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Abstract. For homogeneous lossless 3D periodic slabs of fixed arbitrary geometry,
we characterize guided modes by means of the eigenvalues associated to a variational
formulation. We treat robust modes, which exist for frequencies and wavevectors that
admit no propagating Bragg harmonics and therefore persist under perturbations, as
well as nonrobust modes, which can disappear under perturbations due to radiation loss.
We prove the nonexistence of guided modes, both robust and nonrobust, in “inverse”
structures, for which the celerity inside the slab is less than the celerity of the surrounding
medium. The result is contingent upon a restriction on the width of the slab but is
otherwise independent of its geometry. c©S.P. Shipman and D. Volkov
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1 Introduction

The subject of our investigation is the existence and nonexistence of linear scalar waves
guided by periodically structured lossless material slabs (Fig. 1). These guided modes
occur in linear acoustic theory and, in the two-dimensional reduction, in which the struc-
ture is invariant in one of the two directions of periodicity, they describe guided polarized
electromagnetic fields. Guided modes are characterized by their frequency and Bloch
wavevector in the plane of periodicity, and they decay exponentially with distance away
from the slab.

We distinguish between two types of guided mode. Those of the first type cannot
be destroyed by radiation losses under perturbation because they possess a frequency
and wavevector for which no Bragg, or Fourier, harmonics propagate away from the slab
(they are all evanescent); we call these robust guided modes. Those possessing frequency
and wavevector for which some propagating Bragg harmonics exist can be destroyed
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by radiation loss by ”coupling” to these harmonics under perturbation of the structure,
frequency, or wavevector. These nonrobust guided modes are known to be connected with
anomalous scattering behavior in the vicinity of the frequency and wavenumber of the
mode.

It is recognized that guided modes as well as the transmission anomalies associated
with them will be useful in the design of photonic devices. These phenomena appear in
many different photonic structures, and there is a large body of literature devoted to them.
We mention just a few references. Anomalous transmission is typically characterized by
sharp dips and peaks in the transmission coefficient. An in-depth computational analysis
of their relation to leaky modes for slabs that are invariant in the transverse direction is
given in Tikhodeev, et. al., [1]. Explicit asymptotic formulas for very general geometry
for some types of perturbations have been calculated by Shipman and Venakides [2]. The
connection between transmission enhancement and particular types of guided mode on
metal films called “surface plasmons” has been studied in a series of papers by several
authors; see [3] and [4], for example. An important class of guided modes that we do
not treat here consists of those in optical fibers or periodic pillars (see [5], for example).
Our present study focuses on the existence and nonexistence of guided modes in lossless
dielectric slabs.

The existence of guided modes can be proved using variational principles. Bonnet-
Bendhia and Starling [6] treat two-dimensional electromagnetic structures consisting of
lossless penetrable and conducting components in which the dielectric coefficient is essen-
tially an arbitrary function. The treatment of nonrobust modes is more delicate because
establishing their existence requires proving the vanishing of the propagating Bragg har-
monics. The frequencies of these modes, for a given wavevector, are called (as in [6])
singular frequencies of the problem of scattering, or diffraction, of plane waves by the
slab.

In our study, we consider three-dimensional homogeneous dielectric structures. In
this case we are able to prove a nonexistence theorem for inverse structures. An inverse
structure is one for which the speed of waves, or the celerity, is higher inside the structure
than in the surrounding medium. This result is easily understood through the following
example. It is simple to calculate fields that are totally internally reflected within an
infinite pane of glass surrounded by air. However, if the roles of the air and the glass
are switched, such fields no longer exist. A similar result is expected for slabs with more
general geometry. This is the content of Theorem 4.1. The result is subject to a restriction
on the width of the slab, which depends on the frequency and wavevector; we do not know
if this restriction is necessary or if it is only a artifact of our method of proof.

For the existence theory, we include complete proofs in the Appendix to make the
work coherent and self-contained and in order to set the context and notation for the
proof of the nonexistence result.
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Figure 1: A slab structure periodic in the x and y directions and finite in the z direction.

The governing equation of dynamics is the linear wave equation arising in small-
amplitude acoustic theory:

ε
∂2

∂t2
w(x, y, z, t) = ∇·

1

µ
∇w(x, y, z, t). (1)

The positive material parameters ε and µ depend in general on the position within the
slab, but are constant outside of the slab. We will restrict our analysis to slabs in which
these parameters are constant inside. The spatial factor ũ(x, y, z) of a time-harmonic
solution

w(x, y, z, t) = ũ(x, y, z) e−iωt

is described by the Helmholtz equation

∇·
1

µ
∇ũ(x, y, z) + εω2 ũ(x, y, z) = 0. (2)

We are interested in solutions of the Helmholtz equation that are of the pseudoperiodic
form

ũ(x, y, z) = u(x, y, z) ei(κ1x+κ2y), u periodic in x and y,

in which u(x, y, z) has the same periods as the guiding slab structure. The vector κ =
〈κ1, κ2, 0〉 is known as the Bloch wavevector, and the field ũ is called a Bloch wave. Such
a solution to the Helmholtz equation gives rise to a solution of the linear wave equation
when multiplied by a harmonic factor in t:

w(x, y, z, t) = u(x, y, z)ei(κ1x+κ2y−ωt).

This solution is a plane wave traveling in the direction of the vector κ with wave number
|κ| =

√
κ2

1 + κ2
2 , frequency ω, and speed ω/|κ|, modulated periodically through multipli-

cation by the factor u(x, y, z).
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Fundamental to the structure of Bloch waves is their decomposition in the x and y
variables into Fourier harmonics, often called Bragg harmonics, in the regions away from
the slab (|z| sufficiently large):

u(x, y, z) =
∞∑

m,n=−∞

(c+mne
νmnz + c−mne

−νmnz)ei(mx+ny).

Each element of the sum is a separable solution to the Helmholtz equation, and the
coefficients c+mn and c−mn differ from one side of the slab to the other. The exponents
νmn, as explained in more detail below, are purely imaginary for a finite number of pairs
(m,n), corresponding to the propagating Fourier harmonics. For all other pairs, assuming
νmn 6= 0 for all (m,n), this exponent is real, and boundedness of u requires that the
coefficients of the exponentially growing components vanish. Thus these pairs correspond
to the evanescent harmonics. Assuming then that u is bounded, we can say that a
guided mode is supported by the slab structure if the coefficients of all propagating Fourier
harmonics vanish.

The paper is organized as follows. In section 2, we formulate a precise definition of
a guided mode in its strong and weak forms. The role of the vanishing of the radiating
Fourier harmonics to exclude radiation losses is made explicit. In section 3, we discuss the
existence of sequences of material constants, depending on the geometry of the structure,
the wavevector, and the frequency, that admit guided modes in the regime of no radiating
Fourier harmonics. We also prove the existence of sequences of material constants for
structures symmetric about a plane, depending on the frequency and wave number along
the plane of symmetry, for which guided modes that travel parallel to the plane of sym-
metry exist. All of the proofs are deferred to the Appendix. In section 4, we prove that
guided modes cannot exist in “inverse” slab structures; specifically, we show that, under
a suitable restriction on their width, slabs with constant µ and ǫ whose value interior to
slab is less than its value in the exterior, never admit guided modes. In section 5, we show
a few numerical computations of nonrobust guided modes.

2 Mathematical formulation of guided modes

A variational description of guided modes requires truncation of the domain in the z-
direction (directed away from the slab) and the introduction of an auxiliary parameter
α, serving as the eigenvalue, by which the coefficient ǫ is multiplied within the truncated
domain (Fig. 2). The monotonicity of certain eigenvalue sequences αj(ǫ1) with respect to
the interior constant ǫ1 is utilized in the proof of nonexistence of modes in Section 4.

Let Ω̃ denote a domain in R
3 with C2 boundary ∂Ω̃ that is bounded in the z-direction

and 2π-periodic in the x- and y-directions (Fig. 2). This means that
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i. There are numbers z1 < z2 such that

z1 < inf{z : (x, y, z) ∈ Ω̃} < sup{z : (x, y, z) ∈ Ω̃} < z2.

ii. If (x, y, z) ∈ Ω̃, then (x+ 2πj, y, z) ∈ Ω̃ and (x, y + 2πj, z) ∈ Ω̃ for each integer j.

Let S denote the infinite square cylinder containing one period of Ω̃:

S = {(x, y, z) : −π < x < π, −π < y < π},

and denote by Ω the part of Ω̃ contained in S, constituting one period of Ω̃:

Ω = Ω̃ ∩ S = {(x, y, z) ∈ Ω̃ : −π < x < π, −π < y < π}

and by Σ the part of ∂Ω̃ contained in S:

Σ = ∂Ω̃ ∩ S.

The boundary ∂Ω of Ω includes Σ and possibly parts of the boundary ∂S of S. Denote
by R the part of S between z = z1 and z = z2:

R = {−π < x < π, −π < y < π, z1 < z < z2}

and by Γ = Γ1 ∪ Γ2 the square parts of the boundary of R parallel to the xy-plane:

Γ1 = {(x, y, z) : −π < x < π, −π < y < π, z = z1},

Γ2 = {(x, y, z) : −π < x < π, −π < y < π, z = z2}.

We fix outward-pointing normal vectors n to all of the surfaces, as shown in Figure 2. Let
the piecewise constant functions ε and µ be defined by

ε(r) =






αǫ1, r ∈ Ω
αǫ0, r ∈ R \ Ω
ǫ0, r ∈ S \ R

, µ(r) =

{
µ1, r ∈ Ω
µ0, r ∈ S \ Ω

, (3)

in which ǫ0, ǫ1, α, µ0, and µ1 are fixed positive numbers.
We will be considering guided modes in the augmented structure consisting of the

flat slab in R
3 filling the space between the planes z = z1 and z = z2 with the periodic

structure Ω̃ embedded in it. For α = 1, this augmented structure reduces to Ω̃ itself. We
denote the augmented structure by Ω̃aug:

Ω̃aug = the augmented structure in Fig. 2 extended periodically to R
3.
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Figure 2: A two-dimensional depiction of one period of a possible augmented three-
dimensional slab structure.

