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Abstract
This work analyses the effects of cubic nonlinearities on certain resonant
scattering anomalies associated with the dissolution of an embedded eigenvalue
of a linear scattering system. These sharp peak-dip anomalies in the frequency
domain are often called Fano resonances. We study a simple model that
incorporates the essential features of this kind of resonance. It features a linear
scatterer attached to a transmission line with a point-mass defect and coupled to
a nonlinear oscillator. We prove two power laws in the small coupling (γ → 0)
and small nonlinearity (µ → 0) regime. The asymptotic relation µ ∼ Cγ 4

characterizes the emergence of a small frequency interval of triple harmonic
solutions near the resonant frequency of the oscillator. As the nonlinearity
grows or the coupling diminishes, this interval widens and, at the relation
µ ∼ Cγ 2, merges with another evolving frequency interval of triple harmonic
solutions that extends to infinity. Our model allows rigorous computation of
stability in the small µ and γ limit. The regime of triple harmonic solutions
exhibits bistability—those solutions with largest and smallest response of the
oscillator are linearly stable and the solution with intermediate response is
unstable.

Mathematics Subject Classification: 70K30, 70K40, 70K42, 70K50

(Some figures may appear in colour only in the online journal)

1. Introduction of the nonlinear model

The interaction between a resonant scatterer and an extended system that admits a spectral
continuum of states is a fundamental problem in classical and quantum systems. A variety
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of simple models have been devised to elucidate this interaction, and they have the advantage
of providing clean mathematical treatments of specific phenomena. Lamb [8] observed in
1900 that, if a simple harmonic oscillator is attached to a point on a string, the loss of energy
by radiation into the string effectively results in the usual damped oscillator. Komech [7]
extended the analysis to a general simple nonlinear oscillator and proved that finite-energy
solutions tend to an equilibrium state of the oscillator and in fact that transitions between
any two equilibrium states are possible. In the frequency domain, resonance effects of an
oscillator on extended time-harmonic states were treated by Fano [4], in order to explain
peak-dip anomalies (the ‘Fano line shape’) observed in the scattering of electrons by the
noble gases. These sharp resonances are a result of a weak coupling of a bound state to a
continuum of extended states. The frequency of the bound state is realized as an eigenvalue
of the equations of the extended system, embedded in the continuous spectrum, and this
eigenvalue is unstable with respect to perturbations of the system. An analogous phenomenon
occurs in the scattering of an EM plane wave by a photonic crystal slab. Sharp peak-dip
anomalies in the transmission of energy across the scatterer (similar to those in figure 2
and often referred to as resonances of Fano type) are due to the resonant excitation, by
the incident wave, of the state that is localized in the slab [1, 2, 17]. These resonances can
be analysed rigorously by means of a complex-analytic perturbation theory of the scattering
problem about the parameters of the bound state, and one obtains asymptotic formulae that
reveal fine details of the anomalies [15, 18]. The analysis is applicable quite generally to
scattering problems that admit unstable bound states, including continuous as well as lattice
models [14, 16].

Kerr (cubic) nonlinearity in models of resonant harmonic scattering have been investigated
by several authors, mostly numerically. Its effects on resonance in dielectric slabs is important
for applications exploiting tunable bistability [9]. The Fano–Anderson model of a resonator
coupled to a single chain of ‘atoms’ with nearest-neighbour interactions exhibits a sharp dip
in the transmission coefficient in the middle of the spectrum. When Kerr nonlinearity is
introduced into the resonator, a stable scattering state bifurcates as the nonlinearity reaches a
critical value, producing multiple scattering solutions and bistability in an interval of resonant
frequencies [12, 13]. Discrete nonlinear chains have been proposed for modelling photonic
crystal waveguides [10, 11]. When, instead of a single atomic chain, two atomic chains are
coupled together, one can construct embedded trapped modes exhibiting the Fano-type anomaly
observed in photonic systems, and numerical computations show that Kerr nonlinearity causes
intricate multi-valued transmission coefficients [16].

In order to understand the fundamental effects that nonlinearity produces upon resonant
scattering through exact explicit formulae, we introduce a dynamical system consisting of
two subsystems coupled together (figure 1): (1) a transmission line of Schrödinger type with
a point-mass defect acting as a nonresonant scatterer and (2) a nonlinear resonator coupled
to the defect on the line. When the nonlinearity is set to zero, the model incorporates the
essential features of these linear photonic systems described above inasmuch as the resonant
phenomena are concerned. The model elucidates fundamental nonlinear effects that coincide
with asymptotic relations between the parameters of coupling and nonlinearity. The use of
a discrete transmission line, as in the Fano–Anderson model, in place of a continuous one
would have the effect of making the spectrum of finite rather than infinite extent, and is of no
consequence for the Fano resonance.

In our model, multiple scattering solutions near the Fano resonance are observed for
any value of the parameter λ of the Kerr nonlinearity, if the intensity of the incident field
J is large enough so that the composite nonlinearity parameter µ = λJ 2 exceeds a certain
threshold. Below this threshold, the solution is unique. This is also true for the Fano–Anderson
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Figure 1. The model for nonlinear resonant scattering. The transmission line models the ambient
space, the mass attached to the line models the (nonresonant) scatterer, and the nonlinear oscillator
attached to the mass models the bound state, which is responsible for resonance. The Kerr
nonlinearity is confined to the oscillator. The elements of a harmonic scattering field at frequency
ω correspond to the form (2.2).

model with nonlinearity studied by Miroshnichenko, et al [12, 13]. The threshold depends on
the coupling γ between the transmission line and the resonator. Weaker coupling requires a
smaller value of µ to achieve qualitatively the same nonlinear resonant effects. The asymptotic
analysis of the limit µ → 0, γ → 0, gives a precise description of these (fully) nonlinear
phenomena and is the focus of our present study.

Asymptotically small coupling pushes the Fano resonance to its singular limit, in which a
system that admits an eigenvalue embedded in the continuous spectrum is perturbed, causing
the eigenvalue to dissolve [18]. This situation was described by Fano as a ‘configuration
interaction’ which causes ‘the mixing of a configuration belonging to a discrete spectrum with
continuous spectrum configurations’ [4]. In the regime of weak coupling, extreme amplitude
enhancement in the resonator, together with very small Kerr coefficient, causes pronounced
nonlinear effects. This paper analyses the delicate balances between two small parameters—
the composite nonlinearity parameter µ and the coupling γ . There are two distinguished
asymptotic balances, one that characterizes the onset of a frequency band of multiple solutions
at the Fano resonance and another that characterizes the merging of this band with a second
high-frequency band of multiple solutions. The results are summarized in table 1 and figure 4.

A discussion and comparison with the models of Lamb and Komech as well as the Duffing
oscillator is offered in the final section 5. The reader may decide to browse that discussion
before embarking on the analysis of our model in sections 2–4.

The transmission line with a point mass at x = 0 is the system

iut (x, t) = −huxx(x, t), x �= 0,

iut (0, t) = −τ
(
ux(0+, t) − ux(0−, t)

)
,

in whichh > 0 carries units of area per time and τ > 0 carries units of length per time. Selecting
T = h/τ 2 and X = h/τ as units of time and space nondimensionalizes the equation and
removes h and τ . Thus the nondimensional frequency ω = 1 corresponds to the dimensional
frequency 2πτ 2/h. The resonator is a nonlinear harmonic oscillator with cubic, or Kerr,
nonlinearity, that obeys the equation in nondimensional form

iż(t) = E0z(t) + λ|z(t)|2z(t).
The nondimensional characteristic frequency E0 is relative to the fixed frequency unit 2π/T ,
and λ is a nondimensionalization of a parameter carrying units of frequency per square units of
z (the values u and z of the fields are assumed to be nondimensionalized relative to a common
unit). Neither E0 nor λ can be eliminated from the equation.
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Figure 2. Transmission T = |B/J |2 versus frequency for the linear system (λ = 0) and
normalized incident amplitude J = 1 for three values of the coupling parameter γ : From left
to right, γ = 0.0, 0.2, 0.7. The characteristic frequency of the oscillator is ω = E0 = 4.

These two systems are then coupled by a parameter γ ,

iut (x, t) = −uxx(x, t), x �= 0 (transmission line),
iẏ(t) = γ z(t) − (ux(0+, t) − ux(0−, t)) y(t) = u(0, t) (point defect on the line),
iż(t) = E0z(t) + γ y(t) + λ|z(t)|2z(t) (resonator).

(1.1)

Nonlinearity is measured by the composite parameter

µ = λJ 2

where J is the amplitude of a monochromatic field emanating from a source at −∞ (see figure 1
or (2.2)). In its dimensional form, µ and γ are frequencies, with µ being amplitude-dependent
and depending quadratically on the strength of the incident field.

The resonant amplification of the oscillator in the linear system (λ = 0), accompanied by
sharp transmission anomalies near the resonant frequency E0, as described above, is portrayed
in figure 2. As the coupling γ of the oscillator to the transmission line vanishes, the resonant
amplification becomes unbounded. In the limit γ → 0, the motion of the oscillator becomes a
bound state for the decoupled system, whose frequency is embedded in the continuous spectrum
arising from the transmission line.

The nonlinear system (1.1) admits time-periodic solutions, which the Kerr form λ|z|2z
of the nonlinearity allows to be monochromatic. Even a small nonlinearity has a pronounced
effect on the resonance, due to the high-amplitude fields produced. Figure 3 shows how
multiple scattering solutions (nonuniqueness of the scattering problem) appear near the
resonant frequency and spread to higher frequencies as the nonlinearity parameter is increased.
Similarly, a new branch of solutions emerges from the infinite frequency limit and spreads to
lower frequencies.

