonant harmonic scattering have been investigated
by several authors, mostly numerically. Its effects on resonance in dielectric slabs is important
for applications exploiting tunable bistability [9]. The Fano—Anderson model of a resonator
coupled to a single chain of ‘atoms’ with nearest-neighbour interactions exhibits a sharp dip
in the transmission coefficient in the middle of the spectrum. When Kerr nonlinearity is
introduced into the resonator, a stable scattering state bifurcates as the nonlinearity reaches a
critical value, producing multiple scattering solutions and bistability in an interval of resonant
frequencies [12, 13]. Discrete nonlinear chains have been proposed for modelling photonic
crystal waveguides [10, 11]. When, instead of a single atomic chain, two atomic chains are
coupled together, one can construct embedded trapped modes exhibiting the Fano-type anomaly
observed in photonic systems, and numerical computations show that Kerr nonlinearity causes
intricate multi-valued transmission coefficients [16].

In order to understand the fundamental effects that nonlinearity produces upon resonant
scattering through exact explicit formulae, we introduce a dynamical system consisting of
two subsystems coupled together (figure 1): (1) a transmission line of Schrodinger type with
a point-mass defect acting as a nonresonant scatterer and (2) a nonlinear resonator coupled
to the defect on the line. When the nonlinearity is set to zero, the model incorporates the
essential features of these linear photonic systems described above inasmuch as the resonant
phenomena are concerned. The model elucidates fundamental nonlinear effects that coincide
with asymptotic relations between the parameters of coupling and nonlinearity. The use of
a discrete transmission line, as in the Fano—Anderson model, in place of a continuous one
would have the effect of making the spectrum of finite rather than infinite extent, and is of no
consequence for the Fano resonance.

In our model, multiple scattering solutions near the Fano resonance are observed for
any value of the parameter A of the Kerr nonlinearity, if the intensity of the incident field
J is large enough so that the composite nonlinearity parameter i = AJ? exceeds a certain
threshold. Below this threshold, the solution is unique. This is also true for the Fano—Anderson
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Figure 1. The model for nonlinear resonant scattering. The transmission line models the ambient
space, the mass attached to the line models the (nonresonant) scatterer, and the nonlinear oscillator
attached to the mass models the bound state, which is responsible for resonance. The Kerr
nonlinearity is confined to the oscillator. The elements of a harmonic scattering field at frequency
w correspond to the form (2.2).

model with nonlinearity studied by Miroshnichenko, ef al [12, 13]. The threshold depends on
the coupling y between the transmission line and the resonator. Weaker coupling requires a
smaller value of i to achieve qualitatively the same nonlinear resonant effects. The asymptotic
analysis of the limit 4 — 0, y — 0, gives a precise description of these (fully) nonlinear
phenomena and is the focus of our present study.

Asymptotically small coupling pushes the Fano resonance to its singular limit, in which a
system that admits an eigenvalue embedded in the continuous spectrum is perturbed, causing
the eigenvalue to dissolve [18]. This situation was described by Fano as a ‘configuration
interaction” which causes ‘the mixing of a configuration belonging to a discrete spectrum with
continuous spectrum configurations’ [4]. In the regime of weak coupling, extreme amplitude
enhancement in the resonator, together with very small Kerr coefficient, causes pronounced
nonlinear effects. This paper analyses the delicate balances between two small parameters—
the composite nonlinearity parameter p and the coupling . There are two distinguished
asymptotic balances, one that characterizes the onset of a frequency band of multiple solutions
at the Fano resonance and another that characterizes the merging of this band with a second
high-frequency band of multiple solutions. The results are summarized in table 1 and figure 4.

A discussion and comparison with the models of Lamb and Komech as well as the Duffing
oscillator is offered in the final section 5. The reader may decide to browse that discussion
before embarking on the analysis of our model in sections 2—4.

The transmission line with a point mass at x = 0 is the system

i, (x,t) = —huy,(x, 1), x # 0,
iu; (0,¢) = —71 (ux(0+, t) —uy (0™, t)) ,

inwhich 2 > Ocarries units of area per time and t > 0 carries units of length per time. Selecting
T = h/t?> and X = h/t as units of time and space nondimensionalizes the equation and
removes 7 and t. Thus the nondimensional frequency w = 1 corresponds to the dimensional
frequency 272/ h. The resonator is a nonlinear harmonic oscillator with cubic, or Kerr,
nonlinearity, that obeys the equation in nondimensional form

iz(t) = Eoz(t) + Alz(1)|*z(2).

The nondimensional characteristic frequency Ej is relative to the fixed frequency unit 27 /7,
and A is a nondimensionalization of a parameter carrying units of frequency per square units of
z (the values u and z of the fields are assumed to be nondimensionalized relative to a common
unit). Neither Ey nor A can be eliminated from the equation.
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Figure 2. Transmission T = |B/J|?> versus frequency for the linear system (A = 0) and

normalized incident amplitude J = 1 for three values of the coupling parameter y: From left
to right, y = 0.0, 0.2, 0.7. The characteristic frequency of the oscillator is w = Eg = 4.

These two systems are then coupled by a parameter y,

i (x, 1) = —uy(x,t), x #0 (transmission line),
iy(t) = yz(t) — (uy(0*,2) —u, (07, 1)) y() =u(0,7) (pointdefect on the line), (1.1)
iz(t) = Eoz(t) +y y () + Alz()|>z(®) (resonator).
Nonlinearity is measured by the composite parameter
w==xrJ?

where J is the amplitude of a monochromatic field emanating from a source at —oo (see figure 1
or (2.2)). In its dimensional form, i and y are frequencies, with u being amplitude-dependent
and depending quadratically on the strength of the incident field.

The resonant amplification of the oscillator in the linear system (A = 0), accompanied by
sharp transmission anomalies near the resonant frequency E, as described above, is portrayed
in figure 2. As the coupling y of the oscillator to the transmission line vanishes, the resonant
amplification becomes unbounded. In the limit y — 0, the motion of the oscillator becomes a
bound state for the decoupled system, whose frequency is embedded in the continuous spectrum
arising from the transmission line.

The nonlinear system (1.1) admits time-periodic solutions, which the Kerr form A|z|*z
of the nonlinearity allows to be monochromatic. Even a small nonlinearity has a pronounced
effect on the resonance, due to the high-amplitude fields produced. Figure 3 shows how
multiple scattering solutions (nonuniqueness of the scattering problem) appear near the
resonant frequency and spread to higher frequencies as the nonlinearity parameter is increased.
Similarly, a new branch of solutions emerges from the infinite frequency limit and spreads to
lower frequencies.

This work proves that the bifurcations occur as portrayed in figure 4, as the nonlinearity
increases from the value zero. The analysis reveals characteristic power laws between the
coupling parameter y and the composite parameter of nonlinearity x in the asymptotic regime
of y — 0and u — 0O (see table 1 and figure 4). The critical relation y*/u ~ Const. marks the
onset of a narrow frequency interval [w;, w;] of triple solutions near the resonant frequency.
For each frequency above this interval and below a high frequency w3 ~ Cy~2, the system
admits a unique harmonic solution. As w increases relative to y, the intervals [w;, ;] and
[ws3, 00) of triple solutions widen until they merge, that is w, = w3 ~ C, at the critical
power law y2/uu ~ Const. For any fixed, small 1 and y, there are at most three frequencies
that separate intervals of unicity from intervals of triple solutions; we call these transition
frequencies. Understanding of the dependence of the transition frequencies w;, w, and w3 on
the parameters y and w can be illustrated graphically through the intersection points of two
curves in the plane whose coordinates are reparametrizations of the frequency of a harmonic
excitation and the ‘response’ of the resonator (section 3).
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The stability of multiple scattering solutions is important in applications involving bistable
optical transmission [3, 9, 13,20]. It is commonly understood that, at frequencies for which a
nonlinear resonant system admits a unique periodic solution (for a given system and source-
field amplitude J), this field is stable under perturbations. At frequencies for which there are
exactly three periodic solutions, there should be bistability, that is, two solutions are stable and
one unstable, the unstable one being that with intermediate amplitude (see, e.g. the references
just cited). The analysis in this section yields precise statements about this kind of bistable
behaviour in our model of nonlinear resonance (theorem 2).

