Chapter 06

Inner Product Spaces

Most applications of mathematics are involved with the concept of measure-
ment and hence of the magnitude or relative size of various quantities. So it
is not surprising that the fields of real and complex numbers, which have a
built-in notion of distance, should play a special role. Except for Section 6.7
we assume that all vector spaces are over the field F', where F' denotes either
R or C. (See Appendix D for properties of complex numbers.)

We introduce the idea of distance or length into vector spaces, obtaining a
much richer structure, the so-called inner product space structure. This added
structure provides applications to geometry, (Sections 6.5 and 6.10), physics
(Section 6.8), conditioning in systems of linear equations (Section 6.9), least
squares applications (Section 6.3), and quadratic forms (Section 6.7).

6.1 INNER PRODUCTS AND NORMS

Many of the geometric notions such as angle, length, and perpendicularity in
R? and R® may be extended to more general real and complex vector spaces.
All of these ideas are related to the concept of inner product.

Definition. Let V be a vector space over F. An inner product onV is
a function that assigns to every ordered pair of vectors  and y in V a scalar
in F, denoted (z,y), such that for all z, y, and z in V and all c in F we have
(a) (€ +29) = (z,9) + (z,1).
(b) {ez,y) =c(z,y).

(¢) (z,vy) = (y,z), where the bar denotes complex conjugation.
(d) {(z,z) >0ifz+#0. :

Note that (c) requires that (z,y) = (y,z) if F = R. Conditions (a) and

(b) simply require that the inner product be linear in the first component.
It is easily shown that if a1, a9,... ,a, € F and y,v1,v2,... ,v, €V, then

<Z aivi,y> =Y ai(viy).
=1 i=1
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Example 1
For z = (a1,...,a,) and y = (by,.. .,bp) in F™, define

n

(z,9) = Z a;b;.

i=1

The verification that (-, -) satisfies conditions (a) through (d) is easy. For

example, if 2z = (¢y,...,¢,), we have for (a)
n _ n _ n
(@+zy) =) (a+ec)b = > b+ > b
i=1 =1 i=1
= (z,y) +(2,9).

Thus for z = (1 +4,4) and y = (2 — 3i,4 + 56) in C? we have
(@, y) =(1+)(2+3)+4(4-5))=15-15. |}

The inner product in Example 1 is called the standard inner product

on F*. (In elementary courses in linear algebra, this inner product is called
the dot product).

Example 2

If (z,y) is any inner product on a vector space V and » > 0, we may define

another inner product by the rule {z,y)’ = r (z,y). If r < 0, then (d) would
not hold. [

Example 3

Let V = C([0,1]), the vector space of real-valued continuous functions on

[0,1]. For f,g € V, define (f, g) = fol f(t)g(t) dt. Since the integral above is
linear in £, (a) and (b) are immediate, and (c) is trivial. If f # 0, then f2
is bounded away from zero on some subinterval of [0,1] (continuity is used
here), and hence (f, f) = fol[f(t)]2 a>0. |1

Dc.aﬁ.nition. Let A € Mmxn(F). We define the conjugate transpose
or adjoint of A to be the n x m matrix A* such that (A*)i; = Aj; for all 4, 5.

Example 4 T
Let

i 142
A‘(z 3+4¢)'

a_f i 2
A_(1—2i 3—4@)' i

Then
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Notice that if z and y are viewed as column vectors, then (z,y) = y*z.

The conjugate transpose of a matrix plays a very important role in the
remainder of this chapter. Note that if A has real entries, then A* is simply
the transpose of A.

Example 5

Let V = Mpxn(F), and define (4, B) = tr(B*4) for A4, B € V. (Recall that
the trace of a matrix A is defined by tr 4 = Y. | Ai;). We verify that (a) and
(d) of the definition of inner product hold and leave (b) and (c) to the reader.
For this purpose, let A, B,C € V. Then (using Exercise 6 of Section 1.3)

(A+ B,C) = tr(C*(A + B)) = tr(C*A + C*B)
= tr(C*A) + tr(C*B) = (4,C) + (B, C).

Also
(A, A) = tr(A"A) =D (A*A)ii = D> (A")ir A
i=1 i=1 k=1
=3 AiAri =Y > Al
i=1 k=1 =1 k=1

Now if A # O, then Ay; # 0 for some k and i. So (4,4) >0. |

A vector space V over F' endowed with a specific inner product is called
an inner product space. If F' = C, we call V a complex inner product
space, whereas if F'= R, we call V a real inner product space.

Thus Examples 1, 3, and 5 also provide examples of inner product spaces.
For the remainder of this chapter F™ denotes the inner product space with the
standard inner product as defined in Example 1. The reader is cautioned that
two distinct inner products on a given vector space yield two distinct inner
product spaces.

A very important inner product space that resembles C([0, 1]) is the space
H of continuous complex-valued functions defined on the interval [0, 27} with
the inner product

1 2
yg) = — t)g(t) dt.
(h9)=5- | #0)50

The reason for the constant 1/27 will become evident later. This inner prod-
uct space, which arises often in the context of physical situations, is examined
more closely in later sections.

At this point we mention a few facts about integration of complex-valued
functions. First, the imaginary number 7 can be treated as a constant under
the integration sign. Second, every complex-valued function f may be written
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as f = fi1 +ifa, where f; and f, are real-valued functions. Thus we have

[1=[n+i[s e 7}=f?.

From these properties, as well as the assumption of continuity, it follows
that H is an inner product space (see Exercise 16(a)).

Some properties that follow easily from the definition of an inner product
are contained in the next theorem.

Theorem 6.1. Let V be an inner product space. Then for z,y,z € V and
ceF '
(a) (w,y +z) = <LE, y) + <£U, .Z)
(b) (&, c) =(z,9)
(¢) (z,z) =0 ifand only ifz = 0
(d) if (z,y) = (z,2) forall z € V, then y = 2.

Proof. (a)

(z,y+2) = (y+z,2) = (v, z) + (2,2)
= (y,z) + (Z,iL‘) = (x,y) + (:L',Z)

The proofs of (b), (c), and (d) are left as exercises. [

The reader should observe that (a) and (b) of Theorem 6.1 show that the
inner product is conjugate linear in the second component.

In order to generalize the notion of length in R® to arbitrary inner product
spaces, we need only observe that the length of z = (a,b,¢) € R® is given by
va? + b2+ c? = /(z,z). This leads to the following definition.

Definition. Let V be an inner product space. For z € V we define the
norm or length of z by |z|| = \/(z, z).

Example 6
Let V=F". Then
n 1/2
(a1, an)ll = [Zlailz}
i=1

is the Euclidean definition of length. Note that if n = 1, we have ||a|| = |a|.
As we might expect, the well-known properties of length in R3 hold in
general, as shown below.

Theorem 6.2. Let V be an inner product space over F. Then for all
z,y €V and c € F the following are true.
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(a) llez]l = |c]- [l]]

(b) llzll =0 if and only if z = 0. In any case, |jz|| > 0
(c) (Cauchy-Schwarz Inequality) | (z,y) | < |lz||- |yl
(d) (Triangle Inequality) |lz + ]| < la]| + u].

Proof. We leave the proofs of (a) and (b) as exercises.
(c) If y = 0, then the result is immediate. So assume that y # 0. Then
for any ¢ € F, we have
0< iz —cyl® = (2~ cy,z — cy) = (@,2 — cy) — e (y,z — cy)
= (m,x> —E(.’I;,y) - C(y,ﬂi‘) + CE(y,y) .
Setting

the inequality above becomes

x _W—’y)_lz_ $2—|(m,y->|2
B it

from which (c) follows.

@) e +yl* =@+ y,2+9) = (z,2) + (4,2) + (&,0) + (1,9)
= [lz]* + 2% (z, ) + |y||?
< ll=li? + 2f ¢, ) | + llyll?
<zl + 2l 1yl -+ llyl)?
= (ll=ll + llwl?,

where f (z,y) denotes the real part of the complex number (z,y). Note that
we used (c) to prove (d). [

The case when equality results in (c) and (d) is considered in Exercise 15.
Example 7

For F™ we may apply (c) and (d) of Theorem 6.2 to the standard inner product
to obtain the following well-known inequalities:

n n 1/2
Z a:b; [Z ]bilz:'
i=1 i=1

41/2

n
< [z il
i=1 J

and

n 1/2 n 11/2 n 1/2
[Zlai+bi|2:, S[Zlailz +[Z|bz~|2} A |

=1 i=1 | i=1
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The reader may recall from earlier courses that for R? or R? we have that
(z,y) = |lz|+|lyll cos 6, where § denotes the angle (0 < 6 < =) between z
and y. This equation implies (c) immediately since |cosf| < 1. Notice also
that 2 and y are perpendicular if and only if cos 6 = 0, that is, if and only if
(z,y) =0.

We are now at the point where we can generalize the notion of perpendic-
ularity to arbitrary inner product spaces.

Definitions. Let V be an inner product space. Vectors ¢ and y in V are
orthogonal (perpendicular) if (z,y) = 0. A subset S of V is orthogonal
if any two distinct elements of S are orthogonal. A vector z in V is a unit
vector if ||z|| = 1. Finally, a subset S of V is orthonormal if S is orthogonal
and counsists entirely of unit vectors.

Note that if S = {v1,v3,...}, then S is orthonormal if and only if (v;,v;) =
di5, where d;; denotes the Kronecker delta. Also, observe that dividing vectors
by nonzero scalars does not affect their orthogonality and that if z is any
nonzero vector, then (1/||z||)z is a unit vector.

Example 8

In F3 the set {(1,1,0),(1,—-1,1),(=1,1,2)} is orthogonal but not orthonor-
mal; however, if we divide each vector by its length, we obtain the orthonormal

set
1 1 1
{ﬁ(l,l,o),:/—?_’(l,—l,l),%(—-1,1,2)}. |

Our next example is of an infinite orthonormal set that is important in
analysis. This set is used in later examples in this chapter.