This work proves that the bifurcations occur as portrayed in figure 4, as the nonlinearity
increases from the value zero. The analysis reveals characteristic power laws between the
coupling parameter γ and the composite parameter of nonlinearity µ in the asymptotic regime
of γ → 0 and µ → 0 (see table 1 and figure 4). The critical relation γ 4/µ ∼ Const. marks the
onset of a narrow frequency interval [ω1, ω2] of triple solutions near the resonant frequency.
For each frequency above this interval and below a high frequency ω3 ∼ Cγ −2, the system
admits a unique harmonic solution. As µ increases relative to γ , the intervals [ω1, ω2] and
[ω3, ∞) of triple solutions widen until they merge, that is ω2 = ω3 ∼ C, at the critical
power law γ 2/µ ∼ Const . For any fixed, small µ and γ , there are at most three frequencies
that separate intervals of unicity from intervals of triple solutions; we call these transition
frequencies. Understanding of the dependence of the transition frequencies ω1, ω2 and ω3 on
the parameters γ and µ can be illustrated graphically through the intersection points of two
curves in the plane whose coordinates are reparametrizations of the frequency of a harmonic
excitation and the ‘response’ of the resonator (section 3).
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The stability of multiple scattering solutions is important in applications involving bistable
optical transmission [3, 9, 13, 20]. It is commonly understood that, at frequencies for which a
nonlinear resonant system admits a unique periodic solution (for a given system and source-
field amplitude J ), this field is stable under perturbations. At frequencies for which there are
exactly three periodic solutions, there should be bistability, that is, two solutions are stable and
one unstable, the unstable one being that with intermediate amplitude (see, e.g. the references
just cited). The analysis in this section yields precise statements about this kind of bistable
behaviour in our model of nonlinear resonance (theorem 2).

2. Harmonic solutions of the nonlinear model

System (1.1) admits harmonic scattering solutions, in which a field J ei(kx−ωt) oscillating at
frequency ω in the string is incident on the resonator from the left (figure 1),

u(x, t) = (J eikx + Ae−ikx)e−iωt , x < 0,

u(x, t) = Beikxe−iωt , x > 0,

y(t) = Be−iωt ,

z(t) = Ze−iωt ,

(2.2)

where y(t) = u(0, t) represents the state of the defect in the transmission line. The wave
number k > 0 in the string and the frequency ω are subject to the dispersion relation for the
free string ω = k2. The continuity of u provides the relation

J + A = B,

and (1.1) reduces to the algebraic system

(2ik − k2)B + γZ = 2ikJ,

γB + (E0 − k2)Z + λ|Z|2Z = 0,

which can be written as a cubic equation for Z/J and a linear relation between B/J and Z/J :

2ikγ

2ik − k2
−

(
γ 2

2ik − k2
+ k2 − E0

)
Z

J
+ λJ 2

∣∣∣∣ZJ
∣∣∣∣
2

Z

J
= 0,

B

J
= 2ik − γ (Z/J )

2ik − k2
.

(2.3)

We define the transmission coefficient as

T =
∣∣∣∣BJ

∣∣∣∣
2

.

Evidently, the dependence of T on λ and J is only through the composite parameter

µ := λJ 2.

In figures 3 and 5, one observes two intervals of the ω-line in which the harmonic scattering
problem has three solutions and two intervals in which it has one solution. These intervals are
separated by three transition frequencies k2

i = ωi(γ, µ, E0), i = 1, 2, 3:

(0, ω1) ∪ (ω2, ω3) one solution,
(ω1, ω2) ∪ (ω3, ∞) three solutions.

(2.4)

When µ is decreased or γ increased, the points ω1 and ω2 approach each other and are
annihilated, and there remains a single interval of one solution and one of three solutions,
separated by the point ω3. We will call this threshold the ω1-ω2 bifurcation. On the other hand,
increasing µ or decreasing γ brings the points ω2 and ω3 together, resulting in a single interval
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Figure 3. The transmission coefficient T := |B/J |2 of the harmonic scattering solutions (2.2)
of the string-oscillator system (1.1) versus the wavenumber k = √

ω . The graphs show a
progression of values of the composite nonlinearity parameter µ = λJ 2 (from top to bottom,
µ = 0, 0.001, 0.0035, 0.003 856, 0.003 95), all other parameters being fixed (E0 = 4, γ = 0.3).
The top graph shows the linear case, in which each frequency admits a single harmonic solution.
The sharp anomaly occurs near the characteristic frequency E0 = 4 of the oscillator. For nonzero
µ, there is a half-infinite frequency interval (ω3, ∞) of triple solutions. As µ increases (or as
γ decreases), a narrow frequency interval (ω1, ω2) of triple solutions emerges; this is the ω1-ω2
bifurcation. Meanwhile, ω3 decreases, eventually merging with ω2 and eliminating the interval
(ω2, ω3) of unique solutions; this is the ω2-ω3 bifurcation. A diagram of the bifurcations for this
progression is shown in figure 4 (bottom).

[ω1, ∞) of multiple solutions. We call the threshold that occurs when they are annihilated the
ω2-ω3 bifurcation.

Each of these bifurcations is analysed in detail in the following section, and table 1 is a
summary of the results. Asymptotically, as µ and γ vanish, the bifurcations are characterized
by specific power laws. Theω1-ω2 bifurcation occurs at relatively weak nonlinearity, µ ∼ Cγ 4,
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Figure 4. Top: this diagram describes the emergence of a frequency band of multiple solutions
which eventually merges with the high-frequency band of multiple solutions as the composite
nonlinearity parameter µ = λJ 2 increases with the coupling γ fixed. It shows the transition
frequencies ω1, ω2 and ω3, versus µ, at which the number of harmonic scattering solutions of the
form (2.2) changes from 1 to 3 or vice versa, according to whether the cubic polynomial (2.8) for
the response has one or three real roots. The unshaded region indicates those (ω, µ) pairs that admit
only one real root, whereas pairs in the lightly shaded region admit three real roots. Bifurcations
occur at the points B12 (the cuspidal ω1-ω2 bifurcation in the text) and B23 (ω2-ω3 bifurcation)
as µ varies. The coordinates of the two bifurcations are labelled with their asymptotic values for
small γ and µ, according to table 1. Bottom: this is a numerical computation for E0 = 4 and
γ = 0.3 that corresponds to figure 3.

Table 1. Asymptotics of the bifurcations of the transition frequencies for small γ and µ. The
bifurcation diagram with µ as the bifurcation parameter and fixed γ is shown in figure 4. All
constants depend only on E0 and are computed explicitly in the text. The three relations in the first
row are given in equations (3.24)–(3.26); the relations in the second row are given in equations
(3.31), (3.34) and (3.30).

Bifurcation Power law ω1 ω2 ω3

ω1 = ω2
γ 4

µ
∼ C12 ω12 − E0 ∼ C′

12 γ 2 ω3 ∼ C12

γ 2

ω2 = ω3
γ 2

µ
∼ C23 ω1 − E0 ∼ C′′

23 γ 4/3 ω23 ∼ C′
23

when its effects on the resonance near E0 first appear. The ω2-ω3 bifurcation occurs at much
higher values of nonlinearity relative to the coupling parameter. These constants as well as
those in the asymptotics for the frequencies ωi are computed explicitly in terms of the resonant
frequency E0 alone.
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Figure 5. These graphs show the harmonic scattering states (2.2) of the string-oscillator system
(1.1) versus the wavenumber k = √

ω. Plotted from top to bottom are (i) the logarithm log |Z| of the
amplitude of the oscillator’s motion z(t) = Ze−iωt ; (ii) a rescaling P of the response R = |Z/J |2
defined by (2.7) (J is the amplitude of the incident field) with detail near the resonant frequency
depicted to the right; (iii) the phase arg(Z) of the oscillator and (iv) the transmission coefficient
T = |B/J |2. For the parameter values E0 = 4.0, γ = 0.3, and µ = 0.0035 chosen here,
there are two frequency intervals (ω1, ω2) and (ω3, ∞), delineated by the vertical dotted lines,
in which the system has three solutions; at frequencies in the complementary intervals (0, ω1)

and (ω2, ω3), the system has only one solution. The two high-amplitude oscillations have almost
identical amplitudes, as shown in the top graph, but they differ by a phase that tends to π as ω → ∞,
as seen in the third graph. A graph of the transition frequencies versus µ is shown in figure 4.

Analysis of the number of scattering solutions as a function of frequency is facilitated
by a polynomial equation for the square of the amplitude enhancement R = |Z/J |2 in the
resonator, which we call the response. The first equation of (2.3) yields

R
(

µR +
γ 2

ω + 4
− (ω − E0)

)2

+
4γ 4

ω(ω + 4)2
R − 4γ 2

ω + 4
= 0. (2.5)

The roots R of this equation, which are necessarily positive, are in one-to-one correspondence
with the solutions (B, Z) of (2.3). A cubic equation whose solutions determine all of the
possible responses of the system is due to the Kerr form of the nonlinearity; such an equation
is also obtained in [13], in which the transmission line is discrete. Equation (2.5) can have
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multiple roots only if

(ω − E0)(ω + 4) − γ 2 > 0 (necessary for multiple solutions) (2.6)

in particular, if ω > E0, that is, if ω exceeds the frequency of the free resonator. The change
of variable

R = P

µ

(
ω − E0 − γ 2

ω + 4

)
(2.7)

transforms equation (2.5) into

f (P ) := P(P − 1)2 + αP − β = 0, (2.8)

in which

α = α(ω; γ, E0) := 1

ω

(
2γ 2

(ω − E0)(ω + 4) − γ 2

)2

,

β = β(ω; γ, µ, E0) := 4γ 2µ(ω + 4)2

((ω − E0)(ω + 4) − γ 2)3
.