2. Harmonic solutions of the nonlinear model

System (1.1) admits harmonic scattering solutions, in which a field Je!**=®" oscillating at
frequency w in the string is incident on the resonator from the left (figure 1),

u(x, ) = (Jei* + Ae *)e=ir x <0,

u(x,t) = ?pij‘xe*i’”t, x>0, 22)
y() = Be™',
2(t) = Ze ",

where y(t) = u(0, t) represents the state of the defect in the transmission line. The wave
number k > 0 in the string and the frequency w are subject to the dispersion relation for the
free string w = k2. The continuity of u provides the relation

J+A =B,
and (1.1) reduces to the algebraic system
ik —k*)B +y Z = 2ikJ,
yB+ (Eo — k) Z+1ZI*Z =0,
which can be written as a cubic equation for Z/J and a linear relation between B/J and Z/ J:
2iky < v’ +k2—Eo) zr|2 2

2ik — k2 \2ik — k2 7 Tl 7"
B 2ik—y(Z/J)
J  2ik —k?
We define the transmission coefficient as
2

Jo (2.3)

‘B
T=|—
J

Evidently, the dependence of T on A and J is only through the composite parameter
wi=AJ>

In figures 3 and 5, one observes two intervals of the w-line in which the harmonic scattering
problem has three solutions and two intervals in which it has one solution. These intervals are
separated by three transition frequencies ki2 =w;i(y,u, Eg),i =1,2,3:

0, w1) U (w2, w3) one solution, 2.4)
(w1, ) U (w3, 00)  three solutions. '
When u is decreased or y increased, the points w; and w, approach each other and are
annihilated, and there remains a single interval of one solution and one of three solutions,
separated by the point w3;. We will call this threshold the w;-w, bifurcation. On the other hand,
increasing p or decreasing y brings the points w;, and w3 together, resulting in a single interval
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Figure 3. The transmission coefficient T := |B/J|? of the harmonic scattering solutions (2.2)
of the string-oscillator system (1.1) versus the wavenumber k = ./w. The graphs show a
progression of values of the composite nonlinearity parameter ;1 = AJ? (from top to bottom,
n =20, 0.001, 0.0035, 0.003 856, 0.003 95), all other parameters being fixed (Eo = 4, y = 0.3).
The top graph shows the linear case, in which each frequency admits a single harmonic solution.
The sharp anomaly occurs near the characteristic frequency Eo = 4 of the oscillator. For nonzero
1, there is a half-infinite frequency interval (w3, co) of triple solutions. As w increases (or as
y decreases), a narrow frequency interval (w1, w;) of triple solutions emerges; this is the w;-w;
bifurcation. Meanwhile, w3 decreases, eventually merging with w, and eliminating the interval
(w2, 3) of unique solutions; this is the wy-w3 bifurcation. A diagram of the bifurcations for this
progression is shown in figure 4 (bottom).

[w1, 0o) of multiple solutions. We call the threshold that occurs when they are annihilated the
w;-ws3 bifurcation.

Each of these bifurcations is analysed in detail in the following section, and table 1 is a
summary of the results. Asymptotically, as i and y vanish, the bifurcations are characterized
by specific power laws. The w;-w- bifurcation occurs at relatively weak nonlinearity, . ~ Cy*,
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Figure 4. Top: this diagram describes the emergence of a frequency band of multiple solutions
which eventually merges with the high-frequency band of multiple solutions as the composite
nonlinearity parameter 4 = AJ? increases with the coupling y fixed. It shows the transition
frequencies w1, wp and w3, versus u, at which the number of harmonic scattering solutions of the
form (2.2) changes from 1 to 3 or vice versa, according to whether the cubic polynomial (2.8) for
the response has one or three real roots. The unshaded region indicates those (w, ) pairs that admit
only one real root, whereas pairs in the lightly shaded region admit three real roots. Bifurcations
occur at the points Bj; (the cuspidal w-w; bifurcation in the text) and B3 (wz-w3 bifurcation)
as u varies. The coordinates of the two bifurcations are labelled with their asymptotic values for
small y and p, according to table 1. Bottom: this is a numerical computation for Ey = 4 and
y = 0.3 that corresponds to figure 3.

Table 1. Asymptotics of the bifurcations of the transition frequencies for small y and . The
bifurcation diagram with p as the bifurcation parameter and fixed y is shown in figure 4. All
constants depend only on E( and are computed explicitly in the text. The three relations in the first
row are given in equations (3.24)—(3.26); the relations in the second row are given in equations
(3.31), (3.34) and (3.30).

Bifurcation Power law wi ) w3
4

14 2 C12
0 =w) —~Cn wip—Eo ~ Clyy w3 ~ —

12 14

y2

43

) = w3 ;chz w1 — Eg ~ CYyy¥ w3 ~ Cly

when its effects on the resonance near Ej first appear. The w,-ws bifurcation occurs at much
higher values of nonlinearity relative to the coupling parameter. These constants as well as
those in the asymptotics for the frequencies w; are computed explicitly in terms of the resonant
frequency Ey alone.
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Figure 5. These graphs show the harmonic scattering states (2.2) of the string-oscillator system
(1.1) versus the wavenumber k = /w. Plotted from top to bottom are (i) the logarithm log | Z| of the
amplitude of the oscillator’s motion z(f) = Ze™''; (ii) a rescaling P of the response R = |Z/J|?
defined by (2.7) (J is the amplitude of the incident field) with detail near the resonant frequency
depicted to the right; (iii) the phase arg(Z) of the oscillator and (iv) the transmission coefficient
T = |B/J|?. For the parameter values Eg = 4.0, y = 0.3, and u = 0.0035 chosen here,
there are two frequency intervals (w1, @) and (w3, 00), delineated by the vertical dotted lines,
in which the system has three solutions; at frequencies in the complementary intervals (0, w;)
and (wy, w3), the system has only one solution. The two high-amplitude oscillations have almost
identical amplitudes, as shown in the top graph, but they differ by a phase that tends tor asw — o0,
as seen in the third graph. A graph of the transition frequencies versus u is shown in figure 4.

Analysis of the number of scattering solutions as a function of frequency is facilitated
by a polynomial equation for the square of the amplitude enhancement R = |Z/J|* in the
resonator, which we call the response. The first equation of (2.3) yields

2

2
y4—(w—E0)> "

w +

4)/4 4y

a)(a)+4)2R_ w+d

2

R </LR + 0. 2.5
The roots R of this equation, which are necessarily positive, are in one-to-one correspondence
with the solutions (B, Z) of (2.3). A cubic equation whose solutions determine all of the
possible responses of the system is due to the Kerr form of the nonlinearity; such an equation
is also obtained in [13], in which the transmission line is discrete. Equation (2.5) can have
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multiple roots only if

(w— Ep)(w+4) — )/2 >0 (necessary for multiple solutions) (2.6)
in particular, if > Ey, that is, if w exceeds the frequency of the free resonator. The change
of variable

P y2
R:—(w—Eo— ) 2.7
" w+4
transforms equation (2.5) into

]f(P) = P(P—1)2+aP — B =0, 2.8)

in which
1 292 :

o =o(w;y, Ey) = — 5]

o \(w—Ep)(w+4) —y (2.9)
4)/2 w(w+4)?

B = Bw; vy, u, Eg) := ((w — Eo)(w+4) — y2)3°

The quantities R, «, and 8 can be written more compactly using the notation

p=w+d~w as w — 00,
oc=w—Ey—y*/p~w as w — 0.
o 4y* 4y?
1 wo2p oip

If one fixes the parameters u, y and Ej of the dynamical system, one can consider
the roots of the polynomial f(P) as functions of frequency w. These roots correspond to all
possible responses R associated with harmonic scattering solutions at . Transition frequencies
separating unicity of the response from multiple responses occur when f'(P) has a double root.
Thus analysis of transition frequencies is tantamount to analysis of the parameters for which
f(P) has a double root.