Example 9

Recall the inner product space H (defined on page 318). We introduce an
important example of an orthonormal subset S of H that is used frequently
in analysis. For what follows i is the imaginary number +/=1. For any integer
jlet £;(t) = €, where 0 < ¢t < 27. (Recall that e%? = cos jt + isin jt.) Now
define § = {f; : jis an integer}. Clearly S is a subset of H. Using the
property that eit = e~ for every real number ¢, we have for j # k that

1 2 1 o
(fj) fk) = 5’ / e”teikt dt = % / ei(]—k)t dt
- T Jo 0

2m
=1 i

= 2GR =0.

0
Also,

1 27 i)t 1 27
L f) = — W=7 = -— 1ldt=1.
(f]’f]) 27[_/0 € dt 27r/0
In other words, {f;, fx) = d;&. [ |
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EXERCISES

1. Label the following statements as being true or false.

(a) An inner product is a scalar-valued function on the set of ordered
pairs of vectors.

(b) An inner product space must be over the field of real or complex
numbers.

(¢) An inner product is linear in both components.

(d) There is exactly one inner product on the vector space R™.

(e) The triangle inequality only holds in finite-dimensional inner prod-
uct spaces.

(f) Only square matrices have a conjugate-transpose.

(g8) If z, y, and 2 are vectors in an inner product space such that
(z,y) = (z,2), then y = 2.

(h) If (z,y) =0 for all z in an inner product space, then y = 0.

2. Let V = C? with the standard inner product. Let z = (2,1+1i,4) and
¥ = (2-1,2,1+ 2i). Compute (z,y), ||, lyll, and ||z + y||. Then
verify both Cauchy’s inequality and the triangle inequality.

3. In C([0,1]), let f(t) = ¢ and g(t) = e*. Compute {f,g) (as defined
in Example 3), |||, llgll, and [|f + g|. Then verify both Cauchy’s
inequality and the triangle inequality.

4. Let V = M, yn(F) with (4,B) = tr(B*A). Complete the proof in
Example 5 that (-, -) is an inner product on V. If n = 2 and

A=<1 2“) and B=<1-.H 0.),
3 7 % —1

compute ||A], |[B]l, and (4, B).

5. On C2?, show that (z,y) = zAy* is an inner product, where

A=<_§ 2’)

Compute (z,y) for 2 = (1 — 4,2+ 3i) and y = (2 41,3 — 2i).
6. Complete the proof of Theorem 6.1.
7. Complete the proof of Theorem 6.2.

8. Provide reasons why each of the following is not an inner product on
the given vector spaces.

(a) ((a’ b)7 (C, d)) = ac— bd on R?.
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(b) (A,B) =tr(A+ B) on Maxa(R).
() (f,9)= fol f'(t)g(t) dt on P(R), where ' denotes differentiation.

9. Let 8 be a basis for a finite-dimensional inner product space. Prove
that if (z,y) =0 for all z € 3, then y = 0.

10." Let V be an inner product space, and suppose that z and y are orthog-
onal elements of V. Prove that ||z + y||> = ||z]| + ||yll*>. Deduce the
Pythagorean theorem in R2.

11. Prove the parallelogram law on an inner product space V; that is, show
that

le + il + llz -yl = 2)ie|® + 2lyl|* for all 2,y € V.
What does this equation state about parallelograms in R2?

12.7 Let {vy,...,vx} be an orthogonal set in V, and let a4, ..., ax be scalars.
Prove that
k 2 &
> awill = lail il
i=1 i=1

13. Suppose that (-, -); and (-, -), are two inner products on a vector space
V. Prove that («,:) = (-, +); + {(+, *), is another inner product on V.

14. Let A and B be n X n matrices, and let ¢ be a scalar. Prove that
(A+cB)* = A* +¢B*.

15. (a) Prove that if V is an inner product space, then | (z,y) | = ||| - Iyl
if and only if one of the vectors z or y is a multiple of the other.
Hint: Iy # 0, let

(z,9)

llylf*

Then z = ay + z, where {y, z) = 0. By assumption

a =

= l=ll

= o= 1l

Apply Exercise 10 to ||z||? = ||ay + #||? and obtain ||z|| = 0.
(b) Derive a similar result for the equality ||z + y|| = ||z|| + |l¥ll, and
generalize it to the case of n vectors.

16. (a) Show that the vector space H defined in this section is an inner
product space.
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17.

18.

19.

20.

21.

22.
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(b) Let V=C([0,1]), and define

1/2

(f,9)= F(t)g(t) dt.

0

Is this an inner product on V?

Let T be a linear operator on an inner product space V, and suppose
that || T(z)|| = ||z|| for all z. Prove that T is one-to-one.

Let V be a vector space over F', where F= Ror F =(C , and let W be
an inner product space over F with inner product (-,-). If T: V — W

is linear, prove that (z,y)’ = (T(z), T(y)) defines an inner product on
V if and only if T is one-to-one.

Let V be an inner product space. Prove that

() llz£yl* = lz|* £ 2R (z,y) + ||yl for all z,y € V, where R (z,y)
denotes the real part of the complex number (z,y).
(®) [zl = llyll ] < ||z = yl for all z,y € V.

Let V be an inner product space over F. Prove the polar identities: For
allz,y eV

(@) (zy)={llz+yl>—fllz—yl> if F =R
(b) (z,y) = %zi=1 i*|lz + i*y||2  if F = C, where i = /—1.

Let A be an n x n matrix. Define

1 . 1 *
A1—2(A+A) and A2—2—Z(A—A)

(a) Prove that A} = A;, A5 = Ay, and A = A; +iA,. Would it be
reasonable to define A; and A, to be the real and imaginary parts,
respectively, of the matrix A?

(b) Let A be an n x n matrix. Prove that if A = By + iBs, where
Bf = Bl and B; = Bz, then Bl = A1 and Bz = Az.

Let V be a vector space over F, where F is either R or C'. Whether or
not V is an inner product space, we may still define a norm ||-|| as a
real-valued function on V satisfying the following three conditions for
alz,yeVandacF.

(1) [|=|| >0, and ||z|| = 0 if and only if z = 0.

(2) llaz|l = |af - ||]}.

(3) llz -+ yll < ll=ll + llyll.

Prove that the following are norms on the given vector spaces V.

(a) V=Mpuxn(F); ||A] = max|4;;| forall AeV
43
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23.

24.

25.

26.

(b) V=C([0,1]); |fll= max, If(®)] forall feV
(€ v=coa W7l [ 15l ora e
(d) V=R?% |(a,d)|| = max{|a|,|b]} for all (a,b) € V

Use Exercise 20 to show that there is no inner product {+, +) on R? such
that ||z||? = (z,z) for all z € R? if the norm is defined as in (d).

Let V be an inner product space, and define for each ordered pair of
vectors the scalar d(z,y) = ||z — y||, called the distance between z and
y. Prove the following for all z,y,z € V.

(a) d(z,y) >0.

(b) d(z,y) = d(y, ).

(c) d(z,y) < d(z,z) + d(z,y).

(d) d(z,z)=0.

() dlw,y)#0ifa#y.

Let V be a real or complex vector space (possibly infinite-dimensional),
and let 3 be a basis for V. For z,y € V there exist vy,...,v, € 3 such

that n n )
T = 2 a;v; and y= z b;v;.
i=1 i=1
Define "
(@) = aibi.
=1

(a) Prove that (-, ) is an inner product on V and that G is an or-
thonormal basis for V. Thus every real or complex vector space
may be regarded as an inner product space.

(b) Prove that if V= R™ or V = C" and 8 is the standard ordered
basis, then the inner product defined above is the standard inner
product.

Let ||+|| be a norm (as defined in Exercise 22) on a real vector space V
satisfying the parallelogram law given in Exercise 11. Define

(@,9) = 1 o+l ~ 1z - 411].

Prove that (-, ) defines an inner product on V such that ||z||? = (z,z)
forallz e V.

Let || +]| be a norm (as defined in Exercise 22) on a complex vector space
V satisfying

4
Y- llz+ifyll® = 4 [llll® + vl
k=1
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where ¢ = 4/—1. Define
14
(@,3) = 3 3 i*lla + ity
k=1

Prove that (-, -) defines an inner product on V such that ||z = (z, z)
for all z € V.

27. Prove the converse of Exercise 26: Suppose that V is a complex inner
product space. Then the corresponding norm satisfies the first equa-
tion of Exercise 26. (Note that in a similar manner Exercise 11 is the
converse of Exercise 25.)

6.2 THE GRAM-SCHMIDT ORTHOGONALIZATION PROCESS
AND ORTHOGONAL COMPLEMENTS

In previous chapters we have seen the special role of the standard ordered
bases for C” and R™. The special properties of these bases stem from the fact
that the basis vectors form an orthonormal set. Just as bases are the building
blocks of vector spaces, bases that are also orthonormal sets are the building
blocks of inner product spaces. We now name such bases.

Definition. Let V be an inner product space. A subset of V is an
orthonormal basis for V if it is an ordered basis that is orthonormal.

Example 1

The standard ordered basis for F” is an orthonormal basis for F™. [ |

(78) (7))

is an orthonormal basis for R2. |

Example 2
The set

'The next theorem and its corollaries illustrate why orthonormal sets and,
in particular, orthonormal bases are so important.

Theorem 6.3. Let V be an inner product space, and let S = {v1,..., v}
be an orthogonal set of nonzero vectors. If

k
v= E ;U5
i=1

then a; = (y,v;) /|jvs||? for all ;.
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Proof. For 1 < j < k, we have
k k
(v, v;) = <Z az‘”i:%’> = ai (vi,v;) = a5 (v, v5)
i=1 i=1
=aillvl*>. N
The next corollary follows immediately from Theorem 6.3.