When referring to Ω̃aug, the material constants (3), repeated periodically, are tacitly
assumed.

Given a frequency ω and Bloch wavevector κ = 〈κ1, κ2, 0〉, we seek solutions ũ =
ũ(x, y, z) of the Helmholtz equation (2) in S with κ-pseudoperiodic boundary conditions
in x and y, that is,

ũ(π, y, z) = e2πiκ1 ũ(−π, y, z), ∂nũ(π, y, z) = −e2πiκ1∂nũ(−π, y, z), (4)

ũ(x, π, z) = e2πiκ2 ũ(x,−π, z), ∂nũ(x, π, z) = −e2πiκ2∂nũ(x,−π, z). (5)

The minus signs arise because the normal vector n to ∂S is always taken to point out of S.
Such a solution can be extended to a κ-pseudoperiodic solution in R

3, that is, retaining
ũ to denote this extension,

ũ(x, y, z) = ei(κ1x+κ2y)u(x, y, z),

in which u(x, y, z) is 2π-periodic in x and y. It is convenient to work with the function
u, which has periodic boundary conditions in S:

u(π, y, z) = u(−π, y, z), ∂nu(π, y, z) = −∂nu(−π, y, z), (6)

u(x, π, z) = u(x,−π, z), ∂nu(x, π, z) = −∂nu(x,−π, z). (7)

The Helmholtz equation (2) for ũ is equivalent to the following modified equation for the
periodic factor u:

(∇+ iκ) ·
1

µ
(∇+ iκ)u+ εω2u = 0. (8)

In the precise formulation of a guided mode below, Condition 2.2, we make clear the
implied behavior of a solution to this equation at the surfaces of discontinuity of ε and µ,
namely, Σ and Γ.
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We take κ = 〈κ1, κ2, 0〉 to lie in the first symmetric Brillouin zone pertaining to our
structure, which is 2π-periodic in x and y, that is

−1/2 ≤ κ1 < 1/2 and − 1/2 ≤ κ2 < 1/2.

In the intervals (−∞, z1) and (z2,∞), every periodic solution u of (8) is equal to a
superposition of Fourier harmonics:

u(x, y, z) =
∞∑

m,n=−∞

(a+
mne

νmnz + a−mne
−νmnz)ei(mx+ny), z < z1,

u(x, y, z) =
∞∑

m,n=−∞

(b+mne
νmnz + b−mne

−νmnz)ei(mx+ny), z > z2,

(9)

in which
ν2

mn = −ǫ0µ0ω
2 + (m+ κ1)

2 + (n+ κ2)
2, (10)

provided that ν2
mn 6= 0 for all integer pairs (m,n). If ν2

mn = 0 for some pair (m,n), then
its contribution to the sum (9) must be replaced by

(a+
mn + a−mnz)e

i(mx+ny), z < z1,
(b+mnz + b−mn)ei(mx+ny), z > z2.

(11)

For a finite number of pairs (m,n) we have ν2
mn < 0, and we take Im νmn > 0; these

correspond to the harmonics in (9) whose two terms have constant modulus and oscillate
as functions of z. We denote this set of propagating harmonics by P :

P =
{
(m,n) ∈ Z

2 : ν2
mn < 0

}
. (propagating Fourier harmonics) (12)

We call the harmonics of the form (11), for which ν2
mn = 0, the linear harmonics. We

denote the union of the linear and propagating harmonics by P̃ :

P̃ =
{
(m,n) ∈ Z

2 : ν2
mn ≤ 0

}
. (linear and propagating Fourier harmonics) (13)

For a generic set of parameters ǫ0, µ0, α, κ, and ω, there are no linear harmonics, that
is, P̃ = P . For all pairs such that ν2

mn > 0 we take Re νmn > 0; these correspond to the
exponential harmonics. We require the solution u to be bounded, so that

a−mn = 0 and b+mn = 0 for all linear and exponential harmonics (14)

to exclude unbounded growth as |z| → ∞. The harmonics that are exponentially decaying
as |z| → ∞ are called the decaying harmonics, or evanescent harmonics.
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The energy conservation law holds for solutions of the Helmholtz equation. This
means that the the time-averaged energy flux through in S through planes parallel to the
xy-plane is independent of z. Only the propagating harmonics contribute to this energy,
and equating its values through Γ1 and Γ2 gives

∑

(m,n)∈P

νmn

(
|a+

mn|
2 − |a−mn|

2
)

=
∑

(m,n)∈P

νmn

(
|b+mn|

2 − |b−mn|
2
)
. (15)

A guided mode u, which we will define precisely in definition 2.3, is a nonzero solution
of the Helmholtz equation with exponential decay as |z| → ∞. If u satisfies the condition
(14) of boundedness as well as the vanishing of the linear and propagating harmonics,
that is, a+

mn = a−mn = b+mn = b−mn = 0 for all (m,n) ∈ P̃ , then u has exponential decay
as |z| → ∞, and its periodic extension to R

3 is a guided mode. In the generic case that
there are no linear harmonics, that is, ν2

mn 6= 0 for each (m,n), we may characterize guided
modes by the condition that

a−mn = 0 and b+mn = 0 for all (m,n) (if P̃ = P). (16)

Indeed, (16) and (15) together imply in this case the vanishing of all propagating har-
monics as well as all exponentially growing harmonics. In the general case, in which
linear harmonics may exist, we must augment this condition to exclude these harmonics
explicitly:

a−mn = 0 and b+mn = 0 for all (m,n),

a+
mn = 0 and b−mn = 0 if ν2

mn = 0. (17)

The reason for treating the case of no linear harmonics specially is that the condition
(16) is simple. In fact, it is equivalent to the condition that u obey the following Dirichlet-
to-Neumann map on Γ defined in terms of the Fourier coefficients of u restricted to Γ1

and Γ2:

If u|Γ1
=

∑
amne

i(mx+ny) and u|Γ2
=

∑
bmne

i(mx+ny),

then ∂nu|Γ1
= −

∑
νmnamne

i(mx+ny) and ∂nu|Γ2
= −

∑
νmnbmne

i(mx+ny),
(18)

in which the sum is over all integer pairs (m,n). This motivates the definition of an
operatorB on functions defined on Γ, which will enable us to give a precise formulation of a
guided mode. For the differential, or strong, formulation, this Dirichlet-to-Neumann map
only needs to be defined for twice differentiable functions in R \ Σ whose first derivative
is continuous up to Γ. We give a refined definition that will accommodate the variational,
or weak, formulation, which includes functions in H1(R), that is, functions belonging to
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L2(R) that possess weak first derivatives also belonging to L2(R). For such functions,
a restriction to Γ is well defined as a function in the fractional Sobolev space H1/2(Γ),
but a normal derivative is not well defined. The Dirichlet-to-Neumann map is replaced
by a bounded operator B from H1/2(Γ) to its dual space H−1/2(Γ), which coincides with
the Dirichlet-to-Neumann map (18) when restricted to twice differentiable functions with
continuous derivatives up to Γ.

Definition 2.1 (Dirichlet-to-Neumann map B) Let f ∈ H1/2(Γ) be given, and rep-
resent f as f = (f 1, f 2) according to the decomposition H1/2(Γ) = H1/2(Γ1) ⊕H1/2(Γ2).
Put f̂mn = (f̂ 1

mn, f̂
2
mn) where f̂ 1,2

mn are the Fourier coefficients of f 1,2. Note that νmnf̂mn =
(νmnf̂

1
mn, νmnf̂

2
mn) ∈ H−1/2(Γ1) ⊕ H−1/2(Γ2) = H−1/2(Γ), and define Bf through its

Fourier coefficients by putting

(B̂f)mn = νmnf̂mn. (definition of B) (19)

We use integral notation to denote the action of the function Bf ∈ H−1/2(Γ) on
g ∈ H1/2(Γ), and this action is concretely expressed through the Fourier coefficients of f
and g: ∫

Γ

(Bf)g =
∞∑

m,n=−∞

νmn(f̂ 1
mnĝ

1
mn + f̂ 2

mnĝ
2
mn). (20)

The action of Bf restricted to Γj, for j = 1, 2 is given by

∫

Γj

(Bf)g =
∞∑

m,n=−∞

νmnf̂
j
mnĝ

j
mn.

If all the νmn are positive, that is, if P̃ = ∅, then B is a positive operator, that is, for each
f ∈ H1/2(R),

∫
Γ
(Bf)f̄ > 0.

We are now ready to state the condition that allows a precise definition of a guided
mode. Condition 2.2 makes precise the behavior of a solution to the Helmholtz equation
(8) at the surfaces of discontinuity of the functions ε and µ (equation 3) and enforces the
exponential decay through the Dirichlet-to-Neumann operator B. The condition (17) nec-
essary when linear harmonics are present is stated separately for that case (equation 21).

Condition 2.2 (Strong condition for a guided mode) Let u be a twice differentiable
function in S \ (Σ ∪ Γ) with continuous value and first derivative up to ∂S, Σ, and Γ.
Denote by ∂nu± the values of the normal derivative of u on Σ and Γ, where the +-sign
refers to the side toward the direction of the normal vector n. If ν2

mn 6= 0 for all (m,n),
then u satisfies the strong condition for a guided mode provided
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i. (∇+ iκ) 2u+ µ0ǫ0ω
2 u = 0 in S \ R,

ii. (∇+ iκ) 2u+ αµ0ǫ0ω
2 u = 0 in S \ Ω,

iii. (∇+ iκ) 2u+ αµ1ǫ1ω
2 u = 0 in Ω,

iv. u is continuous in S,

v. ∂nu+ = ∂nu− = −Bu on Γ,

vi. µ1 (∂nu+ + (iκ·n)u) = µ0 (∂nu− + (iκ·n)u) on Σ,

vii. u(−π, y, z) = u(π, y, z) and ∂nu(−π, y, z) = −∂nu(π, y, z),

viii. u(x,−π, z) = u(x, π, z) and ∂nu(x,−π, z) = −∂nu(x, π, z).