3. Multiple harmonic solutions and their bifurcations

We have seen that certain transition frequencies w; (i, y; Ep) separate intervals of unique
response to harmonic forcing by the source field Je ™'’ from intervals of triple response. The
diagram in figure 4 shows how the transition frequencies merge or separate as a function of the
nonlinearity in the asymptotic regime of y — 0 and u — 0. This section is devoted to proving
the asymptotic power laws in that diagram. The main results are stated in the following theorem.

Theorem 3.1. The transition frequencies w; that separate frequency intervals of unique
scattering solutions from intervals of multiple solutions vary with the nonlinearity parameter
W according to the diagram in figure 4 if the coupling parameter y is sufficiently small. More
precisely,

1. There are at most three transition frequencies if y is sufficiently small.
2. There is a point By, = (w12, W) and positive numbers C\, and C}, with
4

14
;,L_ ~ C12 and w1 — E() ~ Ciz)/z ()/ — O)

such that, if L < [, there is a single transition frequency w3 and if © > [, but p is
not too large, there are three transition frequencies with w; < w; < w3. AS L — [ds
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from above, w; — w1y and wy, — wi2. Moreover when | = Ly, there are two transition

frequencies w;; = w1 = wy < w3 and

L e
2
The numbers Cy, and C', depend only on Ey and are given by (3.24) and (3.25).

3. There is a point Bys = (wy3, n*) and positive numbers Caz and Ch; with

w3 (y = 0) (w1 = wy).

2

— ~Cxn and w3 ~Ch (y —0)

such that, if w > u*, there is a single transition frequency wy and if © < p* but wu is
not too small, there are three transition frequencies with w; < wy < w3. As u — p*
from below, wy — wy3 and w3 — wy3. Moreover, when . = w*, there are two transition
frequencies w1 < wy; = w3 = wy3 and

3
w1 = Eo~ —5 y*? (y = 0).
%

The numbers Ca3 and C’y depend only on Ey and are given by (3.31) and (3.30).
The transition frequencies are characterized by the property that there exists a real number

P such that both (2.8) and its derivative with respect to P vanish. The system of the two
conditions is algebraically equivalent to the pair

a(w; y, Eo) = =3(P — (P — 1),

(conditions for transition frequencies) (3.10)
B(: y. i, Eo) = —2P*(P — 1). a

It is convenient to work with the roots of op = (w — Ep)(w+4) — ;/2 =(w—E)(w+c),
which are small perturbations of £y and —4 as y — 0,

(w—EN(@+c) = (w— E))(w+4) —y2, (3.11)

E, = Ey+e¢, (3.12)

c=4+e, (3.13)

e~V + O, (3.14)
Ey+4

a=4+E, =4+ Ej+e. (3.15)

Because of inequality (2.6), multiple solutions are possible only for > E|, and we therefore
introduce the variables

v=w-— E, (3.16)
T=v1, (3.17)
g=3P—2. (3.18)

The algebraic system (3.10) in P and w can be rewritten as a system in ¢ and t:

3

(1+E0)(1+(@+e)r)?’
27, 54yt (1 +at)?

— 2—_
1=9)Q+q)=—pF= I+ @to0)

(1 —g)(1+q) =3a = 12y*
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Dividing the second by the first and retaining the first equation yields the equivalent pair

1= g)(1+q) = 12* v = 12y* 3.1

A =ad+q) =y G @ s o ~ ot Enwt @)’ (3.19a)
2+¢? 9 pu (1+an’(1+E1) 9 pu w+a) 0+ E) s 1op
l+g 292 t(l+@@+e)t) 292 v(v+(a+e) (3.196)

3.1. Graphical depiction of transition frequencies and their bifurcations

These two algebraic relations between g and t are shown in figures 7 and 8; the symmetric one
is (3.19a). They provide a transparent graphical means of analysing the transition frequencies
and their bifurcations. The 7-values of the points of intersection between the two relations
determine these frequencies through w = E; + t~!. It is visually clear that there are at most
three intersection points, and we give a proof of this in section 3.5. Figure 7 shows the evolution
of the relations as u increases, for a fixed value of y. Initially, there is a single intersection,
corresponding to ws3. At a critical value of u, another intersection appears at the top, which
then splits into two intersections corresponding to w; (¢ < 0) and w; (¢ > 0). This is the
-, bifurcation. After a mountain-pass mutation of relation (3.190), the intersection points
corresponding to w, and w3 approach each other, fuse together, and then disappear on the lower
right half of relation (3.19a) in the w,-ws bifurcation.

When y tends to zero, the peak of relation (3.19a) grows without bound. But the frequency
of the w,-ws bifurcation remains of order 1 and (3.19a) appears as two practically vertical lines,
one at ¢ = —1 and one at ¢ = 1. This regime is depicted in figure 8.

The graphical realizations of relations (3.19a) and (3.19b) in figures 7 and 8 are obtained
as follows. In (3.19a), the function of T maps the positive real line onto itself in a strictly
increasing manner. Thus 7 is implicitly a function of g € (0, 1) with infinite slope at ¢ = %1,
and we denote this symmetric function by T = 7 (q).

Relation (3.19b) can be understood by placing the graphs of the functions

_Q2+9q)
filg) = g (3.20)
2
F(r) = 2& (1+at)*(1+ E71) (321)

2y2 t(l+(a+e)7)
side by side, as shown in figure 6. The function f; is convex and tends to infinity as g — —1
or ¢ — oo; its minimal value of 4 is achieved at ¢ = 0. Likewise, f] is convex and tends to
infinity as t — 0 or T — 00, and thus it has a minimal value, say m. I[f my < 4, then (3.19b),
or fi(q) = f>(t), has two components, each of which is the graph of a function of ¢, one
with unique local maximum 7_ and the other with unique local minimum t,, with 7_ < 7,
both of which are achieved at ¢ = 0. If my > 4, then each of two components is the graph of
a function of 7, the lower having maximal value ¢g_ and the upper having minimal value ¢,
with g_ < 0 < g,. At the transition from one regime to the other, when m, = 4, the relation
consists of two curves crossing tangentially at g = 0.

If 7 is viewed as a multi-valued function of g, then the upper branch of (3.190) is decreasing
for ¢ < 0 and increasing for g > 0. Since (3.19a) has the opposite behaviour, it intersects the
upper branch of (3.19b) either not at all, exactly once at ¢ = 0, or at two points, one withg < 0
and one with ¢ > 0. One can see that the t-value of the former is larger by the observation
that f1(—q) — fi(¢) = 2¢°/(1 — q*®) > 0, for g € (0, 1). It is clear from the graphs that
the lower branch intersects (3.19a) at most once, and only for ¢ > 0; a rigorous statement is
proved in section 3.5.
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Figure 6. The concave functions fj(g) and f>(t) in relation (3.195). The function f;(g) does
not depend on the parameters of the system, whereas f>(t) does. When the minimal value of f>
is less than that of f; (equal to 4), the relation f|(g) = f2(t) possesses two components that are
functions of ¢, with minimal and maximal t-values equal to 7_ and 74, as in the first three graphs of
figure 7. When min f>(t) > 4, the two components are functions of t, with minimal and maximal
t-values equal to g_ and g, as in the last three graphs of figure 7.
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Figure 7. Relations (3.19a) and (3.19b) in the (g, t) plane, whose intersections give the transition
frequencies through w = E; + =1, The symmetric one is (3.19a). The values of y and Ej are
fixed, and the graphs from left to right show the evolution of relation (3.196) as u increases. The

two bifurcations occur at the tangential intersections, as in the second (w;-w, bifurcation) and sixth
(w2-w3 bifurcation) graphs.