Corollary 1. If, in addition to the hypotheses of Theorem 6.3, S is
orthonormal, then

k
y= Z (y,vi) vs.
i=1

If V possesses a finite orthonormal basis, then Corollary 1 allows us to
compute the coeflicients in a linear combination very easily (see Example 3).

Corollary 2. LetV be an inner product space, and let S be an orthogonal
set of nonzero vectors. Then § is linearly independent.

Proof. Suppose that vy,...,v; € S and

k
E a;v; = 0.
=1

By Theorem 6.3, a; = (0,v;) /||v;]|* = 0 for all j. So S is linearly indepen-
dent. W

Example 3

By Corollary 2, the orthonormal set

1 1 1
{E(l’ 1a0)> E(la -1, 1)a %(_—17 1, 2)}

obtained in Example 8 of Section 6.1 is an orthonormal basis for R®. Let
z = (2,1,3). The coefficients given by Corollary 1 of Theorem 6.3 that
express ¢ as a linear combination of the basis vectors are

1 3 1 4
a=—702+1)=—2, a=-2(2-143)=—

V2 V2 V3 V3’

and

1 5
a3 = —=(—2+1+4+6) = —.
=76 =7
As a check we have

3 4 5
(2,1,3) = 5(1,1,0) + 5(1, -1,1) + g(—1,1,2). [ |
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Corollury 2 tells us that the vector space H in Section 6.1 contains an
infinite linearly independent set and hence is not a finite-dimensional vector
space.

Of course, we have not yet shown that every finite-dimensional inner prod-
uct space possesses an orthonormal basis. The next theorem takes us most
of the way in obtaining this result. It tells us how to construct an orthogonal
set from a linearly independent set of vectors in such a way that both sets
generate the same subspace.

Before stating this theorem, let us consider a simple case. Suppose that
{w1, w2} is a linearly independent subset of an inner product space (and
hence a basis for some two-dimensional subspace). We want to construct
an orthogonal set from {w;,w;} that spans the same subspace. Figure 6.1
suggests that the set {v1,v2}, where v; = w; and vy = wy — cw; works if ¢ is

properly chosen.
wa V2 w1 =
cwy -
Figure 6.1

To find ¢, we need only solve the following equation.

0= (vg,w1) = {wg — cwy,wy) = {we, w1) — c(wy,wr).

So
— ('U)Q,’w])
fJws [|?
Thus
Vg = wy — <w27w1)w1
flws |

This process can be extended to any finite linearly independent subset.

Theorem 6.4. Let V be an inner product space, and let S = {wy,...,w,}
be a linearly independent subset of V. Define §' = {v1,...,vn}, where v; =
wi, and

= {wi, v;)
vk=wk_z “k,”g vj for2§k§n (1)
iy
g=1 NIV

Then §' is an orthogonal set of nonzero vectors such that span(S’) = span(S).
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Proof. The proof is by induction on n. Let Sp = {w1,...,wa}. If n =1,
then the theorem is proved by taking S] = Si; ie., v1 = w1 # 0. A.;s—
sume then that the set S,_; = {v1,...,vk~1} with the desired properties
has been constructed by the repeated use of (1). We show t}}at the. set
S;, = {v1,... ,Uk—1,vk} also has the desired prgperties, where v, is o’tl>ta1ned
from S,_, by (1). If vy = 0, then (1) in.lphes that wi € span(,.S'k_l) =
span(Sk_1), which contradicts the assumption that Sy is linearly indepen-
dent. For 1 < i < k— 1 we have from (1) that

k—1 (wk 'U')
(v, v5) = (Wi, v3) = D, 3 (v, 03)
j=1 HUJH
= (w0 - Sl o

since (v;,v;) = 0if i # j by the induction assumption that Si_, is orthogonal.
Hence S} is an orthogonal set of nonzero vectors. Now by (1) vs//e 'ha\.re thzln;
span(S;) C span(Sk). But by Corollary 2 of Theorem 6.3, S is hntlear z
independent; so dim(span(S%)) = dim(span(Sy)) = k. Hence span(S;) =
span(Sx). N

The construction of {vy,...,vn} by the use of (1) is called the Gram-
Schmidt orthogonalization process.

Example 4

In R3, let wy = (1,1,0), wp = (2,0,1), and w3 = (2,2,1). Then {w1, w2, w3}
is linearly independent. We use (1) to compute the orthogonal vectors v, va,
and vs. Take v; = wy = (1,1,0). Then |jv1]|* = 2; so

w <’ll)2,’l)]_> )
vy = -
27T
2
=(2,0,1) — 5(1, 1,0)
=(1,-1,1).
Finally, )
_ (ws,v1) (w3, va)
BE T T el

4 1
=(2,2,1) - 5(L,L,0) - 5L, -L1)

112
=(-553)
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Theorem 6.5. Let V be a nonzero finite-dimensional inner product space.
Then V has an orthonormal basis 3. Furthermore, if 8 = {v1,va,...,v,} and
x €V, then

n

= Z (.’17, ’Ui) Vi,

i=1

Proof. Let By be an ordered basis for V. Apply Theorem 6.4 to obtain
an orthogonal set 8’ of nonzero vectors with span(g’) = span(f,) = V. By
dividing each vector in A’ by its length, we obtain an orthonormal set G that
generates V. By Corollary 2 of Theorem 6.3 3 is linearly independent, and
therefore § is an orthonormal basis for V. The remainder of the theorem
follows from Corollary 1 to Theorem 6.3. |

We now have an alternate method for computing the matrix representation
of a linear operator.

Corollary. Let V be a finite-dimensional inner pfoduct space with an
orthonormal basis 8 = {v1,...,v,}. Let T be a linear operator on V, and let
A =[Tlg. Then for any i and j, Ai; = (T(v;),v;).

Proof. From Theorem 6.5 we have

n

) = 3 (T(wy), v) v

i=1
Hence A;; = (T(v;),v:). N

The scalars (z,v;) associated with z have been studied extensively for
special inner product spaces. Although the vectors vy,...,v, were chosen
from an orthonormal basis, we consider more general sets 3 for the definition
of the scalars (z,v;).

Definition. Let 8 be an orthonormal subset (possibly infinite) of an
inner product space V, and let x € V. We define the Fourier coefficients
of z relative to 3 to be the scalars (z,vy), where y € 8.

In the nineteenth century the French mathematician Jean Baptiste Fourier
was associated with the study of the scalars

2 2

f(t)sinntdt and f(t) cosnt dt,
0

or more generally,
1 2n .
Cn = 5= A (t)e™*™ dt,
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of a function f. In the context of Example 9 of Section 6.1, we see that
cn = (f, fn), where f,(t) = e*™; that is, ¢, is the nth Fourier coefficient of a
continuous function f € V relative to 5. These coefficients are the “classical”
Fourier coefficients of a function, and the literature concerning the behavior
of these coeflicients is extensive. We will learn more about these Fourier
coefficients in the remainder of this chapter.

Example 5

In H define f(t) =t. We compute the Fourier coefficients of f relative to the
orthonormal set S in Example 9 of Section 6.1. Using integration by parts,
we have for n # 0,

1 2 1 2n int -1
_ 1 It g = —int gy —
(f, fn) 27r/0 teint dt 271_/0 te -

m
And, for n = 0,
1 27
(F,1) = %/o 4(1)dt = .

As a result of these computations we obtain an upper bound for the sum of
a special infinite series by using Exercise 14 as follows:

-1 k
A2 2 D0 1E S PAHIED P+ Y 1 fa) 1P

n=—k
— = 1 + 2 + Zk: i
- n;k ? " n=1 nz

ko1
=2§ — 72
n2+7r

n=1

for every k. Now, using the fact that ||f||*> = %wz, we obtain

or
™ F1
o T2
Because this inequality holds for all k, we may let & — oo to obtain

=1
>

n=1

cnl A,
AV

Other results may be produced by replacing f by other functions. [}
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We are now ready to proceed with the concept of an orthogonal comple-
ment. .

Definition. Let S be a subset of an inner product space V. We define
S+ (read “S perp”) to be the set of all vectors in V that are orthogonal to
every vector in S; that is, S* = {zx € V: {z,y) = 0 forally € S}. S+ is
called the orthogonal complement of S.

It is easily seen that S is a subspace of V for any subset S of V.

Example 6

The reader should verify that {0}+ = V and V+ = {0} for any inner product
space V. 1

Example 7

If V= R%and S = {z}, then S is simply the set of all vectors that are
perpendicular to z (see Exercise 5). [ ;

Exercise 16 provides an interesting example of an orthogonal complement
in an infinite-dimensional inner product space.

Proposition 6.6. Let W be a finite-dimensional subspace of an inner
product space V, and let y € V. Then there exist unique vectors v € W and
z € W such that y = u + z. Furthermore, if {vy,... ,v} is an orthonormal

basis of W, then
k
U= Z {y,vi) vi.
i=1

Proof. Let {v1,... ,vz} be an orthonormal basis for W, let u be as defined
in the equation above, and let z = y — u. Clearly u € W.

To show that z € W+, it suffices to show that z is orthogonal to each v;.
For any j we have

k K
(2,95) = <(U -> (y,vi)vi) an> = () = Y (B,vs) (wi, v5)

i=1 i=1
= (y,v5) — (y,v5) = 0.