If νmn = 0 for some (m,n), then for each such pair we require, in addition, that the
corresponding Fourier coefficient of u be zero on Γ:

(2π)2(u|Γj
)̂mn =

∫

Γj

u(x, y, z)e−i(mx+ny) = 0, j = 1, 2. ((m,n) ∈ P̃ \ P) (21)

Definition 2.3 (Guided mode) A guided mode in the augmented periodic slab struc-
ture Ω̃aug is the pseudoperiodic extension to R

3 of a function of the form

u(x, y, z)ei(κ1x+κ2y−iωt),

in which u satisfies the strong Condition 2.2.

It is possible to restrict analysis to the region R, for if we omit the condition (i) and
the first equality in (v), then a function in R (the closure of R) satisfying the remaining
conditions can be extended in a unique way to S such that (i) is satisfied simply by
declaring

u(x, y, z) =
∞∑

m,n=−∞

amne
νmn(z−z1)ei(mx+ny), z ≤ z1,

u(x, y, z) =
∞∑

m,n=−∞

bmne
−νmn(z−z2)ei(mx+ny), z ≥ z2,

(22)

in which amn are the Fourier coefficients of u|Γ1
and bmn are the Fourier coefficients of

u|Γ2
, for this function satisfies the condition Bu = ∂nu+ = ∂nu− on Γ.
We will need a variational formulation for guided modes. The appropriate function

space is the periodic subspace H1
per(R) of the Sobolev space H1(R) of functions in L2(R)

with weak gradients in L2(R): H1
per(R) is the subspace of functions f ∈ H1(R) satisfying
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f(−π, y, z) = f(π, y, z) and f(x,−π, z) = f(x, π, z), where the boundary values of f
are well defined by a bounded trace operator to H1/2(∂S). H1

per(R) is a Hilbert space,
retaining the same inner product as H1(R):

(u, v)H1(R) =

∫

R

(uv̄ + ∇u∇v̄) .

In referring to the trace of f on Γ, we will be more precise and denote the trace operator
by T : H1(R) → H1/2(Γ), so that the restriction of f to Γ is denoted by Tf .

Condition 2.4 (Weak condition for a guided mode, first form) A function
u ∈ H1

per(R) satisfies the weak condition for a guided mode provided

∫

R

1

µ
(∇+ iκ)u · (∇− iκ) v̄ +

1

µ0

∫

Γ

(BTu)(T v̄) −

∫

R

εω2uv̄ = 0 for all v ∈ H1
per(R).

(23)

In case ν2
mn = 0 for any pair (m,n), it is required additionally that (T̂ f)mn = 0.

The sesquilinear form in Condition 2.4 is conjugate-symmetric in H1
per(R) if and only

if P = ∅. We introduce a subspace X in which it is always conjugate-symmetric, and, in
fact, positive, namely, the subspace of functions whose traces on Γ have vanishing Fourier
coefficients for (m,n) ∈ P̃ .

(T̂ f)mn = 0 for (m,n) ∈ P̃ (defining condition for f ∈ X),

or, equivalently,
∫

Γ1

(Tf)e−i(mx+ny) =

∫

Γ2

(Tf)e−i(mx+ny) = 0 for (m,n) ∈ P̃ (condition for f ∈ X).

X is closed under the norm of H1(R). In order to exclude linear and propagating Fourier
harmonics from the extension to all of S of a function f in X, that has well defined normal
derivatives on Γ, it must also be demanded that the normal derivative have vanishing
Fourier coefficients for (m,n) ∈ P̃. We give an alternate variational formulation of
guided modes in the weak Condition 2.5.

Condition 2.5 (Weak condition for a guided mode, second form) A function
u ∈ H1

per(R) that possesses a normal derivative on Γ satisfies the weak condition for a
guided mode provided that u ∈ X and

i.

∫

R

1

µ
(∇+ iκ)u · (∇− iκ) v̄ +

1

µ0

∫

Γ

(BTu)(T v̄) −

∫

R

εω2uv̄ = 0 for all v ∈ X,
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ii. (∂nu|Γ)̂mn = 0 for all (m,n) ∈ P̃.

We prove in Theorem 2.7 that Conditions 2.2, 2.4, and 2.5 are all equivalent. In
particular, a function in H1

per(R) that satisfies 2.4 is in fact regular and satisfies the other
two conditions, and part (i) of 2.5 actually implies the existence of a normal derivative
on Γ.

In section 3, we will show the existence of a sequence of relations between α and ǫ1,
for each choice of ω and κ, that describe all of the pairs (α, ǫ1) that support a solution
of part (i) of Condition 2.5. Because these solutions are in X, the coefficients in their
Fourier expansion for all (m,n) ∈ P (equation 9) satisfy

|a+
mn| − |a−mn| = 0 and |b+mn| − |b−mn| = 0,

implying the vanishing of energy flux in the z-direction.
Part (ii) of Condition 2.5 indicates that guided modes typically do not exist in the

(κ, ω)-regime of propagating or linear harmonics (P̃ 6= ∅) due to this extra condition that
each of these harmonics must satisfy. The vanishing of this finite number of harmonics
must be accomplished through the tuning of other parameters of the structure. In partic-
ular, if the structure is symmetric about the yz-plane and κ = (0, κ2, 0) or it is symmetric
about the xz-plane and κ = (κ1, 0, 0), then the functions satisfying part (i) of Condition
2.5 are symmetric or antisymmetric. We focus on structures with symmetry about the
yz-plane. Ω is symmetric about the yz-plane if

(x, y, z) ∈ Ω =⇒ (−x, y, z) ∈ Ω.

In this case, the antisymmetric solutions to (i) also satisfy (ii) for all (m,n) ∈ P̃ with m
even. Thus, if there is only one propagating mode (0, 0) and the rest are evanescent, then
Condition 2.5 is satisfied in full and the solutions therefore represent nonrobust guided
modes traveling parallel to the plane of symmetry. These modes are nonrobust because,
under a general perturbation of κ1 or the structure itself, the (0, 0) harmonic, which is
not evanescent, is no longer guaranteed to vanish.

We make the formulation for an antisymmetric nonrobust mode in a symmetric struc-
ture precise in Condition 2.6 and Theorem 2.7. For this, we introduce the orthogonally
complementary subspaces Xsym and Xant of X to treat the case that Ω is symmetric about
the yz-plane, κ1 = 0, and P̃ 6= ∅.

Xsym = {v ∈ X : v(x, y, z) = v(x, y, z) a.e. in R} ,

Xant = {v ∈ X : v(x, y, z) = v(−x, y, z) a.e. in R} .

It is straightforward to verify that Xsym and Xant are orthogonal in the usual H1 and L2

inner products on X and with respect to the sesquilinear form on the left-hand side of
part (i) of Condition 2.6:

X = Xsym ⊕Xant .

12



Condition 2.6 (Weak condition for a nonrobust guided mode) Suppose that Ω is
symmetric about the yz-plane and that κ1 = 0. A function u ∈ H1

per(R) satisfies the weak
condition for an antisymmetric nonrobust mode provided u ∈ Xant and

i.

∫

R

1

µ
(∇+ iκ)u · (∇− iκ) v̄ +

1

µ0

∫

Γ

(BTu)(T v̄) −

∫

R

εω2uv̄ = 0 for all v ∈ Xant ,

ii. P̃ 6= ∅ and (∂nu|Γ)̂mn = 0 for all (m,n) ∈ P̃ with m odd.

Theorem 2.7 (Equivalence of strong and weak conditions)

i. Let u satisfy Condition 2.2. Then the restriction of u to R is in H1
per(R) and satisfies

Condition 2.4.

ii. Let u satisfy Condition 2.4. Then u can be extended to a twice differentiable function
in S \ (Σ ∪ Γ) with continuous value and first derivative up to ∂S, Σ, and Γ. This
extension satisfies Condition 2.2, and u is in X and satisfies Condition 2.5.

iii. If u satisfies Condition 2.5, then u satisfies Condition 2.4.

iv. If u satisfies Condition 2.6, then u satisfies Condition 2.5 (for κ1 = 0).

3 Existence of guided modes

The theoretical development presented in this section is in essence that followed in [6].
Nevertheless, we feel that complete proofs are necessary to ensure that consistency and
mathematical rigor is observed. The proofs are given in the Appendix.

Define the following sesquilinear forms in H1
per(R):

A(u, v) =

∫

R

1

µ
(∇+ iκ)u · (∇− iκ) v̄ +

1

µ0

∫

Γ

(BTu)(T v̄), (24)

ℓ(u, v) =

∫

R\Ω

ǫ0ω
2uv̄ +

∫

Ω

ǫ1ω
2uv̄. (25)

Notice that A depends on κ, ω, ǫ0, µ0, and µ1 (the dependence on ω and ǫ0 is through
B—see equations (19) and (10)) and ℓ depends on ω, ǫ0, and ǫ1; neither of them depends
on α.

A function u ∈ H1
per(R) satisfies the weak condition for a guided mode if and only if

A(u, v) − αℓ(u, v) = 0 for each v ∈ H1
per(R). This is equivalent to the condition that u is

13



an eigenfunction of the map H1
per(R) → H1

per(R)∗ :: u 7→ A(u, ·) (the asterisk denotes the
dual space) with eigenvalue α in the sense that

A(u, ·) = ℓ(αu, ·).