3.2. The wi-w, bifurcation

We first analyse the bifurcation occurring at the point By, of figure 4, at which a narrow
frequency interval of multi-valued harmonic solutions is born as u increases across a threshold
value (with y fixed). We prove the power law y* ~ Cj,u and the asymptotics of the transition
frequencies at this bifurcation. The sharp feature in the bifurcation at the point By, is in fact
cuspidal with w, — @w; ~ C (i — jo)>/?, meaning that the (w;, w>) interval opens slowly.
The maximal value of the function T = 7 (g) is attained at ¢ = 0, and we denote it by

Ty = v*_l = max 7(q) =7(0).
q€(0,1)
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Figure 8. Relations (3.19¢) and (3.19b) for small y and u. The intersections of the two
relations correspond the the transition frequencies. Here, y = 0.1 and Ep = 4, and u increases
through values ranging from the wj-w, bifurcation at u ~ y*/Ciy ~ y*/166 ~ 6.0e —7,
through the crossing at u ~ y2/C ~ y?/26.2 ~ 0.00038122, to the wy-ws bifurcation at
w~ y2/Cy ~ y?/23.3 2 0.000429.

Setting ¢ = 0 in (3.19a) and (3.19D) gives
12y* = V2 (v, + E)) (v +a + €)°.
Asy — O withv, > 0, we have v, — 0, v, + E; > Ep,and v +a + ¢ — Ej+4, and thus
1294
2

— Eo(Eq +4)? (y = 0),

*

from which we obtain

A/ E()(E() +4) C*
s~ —— = — 0). 3.22
A my =0 (322)

The pair of frequencies w; and w; is born (or annihilated) when the upper branch of the
second relation in (3.19a) and (3.190) intersects the first relation T = 7 (g) at its peak, that is,
when 1, = 7,, as shown in the middle top graph of figure 8.

The numbers t. are the solutions of the second relation of (3.19a) and (3.19b) withg = 0.
This equation can be written as

2

8y
n=—1t={+art)(1+ E 1),
9u

in which
l+at+et T T 1
ni=———=1+c¢ < < —,
l+atr Ep+4

k]

1+ar l+art
so that n — 1 as y — 0. Thus we obtain

aE,t? - §)/_2 =
1T+ la+ E; n9M T+1=0. (3.23)
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Setting T = 1, in this equation, with y — 0, the asymptotic relation 7, ~ C./y? yields the
balance of two terms,

T’———’\’GE]_ (a)l 20)2,7/_)()),
9wy’ v?
which results in the asymptotic power law for the w;-w; bifurcation

T~ T EVH(Ep+ 4 =1 Cn (w; = wa, ¥y — 0). (3.24)

Let us denote by w;» = w; = w, the frequency at which this bifurcation takes place.
Equation (3.22) and the definitions of v and t give wj; — Eg — € ~ y2 / C,, and this together
with € ~ yz/(4 + Ey) yields

1 ) _ 2V3+VE _ L
VEo(Eg +4) 12

As this bifurcation takes place, the third transition frequency wj; is very large, and one
can compute its asymptotic value by finding the intersection between t = 7 (¢) and the lower
branch of the second relation of (3.19a) and (3.19b). Let us denote this intersection by (g3, 73).
The maximal t-value of the lower branch is 7_, which satisfies (3.23), and is seen to be of
order (’)(yz), and thus the first equation of (3.19a) and (3.19b) gives g = 1+ O(y 16y, Inserting
this into the second of (3.19a) and (3.190), gives

2
Nt = ——(l+an)(1+ E113),
Ci2

1
— En~ 2 — — 0). 3.25
w12 o~V (Cn + i1 E, (y ) ( )

in whichn — lasy — 0, or
Cc
1+<a+E1——122n>r+aE112=0,
14

which has a solution 73 ~ y2/C}5». Finally, w3 = 75 'Y E 1, which yields

c
w3 ~ ﬁ (@ = wy, y — 0). (3.26)

The response R, of the field at the frequency w, tends to infinity as y ~2. This can be
seen by inserting the asymptotic expressions (3.24) and (3.25) into (2.7) with g = 0O:

R E v\ 13, (Eo+4)
=|wpn—E)— —~ == .
12 12 0T ontd 3 24 0(£o
Similarly, the response of the field that is created or annihilated at the transition frequency ws,
that is, the field corresponding to the double root of (2.8), is found to be
Ro o 262 20
3 uz 38
Let us see why the w;-w, bifurcation is a cusp. It occurs when a convex function and a
concave function intersect tangentially at their extreme values, as seen the second graph of the
sequences in figures 7 and 8. The concave function is symmetric and the convex one is not.
Up to order O(g?), these functions can be represented by

(w1 = wy, y — 0).

T=1— cqz, r>0, ¢>0, (3.27)
T=10—1ré +aq2 +bq3, a >0, (3.28)
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in which € is arescaling of . After making the substitutionsré/(a+c) — §andd = b/(a+c),
the intersection points (g, t) of these two relations satisfy

8§ =q*(1+dq).
The small solutions of this equation have an expansion in powers of v/3,

qll:i(sl/z—(2—18:|:§d283/2+-~-,

and the corresponding t-coordinates are
Ta=—-c8+d&?+....
The difference of these is
7 — 1, = 2d 8>

Seeing that T = 1/(w — E}) and § is a rescaling of u, the difference w, — w; is of order
(1 — 10)*'2.

3.3. Between bifurcations

The structural morphosis of the relation f;(g) = f>(t) occurs when the minima of f; and f>,
are equal and is characterized by the crossing of two curves at (0, 7p) as depicted in figures 6
and 8. The number 7 is where f attains its minimum value, say f>(ty) = mg. By writing

_ (1+(Eg +H1)(1 + EgT) _ l+ar
L) = . n(), n(r) = Tv@ror

in which 1(t) — 1 and 1’(t) are both O(y?) uniformly in 7, one finds that
1

TO ~ —_—
v Eo(Eg +4)

mo = folto) ~ 9% 2+ Eo+VE(E+ D) v 0.

The crossing occurs when ¢ = 0 and t = 1 simultaneously in the relation f(g) = f2(7),
that is, when 4 = m, which yields the asymptotic power law

(y = 0)

and that

2

9
r — 7 (2 + Eg++/Eo(Eg+ 4)) (at crossing, y — 0).

7

When mq < 4, we have t_ < 19 < T4, where 74 are the extremes of the two branches of
the relation f;(q) = f>(t). Asymptotically,

1
T < —————=+o0 <T
EolBy+ ) 62 +
When m > 4, the extremes g4 are defined through
Q+qs)?
1+ q+
Since —1 < g_ < 0, we have 1 < (2+¢g_)? < 4 and therefore

v’ -
l+g- < " (9(2+E0+ D) +0()/)) < 4(1+4q-).

The point (g_, 79) is the rightmost point on the left branch of the relation f;(q) = f>(7),
and from the diagrams in figure 8, this point is evidently to the right of the graph of T = 7 (q),

(y — 0).

my.
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as the latter is practically a vertical line at ¢ = —1 when 7 is of order 1. The value of ¢ that
satisfies 7 (¢) = 1 is obtained by setting T = 17 in the first equation of (3.19a) and (3.19b):
1=+ =y 2 +o(y)
-9 q) = o .
E)*(Ey +4)2(VEy + VE, +4)3

Thus g = —1+ O(y*) and we obtain

6
1 4 T(q) = 10, 0). (3.29
+tq <y (ES/Z(E0+4)2(\/E_0+«/W)3+O(V)) (T(@) =w, y = 0). 3.29)

3.4. The wy-ws bifurcation

Because of (3.29) and the symmetry of 7, the two intersections for ¢ > 0 merge when
g+ = 1+ O(y*) and T ~ 7. This gives the frequency of the w,-ws bifurcation

w3 —> Eo + &/ E()(EO +4) = Cé3 ()/ — O), (330)

and, setting (2 + ¢,)%/(1 + ¢.) = my, the asymptotic power law relating y to u,

2
Y 2 (2+E0+\/E0(E0 +4)) — Cn (@ = w3,y = 0).| (3.31)
m

The response at this bifurcation is obtained from (2.7),

A/ E()(E() +4) 2(2+ Eo)/\/ E()(E() +4) +2E0(E0 +4)
I v? '

As this bifurcation takes place, the intersection that determines w; hasg — —lasy — 0.
This is because, with )/2 /it ~ Caa, relation (3.19b) becomes stationary as y — 0, whereas
relation (3.19a) contains the scaling factor y? on the right-hand side. Using y — 0 and
g — —1, together with 2/ ~ Ca3, system (3.19a) and (3.19b) gives

1 - 9 (+Ey)(1+@+EpT)
1+ q 2C23 T

P

1+ Eyt)(1+ 4+ Ep)r)?’

