e e o e

Chapter 0
PRELIMINARIES

The purpose of this chapter is to fix some terminology that will be used
throughout the book, and to present a few analytical tools which are not
included in the prerequisites. It is intended mainly as a reference rather
than as a systematic text. ‘

A. Notations and Definitions

Points and sets in Euclidean space

R will denote the real numbers, C the complex numbers. We will be
working in R™, and n will always denote the dimension. Points in R™ will
generally be denoted by =z,y,£,7; the coordinates of z are (zy,. .y Tn).
Occasionally z1, 2z, ... will denote a sequence of points in R™ rather than
coordinates, but this will always be clear from the context. Once in a while
there will be some confusion as to whether (z1,...,Z,) denotes a point in
R™ or the n-tuple of coordinate functions on R™. However, it would be
too troublesome to adopt systematically a more precise notation; readers
should consider themselves warned that this ambiguity will arise when we
consider coordinate systems other than the standard one.

If U is a subset of R™, U will denote its closure and U its boundary.
The word domain will be used to mean an open set £2 C R™, not necessarily
connected, such that 8Q = d(R™\ Q). (That is, all the boundary points of
Q are “accessible from the outside.”)

If £ and y are points of R™ or C*, we set

n
Toy=Y Ty,
1
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so the Euclidean norm of z is given by
lz| = (z - 7)? (= (z-2)/?if z is real.)

We use the following notation for spheres and (open) balls: if z € R" and
r>0,

Sr(z)={yeR™: e~y =71},

Bi(z)={y eR": e —y| <r}.

Measures and integrals

The integral of a function f over a subset 2 of R™ with respect to
Lebesgue measure will be denoted by [, f(z) dz or simply by [ f. If no
subscript occurs on the integral sign, the region of integration is understood
to be R™. If S is a smooth hypersurface (see the next section), the natural
Euclidean surface measure on S will be denoted by do; thus the integral of
fover Sis [ f(z)do(z), or [g fdo, or just [ f. The meaning of do thus
depends on S, but this will cause no confusion.

If f and g are functions whose product is integrable on R”, we shall
sometimes write

()= [19 (o= [13,

where 7 is the complex conjugate of g. The Hermitian pairing (flg) will
be used only when we are working with the Hilbert space L? or a variant
of it, whereas the bilinear pairing (f, g) will be used more generally.

Maulti-indices and derivatives

An n-tuple ¢ = (@1,...an) of nonnegative integers will be called a
multi-index. We define

n
|| = E aj, al = arlag! - -ay!,
1
and for z € R™,
o (o SN /] a
TT =Ty Ty T,

We will generally use the shorthand

g
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for derivatives on R". Higher-order derivatives are then conveniently ex-
pressed by multi-indices:

"9\ alel
a _ v — )
% = ]-:'[ (8z,~) Ozt - Ozpm

Note in particular that if @ = 0, 8% is the identity operator. With this
notation, it would be natural to denote by du the n-tuple of functions
(61u,...,0pu) when u is a differentiable function; however, we shall use
instead the more common notation

Vu={b1u,...,0.u).

For our purposes, a vector field on a set & € R" is simply an R"-
valued function on Q. If F'is a vector field on an open set ), we define the
directional derivative 0 by :

Op=F- -V,

that is, if  is a differentiable function on €,
Oru(z) = F(z) Vu(z) = ZF,(m)aju(:c)
1

Function spaces

If Q is a subset of R, C(§2) will dente the space of continuous complex-
valued functions on {2 (with respect to the relative topology on Q). If © is
open and k is a positive integer, C¥(£2) will denote the space of functions
possessing continuous derivatives up to order k on Q, and C*(Q) will denote
the space of all u € C¥(Q) such that 8*u extends continuously to the
closure  for 0 < |a| < k. Also, we set C*°(Q2) = [N}° C¥(Q) and C(Q7) =
N CH@.

We next define the Holder or Lipschitz spaces C*(§2), where £ is an
open set and 0 < & < 1. (Here « is a real number, not a multi-index; the
use of the letter “a” in both these contexts is standard.) C*(Q) is the space
of continuous functions on §2 that satisfy a locally uniform Holder condition
with exponent «. That is, u € C*(§2) if and only if for any compact V C Q
there is a constant ¢ > 0 such that for all y € R™ sufficiently close to 0,

sup {u(z + y) — u{z)| < cly}]*.
zeV
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(Note that C1(Q) C C*(Q) for all & < 1, by the mean value theorem.) If
k is a positive integer, C¥*+2(Q) will denote the set of all u € C¥(Q) such
that 6fu € C*(Q) for all muli-indices B with |8| = k (or equivalently, with
|B] < k; the lower-order derivatives are automatically in C1(Q) C C*(%).).

The support of a function u, denoted by supp u, is the complement of
the largest open set on which u = 0. If @ C R", we denote by C(Q) the
space of all C® functions on R™ whose support is compact and contained
in Q. (In particular, if Q is open such functions vanish near 9.)

The space C*(R™) will be denoted simply by C*. Likewise for C°,
C*+e and C.

If @ C R” is open, a function u € C°°(f)) is said to be analytic in Q
if it can be expanded in a power series about every point of . That is,
u is analytic on Q if for each = €  there exists r > 0 such that for all

y € B.(z), 3
uw = Y LUy e,
lalz0
the series being absolutely and uniformly convergent on B, (z). When re-
ferring to complex-analytic functions, we shall always use the word holo-
morphic.

The Schwartz class 8 = S(R™) is the space of all C* functions on R"
which, together with all their derivatives, die out faster than any power of
z at infinity. That is, u € 8 if and only if u € C* and for all multi-indices
a and 3,

sup |z%8°u(z)| < co.
zeR™

Big O and little o

We occasionally employ the big and little o notation for orders of mag-
nitude. Namely, when we are considering the behavior of functions in a
neighborhood of a point a (which may be co), O(f(z)) denotes any func-
tion g(z) such that |g(z)| < C|f(z)| for  near @, and o(f(z)) denotes any
function h(w) such that h(z)/f(z) — 0 as ¢ — a.

B. Results from Advanced Calculus

A subset S of R™ is called a hypersurface of class C* (1 < k < o0) if for
every zp € S there is an open set ¥V C R™ containing z¢ and a real-valued
function ¢ € Ck(V) such that V¢ is nonvanishing on SNV and

SNV ={zeV:¢(z)=0}.
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In this case, by the implicit function theorem we can solve the equation
#(z) = 0 near zg for some coordinate z; — for convenience, say i = n —
to obtain

o =9P(z1, ..., Tn-1)

for some C* function 9. A neighborhood of zg in S can then be mapped
to a piece of the hyperplane z, = 0 by the C* transformation

z — (2', zn — P(z)) (w’:(zl,...,mn_l)).