If the set of propagating harmonics is empty (P = ∅), then A is conjugate-symmetric,
that is A(u, v) = A(v, u) for all u, v ∈ H1

per(R). Otherwise, it is not due to the purely
imaginary values of νmn in the definition (2.1) of B for (m,n) ∈ P. In X, both A and ℓ
are conjugate-symmetric, and therefore the eigenvalues α are real.

Define the Rayleigh quotient by

J(u) =
A(u, u)

ℓ(u, u)
=

∫
R

1
µ
| (∇+ iκ)u|2 + 1

µ0

∫
Γ
(BTu)(T ū)

ǫ0ω2
∫
R\Ω

|u|2 + ǫ1ω2
∫

Ω
|u|2

. (26)

Recall that the operator B depends on κ, ω, ǫ0, and µ0, but not on ǫ1. The dependence of
J(u) on ǫ1 comes only in the second term of ℓ. For an exposition of the role the Rayleigh
quotient in the theory of eigenvalues of elliptic operators, the reader may refer to Jost
([7], §8.5) or Gould ([8], Ch. II); a more brief discussion is found in Gilbarg/Trudinger
([9], §8.12).

Theorem 3.1 (Eigenvalue sequences) There exists a sequence of real numbers (eigen-
values) {αj}

∞
j=0 and functions (eigenfunctions) {ψj}

∞
j=0 such that

i. 0 < α0 ≤ α1 ≤ · · · ≤ αj ≤ . . . ,

ii. αj → ∞ as j → ∞,

iii. A(ψj, v) = αjℓ(ψj, v) for all v ∈ X,

iv. if A(ψ, v) = αℓ(ψ, v) for all v ∈ X, then there is an integer j such that α = αj and
ψ ∈ span{ψk : α = αk},

v. the sequence {ψj}
∞
j=0 is an orthonormal Hilbert-space basis for L2(R, ℓ).

The eigenvalues and eigenfunctions arise from the process of successive minimization of
the Rayleigh quotient:

αj = inf
u∈Xj ,u 6=0

J(u) = J(ψj), ψj ∈ Xj,

in which
Xj = {v ∈ X : A(ψk, v) = 0 for k = 0, . . . , j−1}.

14



If Ω is symmetric about the yz-plane and κ1 = 0, then {ψj}
∞
j=0 is the union of two

nondecreasing sequences {ψsym

j }∞j=0 and {ψant
j }∞j=0 from Xsym and Xant, respectively. We

denote the associated sequences of eigenvalues by {αsym

j }∞j=0 and {αant
j }∞j=0. The symmetric

and antisymmetric eigenfunctions and associated eigenvalues arise from minimization of
the Rayleigh quotient over Xsym and Xant:

αant
j = inf

u∈Xant

j ,u 6=0
J(u) = J(ψant

j ), ψj ∈ Xant
j ,

in which
Xant

j = {v ∈ Xant : A(ψant
k , v) = 0 for k = 0, . . . , j−1}.

Lemma 3.2 The eigenvalues αj are continuous strictly decreasing functions of ǫ1, and
αj → 0 as ǫ1 → ∞. Similarly, the αj are continuous strictly decreasing functions of µ1,
and αj → 0 as µ1 → ∞.

Using this Lemma, let us parse Theorem 3.1 in a form in which α is fixed, so that
the functions ε and µ given by (3) outside of the domain Ω are fixed. For the argument,
let us also fix µ and denote the dependence of αj on ǫ1 by αj(ǫ1). Since αj(ǫ1) ր ∞ as
j → ∞ and because of Lemma 3.2, we may put

Nα = min{j : lim
ǫ→0

αj(ǫ) > α}

and define implicitly a nondecreasing sequence of material parameters ǫ1 = {Ej(α)}∞j=Nα

and a sequence of corresponding functions {φj(α)}∞j=Nα
that satisfy

αj(Ej(α)) = α, φj(α) = ψj(Ej(α)).

Because the functions αj(ǫ1) are continuous and strictly decreasing in ǫ, the values Ej(α)
are defined uniquely, and, as functions of α, are continuous and strictly decreasing. By
Theorem 3.1, these sequences satisfy

A(φj(α), v) = αℓEj(α)(φj(α), v) for all v ∈ X.

If ω and κ are such that the medium exterior to R admits no propagating or linear
Fourier harmonics, that is, if P̃ = ∅, then each φj(α) can be extended to all of S as a
guided mode, for the second part of 2.5 requiring vanishing of all of these harmonics is
vacuously satisfied.

In the case that Ω is symmetric about the yz-plane, κ = 〈0, κ2, 0〉, and there is
only one propagating Fourier harmonic, namely (0, 0), the antisymmetric eigenfunctions
φant

j (ǫ1) satisfy Condition 2.6 and therefore give rise to nonrobust guided modes.
We summarize these results in the following theorem.

15



Theorem 3.3 (Existence of guided modes) For each α > 0, there exists a sequence
{Ej(α)}∞j=Nα

of real numbers and a sequence {φj(α)}∞j=Nα
of functions from X such that

i. for each α > 0, 0 < E0(α) ≤ E1(α) ≤ · · · ≤ Ej(α) ≤ . . . ,

ii. for each α > 0, Ej(α) → ∞ as j → ∞,

iii. for each integer n ≥ 0, Ej(α) is a strictly decreasing function of α, and Ej(α) → ∞
as α → 0.

iv. φj(α) satisfies part (i) of the second form of the weak Condition 2.5 for guided
modes.

If ω and κ are such that the medium exterior to R admits no propagating or linear Fourier
harmonics, that is, if P̃ = ∅, then for each α and each j, the function φj(α) satisfies both
conditions of Condition 2.5. In particular, it can be extended into S to a function that
satisfies 2.2, and gives rise to a guided mode

ψj(α)(x, y, z)ei(κ1x+κ2y−ωt)

in the augmented slab structure defined by the functions (3).
If Ω is symmetric about the yz-plane, κ = (0, κ2, 0), and there is only one propagating

Fourier harmonic (0, 0), the rest being evanescent, then for each α and j the function
ψant

j (α) satisfies Condition 2.5. In particular, it can be extended into S to a function that
satisfies 2.2, giving rise to a nonrobust guided mode traveling parallel to the yz-plane:

ψant
j (α)(x, y, z)e(κ2y−iωt).

An analogous statement holds if Ω is symmetric about the xz-plane.

There are two special cases of interest:

i. Taking α = 1 gives the unaugmented structure Ω̃, as the material properties ε and
µ in S \ R and R \ Ω coincide:

ε(r) =

{
ǫ0, r ∈ S \ Ω
ǫ1, r ∈ Ω

and µ(r) =

{
µ0, r ∈ S \ Ω
µ1, r ∈ Ω

.

Theorem 3.3 gives a sequence of constants ǫ1 = Ej(1) for which a guided mode
exists, provided the vanishing of all linear and propagating harmonics.

ii. Fixing ǫ1 = ǫ0 and µ1 = µ0 corresponds to the case of a slab with no periodic
structure, having uniform material properties in R:

ε(x, y, z) =

{
αǫ0, z ∈ R
ǫ0, z 6∈ R

and µ(x, y, z) = µ0. (27)

We analyze this instructive case explicitly in subsection 4.1.
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4 Nonexistence of guided modes in inverse structures

An ”inverse structure” is one in which the speed of light is higher than the speed of
light in the surrounding medium. This means that ǫ1µ1 < ǫ0µ0. Using the sequences
of eigenvalues constructed in section 3, we prove that certain inverse structures cannot
support guided modes, robust or nonrobust. Specifically, we fix µ1 = µ0 > 0 arbitrarily
and take 0<ǫ1<ǫ0. Our statement requires an additional restriction on the width of the
slab that depends on the material parameters, frequency, and wavevector (33). We do
not know if this restriction arises only as a consequence of our method of proof or if it is
truly necessary.

It is known that under a certain restrictive geometric condition, guided modes do not
exist in inverse structures. Theorem 3.5 of [6], extended to three-dimensional structures
amounts to the following conditions for homogeneous slabs:

i. The surface Σ of the slab has two sides, given by z = f1(x, y) ≤ 0 and z = f2(x, y) ≥
0, where the common domain of f1 and f2 is a subset of the square {−π ≤ x,y ≤ π}.

ii. ǫ1µ1 ≤ ǫ0µ0, that is, the celerity inside the slab is greater than that outside the slab
(as for a film of air within a ceramic matrix).

The first condition is a severe restriction. It excludes, among other types of structures,
periodic arrays of ellipses that do not have a major axis parallel to the z-axis and structures
that some line parallel to the z-axis intersects in more than one segment.

In addition, it is shown in [6], Theorem 4.1 that, for a given wavevector κ, the set
of frequencies for which a guided mode exists is greater than |κ|/n+, where n+ is the
maximum value of ǫµ. It follows that, if ǫ1µ1 < ǫ0µ0, then robust guided modes do not
exist.

Our approach to proving the nonexistence of both types of modes for µ1 = µ0 is first
to compute explicitly the eigenvalues αj(ǫ0), corresponding to the case ǫ1 = ǫ0, in which
the slab Ω̃aug has no genuine periodicity and then to use the restriction on the width
(33) to prove that the eigenvalues are all greater than or equal to 1. Finally, since the
eigenvalues are decreasing as a function of ǫ1, we observe that αj(ǫ1) > 1 for ǫ1 < ǫ0. As
α = 1 corresponds to the unaugmented periodic slab structure Ω̃ with material constant
ǫ1 surrounded by a medium with constant ǫ0, we conclude that no guided modes exist in
Ω̃ for ǫ1<ǫ0.