Roz ~

) (3.32)

l+g ~6y* (3.33)

which together yield
27 ™
—y — =1
Cyu’ (1+M@+EypT)

Thus T — o0, and we obtain

13
23 —4/3
—y

3
Using now w; — Eg + O(y?) = 7!, we obtain

T ~

3
o) — Ey ~ —5y*? (W = w3, y = 0). (3.34)
C23

The response at the transition frequency w;, corresponding to the double root of (2.8), is
Ri = (w1 — Eg + O(y?))/(3n), which results in
26

Ri~ S
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3.5. Proof of at most three transition frequencies

This section contains the proof of part (1) of theorem 3.1. It can be reformulated as follows.

Proposition 1. System (3.19a) and (3.19b), or, equivalently, system (3.10), has at most two
solutions with0 < g < 1 ( % < P < 1), and if n and y are sufficiently small, then the system
has at most one solution with —1 < g <0 (% < P < %).

Using the relations 3o = 1 — g2 and 278/2 = 4 — 3g%> — ¢°, system (3.19) can be written
equivalently as

qz— 12)/4

T VW +EDW+ (a+€)?]
2q° . i(\1)+E1)(v+a)2 (3.35)
l+g  y2 viv+(a+e)

and the first shows that |g| < 1.

First we deal with 0 < g < 1. Setting G and H equal to the right-hand-sides of the first
and second equations of (3.35) gives G as an increasing function of v that maps (0, co) onto
[—o0, 1) and thus H is a well-defined function of G € (—o0, 1). One computes that

d*H  (dG\*|d*H d*GdH [(dG\'
dG? (dv ) dvz  dv? dv (dv >
and that d>H/dv?> > 0, d>G/dv> < 0 and dG/dv > O (for v > 0). Thus, whenever
dH/dv > 0,d’H/dG? > 0 also. Since
dH dH (dG\' q G
dG ~ dv <dv) o v
we see that d2H/dG? > 0 whenever dH/dG > 0.

Let vy be the positive value of v that corresponds to G = 0, so that [vy, 0c0) maps onto
the G-interval [0, 1). Since H is a convex function of v that tends to infinity as v — 0 or
Vv — 00, it has a unique local minimum on [vy, 0o) (possibly at vy), and thus H has a unique
local minimum as a function of G (possibly at G = 0); denote this function by H = H(G).

The expressions G = ¢? and H = 2¢*/(1 +q) for q € [0, 1) constitute a parametrization
of the relation H = 2G/(1 + \/6) for G € [0, 1), in which H is an increasing concave
function of G. It remains to count the number of intersections between H = H(G) and
H=2G/(1+ VG) on the G-interval [0, 1). Since H(G) has a unique local minimum and is
convex whenever it is increasing, it intersects H = 2G /(1 + \/6) no more than twice.

Now let us consider —1 < g < 0. Let t = F(g) be defined through the relation
fi(g) = fa(r)forg € (0,q-) (g- < 0)andt < 19. We shall show that, for y sufficiently small
and i = const.y, we have F”(g) > 0, 1+¢_ > const.y,and 7(q) = 1o == 1+g = O@*).
From this, it follows that the relation fij(g) = f>(7) intersects T = 7 (q) exactly once for
g < 0 and these values of y and p. The result is extended to i < O(y) by the observation
that, as  decreases, ¢g_ increases (until it reaches 0) and F'(q) decreases, which disallows the
occurrence of any additional intersections (figure 9).

We have already found that 7y ~ 1/4/Eo(Eo +4), that 1 + g_ > const.y?/u, and that
190 =T (p) => 1 +g_ < const.y* as y — 0. Define
T

(1+ Eot)(1 +(Eg+4)T)°

gi1(g) = g (1) =

1
filg)’
so that F'(g) satisfies the asymptotic relation
2

g1(q) ~ %gz(F(q)) (v = 0).
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Figure 9. The function t = F(g) in the proof in section 3.5, representing the lower branch for
g < 0 of the relation (3.19b). It is increasing as a function of x and convex if © = const.y and y
is sufficiently small.

The second derivative of F' satisfies asymptotically

4 1 " IU/ g; (q) " )
F ~ _ = =F .
(q) () (gl (@) )2 gé(r)gz (1) (r (@)

One can verify the following for (g, t) on the graph of F: g5(t) > 0, g{(g) is bounded from
below; g7 () is negative and bounded from above; if g_ < 0, then g{(q)/g5(7) is positive and
bounded from below (in fact this ratio reaches oo at ¢ = ¢g_, where g5(r) = 0). As we have
seen, we can guarantee g_ < 0 by making p = const.y, and then, if y is sufficiently small,
we obtain F”(q) > 0.

4. Stability of harmonic solutions

To analyse the stability of the harmonic scattering solutions of the form (2.2), we first project
the system to the resonator. This results in an equation for z alone exhibiting dissipation in the
form of a delayed response coming from the coupling to the Schrodinger string with a point-
mass defect. We then linearize about harmonic solutions Ze™'’. Linear stability analysis is
carried out by analysing the determinant D(s) of this linear system in the Laplace-transform
variable s in the regime of small y and w. Any zero of D(s) in the right half plane indicates
linear instability, whereas all zeroes being in the left half plane indicates linear stability.

The responses |Z/J|? are obtained from the roots of the polynomial f(P) (2.7), (2.8),
and it is the roots P themselves that appear in the expression for D(s). When y and u are
small and w — Ej is bounded from below, one root of f is very close to zero, and when there
are three roots, two of them are very close to 1 (figure 10, top). For the highest and lowest
responses, the real parts of all zeroes of D(s) are shown to have a very small negative real
part asymptotically as y — 0 and u — 0. A precise statement in terms of D(s) is made in
section 4.4, and the result is the following theorem.

Theorem 2.

1. The harmonic response corresponding to the lowest root of the polynomial f (P) is linearly
stable for w — Eg > 0 if y and | are sufficiently small.

2. When the system admits three distinct harmonic scattering solutions (necessarily w— Ey >
0) and if y and p are sufficiently small, then

a. the solution corresponding to the middle root is linearly unstable;
b. the solution corresponding to the highest root is linearly stable if w is large enough and
linearly unstable if Eg < w < 1/2.
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Part (2b) has an intriguing consequence. If y and p are small enough and chosen such that
the ratio u/y? is large enough, there is a single frequency interval (w;, 0o) of triple harmonic
solutions for which the highest response is unstable for small frequencies and stable for large
frequencies. Thus a transition from instability to stability occurs at some frequency.

Let us assume that, for + < 0, the system is in a harmonic scattering state
(up(x, 1), yp(t), zy(t)) of the form (2.2). The state is perturbed for ¢+ > 0 by forcing the
resonator by a small-amplitude, temporally localized function ¢(t). Make the following
substitutions in the main system (1.1):

u(x, 1) = up(x, 1) +v(x, 1),

y(@) = yn() +n(1),

z(1) = zu (1) + £ (2).
The deviation (v(x, ), n(z), £(t)) of the solution from the harmonic one vanishes at ¢t = 0, as
does £(t), and it satisfies the system

W, +v,, =0 for x # 0, (4.36)

in=y¢— (0", 1) — v (07, 1)) with n(r) = v(0,1), (4.37)

il = Eol +yn+A(20z4l°C + 250 + 2240 P + 208> + [¢1P0) +£().  (4.38)
In addition, we impose on v an outgoing condition as |x| — oo, discussed below; see (4.42).
This outgoing condition postulates decay of the v(x, t) as |x| — oo. It is symmetric in x
because (i) v starts at rest (v(x, 0) = 0), that is, u is a pure harmonic solution for r < 0 and (ii)

the value v(0, t) together with the requirement of decay determines v(x, t) for both x — oo
and x — —oo.