This same neighborhood can also be represented in parametric form as
the image of an open set in R*~! (with coordinate z’) under the map

z' — (', ¥(z)).

z’ may be thought of as giving Jocal coordinates on S near zo.

Similar considerations apply if “C*” is replaced by “analytic.”

With S, V, ¢ as above, the vector V¢(z) is perpendicular to S at «
for every £ € S NV. We shall always suppose that S is oriented, that
is, that we have made a choice of unit vector »(z) foreach z € S, varying
continuously with z, which is perpendicular to S at z. v(x) will be called
the normal to S at z; clearly on SNV we have

Vé(z)

v(®) = G

Thus v is a C*~? function on S. If S is the boundary of a domain 2, we
always choose the orientation so that v points out of 2.

If u is a differentiable function defined near S, we can then define the
normal derivative of u on S by

Su=vrv- Vu.

We pause to compute the normal derivative on the sphere S;(y). Since
lines through the center of a sphere are perpendicular to the sphere, we
have

n

00 w@=2"Y 0,=13(5-uwd  on S
1

We will use the following proposition several times in the sequel:
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(0.2) Proposition.
Let S be a compact oriented hypersurface of class C¥, k > 2. There is a
neighborhood V' of S in R™ and a number € > 0 such that the map

F(z,t) =z +tv(z)
is a C¥~1 diffecomorphism of S x (—¢, €) onto V.

Proof (sketch):  F is clearly C*¥~!. Moreover, for each = € S its
Jacobian matrix (with respect to local coordinates on § x R) at (z,0) is
nonsingular since v is normal to S. Hence by the inverse mapping theorem,
F can be inverted on a neighborhood W, of each (z,0) to yield a C*—1
map

F7VLiWe —» (SOW,) X (—€z, €2)

for some €; > 0. Since S is compact, we can choose {z;} C S such that
the Wy, cover S, and the maps Fx';,l patch together to yield a C*~! inverse
of F' from a neighborhood V' of S to S x (—¢, €) where ¢ = min; ¢,;. I

The neighborhood V' in Proposition (0.2) is called a tubular neigh- ‘
borhood of S. It will be convenient to extend the definition of the normal
derivative to the whole tubular neighborhood. Namely, if u is a differen-
tiable function on V, for £ € S and —e < 1 < € we set

(0.3) Oyu(z +tv(z)) = v(z) - Vu(z + tv(z)). ;

If F = (F,..., F,)is a differentiable vector field on a subset of R", its

divergence is the function

n
V-F=Y 0;F.
1

With this terminology, we can state the form of the general Stokes formula
that we shall need.

(0.4) The Divergence Theorem.
Let © C R™ be a bounded domain with C! boundary S = 99, and let F
be a C! vector field on Q. Then

/F(y) v{y) do(y) /V F(z)dzc.

s Y
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The proof can be found, for example, in Treves {52, §10].
Every z € R"\ {0} can be written uniquely as z = ry with » > 0 and
y € 51(0) — namely, r = |z| and y = z/|z|. The formula z = ry is called
the polar coordinate representation of z. Lebesgue measure is given in
polar coordinates by
dz =r""ldrda(y),

where do is surface measure on S1(0). (See Folland [14, Theorem (2.49))].)
For example, if 0 < a < b < o0 and A € R, we have

/ |z I'\dz—/ / n=1+A g _{ A Py
<|z|<b 51(0) Wy log(b/a) lf A= -1,

where wy, is the area of 51(0) (which we shall compute shortly). As an
immediate consequence, we have:

(0.5) Proposition.

The function z — |z|* is integrable on a neighborhood of 0 if and only
if X > —n, and it is integrable outside a neighborhood of 0 if and only if
A< —n.

As another application of polar coordinates, we can compute what is
probably the most important definite integral in mathematics:

(0.6) Proposition.
[e~™ol dg =1,

Proof: Let I, = fmne"””': dz. Since e~"¢l* = I e"”?, Fubini’s
theorem shows that I, = (I;)", or equivalently that I, = (I3)*/2. But in
polar coordinates,

2r o 2 R 2 ot
Iz:/ / e " rdrd6’=27r/ re”" dT‘:W/ e"ds=1. 1
o Jo 0 0

This trick works because we know that the measure of S;(0) in R? is
27. But now we can turn it around to compute the area w, of $;(0) in R"
for any n. Recall that the gamma function I'(s) is defined for Res > 0

by -
I'(s) :/ et dt.
0
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One easily verifies that
Ds+1)=sT(s), T)=1, I =vr

(The first formula is obtained by integration by parts, and the last one
reduces to (0.6) by a change of variable.) Hence, if k is a positive integer,

T(k)=(k-1),, D(k+3)=(k=-3)k—3) (V7

(0.7) Proposition.
The area of S1{0) in R™ is

27[.71/‘2
“r = T(n/2)

. 2, .
Proof: We integrate e~"1#l" in polar coordinates and set s = w72

1—/ —wlz|? dm—/ / —mr?n=1 dn dg
51(0)

— —mr? pr—1 “n —s (n/2)-1
_wn/o e dr_27rn/2/0 s ds

_wpl(n/2)
= g

Note that, despite appearances, wy, is always a rational multiple of an
integer power of .

(0.8) Corollary.
The volumie of B,(0) in R™ is

Wy 2nn/2
n ~ nl'(n/2)
Proof: fBl(O) dz = wy, fol =l dr = w, /n. |

(0.9) CoroHary.
For any x € R™ and any r > 0, the area of Sp(z) is r*~'w, and the volume
of Br(z) is r™wp /n.

g
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C. Convolutions

We begin with a general theorem about integral operators on a measure

space (X, p) which deserves to be more widely known than it is. In our

applications, X will be either R™ or a smooth hypersurface in R™.

(0.10) Generalized Young’s Inequality.
Let (X, u) be a o-finite measure space, and let 1 < p < oo and C > 0
Suppose K Is a measurable function on X x X such that

swp [ K@Dl <C s [ 1K@yl <
seX JX yeX JX
If f € LP(X), the function Tf defined by

Tf(z) = [ K(e0)fw)duy)
is well-defined almost everywhere and is in LP(X), and 1Tfll, < Cllflp-

Proof: Suppose 1 < p < o0, and let g be the conjugate exponent
(p7' 4+ ¢! =1). Then by Hélder’s inequality,

T < [ JREY] d#(y)] . [ | kGl du(y)] !