To show uniqueness, suppose that y = u + z = «’ + 2/, where ¥’ € W and
2’ € W, Then u — ' = 2’ — 2 € WNWL = {0}. Therefore, u = v’ and
z=2. 1 '

Corollary. In the notation of Proposition 6.6, the vector u is the unique
vector in W that is “closest” to y; that is, for any z € W, |y —z|| > ||y — ul|,
and this inequality is an equality if and only if z = u.

i
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Proof. As in Proposition 6.6 we have that y = u + z, where z € WL, Let
z € W. By Exercise 10 of Section 6.1 we have

by =2l = llu+ 2z - 2|® = lI(u - 2) + 2| = [[u - =|* + ||z
2 2l = lly — ull®.

Now suppose that ||y — z|| = [ly — u||. Then the inequality above becomes an
equality and therefore, |lu — z|* + ||2}|?> = ||2||2. It follows that |u — || = 0,
and hence z = u.

The vector u in the corollary is called the orthogonal projection of y
on W. We will see the importance of orthogonal projections of vectors in the
application to least squares in Section 6.3.

Example 8
Let V = P3(R) with the inner product

1
{(f,9)= /0 f(x)g(z)dz for all f,g € V.

Let W = P;(R) = span({1,z}) and f(z) = z2. To compute the orthogonal
projection f, of f on W, we first apply the Gram-Schmidt process to {1,z}
and obtain an orthonormal basis {g1, g2} of W, where

g1(2)=1 and ga(z) = 2v3(z — ).

It is easy to compute (f,g1) = % and (f, g2) = v/3/6. Therefore,

fl(w):<%>1+%§<2\/§<w—%))=—-é+x. |

It was shown (Corollary 2 to Theorem 1.10) that any linearly independent
set in a finite-dimensional vector space can be extended to a basis. The next
theorem provides an interesting analog for an orthonormal subset of an inner
product space.

Theorem 6.7. Suppose that S = {v1,... ,v} is an orthonormal set in
an n-dimensional inner product space V. Then

(a) S can be extended to an orthonormal basis {vi,. .. ,Vk,Vkt1,... ,Un}
for V.

(b) If W = span(S), then (in the notation above) S1 = {Uxt1,...,v,} is
an orthonormal basis for W+,

(c) If W is any subspace of V, then dim(V) = dim(W) + dim(W+1).
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Proof. (a) By Corollary 2 to Theorem 1.10 S can be extended to a basis
S ={v1,... , Uk, Wkt1,-.. ,wn} for V. Now apply the Gram- Schmidt process
to 9’. By Exercise 7, the first k vectors resulting from this process are the
vectors of S. Dividing the last n — & of these vectors by their lengths results
in an orthonormal set. The result now follows.

(b) Because S is orthonormal, it is linearly independent by Corollary 2
to Theorem 6.3. Since S; is clearly a subset of W, we need only show that
it spans W-. Note that for any 2 € V, we have

n

T = Z(x,vi)vi.

i=1
Now if z € W, then {z,v;) = 0 for 1 < ¢ < k. Therefore,

n

z = Z {z,vi) v; € span($1). -

i=k-+1

(c) Let W be a subspace of V with an orthonormal basis {v1,... ,v;}. By
(a) and (b), we have

dim(V) =n =k + (n — k) = dim(W) + dim(W+). i

Example 9

Let W = span({e1,ez}) in F®. Then z = (a,b,c) € W if and only if 0 =
(z,e1) = a and 0 = (z,e2) = b. S0 © = (0,0,¢c), and therefore WL =
span({es}). One can deduce the same result by noting that e € W+ and
from (c) above that dim(W+)=3-2=1. [}

EXERCISES

1. Label the following statements as being true or false.

(a) The Gram-Schmidt orthogonalization process allows us to con-
struct an orthonormal set from an arbitrary set of vectors.
(b) Every finite-dimensional inner product space has an orthonormal

basis.
(c¢) The orthogonal complement of any set is a subspace.
(d) If {v1,...,v,} is a basis for an inner product space V, then for

any x € V the scalars (z,v;) are the Fourier coefficients of z.
(e) An orthonormal basis must be an ordered basis.
(f) Every orthogonal set is linearly independent.
(g) Every orthonormal set is linearly independent.
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2.

12.

In each of the following parts, apply the Gram-Schmidt process to the

given subset S of the inner product space V. Then find an orthonormal

basis @ for V and compute the Fourier coefficients of the given vector

relative to 8. Finally, use Theorem 6.5 to verify your result.

(a) V=R3 8={(1,0,1),(0,1,1),(1,3,3)}, and z = (1,1,2).

(b) V=R §={(1,1,1),(0,1,1),(0,0,1)}, and z = (1,0, 1).

(c¢) V = Py(R) with the inner product (f,g) = fol fR)g)dt, § =
{1,2,2%}, and f(z) =1+ z. \

(d) V = span(S), where S = {(1,%,0), (1 —4,2,4i)}, and
z=(3+1,4i,—4).

In R? Jet

={( ) (7))
Find the Fourier coefficients of (3,4) relative to 8.
Let § ={(1,0,4),(1,2,1)} in C®. Compute S-.

Let So = {zo}, where zo is a nonzero vector in R3. Describe S3 ge-
ometrically. Now suppose that § = {z1,z2} is a linearly independent
subset of R3. Describe S+ geometrically.

Let V be an inner product space, and let W be a finite-dimensional
subspace of V. If z ¢ W, prove that there exists y € V such that
y € Wt but (z,y) # 0. Hint: Use Proposition 6.6.

Prove that if {wy,...,w,} is an orthogonal set of nonzero vectors, then
the vectors vy,...,v, derived from the Gram-Schmidt process satisfy
v; =w; for i =1,...,n. Hint: Use induction.

Let W = span({(4,0,1)}) in C® with the standard inner product. Find
orthonormal bases for W and W+,

Let W be a finite-dimensional subspace of an inner product space V.
Prove that there exists a projection T on W along W+ that satisfies
N(T) = W-. In addition, prove that || T(z)|| < ||z| for all z € V. Hins:
Use Proposition 6.6 and Exercise 10 of Section 6.1. (Projections are
defined in the exercises of Section 2.1.)

. Let A be ann-x-n matrix with complex entries. Prove that AA* = [ if

and only if the rows of A form an orthonormal basis for C™.

. Let Wy and W, be subspaces of a finite-dimensional inner product space.

Prove that (W1 + W)t = Wi N W5 and (W; NW;)L = Wi + Wy,
(See the definition of the sum of subsets of a vector space on page 21.)

Let V be an inner product space, S and Sy be subsets of V, and W be
a finite-dimensional subspace of V. Prove the following.
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13.

14.

15.

16.

17.
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(a) So C S implies that S+ C Sy

(b) S C (8+)*; s0 span(S) C (§+)*.

(¢) W= (W)L Hint: Use Exercise 6.

(d) V=W ®W- (see the exercises of Section 1.3).

(a) Parseval’s Identity. Let {v1,...,v,} be an orthonormal basis for
V. For any z,y € V prove that

n

(I)y) = Z (wavi> (y, ’U'i)-

i=1

(b) Use (a) to prove that if 8 is an orthonormal basis of a finite-
dimensional inner product space V over F' with inner product
{+, -}, then for any z,y € V

(da(2), d8(¥)) = (lzls, Wla) = (z,9),
where (-, +)’ is the standard inner product on F™.

(a) Bessel's Inequality. Let V be an inner product space, and let § =
{v1,...,vn} be an orthonormal subset of V. Prove that for any
z € V we have

Iz > Z | (@, vi) 2.

Hint: Apply Proposition 6.6 to © € V and W = span(S). Then
use Exercise 10 of Section 6.1.

(b) In the context of (a), prove that Bessel's inequality is an equality
if and only if z € span(9).

Let T be a linear operator on a finite-dimensional inner product space
V. If (T(z),y) = 0 for all z,y € V, prove that T = Ty. In fact, prove
this result if the equality holds for all z and y in some basis for V.

Let V = C([-1,1]). Suppose that W, and W, denote the subspaces of V
consisting of the even and odd functions, respectively. (See Exercise 22
of Section 1.3.) Prove that Wj = W,, where the inner product on V is
defined by

1
(fi9) = /_ . f(t)g(t) dt.

In each of the following parts, find the orthogonal projection of the
given vector on the given subspace W of the inner product space V.

(a) V=R?% u=(2,6),W={(z,9): y = 4z}.
(b) V=R3 u=(2,1,3), W= {(z,9,2) : & + 3y — 22 = 0}.
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(c¢) V= P(R) with the inner product (f,g) = fol f(t)g(t) dt,
h(z) = 4+ 3z — 222, W = P;(R).

18. In Exercise 17 find the distance from the given vector to the subspace
W.

19. Let V = C([-1,1]) with the inner product (f,g) = f_ll f(t)g(t) dt. Let
W be the subspace P2(R) with the standard ordered basis 3.

(a) Show that the Gram-Schmidt process applied to 3 yields the Leg-
endre polynomials 1, t, and ¢ — £.

(b) Use (a) to produce an orthonormal basis y of W. -

(c) Let h(t) = €. Use (b) to compute the “best” (closest) second-
degree polynomial approximation of h on the interval [—1, 1].

20. Let V be the vector space defined in Example 5 of Section 1.2, the
space of all sequences o in F (F = R or F = C) such that o(n) # 0
for only finitely many positive integers n. For o, € V, we define

o0

(oyp) = Za(n)p(n). Since all but a finite number of terms of the
n=1

series are zero, the series converges.

(a) Prove that (-, -) is an inner product on V, and hence V is an inner
product space.

(b) For each positive integer n, let e, be the sequence defined by
en(k) = On, where 6, is the Kronecker delta. Prove that
{e1,e2,...} is an orthonormal basis for V.

6.3 THE ADJOINT OF A LINEAR OPERATOR

In Section 6.1 we defined the conjugate transpose A* of a matrix A. For
a linear operator T on an inner product space V, we now define a related
linear operator on V called the adjoint of T, whose matrix representation
with respect to any orthonormal basis 3 of V is [T]5- The analogy between
conjugation of complex numbers and adjoints of linear operators will become
apparent. We first need a preliminary result.