(2.9)

The quantities R, α, and β can be written more compactly using the notation

ρ := ω + 4 ∼ ω as ω → ∞,

σ := ω − E0 − γ 2/ρ ∼ ω as ω → ∞.

R = σ

µ
P, α = 4γ 4

ωσ 2ρ2
, β = 4γ 2µ

σ 3ρ
.

If one fixes the parameters µ, γ and E0 of the dynamical system, one can consider
the roots of the polynomial f (P ) as functions of frequency ω. These roots correspond to all
possible responsesR associated with harmonic scattering solutions atω. Transition frequencies
separating unicity of the response from multiple responses occur when f (P ) has a double root.
Thus analysis of transition frequencies is tantamount to analysis of the parameters for which
f (P ) has a double root.

3. Multiple harmonic solutions and their bifurcations

We have seen that certain transition frequencies ωi(µ, γ ; E0) separate intervals of unique
response to harmonic forcing by the source field J e−iωt from intervals of triple response. The
diagram in figure 4 shows how the transition frequencies merge or separate as a function of the
nonlinearity in the asymptotic regime of γ → 0 and µ → 0. This section is devoted to proving
the asymptotic power laws in that diagram. The main results are stated in the following theorem.

Theorem 3.1. The transition frequencies ωi that separate frequency intervals of unique
scattering solutions from intervals of multiple solutions vary with the nonlinearity parameter
µ according to the diagram in figure 4 if the coupling parameter γ is sufficiently small. More
precisely,

1. There are at most three transition frequencies if γ is sufficiently small.
2. There is a point B12 = (ω12, µ∗) and positive numbers C12 and C ′

12 with

γ 4

µ∗
∼ C12 and ω12 − E0 ∼ C ′

12γ
2 (γ → 0)

such that, if µ < µ∗, there is a single transition frequency ω3 and if µ > µ∗ but µ is
not too large, there are three transition frequencies with ω1 < ω2 < ω3. As µ → µ∗
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from above, ω1 → ω12 and ω2 → ω12. Moreover when µ = µ∗, there are two transition
frequencies ω12 = ω1 = ω2 < ω3 and

ω3 ∼ C12

γ 2
(γ → 0) (ω1 = ω2).

The numbers C12 and C ′
12 depend only on E0 and are given by (3.24) and (3.25).

3. There is a point B23 = (ω23, µ
∗) and positive numbers C23 and C ′

23 with

γ 2

µ∗ ∼ C23 and ω23 ∼ C ′
23 (γ → 0)

such that, if µ > µ∗, there is a single transition frequency ω1 and if µ < µ∗ but µ is
not too small, there are three transition frequencies with ω1 < ω2 < ω3. As µ → µ∗

from below, ω2 → ω23 and ω3 → ω23. Moreover, when µ = µ∗, there are two transition
frequencies ω1 < ω2 = ω3 = ω23 and

ω1 − E0 ∼ 3

C
1/3
23

γ 4/3 (γ → 0).

The numbers C23 and C ′
23 depend only on E0 and are given by (3.31) and (3.30).

The transition frequencies are characterized by the property that there exists a real number
P such that both (2.8) and its derivative with respect to P vanish. The system of the two
conditions is algebraically equivalent to the pair

α(ω; γ, E0) = −3(P − 1
3 )(P − 1),

β(ω; γ, µ, E0) = −2P 2(P − 1).
(conditions for transition frequencies) (3.10)

It is convenient to work with the roots of σρ = (ω −E0)(ω + 4)−γ 2 = (ω −E1)(ω + c),
which are small perturbations of E0 and −4 as γ → 0,

(ω − E1)(ω + c) = (ω − E0)(ω + 4) − γ 2, (3.11)

E1 = E0 + ε, (3.12)

c = 4 + ε, (3.13)

ε = γ 2

E0 + 4
+ O(γ 4), (3.14)

a = 4 + E1 = 4 + E0 + ε. (3.15)

Because of inequality (2.6), multiple solutions are possible only for ω > E1, and we therefore
introduce the variables

ν = ω − E1, (3.16)

τ = ν−1, (3.17)

q = 3P − 2. (3.18)

The algebraic system (3.10) in P and ω can be rewritten as a system in q and τ :

(1 − q)(1 + q) = 3α = 12γ 4 τ 5

(1 + E1τ)(1 + (a + ε)τ )2
,

(1 − q)(2 + q)2 = 27

2
β = 54γ 2µ τ 4(1 + aτ)2

(1 + (a + ε)τ )3
.
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Dividing the second by the first and retaining the first equation yields the equivalent pair

(1 − q)(1 + q) = 12γ 4 τ 5

(1 + E1τ)(1 + (a + ε)τ )2
= 12γ 4

ν2(ν + E1)(ν + (a + ε))2
,

(2 + q)2

1 + q
= 9

2

µ

γ 2

(1 + aτ)2(1 + E1τ)

τ (1 + (a + ε)τ )
= 9

2

µ

γ 2

(ν + a)2(ν + E1)

ν(ν + (a + ε))
.

(3.19a)

(3.19b)

3.1. Graphical depiction of transition frequencies and their bifurcations

These two algebraic relations between q and τ are shown in figures 7 and 8; the symmetric one
is (3.19a). They provide a transparent graphical means of analysing the transition frequencies
and their bifurcations. The τ -values of the points of intersection between the two relations
determine these frequencies through ω = E1 + τ−1. It is visually clear that there are at most
three intersection points, and we give a proof of this in section 3.5. Figure 7 shows the evolution
of the relations as µ increases, for a fixed value of γ . Initially, there is a single intersection,
corresponding to ω3. At a critical value of µ, another intersection appears at the top, which
then splits into two intersections corresponding to ω1 (q < 0) and ω2 (q > 0). This is the
ω1-ω2 bifurcation. After a mountain-pass mutation of relation (3.19b), the intersection points
corresponding to ω2 and ω3 approach each other, fuse together, and then disappear on the lower
right half of relation (3.19a) in the ω2-ω3 bifurcation.

When γ tends to zero, the peak of relation (3.19a) grows without bound. But the frequency
of the ω2-ω3 bifurcation remains of order 1 and (3.19a) appears as two practically vertical lines,
one at q = −1 and one at q = 1. This regime is depicted in figure 8.

The graphical realizations of relations (3.19a) and (3.19b) in figures 7 and 8 are obtained
as follows. In (3.19a), the function of τ maps the positive real line onto itself in a strictly
increasing manner. Thus τ is implicitly a function of q ∈ (0, 1) with infinite slope at q = ±1,
and we denote this symmetric function by τ = T (q).

Relation (3.19b) can be understood by placing the graphs of the functions

f1(q) = (2 + q)2

1 + q
, (3.20)

f2(τ ) = 9

2

µ

γ 2

(1 + aτ)2(1 + E1τ)

τ (1 + (a + ε)τ )
, (3.21)

side by side, as shown in figure 6. The function f1 is convex and tends to infinity as q → −1
or q → ∞; its minimal value of 4 is achieved at q = 0. Likewise, f1 is convex and tends to
infinity as τ → 0 or τ → ∞, and thus it has a minimal value, say m0. If m0 < 4, then (3.19b),
or f1(q) = f2(τ ), has two components, each of which is the graph of a function of q, one
with unique local maximum τ− and the other with unique local minimum τ+, with τ− < τ+,
both of which are achieved at q = 0. If m0 > 4, then each of two components is the graph of
a function of τ , the lower having maximal value q− and the upper having minimal value q+,
with q− < 0 < q+. At the transition from one regime to the other, when m0 = 4, the relation
consists of two curves crossing tangentially at q = 0.

If τ is viewed as a multi-valued function of q, then the upper branch of (3.19b) is decreasing
for q < 0 and increasing for q > 0. Since (3.19a) has the opposite behaviour, it intersects the
upper branch of (3.19b) either not at all, exactly once at q = 0, or at two points, one with q < 0
and one with q > 0. One can see that the τ -value of the former is larger by the observation
that f1(−q) − f1(q) = 2q3/(1 − q2) > 0, for q ∈ (0, 1). It is clear from the graphs that
the lower branch intersects (3.19a) at most once, and only for q > 0; a rigorous statement is
proved in section 3.5.
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–
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Figure 6. The concave functions f1(q) and f2(τ ) in relation (3.19b). The function f1(q) does
not depend on the parameters of the system, whereas f2(τ ) does. When the minimal value of f2
is less than that of f1 (equal to 4), the relation f1(q) = f2(τ ) possesses two components that are
functions of q, with minimal and maximal τ -values equal to τ− and τ+, as in the first three graphs of
figure 7. When min f2(τ ) > 4, the two components are functions of τ , with minimal and maximal
τ -values equal to q− and q+ as in the last three graphs of figure 7.