1/p
<o [ K (e, )| F )P d~<y>]

Raising both sides to the p-th power and mtegratmg, we see by Fubini’s
theorem that

| ms@p du) < ool [ [ 1Kl duw) due)
X X JX
(/)41 P dule
<ct /X FIP du(y),
or, taking pth roots,

1T fllp < CAPHALD| £, = CJi £,

These estimates imply, in particular, that the integral defining T f(z) con-
verges absolutely a.e., so the theorem is proved for the case 1 < p < co.
The case p = 1 is similar but easier and requires only the hypothesis
J1K(z,y)|du(z) < C, and the case p = oo is trivial and requires only
the hypothesis [ |K(z,y)|du(y) < C. i



10 Chapter 0

In what follows, when we say LP we shall mean LP (R") unless another

space s specified.
Let f and g be locally integrable functions on R”. The convolution

f*g of f and g is defined by
frg(e)= /f(ﬂc - y)g(y)dy = / FW)g(z ~ ) dy = g * f(2),

provided that the integrals in question exist. (The two integrals are equal
by the change of variable y — z — y.) The basic theorem on the existence
of convolutions is the following:

(0.11) Young’s Inequality.
IffeL'andg € L (1 < p < 00), then fxg € LP and || fxgllp < || fll1]lgllp-

Proof: Apply (0.10) with X =R" and K(z,y) = f(z — y)- |

Remark: It is obvious from Holder’s inequality that if f € L? and
g € LP where p™* 4+ ¢7' = 1 then f+g € L* and ||f * glleo < [Ifllllglle-
From the Riesz-Thorin interpolation theorem (see Folland [14]) one can
then deduce the following generalization of Young’s inequality: Suppose
1<pgr<ocoandpl+q¢gl=r14+1 Iffe€L!andg € LP then
Frg el and |f#glle < I fllglolly-

The next theorem underlies one of the most important uses of convo-
lutions. Before coming to it, we need a technical lemma. If f is a function
on R™ and z € R", we define the function f; by

fe(y) = f(z +y).

(0.12) Lemma.
If1<p<ooand f€LP, then limz—o||fz — fll, =0.

Proof: If g is continuous with compact support, then ¢ is uniformly
continuous, so gz — ¢ uniformly as ¢ — 0. Since g; and g are supported
in a common compact set for |z| < 1, it follows also that |jg- — g|l, — 0.
Now, given f € L? and ¢ > 0, choose a continuous g with compact support
such that ||f — gllp < ¢/3. Then also ||fo — gz|l, < ¢/3, s0

e = Fllp £ 11fe — gallp + llgz — gllp + [lg = fllp < llgz — gllp + 2¢/3.

But for z sufficiently small, |jgz — gll, < ¢/3, 50 ||fz — Fllp < e. i

P

e S
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Remark: This result is false for p = co. Indeed, the condition that
{Ifz = flloo — 0 as £ — 0 means precisely that f agrees almost everywhere
with a uniformly continuous function.

(0.13) Theorem.

Suppose ¢ € L' and [ ¢(z)dz = a. For each ¢ > 0, define the function De
by ¢e(z) = e "¢(e71z). If f€ LP, 1 < p < oo, then f* ¢ — af in the LP
norm as € — 0. If f € L* and f is uniformly continuous on a set V', then
f*¢e— af uniformlyon V as ¢ — 0.

Proof: By the change of variable 2 — ez we see that [ ¢.(z)de = a
for all ¢ > 0. Hence,

fre(@)=af(e) = [fa-3)-F@Nbdy= [11(a-a)F=No(3) dy.
Iff € LP and p < oo, we apply the triangle inequality for integrals
(Minkowski’s inequality; see Folland [14]) to obtain

£ e =aflly < [ sy = Sl 60}y

But || f-¢y — f|lp is bounded by 2||f||, and tends to zero as ¢ — 0 for each Y
by Lemma (0.12). The desired result therefore follows from the dominated
convergence theorem.

O-n'the other hand, suppose f € L* and f is uniformly continuous on
V. Given 6 > 0, choose a compact set W so that fmﬂ\w |¢| < 8. Then

SUplf*6(e) ~af@) < _swp 1f(e =) = ()] [ 18]+ 2l
The first term on the right tends to zero as e — 0, and § is arbitrary, so
S * ¢, tends uniformly to af on V. i

If ¢ € L' and [ ¢(z)dz = 1, the family of functions {¢.}c>o defined
in Theorem (0.13) is called an approximation to the identity. What
makes these useful is that by choosing ¢ appropriately we can get the
functions f * ¢, to have nice properties. In particular:

(0.14) Theorem.

Iff € L? (1< p<o0)and ¢ is in the Schwartz class 8, then f * ¢ is C*°
and 0%(f * ¢) = f » 0%¢ for all multi-indices «.
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Proof: If ¢ €8, for every bounded set V C R™ we have

sup [0%¢(z ~ )| < Cav (1 + )"~ (yER).
The function (1 + |y|)~"~! is in L9 for every ¢ by (0.5), so the integral
fro78(e) = [ F@)0"9(z = 1) dy

converges absolutely and uniformly on bounded subsets of R". Differen-
tiatlon can thus be interchanged with integration, and we conclude that

04(f ) = £+ 6%, '

We can get better results by taking ¢ € C2°. In that case we need only
assume that f is locally integrable for f * ¢ to be well-defined, and the
same argument as above shows that f * ¢ € G,

Since the existence of nonzero functions in C%° is not completely trivial,
we pause for a moment to construct some. First, we define the function f
on R by

/A= (jt] < 1)
1)=4° !
s ={; (1> 1),
Then f € CP(R), so (z) = f({z]?) is a nonnegative C* function on R™
whose support is B1(0). In particular, [ > 0, so ¢ = ¢/ [ 9 is a function
in C=(R") with [ ¢ = 1. It now follows that there are lots of functions in
Ce:

(0.15) Lemma.
If f is supported in V and g is supported in W, then f * g is supported in
{z+y:z€V, ye W}

Proof: Exercise. ]

(0.16) Theorem.
C is dense in L? for 1 < p < o0.

Proof: Choose ¢ € C° with [¢ = 1, and define ¢, as in Theorem
(0.13). If f € LP has compact support, it follows from (0.14) and (0.15)
that f* ¢, € C> and from (0.13) that f % ¢, — f in the L? norm. But L?

functions with compact support are dense in LP, so we are done. 1

Another useful construction is the following:

P —
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(0.17) Theorem. .
Suppose V' C R™ is compact, & C R" is open, and V C Q. Then there
exists f € C(2) such that f =1 on V and 0 < f < 1 everywhere.

Proof: Let§=inf{lc—y|l:z€V, y¢Q}. IfQ=R" let = 1)
By our assumptions on V and €, § > 0. Let

U={z:|z~y|l <16 forsomey € V}.