Let V be an inner product space, and let y € V. The function g: V — F
defined by g(z) = (z,y) is clearly linear. More interesting is the fact that if
V is finite-dimensional, every linear transformation from V into F is of this
form.

Theorem 6.8. Let V be a finite-dimensional inner product space over F,
and let g: V — F be a linear transformation. Then there exists a unique
vector y € V such that g(z) = (z,y) forall z € V.
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Proof. Let § = {v1,...,vs} be an orthonormal basis for V, and let
y=> g(vi)v.
=1

Let h: V — F be defined by h(z)} = {z,y), which is clearly linear. Further-
more, for 1 < j < n we have

h(vs) = (vj,y) = <vjﬁzg(vi)vi> = g(vi) (vj,v:)
i=1 i=1
= g(vi)dji = g(v;).
i=1

Since g and h both agree on 3, we have that g = h by the corollary to
Theorem 2.6.

'To show that y is unique, suppose that g(z) = (z,y') for all z. Then
(z,y) = (z,y") for all z, so by Theorem 6.1(d) we have y = y/'.

Example 1

Defineg: R2 » R by g(a1,az2) = 2a; +ay; clearly g is a linear transformation.
Let 8 = {e1, ez}, and let y = g(e1)es + glez)es = 2e1 + 3 = (2,1) as in the
proof of Theorem 6.8. Then g(a1,az) = {(ay,a2),(2,1)) = 2a; +a3. R

Theorem 6.9. Let V be a finite-dimensional inner product space, and let
T be a linear operator on V. Then there exists a unique function T*: V — V
such that (T(x),y) = (z, T*(y)) for all z,y € V. Furthermore, T* is linear.

Proof. Let y € V. Define g: V — F by g(z) = (T(z),y) for all z € V. We
first show that g is linear. Let z;,22 € V and ¢ € F. Then

glez1 + z2) = (T(ex1 + 22),y) = (cT(z1) + T(22), )
= c(T(z1), ) + (T(22),y) = cg(z1) + g(z2).

Hence g is linear.

We now apply Theorem 6.8 to obtain a unique vector 3’ € V such that
g(z) = (z,y'); that is, (T(z),y) = (z,9/) for all € V. Defining T*: V — V
by T*(y) =y, we have (T(z),y) = (z, T*(y)).

To show that T* is linear, let y1,2 € V and ¢ € F. Then for any z € v,
we have

(2, T*(eyr +y2)) = (T(2), cy1 + y2)
c(T(z),y1) + (T(x), v2)
oz, T*(31)) + (2, T* (v2))
= (z,eT*(y1) + T*(v2)) .
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Since z is arbitrary, we have T*(cys + v2) = cT*(y1) + T*(y2) by Theo-
rem 6.1(d).

Finally we need to show that T* is unique. Suppose that U: V — V
is linear and that it satisfies (T(z),y) = (z,U(y)) for all z,y € V. Then
(¢, T*(¥) =(z,U(y)) forall z,y € V,s0 T*=U. |}

The linear operator T* described in Theorem 6.9 is called the adjoint of
the operator T. The symbol T* is read “T star.”

Thus T* is the unique operator on V satisfying (T(z),y) = (z, T* (y)) for
all z,y € V. Note that we also have

<$aT(y)> = (T(y),(l)) = (er*(x» = <T*(£L‘),y) )

so (z,T(y)) = (T*(z),y) for all z,y € V. We may view these equations
symbolically as adding a * to T when shifting its position inside the inner
product symbol.

In the infinite-dimensional case the adjoint of a linear operator T may
be defined to be the function T* such that (T(z),y) = (z, T*(y)) for all
z,y € V. Although the uniqueness and linearity of T* follow as before, the
existence of the adjoint is not guaranteed (see Exercise 22). The reader should
observe the necessity of the hypothesis of finite-dimensionality in the proof of
Theorem 6.8. Many of the theorems we prove about adjoints, nevertheless,
do not depend on V being finite-dimensional. Thus for the remainder of
this chapter we adopt the convention for the exercises that a reference to the
adjoint of a linear operator on an infinite-dimensional inner product space
assumes its existence unless stated otherwise.

A useful result for computing adjoints is Theorem 6.10 below.

Theorem 6.10. Let V be a finite-dimensional inner product space, and
let 3 be an orthonormal basis for V. If T is a linear operator on V, then

[T)s = [T
Proof. Let A = [T]g, B = [T*]g, and 8 = {vl,...,vn}. Then from the
corollary to Theorem 6.5 we have
Bij = (T*(vj), i) = (o3, T*(vy))
e = (T(v:),v5) = Aji = (4")i;.
Hence B = A |
Corollary. Let A be an n x n matrix. Then La~ = (Lg)*.

Proof. If 3 is the standard ordered basis for F*, then by Theorem 2.16 we
have [L4]s = A. Hence [(L4)*]g = [Lals = A* = [La-]g, and s0 (La)* = Ly,
|
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As an application of Theorem 6.10, we compute the adjoint of a specific
linear operator. .

Example 2

Let T be the linear operator on C? defined by T(a1, a2) = (2ia; +3as, a1 —as).
If 3 is the standard ordered basis for C2, then

me= (% _3).

’ == (7% Y-

Hence
T*(Gq,az) = (—2’[:(11 + ay,3a; — a2). I

The following theorem demonstrates the analogy between the conjugates
of complex numbers and the adjoints of linear operators.

Theorem 6.11. Let V be an inner product space, and let T and U be
linear operators on V. Then-
() (T+U)*=T+U%
(b) (cT)*=¢T* foranyce F;
(¢) (TUy* = U T%;
(d) T*=T;
(e) I*=1.

Proof. We prove (a) and (d); the rest are proved similarly. Let z,y € V.
(a) Since

(2, (T+U)*(¥) = ((T + U)(=),y) = (T(z) + U(z), v)
= (T(z),y) + (U(z),y) = (z, T*(¥)) + (z,U" (%))
= (z, T*(y) + U*(¥)) = (z,(T* + U")(w)),

(a) follows.
(d) Similarly, since

(=, T(y) = (T"(z),y) = (= T (),
(d) follows. N

The same proof works in the infinite-dimensional case provided that the
existence of T* and U* is assumed.

Corollary. Let A and B be n x n matrices. Then
(a) (A+B)* = A*+B%;
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(b) (cA)* =¢A* for all c € F;
(c) (AB)® = BA%;

(d) A = 4;

(e) I*=1.

Proof. We prove only (c); the remaining parts can be proved similarly.
Since L(AB)‘ = (Lag)* = (Lalp)* = (Le)*(La)* = Lp+L g« = Lp«ax, we
have (AB)* = B*4*. |

In the proof above we relied on the corollary to Theorem 6.10. An alterna-
tive proof that holds even for nonsquare matrices can be given by appealing
directly to the definition of the conjugate transposes of the matrices 4 and
B (see Exercise 5).

Least Squares Approximation

Consider the following problem: An experimenter collects data by taking
measurements y1, Y2, . . . , Ym at times £y, 13, ..., 1y, respectively. For example,
he or she may be measuring unemployment at various times during some
period. Suppose that the data (¢1,41),...,(¢m,ym) are plotted as points in
the plane (see Figure 6.2). From this distribution, the experimenter feels that
there exists an essentially linear relationship between y and %, say y = ct+d,
and would like to find the constants ¢ and d so that the line y = ct + d
represents the best possible fit to the data collected. One such estimate of
fit is to calculate the error E that represents the sum of the squares of the

Y
(ti, Cti + d)
! y=ct+d
(t1,31) J/I/T/l/
J/ (t'l,'; yi) .
t
Figure 6.2
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vertical distances from the points to the line; that is,

m

E = Z(yi - Cti — d)2

i=1

Thus the problem is to find the constants ¢ and d that minimize E. (For
this reason the line y = ct 4 d is called the least squares line.) If we let

t1 1 "1
ta 1 Y2
A=1 . .1, x=(c), and y=| . |,
. . d .
tm 1 Ym

then it follows that E = ||y — Az|2.

We now develop a general method for finding an explicit vector zy € F?
that minimizes E; that is, given an m X n matrix 4, wefind 29 € F” such that
lly — Azo|| < |ly — Az|| for all vectors z € F®. This method not only allows
us to find the linear function that best fits the data but also the polynomial
of any fixed degree that best fits the data.

First we need some notation and two simple lemmas. For z,y € F?, let
{(z,9),, denote the standard inner product of z and y in F*. Notice that if 2
and y are regarded as column vectors, then (z,y), = y*z.

Lemma 1. Let A € Mpyxn(F), z € F*, and y € F™. Then
(Az,y),, = (2, A™Y),, .
Proof. By Exercise 5(b) we have
(Az,v),,, = v"(4z) = (" A)z = (A*y)'z = (z,4%),,. 1
Lemma 2. Let A € My,xn(F). Then rank{A*A) = rank(A).

Proof. By the dimension theorem we need only show that for z € F* we
have A*Azx = 0 if and only if Az = 0. Clearly, Az = 0 implies that A*Az =
0. So assume that A*Az = 0. Then 0 = (A*Az,z),, = (Az, A™*z),, =
(Az, Az),,so that Az =0. |l

Corollary. If A is an m x n matrix such that rank(A) = n, then A*A is
invertible.