Indeed, if ǫ1 > ǫ0, we have seen that nonrobust modes exist in symmetric structures
if κ1 or κ2 vanishes. In fact, this restriction is not necessary: in [6], nonrobust modes are
constructed for arbitrary Bloch wavevectors for two-dimensional slabs.
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4.1 Eigenvalues for a flat slab

We compute explicitly the eigenvalues αj and corresponding eigenfunctions ψj when ǫ1 =
ǫ0 and µ1 = µ0 (equation 27). In this situation, the eigenfunctions satisfy the strong form
of the Helmholtz equation in R (with ψ = ψj and α = αj):

(∇+ iκ) 2ψ + αǫ0µ0ω
2ψ = 0 in R,

ψ ∈ X and ∂nψ|Γ= Bψ,
ψ has periodic boundary conditions in x and y.

(28)

Since ε(x, y, z) is constant in x and y and R is bounded by planes parallel to the three
coordinate planes, the method of separation of variables is applicable. The separable
solutions have the simple form

ψ(x, y, z) =
(
Amne

ηmnz +Bmne
−ηmnz

)
ei(mx+ny), m, n ∈ Z, (29)

in which
η2

mn = (m+ κ1)
2 + (n+ κ2)

2 − αǫ0µ0ω
2 (30)

and Im ηmn > 0 if η2
mn < 0 and Re ηmn > 0 if η2

mn > 0. If ηmn = 0, then

ψ(x, y, z) = (Amn +Bmnz) e
i(mx+ny). (31)

Each solution of the Helmholtz equation with periodic boundary conditions is a series
superposition of separable solutions:

ψ(x, y, z) =
∞∑

m,n=−∞

φmn(z)ei(mx+ny),

in which φmn is of the form shown in (29) or (31). Moreover, the conditions that ψ ∈ X
and ∂nψ|Γ= Bψ impose independent conditions on the Fourier harmonics indexed by m
and n on the boundary Γ:

(ψ|Γ)̂ mn = 0 for (m,n) ∈ P̃ ,

(∂zψ|Γ1
)̂ mn = νmn (ψ|Γ1

)̂ mn and (∂zψ|Γ2
)̂ mn = −νmn (ψ|Γ2

)̂ mn for (m,n) 6∈ P̃ .
(32)

Because of this, if ψ satisfies the Helmholtz equation as well as the boundary conditions
(28), then each separable component (29) of ψ in its series representation also satisfies
both. Therefore, each solution of (28) is composed of separable solutions.

To find the values of α that admit such solutions and the solutions themselves, we
impose the condition (32) on the separable solution (29) or (31) for each pair (m,n).
For each fixed (m,n) ∈ P̃ , the condition (32) is possible only for values of α for which
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η2
mn < 0, which give oscillatory solutions in the interval from z1 to z2. In addition, in

order for (32) to hold, ηmn must be of the form ηmn = i
(

jπ
z2−z1

)
for some j (independent

of (m,n)), and we thus arrive at a sequence of eigenvalues α = αmnj satisfying

αmnjǫ0µ0ω
2 =

(
jπ

z2 − z1

)2

+ (m+ κ1)
2 + (n+ κ2)

2, j = 1, 2, 3, . . . .

It is straightforward to deduce from the condition (32) that the constants Amn and Bmn

in (29) have the same modulus, so that, by multiplying the solution by a unitary number
eiθ, we may take φmnj(z) to be a shifted sine function inside the region R. These solutions
do not represent guided modes because they do not satisfy the second part of Condition
2.5 requiring the normal derivative of φmnj to vanish, and therefore their extensions to all
of S do not decay as |z| → ∞.

For (m,n) 6∈ P̃ , the condition (32) amounts to matching a solution that is decaying as
z → −∞ for z < z1 to one that is decaying as z → ∞ for z > z2 through a solution in the
interval from z1 to z2. This is possible only if the solution in this interval is oscillatory, and
this is only achievable when η2

mn < 0. By enforcing the decay of the solution as |z| → ∞,
we obtain a sequence of eigenvalues α = αmnj with αmnj → ∞ as j → ∞ satisfying

tan ζ(z2 − z1) =
2νmnζ

ζ2 − ν2
mn

, ζ =
(
αmnjǫ0µ0ω

2 − (m+ κ1)
2 − (n+ κ2)

2
)1/2

.

Again, by multiplying the solution by a unitary number, we may take φmnj(z) to be a
shifted sine function inside the region R. These solutions satisfy Condition 2.5, even when
P̃ 6= ∅, as they involve only one Fourier harmonic.

The union of the sequences {αmnj}, arranged in increasing order, gives the sequence
{αj} that we seek.

As ǫ1 is perturbed away from ǫ0 the structure attains a genuine periodicity, and
separable solutions are no longer valid. Typically all Fourier harmonics are represented
in the eigenfunctions so that the guided modes disappear in a regime admitting linear
or propagating harmonics. As we have seen, however, antisymmetric nonrobust modes
persist, for example, in symmetric structures for which there is only one propagating
harmonic, the rest being evanescent.

4.2 Nonexistence of guided modes

We use the foregoing analysis to prove a theorem stating that guided modes do not exist in
certain structures in which the interior product of the material coefficients µ1ǫ1 is greater
than the exterior product µ0ǫ0.
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Theorem 4.1 (Nonexistence of guided modes) Let 0 < µ1 ≤ µ0 and 0 < ǫ1 ≤ ǫ0,
and let the frequency ω and wavevector κ = 〈κ1, κ2, 0〉 be given with κ in the first Brillouin
zone: −1

2
≤ κ1,κ2 <

1
2
. Suppose that the slab structure Ω̃ (Fig. 2 with α=1) lies between

two planes {z = z1} and {z = z2} satisfying

(z2 − z1)(ǫ0µ0ω
2 − κ2

1 − κ2
2)

1/2 ≤ π (33)

in the case that ǫ0µ0ω
2 − κ2

1 − κ2
2 ≥ 0, that is, P̃ 6= ∅ (otherwise, there is no restriction).

Then the slab with material properties

ε(r) =

{
ǫ0, r 6∈ Ω̃

ǫ1, r ∈ Ω̃
and µ(r) =

{
µ0, r 6∈ Ω̃

µ1, r ∈ Ω̃

admits no guided modes at the given frequency and wavevector.

Proof. We begin showing that, for ǫ1 = ǫ0, µ1 = µ0, the slab admits no guided modes.
This is the case of a flat slab analyzed in subsection 4.1. Recall the definition of ν2

mn:

ν2
mn = −ǫ0µ0ω

2 + (m+ κ1)
2 + (n+ κ2)

2,

and define, for each α > 0, as before,

η2
mn(α) = −αǫ0µ0ω

2 + (m+ κ1)
2 + (n+ κ2)

2.

In subsection 4.1, we have seen that the eigenvalues αj (for ǫ1 = ǫ0, µ1 = µ0) correspond
to eigenfunctions containing a single Fourier harmonic, and we wish to show that all of
these eigenvalues are greater than or equal to 1.

For those pairs (m,n) for which ν2
mn > 0, corresponding to the evanescent Fourier

harmonics ((m,n) 6∈ P̃), we have seen in subsection 4.1 that the matching conditions at
z = z1 and z = z2 require that η2

mn(α) < 0. From the definitions of ν2
mn and η2

mn(α), we
conclude that α > 1, so that all the eigenvalues corresponding to the evanescent harmonics
are at least greater than 1.

For (m,n) ∈ P̃ , we still require that η2
mn(α) < 0. Since κ is taken to lie in the first

symmetric Brillouin zone, that is, −1/2 ≤ κ1 < 1/2 and −1/2 ≤ κ2 < 1/2, we have (recall
that Im (νmn(α)) > 0 (page 7))

−iνmn ≤ −iν00 for all (m,n) ∈ P̃ .

According to the discussion of the preceding subsection, to satisfy the boundary conditions
at z = z1 and z = z2, α must be chosen such that

−iηmn(α) =

(
jπ

z2 − z1

)
, j a positive integer.
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From condition (33), we obtain

−iηmn(α) =
jπ

z2 − z1

≥ j (ǫ0µ0ω
2 − κ2

1 − κ2
2)

1/2 ≥ −iν00 ≥ −iνmn,

from which it follows that α ≥ 1, so that all the eigenvalues corresponding to the propa-
gating harmonics are at least 1. As we have mentioned in the previous subsection, these
eigenvalues do not correspond to guided modes.

Since the eigenvalues αj are strictly decreasing in ǫ1, as well as in µ1 (Lemma 3.2),
we have αj > 1 if both ǫ1 ≤ ǫ0 and µ1 ≤ µ0, which proves the theorem. 2

5 Numerical computations

We compute guided modes for the Helmholtz equation. These are scalar functions u
satisfying Condition 2.2, for which α = 1. We focus on the case of one propagating
Fourier harmonic, and we consider a two-dimensional reduction, in which the slab is
constant in the y-direction and κ2 = 0. In this case, only the (m, 0) Fourier harmonics
enter the fields. Our method begins with a geometry Ω that is symmetric about the yz-
plane (in the two-dimensional reduction to the x and z variables, this implies symmetry
about the z-axis) and given values of κ, ǫ0, µ0, µ1, and ω. The code then computes the
values of ǫ1 which give rise to a solution of the first part of Condition 2.6, in other words,
it computes one of the values Ej(α). The second part of the condition is automatically
satisfied because only one harmonic is propagating, namely that with (m,n) = (0, 0). The
corresponding antisymmetric nonrobust guided mode u is also computed.