Then V C U and U C Q. Let x be the characteristic function of U, and
choose a nonnegative ¢ € C°(Bs/2(0)) such that [¢ = 1. Then we can
take f = x * ¢; the simple verification is left to the reader. 4

We can now prove the existence of “partitions of unity.” We state the
following results only for compact sets, which is all we need, but they can
be generalized.

(0.18) Lemma.
Let K C R™ be compact and let Vi, ..., Viy be open sets with K C UllV V.
Then there exist open sets Wy,..., Wy with W; CV; and K C Ullv W;.

Proof: TForeach ¢ > 0 let V® be the set of points in V; whose distance
from R™\ V; is greater than . Clearly V/ is open and Vf C V;. We claim
that K C Uiv V# if € is sufficiently small. Otherwise, for each € > 0 there

exists z. € K \ UIIV V. Since K is compact, the z. have an accumulation

point z € K as ¢ — 0. But then z € K \ U{V V;, which is absurd. 1

(0.19) Theorem.

Let K C R™ be compact and let Vi, ..., Vy be bounded open sets such
that K C UN V;. Then there exist functions (1, .. .,C,; with {; € CP(V;)
such that 3°;' ¢(; =1 on K.

Proof: Let Wi,..., Wx be as in Lemma (0.18). By Theorem (0.17),
we can choose ¢; € C°(V;) with 0 < ¢; < 1 and ¢; = 1 on W;. Then
® = Zf’ ¢; > 1 on K, so we can take {; = ¢;/®, with the understanding
that ¢; = 0 wherever ¢; = 0. |

The collection of functions {(; ¥ is called a partition of unity on X
subordinate to the covering {V;}V.
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D. The Fourier Transform

In this section we give a rapid introduction to the theory of the Fourier
transform. For a more extensive discussion, see, e.g., Strichartz [47] or

Folland [14], [17]. R
If f € L*(R™), its Fourier transform f is a bounded function on R"

defined by
7o) = /6‘2”i‘”'ff(:c) dez.

There is no universal agreement as to where to put the factors of 27 in the
definition of f, and we apologize if this definition is not the one the reader
is used to. It has the advantage of making the Fourier transform both an
isometry on L? and an algebra homomorphism from L! (with convolution)
to L* (with pointwise multiplication).

Clearly f(¢) is well-defined for all & and || f|le < [|f|:. Moreover:

(0.20) Theorem. N
If f,g € L then (f % g)" = f7.

Proof: This is a simple application of Fubini’s theorem:
(For© = [[ ¢ (@ = () dy da
= // e"Z”i(’_y)'Ef(:c - y)e"z""y'fg(y) dz dy
= F@) [ w4ty dy = Re)3(6). '

The Fourier transform interacts in a simple way with composition by
translations and linear maps:

(0.21) Proposition.
Suppose f € L}*(R™). R
. If fu(2) = f(o +a) then (f)(€) = *mie< ).
b. If T is an invertible linear transformation of R", then (f o TY (£) =
| det TILF(T-1)7¢). .
c. If T is a rotation of R™, then (foT) = foT.

Proof: (a) and (b) are easily proved by making the substitutions
y =z + a and y = Tz in the integrals defining (f,)7(£) and (f o T)(§),
respectively. (c) follows from (b) since 7* = T""! and |det T| = 1 when T'
is a rotation. |

mere e
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The easiest way to develop the other basic properties of the Fourier
transform is to consider its restriction to the Schwartz class 8. In what
follows, if & is a multi-index, z®f denotes the function whose value at z is

z% f(x).

(0.22) Proposition.

Suppose f € 8.

a. f€C® and 8 f = [(~2miz)? fT.
b. (8% f) = (2rig)P f.

Proof: To prove (a), just differentiate under the integral sign. To
prove (b), write out the integral for (87 ) (¢) and integrate by parts; the
boundary terms vanish since f and its derivatives vanish at infinity. 1

(0.23) Proposition.
If f €8 then f € 8.

Proof: By Proposition (0.22), 7
o€ f = (~1)Pl(2mi)Pl-lal[zPge

so Bﬁf‘*fis bounded for all a, 3. It then follows by the product rule for
q\erivatives and induction on 3 that £%6# f is bounded for all o, B, that is
fes. '

(0.24) The Riemann-Lebesgue Lemma.
If f € L' then f is continuous and tends to zero at infinity.

Proof: This is true by Proposition (0.23) if f lies in the dense sub-
space § of £1, But if {f;} C 8 and f; — f in L', then E — funiformly
(because [|f;j — fllo < |If; = fll1), and the result follows immediately. 1

(0.25) Theorem.
Let f(z) = e~"%I%I" where a > 0. Then

7€) = amnize-lel/a,

Proof: By making the change of variable z — a=1/2z we may assume
a = 1. Since the exponential function converts sums into products, by
Fubini’s theorem we have

fe) = /e_zwi”'f‘”lxpdx = H/C"z"f”ffi‘"f? dz;,
1
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T
and it suffices to show that the jth factor in the product is e™™%, i.e., to
prove the theorem for n = 1. Now when n = 1 we have

/e—Zwiz‘E—-rz: de = e—ﬂ'fz /e—-w(z-l-if)’ de.

But f(z) = ™" is an entire holomorphic function of z € C which dies out
rapidly as | Rez| — oo when |Im z| reamins bounded. Hence by Cauchy’s-

theorem we can shift the contour of integration fromIm z = 0 to Im z = —¢,
which together with (0.6) yields
e /e_"(”"""f)2 de = e~"¢ /‘3-—”2 dz = e~ ™" ]

(0.26) Theorem. R
Iff,g€ 8 then [ fg = [ fg.

Proof: By Fubini’s theorem,

/f§=/ f(@)g(y)e™ ™Y dydz = /fg- u

For f € L, define the function f¥ by
£ = [ e de = fie)
{0.27) The Fourier Inversion Theorem.
ffes, (f)¥=1

Proof: Given € > 0 and z € R", set ¢(§) = e2miz€-7l€1”  Then by
Theorem (0.25), ‘
b(y) = /e—2vri(y—x)~€e—-wlefl2 de = eme~mlz-yl*/e
Thus,
—7r|z|’.

6(y) = e "g(e™ (2 — y)) = ge(z — y) where g(z) = e
By (0.26), then, '

/_mzw 2niz€ F¢) de = /f¢ /f¢ /f(:c)gc(z y)dy = fxge(z).

By (0.6) and (0.14), f * g¢ — f uniformly as € — 0 since functions in 8 are
uniformly continuous. But clearly, for each z,

Jerranse e ag - [ = fie e = (o) '
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(0.28) Corollary.