4.1. The outgoing condition
The outgoing condition is understood through consideration of an auxiliary problem on the
half-line x > 0 without forcing and with a free endpoint at x = 0,
ia=—a.,, x>0 1>0,
a(x,0)=0, x>0 (initially at rest), (4.39)
a(x,t) >0 asx —> o0, t >0 (decaying at c0).
The Laplace transform of this system is isa = —a,, with a(s,x) — 0 as x — oo. The
solution satisfies @, = i*/?\/s @, with arg(i*’*) = 37/4, branch cut of ./ on the negative
half-line, and Re /s > 0, or
a(x,s) = a0,s)e V5= (x > 0). (4.40)

The inverse Laplace transform gives the general solution in terms of the Laplace-transformed
value of a(0, t),

| ico+0
a(x, 1) = — / a(0,s)e”" Vet ds.
2mi
—ioco+0
The part of the integral along s = —iw + 0 (w > 0) is a superposition of radiating (outward

travelling) waves, and the part along s = iw + 0 (w > 0) is a superposition of spatially
evanescent fields.
An analogous argument gives the outgoing condition for a function b(x, t) defined for
x <0:
b(x,s) = b0, s)e " Vix (x <0), (4.41)

which is equivalently expressed as b, = —i3/2\/s b.
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The value of v(0, t) connects v(x, ¢) to the left of the defect (x < 0) continuously with
v(x, t) to the right of the defect (x > 0), that is, one puts a(0, s) = v(0, 5) = 13(0, s) in (4.40)
and (4.41). Thus the outgoing condition for the perturbation v is expressed in the Laplace
variable by
—i32 /s v(x,s) forx <0,
i3/ /s b(x,s) for x > 0,

in which arg(i3/2) = 37/4 and v(x, s) is continuous in x. In fact, v(x,s) is completely
determined by 9(0, ).

0, (x,8) = { (outgoing condition) (4.42)

4.2. Reduction of the system to the resonator

Because of (4.42), v is spatially symmetric, that is, v(x, t) = v(—x, t), and the jump in its
derivative at x = 0 can be expressed in a simple way:

vy (0%, 1) — v, (07, 1) = 20, (0%, 7). (4.43)
Through the outgoing condition (4.42), this is expressed in the Laplace variable by

L[v: (0", 1) — v, (07, )] =215 7. (4.44)
Equation (4.37) now yields a relation between 1 and ¢,

10 =y [0 0 =y OO, (4.45)
in which

—i
g(s) = ———— (4.46)
T s

with the branch cut for Jon the negative real half-axis and /7 > 0 forr > 0. Relation (4.45)
allows one to project the system onto the resonator by considering equation (4.38) for a single
function ¢,

il = Eo +y2(g *¢) + A(21zl*¢ + 25 + 22418 1> + 2487 + (1) + £(2). (4.47)

The real part of the function g(s) is positive for s in the right half plane, which is a condition
for power dissipation for a linear system (A = 0 here) discussed in [5].

4.3. Linearization about a harmonic solution

Equation (4.47) is linearized by eliminating the quadratic and cubic terms in ¢ and replacing
¢ (t) with the solution &(¢) of the resulting linear equation. It is convenient to remove the
oscillatory factor e’ and deal with the field ¥ () = £(t)e'’. Keeping in mind that
zn = Ze ™!, one arrives at the following equation for :

i = (Eo — o)V +y°p* ¥ +L2IZPY + Z2¥) + e(t)e, (4.48)
in which p(t) = g(¢)e!’. In the Laplace variable, this becomes

(is + w—Eo — v2p — 20 ZP) — AZ2Y = Bl (4.49)

(is + w—Eo — v2p — 28 ZP) ¥ —AZ2) = &l (4.50)

The second equation is obtained by conjugating the first, replacing s with §, and then using

the rule jAF(s) = f (5) for Re (s) > 0. All quantities are analytic in s within their domains of
definition. The determinant of this system is

D(s) = 32 Z|* — 40 Z* (0 — Eo — ¥*(Re p) )
+(—is+w—Ey—y*p)is+w— Ey— y2p), 4.51)
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in which
1
p(s) = ) (4.52)
P w+1s +2ivow + 1s
o 1
p(s) = . 4.53)
Pe) w—1s — 2iJ/w — is (

The branch cut in the argument of the square root in the denominator of p is taken to be the
negative imaginary axis and the branch is defined by /1 = 1; this imparts a branch cut in the
s variable along the half-line {s = s +iw, s1 < 0} in the left half plane. Enforcing the rule
that p(s) = p(5) for Re (s) > 0 dictates that the branch cut for the argument of the square
root in p is the positive imaginary axis with /1 = 1; this imparts a branch cut in s along the
half-line {s = s; — iw, s; < 0}. Thus D(s; + is;) has two branch cuts along the half-lines
{s =51 £iw, s; <0}.

With these stipulations of the square roots, the denominator of p vanishes at the single
point s = iw and the denominator of 23 vanishes at the single point s = —iw.

4.4. Stability analysis

This section is dedicated to the proof of theorem 2, which is stated in the proposition below in
terms of the roots of D(s).

The linear stability of the system about a scattering solution uy, that is, whether v (¢)
grows or decays as t — 00, depends on the roots of D(s). Any root in the right half s-plane
indicates exponential growth, and all roots being in the left half plane indicates decay. In terms
of the quantity P=uR /o = A|Z|?/o, witho = w—Ey — y?/(w +4), D has the form

2 1 )/2 A A 1 . 24 . 2 A
D =3P —4P; <a)—E0—7(p+p)>+0—2(a)—Eo—1s—y p)(w— Eg+is — y“p).

(4.54)

Thus D(s) depends explicitly on the parameters w, P, and y? (as well as Ey). The value of P
is related to u;, through the correspondence between harmonic solutions and real roots of the
polynomial f(P) := P(P — 1)> +aP — B (2.8), which depends parametrically on y, i, and
. When o« and B are small, the smallest root P; is nearly zero and, in the case of three roots,
the other two P; and P; are nearly 1.

Proposition 3.

1. In expression (4.54) for D, let P be equal to the smallest root of f(P). If o — Ey > 0
is bounded from below and y and  are sufficiently small, then all zeroes of D(s) have
(small) negative real part.

2. Suppose that f(P) has three roots (necessarily w > Ey).

a. In(4.54), let P be set to the intermediate root. If y and  are sufficiently small, then D(s)
has a root with positive real part.
b. In (4.54), let P be set to the largest root. If the conditions
1

w > —

2
(@* = D(w — Ep)* > »°

4y*u
— T «N-P|I«1
(w — Ep)3(w+4) < <
" o — Eyp

2T A
y w(w+4)
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Figure 10. Top. Each of the three roots P;, i = 1,2,3 of the polynomial f(P) =
P(P — 1)? + «P — B (2.8), all of which are positive, corresponds to a harmonic solution of
the system (1.1). The response of resonator is related to P by equation (2.7). With the parameters

=005 u =4 yz/C23 ~ 0.000429, and Ey = 4, and v = 1.5wy3 ~ 14.5, P; is very
close to 0, whereas P, 3 are very close to 1. (There is only one transition frequency w; for these
parameters, i.e. i is above the point B3 in figure 4.) Bottom. For each root P; , the zero sets of
the real and imaginary parts of D(s) (4.54) in the complex s-plane are shown from left to right in
increasing order of P;. These graphs only show the zeros of D(s) that are away from £iw. For y
sufficiently small, the imaginary part of D vanishes on the real axis and on an almost vertical curve
approximately connecting the points —iw and iw, whereas the real part vanishes on a hyperbola-
like curve. The real part of this curve is small and negative, in agreement with the asymptotic
calculation in section 4.4 when p or ﬁ is bounded.

are satisfied and if y and u are sufficiently small, all zeroes of D(s) have (small) negative
real part. If Eg < w < 1/2, then D(s) has a zero with (small) positive real part.