We use a finite element solver in the finite rectangular region R for the eigenvalue
problem, with ǫ1 as the eigenvalue, for the Helmholtz equation in two variables, x and z:

(∇ + iκ) · (∇ + iκ)u+ ǫ0µ0ω
2u = 0 in R \ Ω, (34)

(∇ + iκ) · (∇ + iκ)u = −ǫ1µ0ω
2u in Ω, (35)

µ1 (∂nu+ + (iκ·n)u) = µ0 (∂nu− + (iκ·n)u) on Σ, (36)

u(−π, z) = u(π, z) and ∂nu(−π, z) = −∂nu(π, z), (37)

∂nu+ ν0u = 0 on the edges z = z1 and z = z2. (38)

Note that since we assumed that only one harmonic propagates, ν0 = i
√
ǫ0µ0ω2 − |κ|2,

and condition (38) expresses that there are no incoming harmonics impinging the rectan-
gular zone R. In fact, condition (38) is a first approximation of the Dirichlet to Neumann
operator B. If only one harmonic is allowed to propagate and if the rectangular region R
is chosen to be wide enough, it is reasonable to believe that this first approximation leads
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to an exponentially small error. Numerical methods hinging on this boundary approxima-
tion idea have been used in the literature, for example by Kriegsmann and Volkov [11, 12],
albeit in the case of regular transmission problems instead of eigenvalue problems.

We discretize (34-38) by finite elements on a meshing of R, and then solve the dis-
cretized problem as an eigenvalue problem in ǫ1. A function u satisfying (34-38) satisfies

0 = ν0

∫

Γ

|u|2 −

∫

R

|(∇ + iκ)u|2 + ǫ0µ0ω
2

∫

R\Ω

|u|2 + ǫ1µ0ω
2

∫

Ω

|u|2.

Thus, loosely speaking, if the imaginary part of ǫ1 is very small, u and ∂nu are very small
on Γ which is made up by the two narrow edges of the rectangle R. If the rectangle R is
long enough, this simulates the exponential decay expected from a Bloch solution to the
Helmholtz equation that is a guided mode.

We first use our numerical method to reproduce a computation of eigenvalues for
bound states that appeared in [2]. The geometry under consideration is that of a dielectric
made up of one large circle of radius 3, and 8 small circles of radius 1 (the circles are
cross-sections of rods that extend infinitely in the y-direction). Their centers lie on the
line x = 0, and two consecutive centers are 2π units of length apart. Fixing µ0 = µ1 = 1,
ǫ0 = 1, ǫ1 = 12, it was found in [2] that guided modes (referred to as “bound states”
in that paper) exist for the pairs (κ1 = 0.0, ω = 0.4017), (κ1 = 0.14, ω = 0.3863),
(κ1 = 0.22, ω = 0.3707), and (κ1 = 0.44, ω = 0.3306). Thus with our present numerical
method, we fix µ0 = µ1 = 1, ǫ0 = 1, and (κ1, ω) at one of these pairs, and compute values
for ǫ1 for which there appears to be a guided mode. The computations lead to ǫ1 ≈ 12.0,
as expected. The corresponding eigenfunction is plotted using a gray scale coloring in
Figures 5.

The first of these guided modes, at (κ1 = 0.0, ω = 0.4017), is antisymmetric about
the yz-plane. It is nonrobust because it exists in the (κ1, ω)-regime of one propagating
Fourier harmonic, which is suppressed by the symmetry of the structure and the vanishing
of κ1. The last of them, at (κ1 = 0.44, ω = 0.3306), is a robust guided mode, for it exists
in the (κ1, ω)-regime in which all Fourier harmonics are evanescent. A dispersion relation
for these is shown in [2].

The other two nonrobust modes are not discussed in the analysis in this paper, for
they are in a (κ1, ω)-regime of one propagating harmonic but the wave number κ1 in the
x-direction is not zero. However, at these two pairs, the coefficient for the one propagating
Fourier harmonic happens to be zero, that is, the second part of Condition 2.6 happens
to be satisfied. These values of κ1 and ω occur at points of a complex dispersion curve
calculated in [2] (Fig. 7.2, part 7) at which the imaginary part of the frequency appears
to vanish. The existence of nonrobust modes at nonzero wavenumbers is proved in the
final section of [6].
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4.

Figure 3: Four guided modes in a two-dimensional structure investigated in [2] (Fig.
7.2). One period is shown; the structure continues periodically in the vertical direction
on the page. 1. A nonrobust antisymmetric guided mode at Bloch wavevector zero,
(κ1, ω) = (0.0, 0.4017). 2 and 3. Nonrobust guided modes at nonzero wavenumbers in the
direction perpendicular to the line of symmetry, (κ1, ω) = (0.14, 0.3863), (0.22, 0.3707). 4.
A robust guided mode, (κ1, ω) = (0.44, 0.3306).

We also show computations involving geometries that are not exclusively circular.
We choose to place two dielectrics, one shaped as an ellipse of focal lengths 1 and 2 and
centered at (−5, π), the other shaped as a circle of a radius 1 and centered at (5, π). Their
boundaries appear in figures 5, 5, and 6. We pick the values z1 = −50, z2 = 50, to bound
the rectangle R. We first assume that ω = 1, ǫ0 = 1, µ0 = µ1 = 1, κ = (0, 0), ensuring that
one harmonic only propagates. Thus, we know that nonrobust guided modes do exist at
certain values of ǫ1.

The first guided mode that we find corresponds to ǫ1 ≈ 9.762, and is plotted in
figure 5. That values were obtained with a mesh containing 4592 elements. Numerical
convergence was verified by either quadrupling the number of mesh elements or changing
z1 = −50, z2 = 50 into z1 = −60, z2 = 60. These refinements did not change the first
four digits of the numerical value for ǫ1. The numerical method employed finds complex
eigenvalues, and sorts them in increasing real part order. Some of those eigenvalues do
not have a small imaginary part: we ignore them, as they are unrelated to the solutions
we are trying to compute. We verify decay of the solution as we move away from the
dielectrics. This is illustrated in the graph in Figure 5, which shows the absolute value
of the solution along the line z = π/2. We also show the graphs of the second and third
guided modes, still for the same values of ω, ǫ0, µ0, µ1, κ1. They appear in Figure 5.

Finally, we compute a robust guided mode with κ1 6= 0. To guarantee existence, we
choose values for the material parameters such that no harmonic can propagate. More
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1.

2.

Figure 4: 1. Eigenfunction for the first real eigenvalue ǫ1 ≈ 9.762 for the parameters
ω = 1, ǫ0 = 1, µ0 = µ1 = 1, κ = (0, 0). 2. Cross section of the solution along the line
z = π/2; the magnitude of the solution is plotted.

Figure 5: Eigenfunctions for the second and third real eigenvalues ǫ1 ≈ 11.00 and ǫ1 ≈
25.66 for the parameters ω = 1, ǫ0 = 1, µ0 = µ1 = 1, κ1 = 0. These are nonrobust guided
modes.
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Figure 6: Eigenfunction for the third real eigenvalue ǫ1 ≈ 11.42 for the parameters ω =
0.3, ǫ0 = 1, µ0 = 1, µ1 = 3, κ1 = 0.4. This is a robust guided mode.

precisely, we select, ω = 0.3, ǫ0 = 1, µ0 = 1, µ1 = 3, κ1 = 0.4. The third eigenfunction for
that case is plotted in Figure 6.

6 Appendix: Proofs of Theorems

Proof of Theorem 2.7. (Equivalence of strong and weak conditions.) Many of the
arguments are standard in the literature on elliptic equations; details of the relevant
theory can be found in ([9], Chapter 8), for example. We confine discussion to the basic
elements of the proof and those aspects that are unique to this problem.

i. That the strong formulation satisfies the weak is a matter of application of the
divergence theorem (integration by parts). The relevant identity is

∇·

[(
1

µ
(∇+ iκ)u

)
v̄

]
=

[
(∇+ iκ) ·

(
1

µ
(∇+ iκ)u

)]
v̄ +

1

µ
(∇+ iκ)u · (∇− iκ) v̄. (39)

Applying this identity for a function u that satisfies the strong Condition 2.2, the
left-hand side of part (i) of the weak Condition 2.4 becomes

−

∫

R

[
1

µ

(
(∇+ iκ) 2u

)
+ εω2u

]
v̄

+
1

µ0

∫

Γ

(Bu+ ∂nu−)T v̄ −

∫

∂R\Γ

1

µ
∂nuT v̄

+

∫

Σ

[
1

αµ1

(∂nu− + (iκ · n)u) −
1

αµ0

(∂nu+ + (iκ · n)u)

]
T v̄. (40)

The integral over R vanishes by properties (i–iii), the integral over Γ by property
(v), that over ∂R\Γ by properties (vii–viii), and the integral over Σ by property (vi).
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ii. Let u satisfy Condition 2.4. The functions v of class C∞ with compact support in
R \Σ are contained in H1(R), and this is sufficient to establish that u satisfies the
Helmholtz equation in R \ Σ (i-iii) and that u ∈ H2(R) ([9], §8.3). Thus u has
values on ∂R (including the interior side of Γ) and Σ that are of class H3/2 and
normal derivatives of class H1/2. Integration by parts, using the Helmholtz equation
away from these boundaries, establishes properties (iv–viii). The extension of u to
all of S is achieved by the formula (22).

The form of the extension (22) of u to S outside of R shows that a−mn = b+mn = 0 for
all (m,n). The relation (15) expressing conservation of energy, which is obtained
by integration by parts with v = u, shows that a+

mn = b−mn = 0 for (m,n) ∈ P. The
additional requirement in Condition 2.4 for ν2

mn = 0 establishes a+
mn = b−mn = 0 for

(m,n) ∈ P̃ . Therefore each harmonic with (m,n) ∈ P̃ in the expansion (9) has
vanishing value and normal derivative on Γ, implying that u ∈ X and part (ii) of
the second form of the weak Condition 2.5 are satisfied.

iii. The functions v of class C∞ with compact support in R\Σ are contained in X, and
again we obtain that u satisfies the Helmholtz equation in R\Σ and u ∈ H2(R). It
suffices to prove that, for each (m,n) ∈ P, the weak form in Condition 2.5 holds for
v such that (v|Γ1

)̂mn = 1, (v|Γ1
)̂m′n′ = 0 for (m′, n′) 6= (m,n), and (v|Γ2

)̂m′n′ = 0 for
all (m′, n′) (and similarly with Γ1 and Γ2 interchanged). Applying integration by
parts for such v together with the Helmholtz equation for u yields for the left-hand
side of the equation in the weak Condition 2.4,

left-hand side =

∫

Γ1

(∂nu+Bu)v̄ =
(
(∂nu|Γ1

)̂mn − νmn(u|Γ1
)̂mn

)
= 0,

in which (∂nu|Γ1
)̂mn = 0 by property (ii) of Condition 2.5 and (u|Γ1

)̂mn = 0 because
u ∈ X.

iv. To prove part (i) of Condition 2.5, it suffices to prove the equality for v ∈ Xsym,
which follows from the observation that the integrands are antisymmetric over the
regions of integration. To prove part (ii), we observe that the Fourier coefficients
with m even are zero because u is antisymmetric in the x-variable.