The Fourier transform is an isomorphism of § onto itself.

(0.29) The Plancherel Theorem.
The Fourier transform on § extends uniquely to a uni itary isomorphism of
L? onto itself. ~

Proof Since 8 is dense in L? (Theorem (0. 16)) by Corollary (0.28)
it suffices to show that ”f||2 = |Ifllz for f €8. If f € 8, set g(z) = f(—=).

One easily checks that § = f. Hence by Theorems (0.20) and (0.27),

1718 = [ 5@ de = £ 200 = [(rror@rde = [ FoT@rae
= 1173 '

The results (0.20)~(0.29) are the fundamental properties of the Fourier
transform which we shall use repeatedly. We shall also sometimes need the
Fourier transform as an operator on tempered distributions, to be discussed
in the next section, and the following result.

(0.30) Proposition.

If f € L' has compact support, then f extends to an entire holomorphic
function on C*. If f € C>, then f(f) is rapidly decaying as |Re€| — oo
when |Imé| remains bounded.

Proof: The integral f(¢) = Je ™= f(z)dz converges for every
£ € C*, and e~ 2% is an _entire function of { € C*. Hence one can
take complex derivatives of f simply by differentiating under the integral.
Moreover, if f € C¢° and f is supported in {z : |z| < K}, for any multi-
index o we have

[(2mie)= F(€)| =

/C—ZWix-Eaaf(x) dz < eKlImﬂ”aaf”l’

which yields the second assertion. 1

E. Distributions

We now outline the elements of the theory of distributions. The material
sketched here is covered in more detail in Folland [14] and Rudin [41], and a
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more extensive treatment at an elementary level can be found in Strichartz
[47]. See. also Treves [49] and Hérmander [27, vol. I] for a deeper study of
distributions.

Let © be an open set in R™. We begin by defining a notion of sequential
convergence in C°(f2). Namely, we say that ¢; — ¢ in C°(Q) if the ¢;’s
are all supported in a common compact subset of Q and %¢; — 0%
uniformly for every multi-index o. (This notion of convergence comes from
a locally convex topology on C2°(2), whose precise description we shall not
need. See Rudin [41] or Treves [49].)

If u is a linear functional on the space C2°(f2), we denote the number
obtained by applying u to ¢ € C®(Q2) by (u, ) (or sometimes by (¢, u):
it is convenient to maintain this flexibility). A distribution on Q is a
linear functional u on C2°(2) that is continuous in the sense that if ¢; — ¢
in C(Q) then (u,¢;) — (u,¢). A bit of functional analysis (cf. Folland
(14, Prop. (5.15)]) shows that this notion of continuity is equivalent to the
following condition: for every compact set K C €2 there is a constant Cg
and an integer Nk such that for all ¢ € C®(K),

(0.31) l(w, )| < Ck Y (18%¢llco-

|| SNk

The space of distributions on § is denoted by D'(2), and we set D’ =
D'(R™). We put the weak topology on D'(R); that is, u; — u in D'(2) if
and only if {u;, ¢) — (u, ¢) for every ¢ € CZ(9).

Every locally integrable function u on € can be regarded as a dis-
tribution by the formula (u,¢) = [u¢, which accords with the notation
introduced earlier. (The continuity follows from the Lebesgue dominated
convergence theorem.) This correspondence is one-to-one if we regard two
functions as the same if they are equal almost everywhere. Thus distribu-
tions can be regarded as “generalized functions.” Indeed, we shall often
pretend that distributions are functions and write (u, ¢) as [ u(z)¢(z) de;
this is a useful fiction that makes certain operations involving distributions
more transparent.

Every locally finite measure i on € defines a distribution by the formula
(4, ¢) = [ ¢dp. In particular, if we take p to be the point mass at 0, we
obtain the graddaddy of all distributions, the Dirac §-function é§ € T’
defined by (6, ¢) = ¢(0). Theorem (0.13) implies that if v € L?, [u = g,
and u(z) = e "u(e"1z), then ue — ad in D' when ¢ — 0.

Ifu,v € D'(Q), wesay that u = v on anopenset V C Qif (u, ¢) = (v, ¢)
for all ¢ € C(V). The support of a distribution u is the complement of
the largest open set on which u = 0. (To see that this is well-defined, one
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needs to know that if {Va}ae4 is a collection of open sets and u = 0 on
each Vo, then u = 0 on | V,. But if ¢ € C®(|J V), supp ¢ is covered by
finitely many V,’s. By means of a partition of unity on supp ¢ subordinate
to this covering, one can write ¢ = Zf’ ¢; where each ¢; is supported in
some Vo. It follows that (u,¢) = T (u,¢;) =0, as desired.)

The space of distributions on R™ whose support is a compact subset of
the open set {2 is denoted by £'(Q), and we set & = E'(R™).

Suppose u € €'. Let Q be a bounded open set such that suppu C 2, and
choose ¥ € C¢°(Q) with ¢ = 1 on a neighborhood of supp u (by Theorem
(0.17)). Then for any ¢ € C* we have

(u, 9) = (u,¥g).

This has two consequences. First, u is of “finite order”: indeed, by (0.31)
with K = Q,

Huw, )< Cg > 118%(6)|leo-

la|<Ng

Expanding 0%(¥¢) by the product rule, we see that

(0.32) (wal<C S sup|04(z),

la]<N =€

where N = Ng and C depends only on Cg and the constants [|0° ],
|8l < N. Second, (u, ¢) makes sense for all ¢ € C®, compactly supported
or not, so if we define (u,4) to be (u,y¢) for all 4 € C®, we have an
extension of u to a linear functional on C®. This extension is clearly
independent of the choice of ¥, and it is unique subject to the condition
that (u, ) = 0 whenever supp ¢ and supp u are disjoint. Thus distributions
with compact support can be regarded as linear functionals on C° that
satisfy estimates of the form (0.32). Conversely, the restriction to cx
of any linear functional on C* satisfying (0.32) is clearly a distribution
supported in £2.

The general philosophy for extending operations from functions to dis-
tributions is the following. Let T be a linear operator on C(Q) that is
continuous in the sense that if ¢; — ¢ in C2°(Q) then T¢; — T'é in C(Q).
Suppose there is another such operator 7" such that [Ty = [ (T'%)
for all ¢, € C°(2). (We call T" the dual or transpose of T.) We can
then extend T to act on distributions by the formula

(Tu, ¢) = (u,T'¢).
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The linear fynctional Tu on CP(Q) defined in this way is continuous on
C () since T is assumed continuous. The most important examples are
the following; in all of them the verification of continuity is left as a simple
exercise.