τ

τ τ τ τ

τ τ

Figure 7. Relations (3.19a) and (3.19b) in the (q, τ ) plane, whose intersections give the transition
frequencies through ω = E1 + τ−1. The symmetric one is (3.19a). The values of γ and E0 are
fixed, and the graphs from left to right show the evolution of relation (3.19b) as µ increases. The
two bifurcations occur at the tangential intersections, as in the second (ω1-ω2 bifurcation) and sixth
(ω2-ω3 bifurcation) graphs.

3.2. The ω1-ω2 bifurcation

We first analyse the bifurcation occurring at the point B12 of figure 4, at which a narrow
frequency interval of multi-valued harmonic solutions is born as µ increases across a threshold
value (with γ fixed). We prove the power law γ 4 ∼ C12µ and the asymptotics of the transition
frequencies at this bifurcation. The sharp feature in the bifurcation at the point B12 is in fact
cuspidal with ω2 − ω1 ∼ C(µ − µ0)

3/2, meaning that the (ω1, ω2) interval opens slowly.
The maximal value of the function τ = T (q) is attained at q = 0, and we denote it by

τ∗ = ν−1
∗ = max

q∈(0,1)
T (q) = T (0).
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Figure 8. Relations (3.19a) and (3.19b) for small γ and µ. The intersections of the two
relations correspond the the transition frequencies. Here, γ = 0.1 and E0 = 4, and µ increases
through values ranging from the ω1-ω2 bifurcation at µ ∼ γ 4/C12 ≈ γ 4/166 ≈ 6.0e − 7,
through the crossing at µ ∼ γ 2/C ≈ γ 2/26.2 ≈ 0.000 381 22, to the ω2-ω3 bifurcation at
µ ∼ γ 2/C23 ≈ γ 2/23.3 ≈ 0.000 429.

Setting q = 0 in (3.19a) and (3.19b) gives

12γ 4 = ν2
∗(ν∗ + E1)(ν∗ + a + ε)2.

As γ → 0 with ν∗ > 0, we have ν∗ → 0, ν∗ + E1 → E0, and ν + a + ε → E0 + 4, and thus

12γ 4

ν2∗
→ E0(E0 + 4)2 (γ → 0),

from which we obtain

τ∗ ∼
√

E0(E0 + 4)

2
√

3γ 2
= C∗

γ 2
(γ → 0). (3.22)

The pair of frequencies ω1 and ω2 is born (or annihilated) when the upper branch of the
second relation in (3.19a) and (3.19b) intersects the first relation τ = T (q) at its peak, that is,
when τ+ = τ∗, as shown in the middle top graph of figure 8.

The numbers τ± are the solutions of the second relation of (3.19a) and (3.19b) with q = 0.
This equation can be written as

η
8

9

γ 2

µ
τ = (1 + aτ)(1 + E1τ),

in which

η := 1 + aτ + ετ

1 + aτ
= 1 + ε

τ

1 + aτ
, 0 <

τ

1 + aτ
<

1

E0 + 4
,

so that η → 1 as γ → 0. Thus we obtain

aE1τ
2 +

(
a + E1 − η

8

9

γ 2

µ

)
τ + 1 = 0. (3.23)
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Setting τ = τ∗ in this equation, with γ → 0, the asymptotic relation τ∗ ∼ C∗/γ 2 yields the
balance of two terms,

η
8

9

γ 2

µ

C∗
γ 2

∼ aE1
C2

∗
γ 4

(ω1 = ω2, γ → 0),

which results in the asymptotic power law for the ω1-ω2 bifurcation

γ 4

µ
∼ 3

√
3

16
E

3/2
0 (E0 + 4)2 =: C12 (ω1 = ω2, γ → 0). (3.24)

Let us denote by ω12 = ω1 = ω2 the frequency at which this bifurcation takes place.
Equation (3.22) and the definitions of ν and τ give ω12 − E0 − ε ∼ γ 2/C∗, and this together
with ε ∼ γ 2/(4 + E0) yields

ω12 − E0 ∼ γ 2

(
1

C12
+

1

4 + E0

)
= γ 2 2

√
3 +

√
E0√

E0(E0 + 4)
= γ 2C ′

12 (γ → 0). (3.25)

As this bifurcation takes place, the third transition frequency ω3 is very large, and one
can compute its asymptotic value by finding the intersection between τ = T (q) and the lower
branch of the second relation of (3.19a) and (3.19b). Let us denote this intersection by (q3, τ3).
The maximal τ -value of the lower branch is τ−, which satisfies (3.23), and is seen to be of
order O(γ 2), and thus the first equation of (3.19a) and (3.19b) gives q = 1+O(γ 16). Inserting
this into the second of (3.19a) and (3.19b), gives

ητ3 = γ 2

C12
(1 + aτ3)(1 + E1τ3),

in which η → 1 as γ → 0, or

1 +

(
a + E1 − C12

γ 2
η

)
τ + aE1τ

2 = 0,

which has a solution τ3 ∼ γ 2/C12. Finally, ω3 = τ−1
3 + E1, which yields

ω3 ∼ C12

γ 2
(ω1 = ω2, γ → 0). (3.26)

The response R12 of the field at the frequency ω12 tends to infinity as γ −2. This can be
seen by inserting the asymptotic expressions (3.24) and (3.25) into (2.7) with q = 0:

R12 =
(

ω12 − E0 − γ 2

ω12 + 4

)
2

3µ
∼ 1

γ 2

3

4
E0(E0 + 4).

Similarly, the response of the field that is created or annihilated at the transition frequency ω3,
that is, the field corresponding to the double root of (2.8), is found to be

R3 ∼ 2

3

C12

µ2
∼ 2

3

C3
12

γ 8
(ω1 = ω2, γ → 0).

Let us see why the ω1-ω2 bifurcation is a cusp. It occurs when a convex function and a
concave function intersect tangentially at their extreme values, as seen the second graph of the
sequences in figures 7 and 8. The concave function is symmetric and the convex one is not.
Up to order O(q3), these functions can be represented by

τ = τ0 − cq2, r > 0, c > 0, (3.27)

τ = τ0 − rδ + aq2 + bq3, a > 0, (3.28)
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in which ε is a rescaling of µ. After making the substitutions rδ/(a+c) �→ δ and d = b/(a+c),
the intersection points (q, τ ) of these two relations satisfy

δ = q2(1 + dq).

The small solutions of this equation have an expansion in powers of
√

δ,

q1,2 = ± δ1/2 − d

2
δ ± 5

8
d2δ3/2 + · · · ,

and the corresponding τ -coordinates are

τ1,2 = −c δ ± d δ3/2 + · · · .
The difference of these is

τ1 − τ2 = 2d δ3/2.

Seeing that τ = 1/(ω − E1) and δ is a rescaling of µ, the difference ω2 − ω1 is of order
(µ − µ0)

3/2.

3.3. Between bifurcations

The structural morphosis of the relation f1(q) = f2(τ ) occurs when the minima of f1 and f2

are equal and is characterized by the crossing of two curves at (0, τ0) as depicted in figures 6
and 8. The number τ0 is where f2 attains its minimum value, say f2(τ0) = m0. By writing

f2(τ ) = (1 + (E0 + 4)τ )(1 + E0τ)

τ
η(τ), η(τ ) = 1 + aτ

1 + (a + ε)τ
,

in which η(τ) − 1 and η′(τ ) are both O(γ 2) uniformly in τ , one finds that

τ0 ∼ 1√
E0(E0 + 4)

(γ → 0)

and that

m0 := f2(τ0) ∼ 9
µ

γ 2

(
2 + E0 +

√
E0(E0 + 4)

)
(γ → 0).

The crossing occurs when q = 0 and τ = τ0 simultaneously in the relation f1(q) = f2(τ ),
that is, when 4 = m0, which yields the asymptotic power law

γ 2

µ
→ 9

4

(
2 + E0 +

√
E0(E0 + 4)

)
(at crossing, γ → 0).

When m0 < 4, we have τ− < τ0 < τ+, where τ± are the extremes of the two branches of
the relation f1(q) = f2(τ ). Asymptotically,

τ− <
1√

E0(E0 + 4)
+ o(γ ) < τ+ (γ → 0).

When m0 > 4, the extremes q± are defined through

(2 + q±)2

1 + q±
= m0.

Since −1 < q− < 0, we have 1 < (2 + q−)2 < 4 and therefore

1 + q− <
γ 2

µ

(
4

9(2 + E0 +
√

E0(E0 + 4))
+ o(γ )

)
< 4(1 + q−).

The point (q−, τ0) is the rightmost point on the left branch of the relation f1(q) = f2(τ ),
and from the diagrams in figure 8, this point is evidently to the right of the graph of τ = T (q),
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as the latter is practically a vertical line at q = −1 when τ is of order 1. The value of q that
satisfies T (q) = τ0 is obtained by setting τ = τ0 in the first equation of (3.19a) and (3.19b):

(1 − q)(1 + q) = γ 4

(
12

E
3/2
0 (E0 + 4)2(

√
E0 +

√
E0 + 4)3

+ o(γ )

)
.