Now consider the system Az = y, where A is an m X n matrix and
y € F™. Define W = {Az : z € F*}; that is, W = R(L4). By the corollary
to Proposition 6.6 there exists a unique vector in W, say Azo where zo € F?,
that is closest to y. So ||Azo — yl| < ||Az —- y|| for all z € F™.
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To develop a practical method for finding such an zg, we note from Propo-
sition 6.6 and its corollary that Az —y € W*; so (Az, Azg —y),, = 0 for
all z € F*. Thus by Lemma 1 we have that (z, A*(Azo —y)),, = 0 for all
z € F™; that is, A*(Azp — y) = 0. So we need only find a solution to
A"Az = A*y. If in addition we assume that rank(A) = n, then by Lemma 2
we have zo = (A*A)"1A*y. We summarize this discussion in the following
theorem.

Theorem 6.12. Let A € My xn(F) and y € F™. Then there exists
xo € F™ such that (A*A)zo = A*y and ||Azo — y|| < ||Az —y|| for all z € F*
Furthermore, if rank(A) = n, then zo = (A*A)~1A*y.

To return to our experimenter, let us suppose that the data collected are
(1,2),(2,3),(3,5), and (4,7). Then

11 2
121 13
A= 3 1 and y= ok
4 1 7
hence
11
4 (1 2 3 4 2 1] _ (30 10
e R 1 R ]
4 1
Thus
1 4 -10
* -1 _ =+
(A4) T 20 (—10 30)'
Therefore

N g L 4 —10\ /1 2 3 4 (17
d) """ 0\-10 30/\1 111 “\o0 /-

Thus the line y = 1.7¢ is the least squares line. The error F may be computed
directly as || Az — y||? = 0.3.

The method above may also be applied if the experimenter wants to fit a
parabola y = ct? + dt + e to the data. In this case, the appropriate matrix is

~N U W N

2 4 1
A=
2, tm 1



344 Chap. 6 Inner Product Spaces

Finally, suppose in the linear case that the experimenter chose the times #;
(1 £ i £ m) to satisfy

m

> ti=0.

i=1
Then the two columns of A would be orthogonal, so A*A would be a diagonal
matrix (see Exercise 17). In this case the computations are greatly simplified.

Minimal Solutions

In the context of the preceding discussion we showed that if rank(A) = n,
then there exists a unique zg € F™ such that Azg is the point in W that is
closest to y. Of course, if rank(A) < n, there will be infinitely many such
vectors. It is often desirable to find such a vector of minimal norm. For what
follows, we let b = Az as above. Then the system Az = b has at least one
solution. A solution s is called a minimal solution if ||s|| < {|u|| for all other
solutions u to Az =b.

Theorem 6.13. Let A € My, x(F) and b € F™. Suppose that Az = b
has at least one solution. Then the following are true.
(a) There exists exactly one minimal solution s of Az =b, and s € R(L4+).
(b) The vector s is the only solution to Az = b that lies in R(La-); that is,
if u satisfies (AA*)u = b, then s = A*u.

Proof. (a) For simplicity of notation, we let W = R(L4-) and W' = N(L4).
Let z be any solution to Az = b. By Proposition 6.6 £ = s + y for some
s € W and y € WL, But W+ = W’ by Exercise 12, and therefore, b = Az =
As + Ay = As. So s is a solution to Az = b that lies in W. To prove (a), we
need only show that s is the unique minimal solution. Let v be any solution to
Az = b. By Theorem 3.9 we have that v = s+wu, where u € W', Since s € W,
which equals W’ L by Exercise 12, we have by Exercise 10 of Section 6.1 that

lloll? = Ils + ull® = fls]|* + flull® > [slI*.

Thus s is a minimal solution. We can also see from the calculation above that
if ||u|| = ||s||, then v = 0 and v = s. Hence s is the unique minimal solution
to Az = b, proving (a).

(b) Assume that v is also a solution to Az = b that lies in W. Then

v—seWNW =WnW = {0}

SO v = 8.

Finally, suppose that (AA*)u = b, and let v = A*u. Then v € W and

Av = b, Therefore, s = v = A*u by the discussion above. | |
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Example 3

Consider the system
: z+2y+ z= 4
T~ y+2z=-11

z + 5y = 19,
Let
1 21 4
A=11 -1 2 and b={-11
1 50 19

To find the minimal solution to this system, we must find a solution to
AA*x = b. Now '

6 1 11
AA* = 1 6 —-4];
11 -4 26

8o we consider the system

6r+ y+1llz= 4
T+ 6y — 4z=-11
11z — 4y + 262 = 19,

for which a solution is

1
u=|-2
0
(Any solution will suffice.) Hence
-1
s=A'u={ 4
-3

is the minimal solution to the given system. I

EXERCISES

1. Label the following statements as being true or false. Assume that the
underlying inner product spaces are finite-dimensional.

(a) Every linear operator has an adjoint.

(b) Every linear operator on V has the form z — (z,y) for some y € V.

(c) For every linear operator T on V and every basis 8 for V, we have
[T*]s = ([T]g)"

(d) The adjoint of a linear operator is always unique.
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(e) For any linear operators T and U and scalars a and b,
(aT +bU)* = aT™ +bU*.

(f) For any n x n matrix 4, (La)* = La~.
(g) For any linear operator T, (T*)* =T.

For each of the following inner product spaces V (over F') and linear
transformations g: V — F, find a vector y such that g(z) = (z,y) for
allz e V.

(a) V= RS, g(al,az,a;;) = a1 — 2as + 4as

(b) V=0C2g(a1,22) =21 — 22

(©) V=Pu() with (£, = [ JOMG) dt, 8() = 7O+ £

For each of the following inner product spaces V and linear operators T
on V, evaluate T* at the given element of V.
(a) V=R?, T(a,b) = (2a+b,a — 3b), z = (3,5).
(b) V=C% T(z1,22) = (221 + 422, (1 —i)21), z = (3 — 1,1+ 24).
1

(&) V=Pu(R) with (f.9)= [ f(a®)dt T(7) = '+ 31,
flt)=4-2¢
Complete the proof of Theorem 6.11.

(a) Complete the proof of the corollary to Theorem 6.11 by using
Theorem 6.11 as in the proof of (c).

(b) State a result for nonsquare matrices that is analogous to the corol-
lary to Theorem 6.11, and prove it using a matrix argument.

Let T be a linear operator on an inner product space V. Let U; = T+T*
and Uy = TT*. Prove that U; = U] and Uy = U3.

Give an example of a linear operator T on an inner product space V
such that N(T) # N(T*).

Let V be a finite-dimensional inner product space, and let T be a linear
operator on V. Prove that if T is invertible, then T* is invertible and
(T*)—l — (T—l)*.

Prove that if V= W& WL and T is the projection on W along W+,

then T = T*. Hint: Recall that N(T) = W-. (For definitions, see the
exercises of Sections 1.3 and 2.1.)

Let T be a linear operator on an inner product space V. Prove that
IT(x)|l = |lz|| for all z € V if and only if (T(z), T(y)) = (z,y) for all
z,y € V. Hint: Use Exercise 20 of Section 6.1.
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12.

13.

14.

15.

—

16.

17.

18.

19.

For a linear operator T on an inner product space V, prove that T*T =
To implies T = Ty. Is the same result true if we assume that TT* = T,?

Let V be a finite-dimensional inner product space, and let T be a linear
operator on V. Prove that R(T*) = N(T)*. Hint: Prove that R(T*)+ =
N(T), and then use Exercise 12(c) of Section 6.2.

Let T be a linear operator on a finite-dimensional vector space V. Prove
the following.

(a) N(T*T) = N(T). Deduce that rank(T*T) = rank(T). :
(b) rank(T) = rank(T*). Deduce from (a) that rank(TT*) = rank(T).
(c) For any n x n matrix A, rank(A*A) = rank(AA*) = rank(A).

Let V be an inner product space, and let y,z € V. Define T: V — V by
T(z) = (z,y) z for all x € V. First prove that T is linear. Then show
that T* exists and find an explicit expression for it.

Let T: V — W be a linear transformation, where V and W are finite-
dimensional inner product spaces. Let (-,-); and (-,-), denote the
inner products of V and W, respectively.

(a) Prove that there exists a unique linear transformation T*: W — V
such that (T(z),y), = (z, T*(y)), forallz € V and y € W.

(b) Let 3 and « be orthonormal bases for V and W, respectively. Prove
that [T*]8 = ([T]3)*.

Let A be an n x n matrix. Prove that det(A*) = det(A).

Suppose that A is an m xn matrix in which no two columns are identical.
Prove that A*A is a diagonal matrix if and only if every pair of columns
of A is orthogonal.

For the data (—3,9),(—2,6),(0,2), and (1,1), find the line and the
parabola that provide the least squares fits. Compute the error F in
both cases.

In physics, Hooke’s low states that (within certain limits) there is a
linear relation between the length z of a spring and the force y ap-
plied to (or exerted by) the spring. That is, ¥ = cx + d, where ¢ is
called the spring constant. Use the following data to estimate the
spring constant. (The length is given in inches and the force is given in
pounds.)
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Length Force
T Yy
3.5 1.0
4.0 2.2
4.5 2.8
5.0 4.3

20. Find the minimal solution to

z+2y—z=1
2z+3y+2=2
dz+Ty—2z=4.

21. Show that for the problem of finding the least squares line y = ct + d
corresponding to the m observations (t1,41),... , (m,Ym), the equation
(A*A)xo = A*y of Theorem 6.12 takes the form of the normal equations:

m m m
i=1- i=1 i=1
and
m m
(ZQ) c+md= Zyi.
=1 i=1

These equations may also be obtained from the error E by setting the
partial derivatives of E with respect to both ¢ and d equal to zero.

22. Let Vand {e;,es;...} be defined as in Exercise 20 of Section 6.2. Define

T:V—=Vby
T(o)(k) = Z o(i) for every positive integer k.
i=k

Notice that the infinite series in the definition of T converges because

o (i) # 0 for only finitely many 1.

(a) Prove that T is a linear operator on V.