1. Let T' be multiplication by the function f € C*(Q). Then T =T
so we can multiply any distribution u by f € C*°(2) by the formula
(fu,¢) = (u, f¢).

2. Let T = 8°. By integration by parts, T/ = (—1)I*lg*. Hence we
can differentiate any distribution as often as we please to obtain other
distributions by the formula (0%u, ¢) = (=Dl (u, 524).

3. We can combine (1) and (2). Let T = }7|,j<x a0 be a differential
operator of order k with C* coefficients a,. Integration by parts shows
that the dual operator T” is given by T"¢ = Z|a|<k(_1)|a|6a(aa¢)' For
any distribution u, then, we define Tu by (T'u, ¢) = (u, T"¢).

Clearly, if u € C*(Q2), the distribution derivatives of u of order < k are
just the pointwise derivatives. The converse is also true:

(0.33) Proposition.
Ifu € C(2) and the distribution derivatives 8%u are in C(Q) for |a| < k

then u € CF(Q).

Proof: By induction it suffices to assume that ¥ = 1. Since the
conclusion is of a local nature, moreover, it suffices to assume that Q is a
cube, say @ = {z : max|z; — y;| < r} for some y € R". For z € (2, set

Ty
U((ll) = Blu(t,:cz,...,
Y1
It is easily checked that v and u agree as distributions on (2, hence v = u
as functions on 2. But d;u is clearly a pointwise derivative of v. Likewise

for Bau, ..., 0,u; thus u € CH{R). I

zn)dt + u(yh L2500 wn)'

‘We now continue our list of operations on distributions. In all of the
following, we take Q = R™.

4. Given z € R”, let T'¢ = ¢, where ¢-(y) = ¢(z +y). Then T¢ = ¢_.
Thus for any distribution u, we define its translate uy by (uz,¢) =
(4, 6-).

5. Let T'¢ = 35, where $(:c) = ¢(—z). Then T" =T, so for any distribution
u we define its reflection in the origin @ by (4, ¢) = (u, ¢).
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6. Given ¢ € C2°, define T¢ = ¢ * 4, which is in Cg° by (0.14) and

(0.15). It is easy to check that 77¢ = ¢ * 1/), where ¢ is defined as in
(5). Thus, if u is a distribution, we can define the distribution u % ¢
by (u*1%,4) = (u,¢ * ). On the other hand, notice that ¢ x ¥(z) =
(¢, (¥2)"), so we can also define u*) pointwise as a contintious function
by u $(z) = (u, (42)).
In fact, these two definitions agree. To see this, let ¢ € C>, let K be
a compact set containing supp(d;x) for all z € supp ¢, and let Ng be
as in (0.31). From the relation ¢ * ¢ (y) = [ ¢(z)(¥z)" (y) dz it is is not
hard to see that there is a sequence of Rlemann sums ) ¢(z; ) (¥, ) Az;
that converge uniformly to ¢ x 1/) together with their derivatives of order
< Nk. But then (0.31) implies that if « # ¢ is defined as a continuous
function, we have

(us 9, ¢) =lim > u*y(z;)(z;) Az;
= lim Z u, (Ye,) ) d(2;) Azj = (u, ¢ * 1/’)

which is the action of the distribution u * ¥ on ¢.
Moreover, by (2) and integration by parts, we see that the distribution
8%(u * ¢) is given by

(0%(u ), 8) = (=1)1N(u, (8%¢) % ¥) = (u, ¢ % (3°PY) = (u+ 8%y, 8),

0 0%(u* ) = u* %Y is a continuous function. Hence u*1 is actually
a C*° function.

7. The same considerations apply when « € & and ¥ € C°°. That is, we
can define u * ¢ either as a distribution by (uxt), @) = (u,d = 1Z), or as
a C* function by u * ¥(z) = (u, (¥s)).

8. If ue & and ¥ € C¢°, as in (0.15) we see that u* ¢ € C®. Hence
we can consider the operator 7% = u=* 1 on C%°, whose dual is clearly
T = T+, It follows that if u € & and v € D', u* v can be
defined as a distribution by the formula (u * v, Y) = (v,U*xy). We

leave it as an exercise to verify that for any multi-index o we have

0%(u x v) = (8%u) * v = u* (0%v).

We shall also need to consider the class of “tempered distributions.”
We end(?w the Schwartz class 8 with the Fréchet space topology defined by
the family of norms [|4(|(a,5) = [|z*0f§||co- That is, $#; — ¢ in 8 if and
only if

sup [z%8%(¢; — ¢)(z)| — 0 for all o, 5.

—
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A tempered distribution is a continuous linear functional on 8; the space
of tempered distributions is denoted by 8. Since C%° is a dense subspace of
§ in the topology of 8, and the topology on C2° is stronger than the topology
on 8, the restriction of every tempered distribution to C¢° is a distribution,
and this restriction map is one-to-one. Hence, every tempered distribution
“is” a distribution. On the other hand, Proposition (0.32) shows that
every distribution with compact support is tempered. Roughly speaking,
the tempered distributions are those which “grow at most polynomially at
infinity.” For example, every polynomial is a tempered distribution, but
u(z) = el*l is not. (Exercise: prove this.)

One can define operations on tempered distributions as above, simply
by replacing C2° by 8. For example, if u € 8/, then:

1. 8%u is a tempered distribution for all multi-indices «;

2. fu is a tempered distribution for all f € C* such that 9% f grows at
most polynomially at infinity for all a;

3. ux¢ is a tempered distribution, and also a C* function, for any ¢ € 8.

The importance of tempered distributions lies in the fact that they
have Fourier transforms. Indeed, since the Fourier transform maps 8 con-
tinuously onto itself and is self-dual by Proposition (0.26), for any u € §'
we can define T € 8 by (4, ¢) = (u,d) (¢ € 8), which is consistent with
the definition for functions. It is easy to see that Propositions (0.21) and
(0.22) are still valid when f € 8/, as is the Fourier inversion theorem (0.27),
provided fV is defined by (f¥,¢) = (f,¢"). Also, if u € 8 and ¢ € 8, we
have (u* ¢)" = aﬁ; the proof is left as an easy exercise.

For example, the Fourier transform of the Dirac é-function is given by
(5, @) = (6, :5) = $(0) = [¢(z)dz = (1,¢), so 8 is the constant function 1.
It then follows from the inversion theorem that 1T = §, and from Proposition

(0.22) that (0%6)" = (2i)l*l¢> and that (x*)~ = (i/2x)l*l9°6.