Thus q = −1 + O(γ 4) and we obtain

1 + q < γ 4

(
6

E
3/2
0 (E0 + 4)2(

√
E0 +

√
E0 + 4)3

+ o(γ )

)
(T (q) = τ0, γ → 0). (3.29)

3.4. The ω2-ω3 bifurcation

Because of (3.29) and the symmetry of T , the two intersections for q > 0 merge when
q+ = 1 + O(γ 4) and τ ∼ τ0. This gives the frequency of the ω2-ω3 bifurcation

ω23 → E0 +
√

E0(E0 + 4) =: C ′
23 (γ → 0), (3.30)

and, setting (2 + q+)
2/(1 + q+) = m0, the asymptotic power law relating γ to µ,

γ 2

µ
∼ 2

(
2 + E0 +

√
E0(E0 + 4)

)
=: C23 (ω2 = ω3, γ → 0). (3.31)

The response at this bifurcation is obtained from (2.7),

R23 ∼
√

E0(E0 + 4)

µ
= 2(2 + E0)

√
E0(E0 + 4) + 2E0(E0 + 4)

γ 2
.

As this bifurcation takes place, the intersection that determines ω1 has q → −1 as γ → 0.
This is because, with γ 2/µ ∼ C23, relation (3.19b) becomes stationary as γ → 0, whereas
relation (3.19a) contains the scaling factor γ 2 on the right-hand side. Using γ → 0 and
q → −1, together with γ 2/µ ∼ C23, system (3.19a) and (3.19b) gives

1

1 + q
∼ 9

2C23

(1 + E0τ)(1 + (4 + E0)τ )

τ
, (3.32)

1 + q ∼ 6γ 4 τ 5

(1 + E0τ)(1 + (4 + E0)τ )2
, (3.33)

which together yield

27

C23
γ 4 τ 4

(1 + (4 + E0)τ )
→ 1.

Thus τ → ∞, and we obtain

τ ∼ C
1/3
23

3
γ −4/3.

Using now ω1 − E0 + O(γ 2) = τ−1, we obtain

ω1 − E0 ∼ 3

C
1/3
23

γ 4/3 (ω2 = ω3, γ → 0). (3.34)

The response at the transition frequency ω1, corresponding to the double root of (2.8), is
R1 = (ω1 − E0 + O(γ 2))/(3µ), which results in

R1 ∼ 2

3

C
2/3
23

γ 2/3
.
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3.5. Proof of at most three transition frequencies

This section contains the proof of part (1) of theorem 3.1. It can be reformulated as follows.

Proposition 1. System (3.19a) and (3.19b), or, equivalently, system (3.10), has at most two
solutions with 0 � q < 1 ( 2

3 � P < 1), and if µ and γ are sufficiently small, then the system
has at most one solution with −1 < q � 0 ( 1

3 < P � 2
3 ).

Using the relations 3α = 1 − q2 and 27β/2 = 4 − 3q2 − q3, system (3.19) can be written
equivalently as

q2 = 12γ 4

ν2(ν + E1)(ν + (a + ε))2
,

2q2

1 + q
= 9

µ

γ 2

(ν + E1)(ν + a)2

ν(ν + (a + ε))
− 8,

(3.35)

and the first shows that |q| < 1.
First we deal with 0 � q < 1. Setting G and H equal to the right-hand-sides of the first

and second equations of (3.35) gives G as an increasing function of ν that maps (0, ∞) onto
[−∞, 1) and thus H is a well-defined function of G ∈ (−∞, 1). One computes that

d2H

dG2
=

(
dG

dν

)−2
[

d2H

dν2
− d2G

dν2

dH

dν

(
dG

dν

)−1
]

and that d2H/dν2 > 0, d2G/dν2 < 0 and dG/dν > 0 (for ν > 0). Thus, whenever
dH/dν > 0, d2H/dG2 > 0 also. Since

dH

dG
= dH

dν

(
dG

dν

)−1

and
dG

dν
> 0,

we see that d2H/dG2 > 0 whenever dH/dG > 0.
Let ν0 be the positive value of ν that corresponds to G = 0, so that [ν0, ∞) maps onto

the G-interval [0, 1). Since H is a convex function of ν that tends to infinity as ν → 0 or
ν → ∞, it has a unique local minimum on [ν0, ∞) (possibly at ν0), and thus H has a unique
local minimum as a function of G (possibly at G = 0); denote this function by H = H(G).

The expressions G = q2 and H = 2q2/(1 + q) for q ∈ [0, 1) constitute a parametrization
of the relation H = 2G/(1 +

√
G) for G ∈ [0, 1), in which H is an increasing concave

function of G. It remains to count the number of intersections between H = H(G) and
H = 2G/(1 +

√
G) on the G-interval [0, 1). Since H(G) has a unique local minimum and is

convex whenever it is increasing, it intersects H = 2G/(1 +
√

G) no more than twice.
Now let us consider −1 < q � 0. Let τ = F(q) be defined through the relation

f1(q) = f2(τ ) forq ∈ (0, q−) (q− � 0) and τ < τ0. We shall show that, forγ sufficiently small
and µ = const.γ , we have F ′′(q) > 0, 1 + q− > const.γ , and T (q) = τ0 �⇒ 1 + q = O(γ 4).
From this, it follows that the relation f1(q) = f2(τ ) intersects τ = T (q) exactly once for
q < 0 and these values of γ and µ. The result is extended to µ < O(γ ) by the observation
that, as µ decreases, q− increases (until it reaches 0) and F(q) decreases, which disallows the
occurrence of any additional intersections (figure 9).

We have already found that τ0 ∼ 1/
√

E0(E0 + 4), that 1 + q− > const.γ 2/µ, and that
τ0 = T (p) �⇒ 1 + q− < const.γ 4 as γ → 0. Define

g1(q) = 1

f1(q)
, g2(τ ) = τ

(1 + E0τ)(1 + (E0 + 4)τ )
,

so that F(q) satisfies the asymptotic relation

g1(q) ∼ γ 2

µ
g2(F (q)) (γ → 0).
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Figure 9. The function τ = F(q) in the proof in section 3.5, representing the lower branch for
q < 0 of the relation (3.19b). It is increasing as a function of µ and convex if µ = const.γ and γ

is sufficiently small.

The second derivative of F satisfies asymptotically

F ′′(q) ∼ 1

g′
2(τ )

(
g′′

1 (q) − µ

γ 2

g′
1(q)

g′
2(τ )

g′′
2 (τ )

)
(τ = F(q)).

One can verify the following for (q, τ ) on the graph of F : g′
2(τ ) > 0, g′′

1 (q) is bounded from
below; g′′

2 (τ ) is negative and bounded from above; if q− < 0, then g′
1(q)/g′

2(τ ) is positive and
bounded from below (in fact this ratio reaches ∞ at q = q−, where g′

2(τ ) = 0). As we have
seen, we can guarantee q− < 0 by making µ = const.γ , and then, if γ is sufficiently small,
we obtain F ′′(q) > 0.

4. Stability of harmonic solutions

To analyse the stability of the harmonic scattering solutions of the form (2.2), we first project
the system to the resonator. This results in an equation for z alone exhibiting dissipation in the
form of a delayed response coming from the coupling to the Schrödinger string with a point-
mass defect. We then linearize about harmonic solutions Ze−iωt . Linear stability analysis is
carried out by analysing the determinant D(s) of this linear system in the Laplace-transform
variable s in the regime of small γ and µ. Any zero of D(s) in the right half plane indicates
linear instability, whereas all zeroes being in the left half plane indicates linear stability.

The responses |Z/J |2 are obtained from the roots of the polynomial f (P ) (2.7), (2.8),
and it is the roots P themselves that appear in the expression for D(s). When γ and µ are
small and ω − E0 is bounded from below, one root of f is very close to zero, and when there
are three roots, two of them are very close to 1 (figure 10, top). For the highest and lowest
responses, the real parts of all zeroes of D(s) are shown to have a very small negative real
part asymptotically as γ → 0 and µ → 0. A precise statement in terms of D(s) is made in
section 4.4, and the result is the following theorem.

Theorem 2.

1. The harmonic response corresponding to the lowest root of the polynomial f (P ) is linearly
stable for ω − E0 > 0 if γ and µ are sufficiently small.

2. When the system admits three distinct harmonic scattering solutions (necessarily ω−E0 >

0) and if γ and µ are sufficiently small, then

a. the solution corresponding to the middle root is linearly unstable;
b. the solution corresponding to the highest root is linearly stable if ω is large enough and

linearly unstable if E0 < ω < 1/2.
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Part (2b) has an intriguing consequence. If γ and µ are small enough and chosen such that
the ratio µ/γ 2 is large enough, there is a single frequency interval (ω1, ∞) of triple harmonic
solutions for which the highest response is unstable for small frequencies and stable for large
frequencies. Thus a transition from instability to stability occurs at some frequency.

Let us assume that, for t � 0, the system is in a harmonic scattering state
(uh(x, t), yh(t), zh(t)) of the form (2.2). The state is perturbed for t > 0 by forcing the
resonator by a small-amplitude, temporally localized function ε(t). Make the following
substitutions in the main system (1.1):

u(x, t) = uh(x, t) + v(x, t),

y(t) = yh(t) + η(t),

z(t) = zh(t) + ζ(t).

The deviation (v(x, t), η(t), ζ(t)) of the solution from the harmonic one vanishes at t = 0, as
does ε(t), and it satisfies the system

ivt + vxx = 0 for x �= 0, (4.36)

iη̇ = γ ζ − (vx(0
+, t) − vx(0

−, t)) with η(t) = v(0, t), (4.37)

iζ̇ = E0ζ + γ η + λ
(
2|zh|2ζ + z2

hζ̄ + 2zh|ζ |2 + z̄hζ
2 + |ζ |2ζ )

+ ε(t). (4.38)

In addition, we impose on v an outgoing condition as |x| → ∞, discussed below; see (4.42).
This outgoing condition postulates decay of the v(x, t) as |x| → ∞. It is symmetric in x

because (i) v starts at rest (v(x, 0) ≡ 0), that is, u is a pure harmonic solution for t < 0 and (ii)
the value v(0, t) together with the requirement of decay determines v(x, t) for both x → ∞
and x → −∞.