2

Recall the sesquilinear forms in H1
per(R):

A(u, v) =

∫

R

1

µ
(∇+ iκ)u · (∇− iκ) v̄ +

1

µ0

∫

Γ

(BTu)(T v̄), (41)

ℓ(u, v) =

∫

R\Ω

ǫ0ω
2uv̄ +

∫

Ω

ǫ1ω
2uv̄. (42)
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and that A depends on κ, ω, ǫ0, µ0, and µ1 (the dependence on ω and ǫ0 is through
B—see equations (19) and (10)) and ℓ depends on ω, ǫ0, and ǫ1; neither form depends
on α.

Lemma 6.1 (Estimates) There exist positive numbers C and δ such that, for all u, v ∈
H1(R),

i. min{ǫ0, ǫ1}‖u‖
2
L2 ≤ ℓ(u, u) ≤ max{ǫ0, ǫ1}‖u‖

2
L2 (equivalence of ‖ · ‖L2 and ℓ(·, ·)),

ii. |A(u, v)| ≤ C‖u‖H1‖v‖H1 (boundedness of A),

iii. δ‖u‖2
H1 ≤ A(u, u) (coercivity of A).

These constants depend on the parameters κ, ω, ǫ0, µ0, and µ1.

Proof.

i. Part (i) is straightforward to verify.

ii. Because the trace operator T : H1(R) → H1/2(Γ) and the operator B : H1/2(Γ) →
H−1/2(Γ) are bounded, there is a constant C1 such that

∣∣∣∣
∫

Γ

(BTu)(T v̄)

∣∣∣∣ ≤ C1‖u‖H1‖v‖H1 .

This, together with the estimate

min{µ0, µ1}

∣∣∣∣
∫

R

1

µ
(∇+ iκ)u · (∇− iκ) v̄

∣∣∣∣ ≤
∣∣∣∣
∫

R

(∇+ iκ)u · (∇− iκ) v̄

∣∣∣∣
≤ ‖ (∇+ iκ)u‖L2‖ (∇+ iκ)v‖L2

≤ (‖∇u‖L2 + |κ|‖u‖L2) (‖∇u‖L2 + |κ|‖u‖L2) ≤ C2‖u‖H1‖u‖H1 ,

prove the estimate.

iii. Suppose, to the contrary, that there exists a sequence {un}
∞
n=0 from X such that

‖un‖H1 = 1 and A(un, un) → 0 as n→ ∞. (43)

Because of the compact embedding of X into L2(R), we simply assume that there
is a function u ∈ L2(R) such that

‖u− un‖L2(R) → 0,
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and from the definition of A, we see that

‖ (∇+ iκ)un‖L2(R) → 0,

whence
‖∇un + iκu‖L2(R) → 0.

It follows that un → u in the H1-norm so that u ∈ X and

(∇+ iκ)u = 0,

from which we obtain
u = C3e

i(κ1x+κ2y) (44)

for some constant C. From the convergence of un to u in X, the boundedness of T
and B, and the definition of A, we have

∫

Γ

(BTu)T ū = lim
n→∞

∫

Γ

(BTun)T ūn = 0.

Since B is a positive operator on H1/2(Γ), we obtain Tu = 0, and the form (44)
therefore gives u = 0. This is in contradiction to the supposition that ‖un‖H1 = 1,
and (43) is therefore untenable. 2

Because of the equivalence of the norms ℓ(f, f) and ‖f‖L2(R) (property (ii) of Lemma
6.1), we may define by L2(R, ℓ) to be the linear space of functions in L2(R) endowed with
the inner product ℓ(f, g).

Proof of Theorem 3.1. By the Lax-Milgram theorem, there exists a linear operator
K : L2(R, ℓ) → X such that, for each f ∈ L2(R),

A(Kf, v) = ℓ(f, v) for all v ∈ X,

and by the sesquilinearity of A and ℓ, we also have

A(v,Kf) = ℓ(v, f) for all v ∈ X.

K is self-adjoint in the inner product ℓ(·, ·) because

ℓ(Kf, g) = A(Kf,Kg) = ℓ(f,Kg) for all f, g ∈ L2(R).

In fact, K is positive because

ℓ(Kf, f) = A(Kf,Kf) > 0 for all f ∈ L2(R).
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K is injective because, if Kf = 0, then ℓ(f, v) = 0 for all v ∈ X, and since X contains
the functions of class C∞ with compact support in R, f = 0 almost everywhere, so that
f = 0 in L2(R). The estimate

δ‖Kf‖2
H1 ≤ A(Kf,Kf) = ℓ(f,Kf) ≤ C‖f‖L2‖Kf‖L2 ≤ C‖f‖L2‖Kf‖H1

gives us
δ‖Kf‖H1 ≤ C‖f‖L2 ,

which shows that K is compact as an operator on L2(R). As the L2(R)-norm with respect
to Lebesgue measure on R and the norm in L2(R, ℓ) are equivalent, K is compact as an
operator on L2(R, ℓ). The spectrum of K therefore consists of a nonincreasing sequence
of eigenvalues {λj}

∞
j=0 converging to zero, in which eigenvalues are repeated according to

multiplicity, and there is a corresponding sequence of eigenfunctions {ψj}
∞
j=0 that form

an orthonormal Hilbert-space basis for L2(R, ℓ).
By definition of A, and K, we see that, for α ∈ R,

A(u, ·) = αℓ(u, ·) ⇐⇒ Ku = α−1u, (45)

in which the dot in the second argument of the forms indicates action on X. The sequence
of eigenvalues αj we seek is therefore

{αj = λ−1
j }∞j=0.

By properties (i, iii) of Lemma 6.1,

ℓ(u, u) ≤ C4A(u, u),

which shows that α0 > 0.
We now show that the eigenvalues and eigenfunctions arise from minimization of the

Rayleigh quotient. Define
β0 = inf

u∈X,u 6=0
J(u).

We prove that there exists a nonzero function φ0 ∈ X such that

β0 = J(φ0) > 0.

Let {un}
∞
n=1 be a minimizing sequence, that is, un 6= 0 for each n and limn→∞ J(un) = β0.

By homogeneity of J(u), we may assume that ℓ(un, un) = 1 for each n, and since the
sequence {J(un)} is bounded, {A(un, un)} is also bounded. Part (iii) of the Lemma
shows that {‖un‖H1} is bounded.

By the compact embedding of H1
per(R) into L2(R), there is a subsequence that is

strongly convergent in L2(R); we simply assume therefore that {un} is strongly convergent
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in L2(R), say to a function φ0. By the second inequality in part (i) of Lemma 6.1,
ℓ(φ0, φ0) = 1. We now prove that ‖un − um‖H1 → 0 as m,n → ∞. The parallelogram
law holds for A:

A(um − un, um − un) = A(um, um) + A(un, un) − A(um + un, um + un). (46)

Because ℓ(un, un) = 1, A(un, un) = J(un), and the sum of the first two terms on the
right-hand side of (46) converges to 4β0. By definition of β0 and because of the second
inequality in (i) of the lemma,

A(um + un, um + un) ≥ β0ℓ(um + un, um + un) → β0ℓ(2u, 2u) = 4β0 as m,n→ ∞.

We thus obtain A(um − un, um − un) → 0 as m,n → ∞, and from (iii) of the lemma,
‖un − um‖H1 → 0. Therefore, un → φ0 ∈ X in the H1 norm. Part (ii) shows that
A(un, un) → A(φ0, φ0) as n→ ∞, and therefore

J(φ0) = lim
n→∞

J(un) = β0.

To define β1 and φ1, we set Y1 to be the orthogonal complement of span{φ0} in X
with respect to the sesquilinear form A(u, v),

Y1 = {v ∈ X : A(φ0, v) = 0},

and define
β1 = inf

u∈Y1,u 6=0
J(u).

The proof of the existence of a minimizer φ1 in Y1 is essentially the same as the proof of
the existence of φ0. Continuing in this way, we obtain a sequence {Yj} of subspaces of X,
numbers βj, and functions φj such that

Yj = {v ∈ X : A(φk, v) = 0 for k = 0, . . . , j−1}

and
βj = inf

u∈Yj ,u 6=0
J(u) = J(φj), φj ∈ Yj.

Taking the first variation of the relation A(u, u) = J(u)ℓ(u, u) at u = φj and using the
fact that J is minimized by φj in Yj and that A(φk, φj) = ℓ(φk, φj) = 0 for k = 0, . . . , j−1,
we obtain

A(φj, v) = βjℓ(φj, v) for all v ∈ X. (47)

By definition, φj+1 minimizes the same functional as φj, but over a smaller set, and
therefore the sequence {βj} is nondecreasing:

0 < β0 ≤ β1 ≤ · · · ≤ βj ≤ . . . .
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Because of (45) and (47), we have

{βj}
∞
j=0 ⊆ {αj}

∞
j=0 and span{φj : j = 0, . . . ,∞} ⊆ span{ψj : j = 0, . . . ,∞}.