F. Compact Operators

Let X be a Banach space and let T be a bounded linear operator on X. We
denote the nullspace and range of T by N(T') and R(T). T is called com-
pact if whenever {z;} is a bounded sequence in X, the sequence {T'z;} has
a convergent subsequence. Equivalently, 7" is compact if it maps bounded
sets into sets with compact closure. T is said to be of finite rank if
R(T) is finite-dimensional. Clearly every bounded operator of finite rank
is compact.

e R P e e e+ L

T W e vy o
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(0.34) Theorem.

The set of compact operators on X is a closed two-sided ideal in the algebra
of bounded operators on X with the norm topology. '

Proof: Suppose Ty and T3 are compact, and {z;} C X is bounded.
We can choose a subsequence {y;} of {z;} such that {7} Yj } converges, and
then choose a subsequence {z;} of {y;} such that {T22;} converges. It
follows that a; 71 + a3 is compact for all a1,a; € C. Also, it is clear that
if T is compact and S is bounded, then T'S and ST are compact. Thus the
set of compact operators is a two-sided ideal.

Suppose {T;»} is a sequence of compact operators converging to a limit
T in the norm topology. Given a seqence {z;} C X with ||z;|| < C for all
J, choose a subsequence {z;} such that {T1z1;} converges. Proceeding
inductively, for m = 2,3,4, ..., choose a subsequence {zm;} of {2Z(m-1)j}
such that {Tmzm; } converges. Setting y; = z;;, one easily sees that {Tmy;}
converges for all m. But then

ITy; = Twell < INT ~ T )yil| + 11T (s — ve)ll + 1T — T
< 20T = Tl + 1Ty — Tonyil)-
Given € > 0, we can choose m so large that ||T — Tn|l < €/4C, and then
with this choice of m we have ||Timy; — Tonue|] < €/2 when J and k are
sufficiently large. Thus {Ty;} is convergent, so T is compact, ]

(0.35) Corollary.
IfT is a bounded operator on X and there is a sequence {T} of operators
of finite rank such that ||T,, — T|| — 0, then T is compact.

In case X is a Hilbert space, this corollary has a converse.

(0.36) Theorem.
IfT is a compact operator on a Hilbert space X, then T' is the norm Iimit
of operators of finite rank.

Proof: Suppose € > 0, and let B be the unit ball in . Since T(B)
has compact closure, it is totally bounded: there is a finite set Yi, -y YUn
of elements of T(B) such that every y € T(B) satisfies llv — yjl] < e for
some j. Let P, be the orthogonal projection onto the space spanned by
Y1,---,Yn, and set Te = P.T. Then T is of finite rank. Also, since T,z is
the element closest to T'z in R(Pe), for £ € B we have

T2~ Tl < i, [T ~ 3] < .

In other words, ||T — T.|| < ¢, 50 Tt — T as ¢ — 0. 1
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Remark: For many years it was an open question whether Theorem
(0.36) were true for general Banach spaces. The answer is negative even
for some separable, reflexive Banach spaces; see Enflo [12].

(0.37) Theorem.
The operator T on the Banach space X is compact if and only if the dual

operator T* on the dual space X* is compact.

Proof: Let B and B* be the unit balls in X and X*. Suppose T is
compact, and let {f;} be a bounded sequence in X*. Multiplying the f;’s
by a small constant, we may assume {f;} C B*. The functions f; : X — C
are equicontinuous and uniformly bounded on bounded sets, so by the
Arzela-Ascoli theorem there is a subsequence (still denoted by {f;}) which
converges uniformly on the compact set _(_B—) Thus T* f;(z) = f;(Tz)
converges uniformly for « € B, so {T*f;} is Cauchy in the norm topology
of X*. Hence T™ is compact.

Likewise, if T* is compact then T"* is compact on X**. But X is
isometrically embedded in X**, and T is the restriction of T* to X,s0 T
1s compact. 1

We now present the main structure theorem for compact operators.
This theorem was first proved by 1. Fredholm (by different methods) for
certain integral operators on L? spaces. In the abstract Hilbert space set-
ting it is due to F. Riesz, and it was later extended to arbitrary Banach
spaces by J. Schauder. For this reason it is sometimes called the Riesz-
Schauder theory. We shall restrict attention to the Hilbert space case,
which is all we shall need, and for which the proof is easier; see Rudin [41]
for the general case.

(0.38) Fredholm’s Theorem.
Let T be a compact operator on a Hilbert space X with inner product (- | -}.

For each A € C, let

Vy = {z € X: Tz = Az}, WA:{IEX:T*x:,\x}_

Then:

a. The set of A € C for which V) # {0} is finite or countable, and in the
latter case its only accumulation point is 0. Moreover, dim(Vy) < oo
for all A # 0.

b. If XA # 0, dim(Vy) = dim(Wy).

c. IFX#0, R(AI —T) is closed.
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Proof: (a) is equivalent to the following statement: For any ¢ > 0
the linear span of the spaces V) with {A| > ¢ is finite-dimensional. Suppose,
to the contrary that there exist ¢ > 0 and an infinite sequence {z;} C X of
linearly independent elements such that T'z; = Ajz; with [A;] > € for all 5.
Since |Aj| < ||TY), by passing to a subsequence we can assume that {}}is
a Cauchy sequence. Let X, be the linear span of zi,...,z,,. For eacfx m
choose ym € Xy with ||ym|] = 1 and ym L Xm-1. Then y, = > cm-z',
for some scalars ¢pj, so ' ™

m=1 -1 -
Al TYm = ConmTm + D CmjAjAmlej = ym + mzlcm,-(,\,-,\,;l ~ z;
n .
= Ym (mod Xpy_1). 1
If n < m, then,
Ml TYm — A Ty = ym (mod Xp_ 7).
Therefore, since ym L X;n-1, the Pythagorean theorem yields
A Tym — A5 Tyal| > 1.
But then

1< HITYm — Tynl| + 1A0F = A7 Tall,

or
ITyn = Tymll > [Am] = 11 = An AT Tl

As m,n — oo the second term on the right tends to zero since || Ty, || < ||T]
and An A;t — 1, and the first term is bounded below by e. Thus {?Z‘ym}
has no convergent subsequence, contradicting compactness.

Now consider (b). Given A # 0, by Theorem (0.36) we can write
T = Ty + 11 where Tp has finite rank and ||T3]] < |A]. The operator
Al —Ty = MI — A~*T}) is invertible (the inverse being given by the con-
vergent geometric series Y o> A" 1TF), and we have

(0.39) (A\I=T1)"'(AI~T) = (\=Ty)"* ([T} ~Tb) = I~ (A —T})~ T

Set Ty = (A — T1)"'T,. Then clearly z € V, if and only if ¢ — Tyz = 0.
On the other hand, taking the adjoint of both sides of (0.39), we have

AI-THQL-T3) =1-1T;,
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soy = (X -T}) 'z is in Wy if and only if z— T3z = 0. We must therefore
show that the equations z—Tyz = 0 and z—T = = 0 have the same number
of independent solutions.