4.1. The outgoing condition

The outgoing condition is understood through consideration of an auxiliary problem on the
half-line x � 0 without forcing and with a free endpoint at x = 0,

iȧ = −axx, x > 0, t > 0,

a(x, 0) = 0, x � 0 (initially at rest),
a(x, t) → 0 as x → ∞ , t � 0 (decaying at ∞).

(4.39)

The Laplace transform of this system is isâ = −âxx with â(s, x) → 0 as x → ∞. The
solution satisfies âx = i3/2√s â, with arg(i3/2) = 3π/4, branch cut of √ on the negative
half-line, and Re

√
s > 0, or

â(x, s) = â(0, s) ei3/2√s x (x � 0). (4.40)

The inverse Laplace transform gives the general solution in terms of the Laplace-transformed
value of a(0, t),

a(x, t) = 1

2π i

i∞+0∫
−i∞+0

â(0, s) ei3/2√s xest ds.

The part of the integral along s = −iω + 0 (ω > 0) is a superposition of radiating (outward
travelling) waves, and the part along s = iω + 0 (ω > 0) is a superposition of spatially
evanescent fields.

An analogous argument gives the outgoing condition for a function b(x, t) defined for
x � 0:

b̂(x, s) = b̂(0, s) e−i3/2√s x (x � 0), (4.41)

which is equivalently expressed as b̂x = −i3/2√s b̂.
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The value of v(0, t) connects v(x, t) to the left of the defect (x < 0) continuously with
v(x, t) to the right of the defect (x > 0), that is, one puts â(0, s) = v̂(0, s) = b̂(0, s) in (4.40)
and (4.41). Thus the outgoing condition for the perturbation v is expressed in the Laplace
variable by

v̂x(x, s) =
{−i3/2√s v̂(x, s) for x < 0,

i3/2√s v̂(x, s) for x > 0,
(outgoing condition) (4.42)

in which arg(i3/2) = 3π/4 and v̂(x, s) is continuous in x. In fact, v̂(x, s) is completely
determined by v̂(0, s).

4.2. Reduction of the system to the resonator

Because of (4.42), v is spatially symmetric, that is, v(x, t) = v(−x, t), and the jump in its
derivative at x = 0 can be expressed in a simple way:

vx(0
+, t) − vx(0

−, t) = 2vx(0
+, t). (4.43)

Through the outgoing condition (4.42), this is expressed in the Laplace variable by

L
[
vx(0

+, t) − vx(0
−, t)

] = 2 i3/2√s η̂. (4.44)

Equation (4.37) now yields a relation between η and ζ ,

η(t) = γL−1
[
ĝ(s)ζ̂

]
(t) = γ (g ∗ ζ )(t), (4.45)

in which

ĝ(s) = −i

s + 2
√

is
(4.46)

with the branch cut for √ on the negative real half-axis and
√

r > 0 for r > 0. Relation (4.45)
allows one to project the system onto the resonator by considering equation (4.38) for a single
function ζ ,

iζ̇ = E0ζ + γ 2(g ∗ ζ ) + λ
(
2|zh|2ζ + z2

hζ̄ + 2zh|ζ |2 + z̄hζ
2 + |ζ |2ζ )

+ ε(t). (4.47)

The real part of the function ĝ(s) is positive for s in the right half plane, which is a condition
for power dissipation for a linear system (λ = 0 here) discussed in [5].

4.3. Linearization about a harmonic solution

Equation (4.47) is linearized by eliminating the quadratic and cubic terms in ζ and replacing
ζ(t) with the solution ξ(t) of the resulting linear equation. It is convenient to remove the
oscillatory factor e−iωt and deal with the field ψ(t) = ξ(t)eiωt . Keeping in mind that
zh = Ze−iωt , one arrives at the following equation for ψ :

iψ̇ = (E0 − ω)ψ + γ 2p ∗ ψ + λ
(
2|Z|2ψ + Z2ψ̄

)
+ ε(t)eiωt , (4.48)

in which p(t) = g(t)eiωt . In the Laplace variable, this becomes(
is + ω−E0 − γ 2p̂ − 2λ|Z|2)ψ̂ − λZ2ψ̂ = ε̂|s−iω, (4.49)(−is + ω−E0 − γ 2p̂ − 2λ|Z|2)ψ̂ −λZ̄2ψ̂ = ε̂|s+iω. (4.50)

The second equation is obtained by conjugating the first, replacing s with s̄, and then using

the rule ˆ̄f (s) = ¯̂
f (s̄) for Re (s) > 0. All quantities are analytic in s within their domains of

definition. The determinant of this system is

D(s) = 3λ2|Z|4 − 4λ|Z|2(ω − E0 − γ 2( R̂e p)
)

+ (−is + ω − E0 − γ 2 ˆ̄p)(is + ω − E0 − γ 2p̂), (4.51)
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in which

p̂(s) = 1

ω + is + 2i
√

ω + is
, (4.52)

ˆ̄p(s) = 1

ω − is − 2i
√

ω − is
. (4.53)

The branch cut in the argument of the square root in the denominator of p̂ is taken to be the
negative imaginary axis and the branch is defined by

√
1 = 1; this imparts a branch cut in the

s variable along the half-line {s = s1 + iω, s1 � 0} in the left half plane. Enforcing the rule
that ˆ̄p(s) = ¯̂p(s̄) for Re (s) > 0 dictates that the branch cut for the argument of the square
root in ˆ̄p is the positive imaginary axis with

√
1 = 1; this imparts a branch cut in s along the

half-line {s = s1 − iω, s1 � 0}. Thus D(s1 + is2) has two branch cuts along the half-lines
{s = s1 ± iω, s1 � 0}.

With these stipulations of the square roots, the denominator of p̂ vanishes at the single
point s = iω and the denominator of ˆ̄p vanishes at the single point s = −iω.

4.4. Stability analysis

This section is dedicated to the proof of theorem 2, which is stated in the proposition below in
terms of the roots of D(s).

The linear stability of the system about a scattering solution uh, that is, whether ψ(t)

grows or decays as t → ∞, depends on the roots of D(s). Any root in the right half s-plane
indicates exponential growth, and all roots being in the left half plane indicates decay. In terms
of the quantity P =µR/σ = λ|Z|2/σ , with σ = ω−E0 − γ 2/(ω + 4), D has the form

D = 3P 2 − 4P
1

σ

(
ω − E0 − γ 2

2
(p̂ + ˆ̄p)

)
+

1

σ 2
(ω − E0 − is − γ 2 ˆ̄p)(ω − E0 + is − γ 2p̂).

(4.54)

Thus D(s) depends explicitly on the parameters ω, P , and γ 2 (as well as E0). The value of P

is related to uh through the correspondence between harmonic solutions and real roots of the
polynomial f (P ) := P(P − 1)2 + αP − β (2.8), which depends parametrically on γ , µ, and
ω. When α and β are small, the smallest root P1 is nearly zero and, in the case of three roots,
the other two P1 and P2 are nearly 1.

Proposition 3.

1. In expression (4.54) for D, let P be equal to the smallest root of f (P ). If ω − E0 > 0
is bounded from below and γ and µ are sufficiently small, then all zeroes of D(s) have
(small) negative real part.

2. Suppose that f (P ) has three roots (necessarily ω > E0).

a. In (4.54), let P be set to the intermediate root. If γ and µ are sufficiently small, then D(s)

has a root with positive real part.
b. In (4.54), let P be set to the largest root. If the conditions

ω >
1

2
(ω2 − 1)(ω − E0)

2 > ω2

4γ 2µ

(ω − E0)3(ω + 4)
� |1 − P | � 1

µ

γ 2
>

ω − E0

ω(ω + 4)
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Figure 10. Top. Each of the three roots Pi, i = 1, 2, 3 of the polynomial f (P ) =
P(P − 1)2 + αP − β (2.8), all of which are positive, corresponds to a harmonic solution of
the system (1.1). The response of resonator is related to P by equation (2.7). With the parameters
γ = 0.05, µ = 4 γ 2/C23 ≈ 0.000 429, and E0 = 4, and ω = 1.5 ω23 ≈ 14.5, P1 is very
close to 0, whereas P2,3 are very close to 1. (There is only one transition frequency ω1 for these
parameters, i.e. µ is above the point B23 in figure 4.) Bottom. For each root Pi , the zero sets of
the real and imaginary parts of D(s) (4.54) in the complex s-plane are shown from left to right in
increasing order of Pi . These graphs only show the zeros of D(s) that are away from ±iω. For γ

sufficiently small, the imaginary part of D vanishes on the real axis and on an almost vertical curve
approximately connecting the points −iω and iω, whereas the real part vanishes on a hyperbola-
like curve. The real part of this curve is small and negative, in agreement with the asymptotic
calculation in section 4.4 when p̂ or ˆ̄p is bounded.

are satisfied and if γ and µ are sufficiently small, all zeroes of D(s) have (small) negative
real part. If E0 < ω < 1/2, then D(s) has a zero with (small) positive real part.