(b) Prove that for any positive integer n, T(en) = Y i, €.

(c) Prove that T has no adjoint. Hint: By way of contradiction
suppose that T* exists. Prove that for any positive integer n,
T*(e,)(k) # 0 for infinitely many k.
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6.4 NORMAL AND SELF-ADJOINT OPERATORS

We have seen the importance of diagonalizable operators in Chapter 5. For
these operators it is necessary and sufficient for the vector space V to possess
a basis of eigenvectors. As V is an inner product space in this chapter, it
is reasonable to seek conditions that guarantee that V has an orthonormal
basis of eigenvectors. A very important result that helps achieve our goal is
Schur’s theorem (Theorem 6.14). The formulation below is in terms of linear
operators. The next section contains the more conventional matrix form. We
begin with a lemma.

Lemma. Let T be a linear operator on a finite-dimensional inner product
space V. If T has an eigenvector, then so does T*.

Proof. Let A = [T|g, where 3 is an orthonormal basis for V. Let A be
an eigenvalue of T, and hence of A. Then det(A — AI) = 0. So by Exer-
cise 16 of Section 6.3 and the corollary to Theorem 6.11, we also have that
det(A* —XI) = 0. So X is an eigenvalue of A* and hence of T*. In particular,
T* has an eigenvector. [}

Recall (see the exercises of Section 2.1) that a subspace W of V is said to
be T-invariant if T(W) is contained in W. If W is T-invariant, we may define
the restriction Tw: W = W by Tw(z) = T(z) for all z € W. It is clear that
Tw is a linear operator on W. Recall also from Section 5.2 that a polynomial
is said to split if it factors into linear polynomials.

Theorem 6.14 (Schur). Let T be a linear operator on a finite-
dimensional inner product space V. Suppose that the characteristic poly-
nomial of T splits. Then there exists an orthonormal basis 3 for V such that
the matrix [T|g is upper triangular.

Proof. The proof is by induction on the dimension n of V. The result is
immediate if n = 1. So suppose that the result is true for linear operators
on (n—1)-dimensional inner product spaces whose characteristic polynomials
split. By the lemma we can assume that T* has a unit eigenvector z. Suppose
that T*(z) = Az and that W = span({z}). We show that W< is T-invariant.
Ify € Wt and 2 = ¢z € W, then

(T(W),z) = (T(y), cz) = (y, T*(c2)) = (y,cT*(2)) = (y, cAz)
=T\ (y,2) = eA(0) = 0.

So T(y) € W+. It is easy to show (see Theorem 5.26) that the characteris-
tic polynomial of Tyy. divides the characteristic polynomial of T and hence
splits. By Theorem 6.7(c) dim(W=) = n — 1, so we may apply the induc-
tion hypothesis to Ty. and obtain an orthonormal basis v of W+ such that
[Tw<]y is upper triangular. Clearly, 3 = v U {2z} is an orthonormal basis for
V such that [T)g is upper triangular.
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We now return to our original goal of finding an orthonormal basis of
eigenvectors of a linear operator T on a finite-dimensional inner product space
V. Note that if such an orthonormal basis 8 exists, then [T]g is a diagonal
matrix. Because diagonal matrices commute, we conclude that T and T*

commute. Thus if V possesses an orthonormal basis of eigenvectors of T,
then TT* =T*T .

Definitions. Let V be an inner product space, and let T be a linear
operator on V. We say that T is normal if TT* = T*T. Ann X n real or
complex matrix A is normal if AA* = A*A.

It follows immediately that T is normal if and only if [T]g is normal, where
[ is an orthonormal basis.

Example 1

Let T: R? — R? be rotation by 8, where 0 < 6 < 7. The matrix representation
of T in the standard ordered basis is given by

cosf —sinf
A - (sin& cos 0) )
Note that AA* = I = A*A; so A and hence T is normal.

Example 2

Suppose that A is a real skew-symmetric matrix; that is, A’ = —A. Then 4
is normal because both AA? and A®A are equal to —A2. [

Clearly, the operator T in Example 1 does not even possess one eigenvec-
tor. So in the case of a real inner product space, we see that normality is not
sufficient to guarantee an orthonormal basis of eigenvectors. All is not lost,
however. We show that normality suffices if V is a compler inner product
space.

Before we prove the promised result for normal operators, we need some
general properties of normal operators.

Theorem 6.15. Let V be an inner product space, and let T be a normal
operator on V. Then the following are true.

(a) IT(=)|| = |T*(2)|| for all z € V.

{b) T — ¢l is normal for every c € F.

(c) Ifz is an eigenvector of T, then z is also an eigenvector of T*. In fact,
if T(z) = Az, then T*(z) = Az.

(d) If Ay and Ay are distinct eigenvalues of T with corresponding eigenvec-
tors z; and x3, then =, and s are orthogonal.
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Proof. (a) For any z € V, we have
IT@? = (T(2), T(z)) = (T*T(2),z) = (TT*(z), )
= (T"(2), T*(=)) = IT*(@)|*.
The proof of (b) is left as an exercise.

(c) Suppose that T(z) = Az for some z € V. Let U = T ~ Al. Then
U(z) = 0, and by (b) U is normal. Thus (a) implies that

0= [U@)ll = IV* @l = I(T* = M)(@)]l = [T*(z) - Az].

Hence T*(z) = Az. So z is an eigenvector of T*. '
(d) Let Ay and Ap be distinct eigenvalues of T with corresponding eigen-
vectors z; and z3. Then, using (c), we have

At (21, 22) = (Mz1, 22) = (T(21), 22) = (21, T*(22)
= (1, Ma@2) = A2 (31, 22) .
Since A\; # A2, we conclude that (z1,z2) =0. 1

Theorem 6.16. Let T be a linear operator on a finite-dimensional com-
plex inner product space V. Then T is normal if and only if there exists an
orthonormal basis for V consisting of eigenvectors of T.

Proof. Suppose that T is normal. By the fundamental theorem of algebra
(Theorem D.4) the characteristic polynomial of T splits. So we may apply

Schur’s theorem to obtain an orthonormal basis 8 = {v1,...,v,} for V such
that [T]g = A is upper triangular. We know that v; is an eigenvector of T
because A is upper triangular. Assume that vq,...,vx—1 are eigenvectors of

T. We claim that v is also an eigenvector of T. It then follows by induction
on k that all of the v;’s are eigenvectors of T, or equivalently, that A is a

diagonal matrix.
B C «_(B* O
A = (O E’) and A - (C* E*) 3

We have
where B is a (k—1) x (k— 1) diagonal matrix. Because A is upper triangular,
Aj, = 0for j > k. To show that vy is an eigenvector of T, we need only show
that A, = 0 for § <-k. Note that by Theorem 6.15(c), v1,...,v,-1 are also
eigenvectors of T*. But A* = [T*]g, so C* = O. Thus (A*)x; = 0 for j < k,
and so Aji = 0 for j < k. Therefore, the vector vy is an eigenvector of T; so
by induction, all the vectors of 3 are eigenvectors of T.

The converse was already proved on page 350. [

Interestingly, as the next example shows, Theorem 6.16 does not extend
to infinite-dimensional complex inner product spaces.



352 Chap. 6 Inner Product Spaces

Example 3

Consider the inner product space H with the orthonormal set S from Exam-
ple 9 in Section 6.1. Let V = span(S), and let T and U be linear operators
on V defined by T(f) = fif and U(f) = f_1f. So,

T(f&) = fe+r and U(fi) = fa—1
for all integers k. Then

(T(£:), £33 = (firn, £3) = SGirny 5 = bi5-1) = (i, fi—1) = (fi, U(Fy)) -
It follows that U = T*. Furthermore, TT* =1 = T*T, so T is normal.

We show that T has no eigenvectors. Suppose that f is an eigenvector of
T, say, T(f) = Af for some A. Since V equals the span of S, we may write

m
f= Z a;fi, where a,, #0. 5
i=n .

Applying T to both sides of the preceding equation, we obtain

daifirn = daifi

i=n i=n

Since a,, # 0, we can write fn,41 as a linear combination of f,, fni1,..., fm.
But this is a contradiction because S is linearly independent.

Example 1 illustrates that normality is not sufficient to guarantee the
existence of an orthonormal basis of eigenvectors for real inner product spaces.
For real inner product spaces we must replace normality by the stronger
condition that T = T*,

Definitions. Let T be a linear operator on an inner product space V.
We say that T is self-adjoint (Hermitian) if T = T*. An n x n real or
complex matrix A is self-adjoint (Hermitian) if A = A*.

It follows immediately that T is self-adjoint if and only if [T]s is self-
adjoint, where § is an orthonormal basis. For real matrices, this condition
reduces to the requirement that A is symmetric.

Before we state our main result for self-adjoint operators, we need some
preliminary work.

By definition, a linear operator on a real inner product space has only
real eigenvalues. The lemma that follows shows that the same can be said
for self-adjoint operators on a complex inner product space. Similarly, the
characteristic polynomial of every linear operator on a complex inner product
space splits, and the same is true for self-adjoint operators on a real inner
product space.
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Lemma. Let T be a self-adjoint operator on a finite-dimensional inner
product space V. Then
(a) Every eigenvalue of T is real.
(b) Suppose that V is a real inner product space. Then the characteristic
polynomial of T splits.

Proof. (a) Suppose that T(z) = Az, for z # 0. Because a self-adjoint
operator is also normal, we can apply Theorem 6.15(c) to obtain

A =T(z) =T*(z) = Az.

So A = }; that is, ) is real. .