Since Ty has finite rank, so does T%. Let uy,...,uy be an orthonormal
basis for R(T3). Then for any £ € X we have Tzz = 21 fi(z)u; where
21 |fi(z)* = ||Taz|®>. It follows that = — f;(z) is a bounded linear

functional on X, so there exist vy, ..., vy such that

N

Tgm:Z(:BI‘Uj)Uj (z e X).

1

Set Bjr = (u; | vx), and given ¢ € X, set a; = (z|v;). If z — Tyz = 0, then
z = ). oju;, and we see by taking the scalar prodict with v; that

(0.40) =Y Bika; =0, k=1,...,N.
i

Conversely, if a1, ..., ap, satisfy (0.40), then z = 3 a;u; satisfies z—Tyz =
0. On the other hand, one easily verifies that Ty z = Y (z | u;)v;, so by the
same reasoning, £ — T3z = 0 if and only if ¢ = zllv a;jvj, where

(0.41) ar— 3 Brjaj=0, k=1,...,N.
j

But the matrices (6;x — B5x) and (65 — _ﬂ-kj) are adjoints of each other and
so have the same rank. Thus (0.40) and (0.41) have the same number of
independent solutions.

Finally, we prove (c). Suppose we have a sequence {y;} C R(AI —T)
which converges to an element y € X. We can write y; = (A — T)z;
for some z; € X; if we set &; = u; + v; where u; € V) and v; L Vi,
we have y; = (Al — T)v;. We claim that {v;} is a bounded sequence.
Otherwise, by passing to a subsequence we may assume ||v;|| — co. Set
w; = v;[||v;|}; then by passing to another subsequence we may assume that
{Twj} converges to a limit z. Since the y;’s are bounded and [|vj ]| = oo,

Mwj = Tw; + — 2z, (j — o00).

Yi
llosl
Thus z L.V and ||z|| = |A[, but also

(AI T)z = lim(AI — T)Aw; = llm o ” =0,
Yj

s IS

i

e
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so z € V. This is a contradiction since we assume X # 0.
Now, since {v;} is a bounded sequence, by passing to a subsequence we
may assume that {T'v;} converges to a limit x. But then

v = A"}y +Tvj) > Ay +2),
so
y = lm(AI — T)v; = (A = T)A"}(y + ).
Thus y € R(AI —T), and the proof is complete. 1

(0.42) Corollary.
Suppose A # 0. Then:

- The equation (A — T')z = y has a solution if and only ny L Ws.
ii. AI — T is surjective if and only if it is injective.

Proof:” (i) follows from part (c) of the theorem and the fact that
R(S) = N(§*)* for any bounded operator S. (ii) then follows from (i) and
part (b) of the theorem. !

In general it may happen that the spaces V) are all trivial. (It is easy
to construct an example from a weighted shift operator on 12)) However, if
T is self-adjoint, there are lots of eigenvectors.

(0.43) Lemma.
If T is a compact self-adjoint operator on a Hilbert space X, then either
|7} or —=||T'|} is an eigenvalue for T.

Proof: Clearly we may assume T # 0. Let ¢ = ||T} (so ¢ > 0), and
consider the operator A = ¢*I — T?. For all z € X we have

(4z|2) = =] = |T=]1? > 0.

Choose a sequence {z;} C X with ||z;|] = 1 and ||T%;|] — ¢. Then
(Azj|z;) — 0, so applying the Schwarz inequality to the nonnegative
Hermitian form (u,v) — (Au|v), we see that
42| = (Az; | Az;) < (Azj |2;)?(A%a; | Az;)*/?
< (Azy 25) 21 A%; |2 Ay 2 < AL Ay | 25) M — 0,
so Az; — 0. By passing to a subsequence we may assume that {T=;}
converges to a limit y, which satisfies

vl = lim(|T2;l| = ¢ >0," Ay =limATz; = imT Az, = 0.
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In other words,
y#0 and Ay=(cI+T)cI~-T)y=0.
Thus either Ty =cy or cy — Ty =2z 0 and T = —cz. 1

(0.44) The Spectral Theorem.
IfT is a compact self-adjoint operator on a Hilbert space X, then X has an
orthonormal basis consisting of eigenvectors for T.

Proof: 1t is a simple consequence of the self-adjointness of T that (i)
eigenvectors for different eigenvalues are orthogonal to each other, and (ii)
if Y is a subspace of X such that T(Y) C Y, then also T(Y+) C Y+. In
particular, let Y be the closed linear span of all the eigenvectors of T'. If we
pick an orthonormal basis for each eigenspace of T and take their union,
by (i) we obtain an orthonormal basis for Y. By (ii), T|4* is a compact
operator on Y*, and it has no eigenvectors since all the eigenvectors of T
belong to Y. But this is impossible by Lemma (0.43) unless Y+ = {0}, so
Y=20X. i

We conclude by constructing a useful class of compact operators on
Lz(;;), where p is a o-finite measure on a space S. To simplify the argument
a bit, we shall make the (inessential) assumption that L2(u) is separable.
If K is a measurable function on § x S, we formally define the operator
Tk on functions on S by

T (@)= [ K(e,9) 1) duty).
If K € L*(p x p), K is called a Hilbert-Schmidt kernel.

(0.45) Theorem.
Let K be a Hilbert-Schmidt kernel. Then Tk Is a compact operator on
L*(u), and [| Tk || < | K2 '

Proof: First we show that Tk is well-defined on L?(x) and bounded
by ||K||2. By the Schwarz inequality,

1/2
1) < [ 1KGDII0) < | [ 16 auw)] 17
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This shows that T f is finite almost everywhere, and moreover

TS = [ Tt @F due) < 118 [ [ 1o, )1 duts) e
= IKIBIFIE,

so [|Tk || < [ K2

Now let {¢;}{° be an orthonormal basis for L2(u). It is an easy conse-
quence of Fubini’s theorem that if ¥i;(z,y) = éi(z)4;(y), then {i;}55.,
is an orthonormal basis for L?(4 x u). Hence we can write K = 3~ a;;4i;.
For N =1,2,..., let

Kn(z,y)= ) abii(my)= D a;di(e)d;(v).

i+i<N i+i <N

Then R(Tk, ) lies in the span of ¢1,...,én, so Tk, has finite rank. On
the other hand,

K —EnlZ= D" laijl* > 0as N — oo,
T i4i>N

so by the previous remarks,

Tk — Tyl < ||1K — Knlj2 — 0 as N — co.

By Corollary (0.35), then, Tk is compact. ¥