Let us simplify notation by putting

0 =w+4, o=w—Ey—y*/p,
4y* 4yu
¥=— 0 B =
wo*p o3p’
P=1+0.

Case P « 1. We assume that ® — Ey > 0 is bounded from below and let y and u tend to
zero. In this regime, 0 ~ w — Ey, so 1 /o = O(1). Definition (2.9) of @ and 8 show that these
quantities vanish as y, & — 0, and thus the smallest root P of f(P) := P(P —1)>+aP — B
is asymptotic to 8:

4 2
P~p="2E_ 00w (4.55)
o°p

Case P < 1 and p, ]3 bounded. The first two terms of (4.54) vanish in this regime, and thus
the third term also vanishes, yielding two cases,

(0 —Ey—is—y2*p)— 0 or (w— Eog+is —y2p) — 0. (4.56)
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Putting s = s + is in the first case yields

55~ —(w— Ep) < 0, (4.57)
51 ~ —y>Im p. (4.58)

The sign of —Im ;3 is the same as that of —Re (s;+2+/ @ — is1 + 55 ). This latter expression
is asymptotic to —Re (2/@ + 57) ~ —24/Ey. This quantity is negative by the declaration of the
square root in the definition of g (4.46). Thus s, is asymptotically negative. A similar argument
for the second of the cases (4.56) shows that s, ~ w — Ey > 0 and that s; ~ y>Im p < 0.
Thus the roots s of D(s) = 0 are in the left half plane.

Case P < 1 and p or ;3 unbounded. As we have mentioned at the end of section 4.3, the
denominator of p vanishes only at iw and that of ;3 only at —iw. Thus, if one of these quantities
is unbounded, the other remains bounded. It suffices to analyse the case of p being unbounded,
as p(s) = p(5) and D(5) = D(s).

If Re(s) > 0, then ~/w +1is is in the upper half plane. The square root in the definition
(4.52) of p takes arguments in the upper half plane into the first quadrant, and thus

Re(s) > 0 —= Imvw+is > 0. (4.59)

We will prove that this condition is asymptotically inconsistent with D(s) = O.
The assumption that p — oo implies s — iw. Applying this to the three terms of D(s)
in (4.54) gives

48y*u? 16y%u y? .
D= e (1+0(1)) — T (a - 7p> (1+0(1))
2w — E() 2 A
t— (Eo(1+0(1)) — y°p) (1 +o0(1))

1 82
.y [——2 Qo — Ep)(1+0(1)) + V2“(1+o(1))}
o o2p

n iz(zw — Ep)Eo(1+0(1))
o

16y 48y*u?
_LoyTu Y v o(l)
o

(A +o(h)+= 25

R 1 Ey
=y°p —oj(Zw—Eo)(1+0(1)) +;(2a)—Eo)(1+0(1))-

Setting D = 0 provides the asymptotic relation
s Lo
y?
On the other hand, the definition (4.52) of p with @ + is — 0 provides the relation
. 1
T Vet
Combining these two asymptotic expressions for p yields
Jorh~ il
w+is ~ —i 25,

which, in view of (4.59), is inconsistent with Re (s) > 0.
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Case P ~ 1. To see the asymptotics of the other roots, write f(P) = Ointermsof Q = P —1:

4
f(P)=0 = Q2=4%(%<1+Q)—‘—i).
aip \y wp

This implies the asymptotic

4 o 4y

0% ~ y (— - —) when )/3 R« 10l « 1. (4.60)
adp \y? wp aip

Thus there are two values of order 2 that Q can take on, one negative and one positive, under

two conditions:

47/M W o

and —=>— = Q~=xCy’C>0). (4.61)
14 wp
Equallty in place of ‘>’ in the condition w/y? > o /(wp) is achieved asymptotically at the
w1-w; bifurcation. In general, for a fixed asymptotic ratio u/y?, the inequality of satisfied if
o is large enough or ¢ is small enough.
Expression (4.54) for D(s) can be written as

2)/2 2 2 SV
—2Q—E+—( +p)+—+—(p p) (4.62)
2 4 4
y (1 RS Y AP
—4Q—(———(p+p)>+ > ——(p+p) 2
o \p 2 o2p?

Case P ~ 1 and p, p bounded. These assumptions imply

22 2 2 : 2
D =2(0+0(?) — lp+y—<p+p>+s—+“—y<p 5+ 00", (4.63)

Letus assume Q ~ £Cy withAC > ( from conditions (4.61). Setting D to zero, one obtains
|s| < 1, and expanding p and p in s gives

. A__2 2s O(lsI2
P+P———m+ (s,

A 4i
TPhE R +O(ls)).

With these expressions, the equation D = 0 becomes

-207Q (1+0@?) = (s + 2y %) +0O>h.

Because Q ~ +Cy? with C > 0, the O(y*) on the right-hand side may be absorbed into the
O(y?) on the left-hand side,

_1
s =+/—-2020 — 2)/2% + 0>, V=2020 ~cy (c#0). (4.64)

The negative root Q ~ —C y? corresponds to the middle root P, of f(P), or the
intermediate response of the resonator depicted by the middle branch of the amplitude versus
frequency graph at the top of figure 5. Thus D(s) has a zero in the right half plane for
sufficiently small y.

The positive root Q ~ C y? corresponds to the largest root P3 of f(P), or the highest
response of the resonator depicted by the top branch of the amplitude versus frequency graph.
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The first term of (4.64) is imaginary, so the second term, which is real, determines the sign of
the real part of 5. If Ey < 1/2, then one has Re (s) > 0 for v < 1/2; otherwise, Re (s) < 0.

Case P ~ 1 and p or p unbounded. Again, it suffices to analyse the case of p being
unbounded. Let us suppose that p is unbounded and p is bounded. The balance of dominant
terms in (4.62) yields

2P :

Y2 sis) ~ -2 (4.65)
o o

Formula (4.52) with p — oo gives
1
2ivw +is
Using the second of these in (4.65) gives
2o (1 +i
Vo +1is ~ _M’
2is?
and then using s ~ iw in the right-hand side yields
Vo~ Ye@=1
202
aslongasw # 1. Atw =1, (1 +is) = o(1). In any case, we obtain w +is = O(y™), so that
st =—? +O(Y).