To show for, j = 0, . . . ,∞, that αj = βj, that ψj can be taken to be equal to φj, and that
Xj = Yj, we prove that any eigenvalue α with eigenfunction 0 6= ψ ∈ X, in the sense that

A(ψ, v) = αℓ(ψ, v) for all v ∈ X

is necessarily one of the βj and that ψ is in the span of {φj : βj = α}. If, to the contrary,
α 6= βj for all n, then A(φj, ψ) = 0 for all n because

A(ψ, φj) = αℓ(ψ, φj) and A(φj, ψ) = βjℓ(φj, ψ),

whence we obtain, from conjugating the first relation and keeping in mind that α ≥ α0 > 0
and βj ≥ α0 > 0,

(α−1 − β−1
j )A(φj, ψ) = 0.

Since α 6= βj, we obtain A(φj, ψ) = 0, as desired. This implies that ψ ∈ Yj+1 so that

α =
A(ψ, ψ)

ℓ(ψ, ψ)
≥ inf

u∈Yj ,u 6=0
J(u) = βj for all j,

which is impossible because βj → ∞. Therefore we may let k be

k = max{j : βj = α}.

We still have A(ψ, φj) = 0 for all j with βj 6= α. If we also have A(ψ, φj) = 0 for all j
with βj = α, then

α = J(ψ) ≥ inf
u∈Yk+1,u 6=0

J(u) = βk+1 > βk. (contradiction)

We now see that ψ, which was taken to be an arbitrary nonzero element of the eigenspace
for α, is such that A(ψ, φj) for some j with βj = α. This implies that the eigenspace for
α is in fact equal to span{φj : βj = α}.

The last part of the theorem on the symmetric and antisymmetric eigenfunctions is
proved analogously by replacing X by Xsym and Xant and using the fact that these two
spaces are orthogonal with respect to the sesquilinear form A(·, ·). There are no essential
changes in the proof.

2

The form ℓ depends on the parameter ǫ1; we make this dependence explicit by intro-
ducing the variable ǫ:
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ℓǫ(u, v) =

∫

R\Ω

ǫ0ω
2uv̄ +

∫

Ω

ǫω2uv̄, (48)

Jǫ(u) =
A(u, u)

ℓǫ(u, u)
=

∫
R

1
µ
| (∇+ iκ)u|2 + 1

µ0

∫
Γ
(BTu)(T ū)

ǫ0ω2
∫
R\Ω

|u|2 + ǫω2
∫
Ω
|u|2

. (49)

The eigenvalues and eigenfunctions also depend on ǫ, and we denote them by αj(ǫ) and
ψj(ǫ). Normalizing the eigenfunctions so that ℓǫ(ψj(ǫ), ψj(ǫ)) = 1, we have

ℓǫ(ψj(ǫ), ψk(ǫ)) = δjk, A(ψj(ǫ), ψk(ǫ)) = 0 for j 6= k.

The compact operator K = Kǫ also depends on ǫ:

A(Kǫf, v) = ℓǫ(f, v) for all v ∈ X, (50)

and the eigenvalues of Kǫ are {αj(ǫ)
−1}∞j=0 with corresponding eigenvectors {ψj(ǫ)}

∞
j=0.

Lemma 6.2 Kǫ is continuous in ǫ with respect to the operator norm on Kǫ.

Proof. Let ǫ1 > 0 be given. For an arbitrary variation ∆ǫ > 0 with 0 < |∆ǫ| < ǫ1, set

∆K = Kǫ1+∆ǫ −Kǫ1 and ∆ℓ = ℓǫ1+∆ǫ − ℓǫ1 .

Applying the defining relation (50) for Kǫ to Kǫ1+∆ǫ and Kǫ1 , with v = ∆Kf , and
subtracting yields the relation

A(∆Kf,∆Kf) = ∆ℓ(f,∆Kf). (51)

We have the following lower estimate for the left-hand side of (51):

δ‖∆Kf‖2
L2 ≤ δ‖∆Kf‖2

H1 ≤ A(∆Kf,∆Kf),

and upper estimate for the right-hand side:

|∆ℓ(f,∆Kf)| = |∆ǫ|

∣∣∣∣
∫

Ω

f∆Kf̄

∣∣∣∣ ≤ |∆ǫ| ‖f‖L2 ‖∆Kf‖L2 .

Putting these inequalities together, we obtain

‖∆Kf‖L2 ≤
|∆ǫ|

δ
‖f‖L2 ,
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so that ‖∆K‖ ≤ |∆ǫ|/δ. 2

We now prove the lemma of Section 3 that states that the eigenvalues α are continuous
strictly decreasing functions of ǫ1, and αj → 0 as ǫ1 → ∞. A similar result was stated for
the µ1 dependency, but we omit the proof in that case, as it is similar.

Proof of Lemma 3.2. By Lemma 6.2, Kǫ is continuous in ǫ with respect to the operator
norm on Kǫ and its spectrum is the set {αj(ǫ)

−1}∞j=0. Because the eigenvalues of compact
operators are continuous functions of the operator in the operator norm (Kato [10], Ch.
IV, §3.5), we conclude that the functions αj(ǫ) are continuous functions of ǫ.

To prove that αj(ǫ) is strictly decreasing in ǫ, let ǫ1 and ǫ2 be given with 0 < ǫ1 < ǫ2,
and let an integer N ≥ 0 be given. Define

VN = span{ψj(ǫ1) : 0 ≤ j ≤ N},

(V0 = {0}) in which the eigenvectors ψj(ǫ1) are orthonormal with respect to ℓǫ1(·, ·) and
orthogonal with respect to A(·, ·):

ℓǫ1(ψj(ǫ1), ψk(ǫ1)) = δjk, A(ψj(ǫ1), ψk(ǫ1)) = 0 for j 6= k.

For each ψ ∈ VN with ℓǫ1(ψ, ψ) = 1, there are numbers aj, for 0 ≤ j ≤ N such that

ψ =
N∑

j=0

ajψj(ǫ1),
N∑

j=0

|aj|
2 = 1,

and we obtain A(ψ, ψ) =
∑N

j=0 |aj|
2A(ψj(ǫ1), ψj(ǫ1)) so that

A(ψ, ψ) = Jǫ1(ψ) =
N∑

j=0

|aj|
2Jǫ1(ψj(ǫ1)) =

N∑

j=0

|aj|
2αj(ǫ1) ≤ αN(ǫ1). (52)

From the definition of Jǫ, it is evident that Jǫ2(φ) ≤ Jǫ1(φ) for each φ ∈ X; however, we
need to show strict inequality for φ ∈ VN , which requires showing that, for each nonzero
φ ∈ VN , it is not true that φ is equal to zero almost everywhere on Ω. To this end, let

φ =
N∑

j=0

bjψj(ǫ1) = 0 a.e. in Ω.

Put βj = αj(ǫ1)ǫ1µ1ω
2. As the ψj(ǫ1) are smooth in Ω, for each k = 0, . . . , N , we have

0 =
∏

βj 6=βk

(
(∇+ iκ) 2 + βj

)
φ =

∏

βj 6=βk

(−βk + βj)
∑

βj=βk

bjψj(ǫ1) in Ω.
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Since
∏

βj 6=βk
(−βk+βj) 6= 0, we obtain

∑
βk=βh

bkψk(ǫ1) = 0 in Ω.However,
∑

βj=βk
bjψj(ǫ1)

satisfies Condition 2.2, and therefore
∑

βj=βk
bjψj(ǫ1) is zero in R, and therefore the zero

element of X, in which the ψj(ǫ1) are linearly independent, and we infer that bj = 0 for
j such that βj = βk. As k was chosen arbitrarily from {0, . . . , N}, we obtain bj = 0 for

0 ≤ j ≤ N . We conclude that ψ =
∑N

j=0 ajψj(ǫ1) from above is not zero in L2(Ω). It
follows now from the definitions of Jǫ and ℓǫ and from (52) that Jǫ2(ψ) < Jǫ1(ψ) ≤ αN(ǫ1),
and by the homogeneity of Jǫ2 , we obtain

Jǫ2(φ) < Jǫ1(φ) ≤ αN(ǫ1) for all φ ∈ VN . (53)

Define, for each ǫ > 0,

XN(ǫ) = {v ∈ X : A(ψj(ǫ), v) = 0 for j = 0, . . . , N − 1} .

The dimension of VN ∩XN(ǫ2) is at least 1; let φ be a nonzero vector in this intersection.
We obtain

αN(ǫ2) = inf
u∈XN (ǫ2),u 6=0

Jǫ2(u) ≤ Jǫ2(φ) < αN(ǫ1),

and we have proved that αN(ǫ) is a decreasing function of ǫ.
We now prove that αN(ǫ) tends to zero as ǫ tends to infinity. The set

S = {ψ ∈ VN : ℓǫ1(ψ, ψ) = 1} .

S is compact in L2(R, ℓǫ1) and therefore also in L2(R). Since
∫
Ω
|ψ|2 is continuous in

L2(R) and
∫
Ω
|ψ|2 6= 0 for all ψ ∈ S there is a number M such that

0 < M <

∫

Ω

|ψ|2 for all ψ ∈ S.

Therefore

ℓǫ(ψ, ψ) ≥ ǫω2

∫

Ω

|ψ|2 > ǫω2M for all ψ ∈ S,

and, using (52) for ǫ > ǫ1,

Jǫ(ψ) =
A(ψ, ψ)

ℓǫ(ψ, ψ)
<
αN(ǫ1)

ǫω2M
for all ψ ∈ S.

The dimension of VN ∩XN(ǫ) is at least 1. Let φ be a nonzero vector in this intersection,
which we may take to be in S. We then obtain

αN(ǫ) = inf
u∈XN (ǫ),u 6=0

Jǫ(u) ≤ Jǫ(φ) <
αN(ǫ1)

ǫω2M
. (54)

2

The estimate (54) shows that the eigenvalues decay at least proportionally to 1/ǫ.
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