Let us simplify notation by putting

ρ = ω + 4, σ = ω − E0 − γ 2/ρ,

α = 4γ 4

ωσ 2ρ2
, β = 4γ 2µ

σ 3ρ
,

P = 1 + Q.

Case P � 1. We assume that ω − E0 > 0 is bounded from below and let γ and µ tend to
zero. In this regime, σ ∼ ω −E0, so 1/σ = O(1). Definition (2.9) of α and β show that these
quantities vanish as γ, µ → 0, and thus the smallest root P1 of f (P ) := P(P − 1)2 + αP −β

is asymptotic to β:

P ∼ β = 4γ 2µ

σ 3ρ
= O(γ 2µ). (4.55)

Case P � 1 and p̂, ˆ̄p bounded. The first two terms of (4.54) vanish in this regime, and thus
the third term also vanishes, yielding two cases,

( ω − E0 − is − γ 2 ˆ̄p ) → 0 or ( ω − E0 + is − γ 2p̂ ) → 0. (4.56)
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Putting s = s1 + is2 in the first case yields

s2 ∼ −(ω − E0) < 0, (4.57)

s1 ∼ −γ 2 Im ˆ̄p. (4.58)

The sign of −Im ˆ̄p is the same as that of −Re (s1 +2
√

ω − is1 + s2 ). This latter expression
is asymptotic to −Re (2

√
ω + s2) ∼ −2

√
E0. This quantity is negative by the declaration of the

square root in the definition of g (4.46). Thus s1 is asymptotically negative. A similar argument
for the second of the cases (4.56) shows that s2 ∼ ω − E0 > 0 and that s1 ∼ γ 2 Im p̂ < 0.
Thus the roots s of D(s) = 0 are in the left half plane.

Case P � 1 and p̂ or ˆ̄p unbounded. As we have mentioned at the end of section 4.3, the
denominator of p̂ vanishes only at iω and that of ˆ̄p only at −iω. Thus, if one of these quantities
is unbounded, the other remains bounded. It suffices to analyse the case of p̂ being unbounded,
as ˆ̄p(s) = p̂(s̄) and D(s̄) = D(s).

If Re(s) > 0, then
√

ω + is is in the upper half plane. The square root in the definition
(4.52) of p̂ takes arguments in the upper half plane into the first quadrant, and thus

Re(s) > 0 �⇒ Im
√

ω + is > 0. (4.59)

We will prove that this condition is asymptotically inconsistent with D(s) = 0.
The assumption that p̂ → ∞ implies s → iω. Applying this to the three terms of D(s)

in (4.54) gives

D = 48γ 4µ2

σ 6ρ2
(1 + o(1)) − 16γ 2µ

σ 4ρ

(
σ − γ 2

2
p̂

)
(1 + o(1))

+
2ω − E0

σ 2

(
E0(1 + o(1)) − γ 2p̂

)
(1 + o(1))

= γ 2p̂

[
− 1

σ 2
(2ω − E0)(1 + o(1)) +

8γ 2µ

σ 2ρ
(1 + o(1))

]

+
1

σ 2
(2ω − E0)E0(1 + o(1))

−16γ 2µ

σρ
(1 + o(1)) +

48γ 4µ2

σ 4ρ2
(1 + o(1))

= γ 2p̂

(
− 1

σ 2
(2ω − E0)(1 + o(1))

)
+

E0

σ 2
(2ω − E0)(1 + o(1)).

Setting D = 0 provides the asymptotic relation

p̂ ∼ E0

γ 2
.

On the other hand, the definition (4.52) of p̂ with ω + is → 0 provides the relation

p̂ ∼ 1

2i
√

ω + is
.

Combining these two asymptotic expressions for p̂ yields

√
ω + is ∼ −i

γ 2

2E0
,

which, in view of (4.59), is inconsistent with Re (s) > 0.
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Case P ∼ 1. To see the asymptotics of the other roots, write f (P ) = 0 in terms of Q = P −1:

f (P ) = 0 ⇐⇒ Q2 = 4γ 4

σ 3ρ

(
µ

γ 2
(1 + Q)−1 − σ

ωρ

)
.

This implies the asymptotic

Q2 ∼ 4γ 4

σ 3ρ

(
µ

γ 2
− σ

ωρ

)
when

4γ 2µ

σ 3ρ
� |Q| � 1 . (4.60)

Thus there are two values of order γ 2 that Q can take on, one negative and one positive, under
two conditions:

4γ 2µ

σ 3ρ
� |Q| � 1 and

µ

γ 2
>

σ

ωρ
�⇒ Q ∼ ± Cγ 2(C > 0). (4.61)

Equality in place of ‘>’ in the condition µ/γ 2 > σ/(ωρ) is achieved asymptotically at the
ω1-ω2 bifurcation. In general, for a fixed asymptotic ratio µ/γ 2, the inequality of satisfied if
ω is large enough or σ is small enough.

Expression (4.54) for D(s) can be written as

D = 2Q − 2γ 2

σρ
+

γ 2

σ
(p̂ + ˆ̄p) +

s2

σ 2
+

isγ 2

σ
(p̂ − ˆ̄p) (4.62)

− 4Q
γ 2

σ

(
1

ρ
− 1

2
(p̂ + ˆ̄p)

)
+

γ 4

σ 2ρ2
− γ 4

σ 2ρ
(p̂ + ˆ̄p) +

γ 4

σ 2
p̂ ˆ̄p.

Case P ∼ 1 and p̂, ˆ̄p bounded. These assumptions imply

D = 2(Q + O(γ 2)) − 2γ 2

σρ
+

γ 2

σ
(p̂ + ˆ̄p) +

s2

σ 2
+

isγ 2

σ
(p̂ − ˆ̄p) + O(γ 4). (4.63)

Let us assume Q ∼ ±Cγ 2 with C > 0 from conditions (4.61). Setting D to zero, one obtains
|s| � 1, and expanding p̂ and ˆ̄p in s gives

p̂ + ˆ̄p = 2

ρ
− 2s

ρ ω3/2
+ O(|s|2),

p̂ − ˆ̄p = − 4i

ρ ω1/2
+ O(|s|).

With these expressions, the equation D = 0 becomes

−2σ 2Q
(
1 + O(γ 2)

) =
(

s + 2γ 2 σ(ω − 1
2 )

ρ ω3/2

)2

+ O(γ 4).

Because Q ∼ ±Cγ 2 with C > 0, the O(γ 4) on the right-hand side may be absorbed into the
O(γ 2) on the left-hand side,

s =
√

−2σ 2Q − 2γ 2 σ(ω − 1
2 )

ρ ω3/2
+ O(γ 3),

√
−2σ 2Q ∼ c γ (c �= 0). (4.64)

The negative root Q ∼ −C γ 2 corresponds to the middle root P2 of f (P ), or the
intermediate response of the resonator depicted by the middle branch of the amplitude versus
frequency graph at the top of figure 5. Thus D(s) has a zero in the right half plane for
sufficiently small γ .

The positive root Q ∼ C γ 2 corresponds to the largest root P3 of f (P ), or the highest
response of the resonator depicted by the top branch of the amplitude versus frequency graph.
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The first term of (4.64) is imaginary, so the second term, which is real, determines the sign of
the real part of s. If E0 < 1/2, then one has Re (s) > 0 for ω < 1/2; otherwise, Re (s) < 0.

Case P ∼ 1 and p̂ or ˆ̄p unbounded. Again, it suffices to analyse the case of p̂ being
unbounded. Let us suppose that p̂ is unbounded and ˆ̄p is bounded. The balance of dominant
terms in (4.62) yields

γ 2p̂

σ
(1 + is) ∼ − s2

σ 2
. (4.65)

Formula (4.52) with p̂ → ∞ gives

s ∼ iω, p̂ ∼ 1

2i
√

ω + is
.

Using the second of these in (4.65) gives

√
ω + is ∼ −γ 2σ(1 + is)

2is2
,

and then using s ∼ iω in the right-hand side yields

√
ω + is ∼ i γ 2σ(ω − 1)

2ω2

as long as ω �= 1. At ω = 1, (1 + is) = o(1). In any case, we obtain ω + is = O(γ 4), so that

s2 = −ω2 + O(γ 4).

Each of the terms is and s2 appears only once explicitly in (4.62), and they may be replaced
by −ω and −ω2 committing an error of only O(γ 4). Let us also introduce the proper scaling
of Q from the condition (4.61), namely Q = γ 2Q̃:

D = 2γ 2Q̃ − 2γ 2

σρ
+

γ 2

σ
(p̂ + ˆ̄p) − ω2

σ 2
− ωγ 2

σ
(p̂ − ˆ̄p) (4.66)

− 4 Q̃

(
γ 4

σρ
− γ 4

2σ
(p̂ + ˆ̄p)

)
+

γ 4

σ 2ρ2
− γ 4

σ 2ρ
(p̂ + ˆ̄p) +

γ 4

σ 2
p̂ ˆ̄p + O(γ 4) . (4.67)

Passing all terms of order γ 4 into the error (recall that ˆ̄p = O(1)) and rearranging terms to
isolate the quantity of interest γ 2p̂ yields

D = γ 2p̂

σ

[
1 − ω + γ 2

(
2Q̃ +

ρ ˆ̄p − 1

σρ

)]
−

[
ω2

σ 2
− γ 2

(
2Q̃ − 2

σρ
+

1

σ
ˆ̄p +

ω

σ
ˆ̄p
)]

+ O(γ 4).