Each of the terms is and s? appears only once explicitly in (4.62), and they may be replaced
by —w and —w? committing an error of only (9()/4) Let us also introduce the proper scaling
of Q from the condition (4.61), namely Q = y Q

s ~iw, p

2p2  y? w’  wy?
D=2y’0 - p+—(p+p)—g———(p p) (4.66)
4 4 4 4
—4Q(y——y—(p+p)> 2L pehy+ V—z promh. (4.67)
o2p oZp

Passing all terms of order y* into the error (recall that 25 = (O(1)) and rearranging terms to
isolate the quantity of interest 2 p yields

25 N 51 2 - 2 1. s
p="" [1—w+y2 (2Q+”” )}—[w—z—y2<2Q——+—13+913>}+0(V4)-

(4.68)
Now setting D = 0 gives
2 A w? y202 ~ 2 1. wa 4
Yy’ p=— l——-120—-—+—-p+—-p|+0F¥")
o(w—1) w op O o
2 B =z -1
x [1+ Y 1 <2Q+ PP >+O(y4):| . (4.69)
w—
The real and imaginary parts of this quantity are
2
24 @ 2
—A:=Rey"p=——""-—"7—+0("), (4.70)

olw—1)
202 Im p <(a)+l)a 1
o(w—1) ? (0 — Do

y?B :=Imy?p = >+O(y4), (4.71)
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in which fﬁ is evaluated asymptotically using @ +is = y*£, where & is bounded:
1 1

p= ~ : . (4.72)
V20 — y*6 (<2i+ 20 — y*E)  V20(=2i++2w)
The quantity 2 p can be evaluated alternatively directly from its definition (4.52):
L 1 —i
b= Vo +is Qi+ Vo +1is) 2)/%/?(1—%)/%/@
_. . 2 4 _. . 2
~ ! (1+1y\/§_ﬁ+...>~ ! +l+1y\/g+...,
22 & 2 4 202V 48
which results in the asymptotic
Vh= 4 v, o). 4.73)
2/ 4

By equating expressions (4.69) and (4.73) for y2 p, we obtain
AL 00h = i)
— =A—i — =—-(A—-i ,
2JE 4 n 14 ) 4
in which A and B are real and differ from A and B by order O(y?). If w is sufficiently large,

A and B are positive and bounded from below in magnitude. Specifically, it is sufficient that
(@* — 1)(w — Ep)? > w?. This yields Im p > 0 asymptotically.

—1
vE= 2G4 +y2B)
Finally,
4 (2B —iA)?
is:—a)+y4§‘=—a)+y—(y 14)

4 (y4B2+ A2)?’
which results in Im s ~ » and
R B s
es~ =3V
This result places the zeroes of D(s) asymptotically in the left half plane, regardless of the
sign of Q.

5. Discussion of continuum-oscillator models

Simple continuum-oscillator systems serve a vital role in elucidating fundamental principles
and phenomena in physics. Horace Lamb, interested in how disturbances in a body subside
due to the transmission of energy into an infinite ambient medium devised what is now known
as the Lamb model as the simplest expression of this phenomenon [8]. He showed that, if
a harmonic oscillator is attached to an infinite string whose displacement is governed by the
wave equation, the oscillator obeys the equation of the usual instantaneously damped harmonic
oscillator. In other words, the energy loss in an oscillator due to instantaneous friction can be
perfectly conceived as the radiation of energy into an infinite string. The coupled system of
the oscillator and the string together is a conservative extension of the lossy system consisting
of the damped oscillator alone. It is in fact the minimal conservative extension of the damped
oscillator, and it is unique up to isomorphism, as shown by Figotin and Schenker [5]. The
string acts as a system of ‘hidden variables’ from the point of view of an observer who is able
to make measurements only of the motion of the oscillator.
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The linear version (A = 0) of our model (1.1) is designed specifically to allow the oscillator
to be completely detached from the string in the zero-coupling limit (y = 0) without severing
the string. The case y = 0 corresponds to a resonator decoupled from a system of ‘hidden’
variables that itself exhibits nonresonant scattering in a line by a point-mass defect resulting
in a simple but nontrivial transmission coefficient. A very small coupling parameter y < 1
corresponds to a small perturbation of a decoupled system with an embedded eigenvalue E
and results in a sharp resonance.

Because our transmission line is governed by a Schrodinger equation, it exhibits
dispersion, which is experienced by an observer in the oscillator as a delayed response, or
a noninstantaneous friction, assuming that there is no forcing originating at points along the
length of the string:

oo
£ = Eo¢(n) + y2/ gt e —1)dt +e()  (A=0),
0
b5) = ——
8 s+24/is
The function g(¢) obeys a power-dissipation condition, described in [5], which in the Laplace
variable is expressed by the condition that g(s) has a positive real part when Re (s) > 0.

The function ¢ (¢) in the above equation is a spatially and temporally localized perturbation
of a harmonic oscillation, that produces a deviation ¢ (¢) in the state of the oscillator. When the
frequency of oscillation vanishes, the problem becomes that of the dissipation of finite-energy
disturbances of a system initially at equilibrium. In this case, nonlinearities of a general form
have been analysed by Komech [7] when the string’s motion is governed by the wave equation
and the resonator is attached as in the Lamb model. The system exhibits transitions between
stationary energies of the nonlinear potential in the resonator, which resemble transitions
between energy states in atoms. In Komech’s model, the energy is related to the height of
the string rather than a frequency of oscillation. A positive cubic nonlinearity has only one
stationary point and all disturbances decay to zero.

Atnonzero frequencies, cubic nonlinearity becomes interesting and the focus of study turns
to the steady-state behaviour of a nonlinear scatterer subject to a monochromatic harmonic
forcing originating from a source far away. In particular, one wants to understand how these
steady oscillatory motions respond to finite-energy perturbations. Our choice of a Schrodinger
equation for the string was based on the form of the nonlinearity A|z|?z that is natural for this
equation, and which admits periodic solutions that are purely harmonic and mathematically
tractable. Perturbation about the harmonic motion Ze ™’ of the oscillator results in the
equation

i = (Eg— o)V + yzfoop(r’) Yt —t)dt +AQ1ZPY + Z2) +e(t)e,
0

(4.48) for the linearized perturbed oscillation v (f)e ™"’ of the nonlinear system. Energy loss
comes from the delayed response term p(s) = g(s — iw), which also satisfies the dissipation
condition that Re (s) > 0 = Re (p(s)) > 0. The solutions Z depend in a complex way on
y and A, and stability analysis when these parameters are small is delicate, as demonstrated in
section 4.

The idea of projecting a conservative oscillatory system onto a lossy subsystem is an
insightful one and has been discussed from different points of view in the works mentioned
above. Figotin and Schenker [5] view the whole string-oscillator system as a conservative
extension of a dissipative subsystem of ‘observable variables’ (the oscillator). The string
realizes in a structurally unique way a space of ‘hidden variables’ that are responsible for the
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loss of energy measured by an observer confined to the oscillator. The form of the energy
dissipation (as the function g(¢) above in the linear case) observed in the oscillator is sufficient
to determine the space of hidden motions responsible for the dissipation. These ideas are
brought to bear on the lossy Maxwell system in electromagnetics by these authors and others,
such as Tip [19]. Komech describes the projected system as an irreversible description of a
larger reversible one. This point of view had been advanced previously by Keller and Bonilla [6]
as an illustration of how irreversible processes may be derived from reversible ones and was
motivated by the question of whether macroscopic physical processes can be deduced from
classical mechanics.

To an observer of our nonlinear system from the site of the resonator, the coupling to the
string is felt as a combination of input energy and energy loss to damping. These two energies
balance out (in the sense of time averages), when the system is in a harmonic steady state. The
balance is disturbed when the system is perturbed from steady state. To express this perspective
in precise terms, we project the system onto the resonator. Write the equation for ¥ above
in terms of the actual perturbation ¢ (¢) = v (¢)e™'’ of a harmonic solution z;, = Ze ™' and
reinstate nonlinear terms from (4.47):

it = EoC + y2/ g ¢t — 1) dt' + A (2|1Z7¢ + Z2e7H'T)
0

+ A (2Ze7NCP + Ze LT+ 101PC) + (D).

Both the external forcing & and the steady-state field z;, = Ze ™', induced by the incident field
Jelkx=en "affect the dynamics of the system. The field z, = Ze '’ depends on y, u, and @
through the roots of the cubic polynomial f(P) (2.8). If e(¢) is taken to be &¢5(¢), where §(¢)
is a unit impulse at ¢+ = 0, we can consider this equation for t > 0 with ¢ = 0 and a nonzero
initial condition.

Importantly, introducing external forcing and damping through coupling to the string leads
to harmonic solutions that can still be calculated explicitly. This is generally not possible if
external forcing and instantaneous damping are introduced directly as in the much studied
Duffing oscillator

?+az+ Eoz +b7° = Fycos(wt). (5.74)

In spite of the similarities of cubic nonlinearity, harmonic forcing and intervals of triple
solutions, these solutions are only approximately periodic in the Duffing case, when the
parameters a, b and Fj are small.
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