(4.68)

Now setting D = 0 gives

γ 2p̂ = − ω2

σ(ω − 1)

[
1 − γ 2σ 2

ω2

(
2Q̃ − 2

σρ
+

1

σ
ˆ̄p +

ω

σ
ˆ̄p
)

+ O(γ 4)

]

×
[

1 +
γ 2

ω − 1

(
2Q̃ +

ρ ˆ̄p − 1

σρ

)
+ O(γ 4)

]
. (4.69)

The real and imaginary parts of this quantity are

− A := Re γ 2p̂ = − ω2

σ(ω − 1)
+ O(γ 2), (4.70)

γ 2B := Im γ 2p̂ = γ 2ω2 Im ˆ̄p
σ(ω − 1)

(
(ω + 1)σ

ω2
− 1

(ω − 1)σ

)
+ O(γ 4), (4.71)
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in which ˆ̄p is evaluated asymptotically using ω + is = γ 4ξ , where ξ is bounded:

ˆ̄p = 1√
2ω − γ 4ξ (−2i +

√
2ω − γ 4ξ )

∼ 1√
2ω(−2i +

√
2ω)

. (4.72)

The quantity γ 2p̂ can be evaluated alternatively directly from its definition (4.52):

p̂ = 1√
ω + is (2i +

√
ω + is )

∼ −i

2γ 2
√

ξ (1 − i
2γ 2

√
ξ)

∼ −i

2γ 2
√

ξ

(
1 +

iγ 2√ξ

2
− γ 4ξ

4
+ · · ·

)
∼ −i

2γ 2
√

ξ
+

1

4
+

iγ 2√ξ

8
+ · · · ,

which results in the asymptotic

γ 2p̂ = −i

2
√

ξ
+

γ 2

4
+ O(γ 4). (4.73)

By equating expressions (4.69) and (4.73) for γ 2p̂, we obtain

i

2
√

ξ
= A − iγ 2B +

γ 2

4
+ O(γ 4) = 1

2
(Ã − iγ 2B̃),

in which Ã and B̃ are real and differ from A and B by order O(γ 2). If ω is sufficiently large,
A and B are positive and bounded from below in magnitude. Specifically, it is sufficient that
(ω2 − 1)(ω − E0)

2 > ω2. This yields Im ˆ̄p > 0 asymptotically.√
ξ = −1

2(iÃ + γ 2B̃)
.

Finally,

is = −ω + γ 4ξ = −ω +
γ 4

4

(γ 2B̃ − iÃ)2

(γ 4B̃2 + Ã2)2
,

which results in Im s ∼ ω and

Re s ∼ − B

2A3
γ 6.

This result places the zeroes of D(s) asymptotically in the left half plane, regardless of the
sign of Q.

5. Discussion of continuum-oscillator models

Simple continuum-oscillator systems serve a vital role in elucidating fundamental principles
and phenomena in physics. Horace Lamb, interested in how disturbances in a body subside
due to the transmission of energy into an infinite ambient medium devised what is now known
as the Lamb model as the simplest expression of this phenomenon [8]. He showed that, if
a harmonic oscillator is attached to an infinite string whose displacement is governed by the
wave equation, the oscillator obeys the equation of the usual instantaneously damped harmonic
oscillator. In other words, the energy loss in an oscillator due to instantaneous friction can be
perfectly conceived as the radiation of energy into an infinite string. The coupled system of
the oscillator and the string together is a conservative extension of the lossy system consisting
of the damped oscillator alone. It is in fact the minimal conservative extension of the damped
oscillator, and it is unique up to isomorphism, as shown by Figotin and Schenker [5]. The
string acts as a system of ‘hidden variables’ from the point of view of an observer who is able
to make measurements only of the motion of the oscillator.
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The linear version (λ = 0) of our model (1.1) is designed specifically to allow the oscillator
to be completely detached from the string in the zero-coupling limit (γ = 0) without severing
the string. The case γ = 0 corresponds to a resonator decoupled from a system of ‘hidden’
variables that itself exhibits nonresonant scattering in a line by a point-mass defect resulting
in a simple but nontrivial transmission coefficient. A very small coupling parameter γ � 1
corresponds to a small perturbation of a decoupled system with an embedded eigenvalue E0

and results in a sharp resonance.
Because our transmission line is governed by a Schrödinger equation, it exhibits

dispersion, which is experienced by an observer in the oscillator as a delayed response, or
a noninstantaneous friction, assuming that there is no forcing originating at points along the
length of the string:

i ζ̇ (t) = E0 ζ(t) + γ 2
∫ ∞

0
g(t ′) ζ(t − t ′) dt ′ + ε(t) (λ = 0),

ĝ(s) = −i

s + 2
√

is
.

The function g(t) obeys a power-dissipation condition, described in [5], which in the Laplace
variable is expressed by the condition that ĝ(s) has a positive real part when Re (s) > 0.

The function ε(t) in the above equation is a spatially and temporally localized perturbation
of a harmonic oscillation, that produces a deviation ζ(t) in the state of the oscillator. When the
frequency of oscillation vanishes, the problem becomes that of the dissipation of finite-energy
disturbances of a system initially at equilibrium. In this case, nonlinearities of a general form
have been analysed by Komech [7] when the string’s motion is governed by the wave equation
and the resonator is attached as in the Lamb model. The system exhibits transitions between
stationary energies of the nonlinear potential in the resonator, which resemble transitions
between energy states in atoms. In Komech’s model, the energy is related to the height of
the string rather than a frequency of oscillation. A positive cubic nonlinearity has only one
stationary point and all disturbances decay to zero.

At nonzero frequencies, cubic nonlinearity becomes interesting and the focus of study turns
to the steady-state behaviour of a nonlinear scatterer subject to a monochromatic harmonic
forcing originating from a source far away. In particular, one wants to understand how these
steady oscillatory motions respond to finite-energy perturbations. Our choice of a Schrödinger
equation for the string was based on the form of the nonlinearity λ|z|2z that is natural for this
equation, and which admits periodic solutions that are purely harmonic and mathematically
tractable. Perturbation about the harmonic motion Ze−iωt of the oscillator results in the
equation

iψ̇ = (E0 − ω)ψ + γ 2
∫ ∞

0
p(t ′) ψ(t − t ′) dt ′ + λ

(
2|Z|2ψ + Z2ψ̄

)
+ ε(t)eiωt ,

(4.48) for the linearized perturbed oscillation ψ(t)e−iωt of the nonlinear system. Energy loss
comes from the delayed response term p̂(s) = ĝ(s − iω), which also satisfies the dissipation
condition that Re (s) > 0 �⇒ Re (p̂(s)) > 0. The solutions Z depend in a complex way on
γ and λ, and stability analysis when these parameters are small is delicate, as demonstrated in
section 4.

The idea of projecting a conservative oscillatory system onto a lossy subsystem is an
insightful one and has been discussed from different points of view in the works mentioned
above. Figotin and Schenker [5] view the whole string-oscillator system as a conservative
extension of a dissipative subsystem of ‘observable variables’ (the oscillator). The string
realizes in a structurally unique way a space of ‘hidden variables’ that are responsible for the
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loss of energy measured by an observer confined to the oscillator. The form of the energy
dissipation (as the function g(t) above in the linear case) observed in the oscillator is sufficient
to determine the space of hidden motions responsible for the dissipation. These ideas are
brought to bear on the lossy Maxwell system in electromagnetics by these authors and others,
such as Tip [19]. Komech describes the projected system as an irreversible description of a
larger reversible one. This point of view had been advanced previously by Keller and Bonilla [6]
as an illustration of how irreversible processes may be derived from reversible ones and was
motivated by the question of whether macroscopic physical processes can be deduced from
classical mechanics.

To an observer of our nonlinear system from the site of the resonator, the coupling to the
string is felt as a combination of input energy and energy loss to damping. These two energies
balance out (in the sense of time averages), when the system is in a harmonic steady state. The
balance is disturbed when the system is perturbed from steady state. To express this perspective
in precise terms, we project the system onto the resonator. Write the equation for ψ above
in terms of the actual perturbation ζ(t) = ψ(t)e−iωt of a harmonic solution zh = Ze−iωt and
reinstate nonlinear terms from (4.47):

iζ̇ = E0ζ + γ 2
∫ ∞

0
g(t ′) ζ(t − t ′) dt ′ + λ

(
2|Z|2ζ + Z2e−2iωt ζ̄

)
+ λ

(
2Ze−iωt |ζ |2 + Z̄eiωtζ 2 + |ζ |2ζ )

+ ε(t).

Both the external forcing ε and the steady-state field zh = Ze−iωt , induced by the incident field
J ei(kx−ωt), affect the dynamics of the system. The field zh = Ze−iωt depends on γ , µ, and ω

through the roots of the cubic polynomial f (P ) (2.8). If ε(t) is taken to be ε0δ(t), where δ(t)

is a unit impulse at t = 0, we can consider this equation for t > 0 with ε = 0 and a nonzero
initial condition.

Importantly, introducing external forcing and damping through coupling to the string leads
to harmonic solutions that can still be calculated explicitly. This is generally not possible if
external forcing and instantaneous damping are introduced directly as in the much studied
Duffing oscillator

z̈ + aż + E0z + bz3 = F0 cos(ωt). (5.74)

In spite of the similarities of cubic nonlinearity, harmonic forcing and intervals of triple
solutions, these solutions are only approximately periodic in the Duffing case, when the
parameters a, b and F0 are small.
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