(b) Let n = dim(V), 8 be an orthonormal basis for V, and A = [T]a.
Then A is self-adjoint. Define T4: C® — C™ by Ta(z) = Az. Then T4 is
a linear operator on C". Furthermore, T4 is self-adjoint because [T4], =
A, where v is the standard ordered (orthonormal) basis for C*. So by (a)
the eigenvalues of T4 are real. By the fundamental theorem of algebra the
characteristic polynomial of T 4 splits into factors of the form z—A. Since each
A is real, the characteristic polynomial splits over R. But T4 has the same
characteristic polynomial as A, which has the same characteristic polynomial
as T. Therefore, the characteristic polynomial of T splits. [

We are ready to establish one of the major results of this chapter.

Theorem 6.17. Let T be a linear operator on a finite-dimensional real
inner product space V. Then T is self-adjoint if and only if there exists an
orthonormal basis 3 for V consisting of eigenvectors of T.

Proof. Suppose that T is self-adjoint. By the lemma we may apply Schur’s
theorem to obtain an orthonormal basis 3 for V such that the matrix A = [T]s
is upper triangular. But

A =[Tp=[T"s=[Tls = A

So A and A* are both upper triangular, and therefore A is a diagonal matrix.
Thus 8 must consist of eigenvectors of T.
The converse is left as an exercise. [

Theorem 6.17 is used extensively in many areas of mathematics and statis-
tics. We restate this theorem in matrix form in the next section.

Example 4 -

As we noted earlier, real self-adjoint matrices are symmetric, and self-adjoint
__matrices are normal. The matrix A below is complex and symmetric.

i . (i —i
A'_'(z' 1) and A—(—i 1)

But A is not normal because (AA*)13 = 1 +14, and (A*4)1o=1-1i. 1
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EXERCISES

Label the following statements as being true or false. Assume that the
underlying inner product spaces are finite-dimensional.

(a) Every self-adjoint operator is normal.

(b) Operators and their adjoints have the same eigenvectors.

(¢) If T is an operator on an inner product space V, then T is normal
if and only if [T]g is normal, where 3 is any ordered basis for V.

(d) A real or complex matrix A is normal if and only if L4 is normal.

(e) The eigenvalues of a self-adjoint operator must all be real.

(f) The identity and zero operators are self-adjoint.

(g) Every normal operator is diagonalizable.

(h) Every self-adjoint operator is diagonalizable.

For each of the linear operators below, determine whether it is normal,
self-adjoint, or neither. )

(a) T:R?— R? defined by T(a,b) = (2a — 2b, —2a + 5b).

(b) T:C2— C? defined by T(a,b) = (2a + ib, a + 2b).

(c) T:1 P2(R) — P3z(R) defined by T(f) = f/, where (f,g) =

/0 F(H)g(t) de.

For (a), find an orthonormal basis for R? consisting of eigenvectors of
T.

Let T and U be self-adjoint operators on an inner product space. Prove
that TU is self-adjoint if and only if TU = UT.

Prove (b) of Theorem 6.15.

Let V be a complex inner product space, and let T be a linear operator
on V. Define

1 .
Ti=5(T+T9) and Ty= (T-T).

(a) Prove that T, and T, are self-adjoint and that T = Ty +4 T.

(b) Suppose also that T = U; 44Uy, where U; and U, are self-adjoint.
Prove that U; = Ty and Uy = T5. ' -

(c) Prove that T is normal if and only if T; Ty = T, T;.

Let T be a linear operator on an inner product space V, and let W be
a T-invariant subspace of V. Prove the following,.

(a) If T is self-adjoint, then Ty is self-adjoint.
(b) W is T*-invariant.
(c) If Wis both T- and T*-invariant, then (Tw)* = (T*)w.
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(d) If W is both T- and T*-invariant and T is normal, then Tw is
normal.

Let T be a normal operator on a finite-dimensional complex inner
product space V, and let W be a subspace of V. Prove that if W is
T-invariant, then W is also T*-invariant. Hint: Use Exercise 24 of Sec-
tion 5.4.

Let T be a normal operator on a finite-dimensional inner product space

V. Prove that N(T) = N(T*) and R(T) = R(T*). Hint: Use Theo-
rem 6.15 and Exercise 12 of Section 6.3.

Let T be a self-adjoint operator on a finite-dimensional inner product
space V. Prove that for all z € V

IT() £4z|? = IT(@)|I + ll=]i®.
Deduce that (T — il) is invertible and that [(T — 4)~1]* = (T +4l)~L.

Assume that T is a linear operator on a complex (not necessarily finite-
dimensional) inner product space V with an adjoint T*. Prove the
following.

(a) If T is self-adjoint, then (T(z),z) is real for all z € V.

(b) If T satisfies (T(z),z) =0 forall z €V, then T = To.
Hint: Replace z by z + y and then by = + iy and expand the
resulting inner products.

(c¢) ¥ (T(z),z)isreal for all z € V, then T = T*.

Let T be a normal operator on a finite-dimensional real inner product
space V whose characteristic polynomial splits. Prove that V has an
orthonormal basis of eigenvectors of T. Hence prove that T is self-
adjoint.

An n xn real matrix A?said to be a Gramian matrix if there exists a
real (square) matrix B such that A = B*B. Prove that A is a Gramian
matrix if and only if A is symmetric and all of its eigenvalues are nonneg-
ative. Hint: Apply Theorem 6.17 to L4 to obtain an orthonormal basis
{v1,...,un}of eigenvectors with the associated eigenvalues Ay,...,A,.
Define the linear operator T by U(v;) = v/X;z; and complete the proof.

The following definitions will be used in Exercises 13, 14, and 17 through 21.

Definitions. A linear operator T on a finite-dimensional inner product

space is called positive definite [positive semidefinite] if T is self-adjoint
and (T(z),z) > 0 (T(z),z) > 0] for all x # 0.
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Let T be a self-adjoint linear operator on an n-dimensional inner prod-

uct space V, and let A = [T]g, where § is an orthonormal basis for V.
Prove

(a) T is positive definite [semidefinite] if and only if all of its eigenval-
ues are positive [nonnegative].

(b) T is positive definite [semidefinite] if and only if L4 is also.

(c) T is positive definite if and only if

ZA,-jajZii > 0 for all nonzero n-tuples (ai,...,a,).
6.3
This inequality is often used as the definition of a positive definite
matrix. Changing the inequality to a nonstrict inequality gives the
corresponding definition of a positive semidefinite matrix.
(d) T is positive semidefinite if and only if A = B*B for some square
matrix B. ‘
(e) If T and U are positive semidefinite operators such that T2 = U2,
then T = U.
(f) Isthe composite of two positive definite operators positive definite?

Results analogous to (a) through (e) hold for matrices as well as oper-
ators.

LetT: V — W be a linear transformation, where V and W are finite-
dimensional inner product spaces. Prove that T*T is positive semidefi-
nite and rank(T*T) = rank(T). (See Exercise 15 of Section 6.3.)

Simultaneous Diagonalization

(a) Let V be a finite-dimensional real inner product space, and let U
and T be self-adjoint linear operators on V such that UT = TU.
Prove that there exists an orthonormal basis for V consisting of
vectors that are eigenvectors of both U and T. (The complex
version of this result appears as Exercise 10 of Section 6.6). Hint:
For any eigenspace W = Ey of T we have that W is both T- and
U-invariant. By Exercise 6 we have that W+ is both T- and U-
invariant. Apply Theorem 6.17 and Proposition 6.6.

(b) State and prove the analogous result about commuting symmetric
(real) matrices.

Prove the Cayley-Hamilton theorem for a complex n xn matrix A. That
is, if f(t) is the characteristic polynomial of A4, prove that f (A) = 0.
Hint: By Schur’s theorem show that you may assume that A is upper
triangular, in which case
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Now if T = L4, we have (4;;1—T)(e;) € span{{e1,...,ej—1}) for j > 2,
where {e;,...,e,} is the standard ordered basis for C*. (The general
case is proved in Section 5.4.)

Exercises 17 through 21 use the definition of positive definite operator that
precedes Exercise 13.

17.

18.

19.

20.

21.

Let T and U be positive definite operators on an inner product space
V. Prove the following.

(a) T+ U is positive definite.
(b) If ¢ >0, then cT is positive definite.
(c) T~!is positive definite.

Let V be an inner product space with inner product (-, -) ,Iand let T be
a positive definite linear operator on V. Prove that (z,y) = (T(z),y}
defines another inner product on V.

Let V be a finite-dimensional inner product space, and let T and U be
self-adjoint operators on V such that T is positive definite. Prove that
both TU and UT are diagonalizable linear operators that have only real
eigenvalues. Hint: Show that UT is self-adjoint with respect to the inner
product (z,y)’ = (T(z),y). To show that TU is self-adjoint, repeat the
argument with T~! in place of T.

The following result gives a converse to Exercise 18. Let V be a ﬁnite;
dimensional inner product space with inner product (-, +), and let (-, +)
be any other inner product on V.

(a) Prove that there exists a unique linear operator T on V such that
(z,y) = (T(z),y) for all z and y in V. Hint: Let 8 = {v1,...,vn}
be an orthonormal basis for V with respect to (-, +), and define a
matrix A by A;; = (vj,vi)' for all i and j. Let T be the unique
linear operator on V such that [T]g = A.

(b) Prove that the operator T of (a) is positive definite with respect
to both inner products.

Let U be a diagonalizable linear operator on a finite-dimensional inner
product space V such that all of the eigenvalues of U are real. Prove that
there exist positive definite linear operators Ty and T} and self-adjoint
linear operators Ty and T} such that U = ToTy = T1T5. Hint: Let (-, +)
be the inner product associated with V, 3 a basis of eigenvectors for U,
{+,+)" the inner product on V with respect to which 3 is orthonormal
(see Exercise 24(a) of Section 6.1), and T; the positive definite operator
according to Exercise 20. Show that U is self-adjoint with respect to
(-,+) and U = T7*U*T; (the adjoint is with respect to (-, )). Let
Ty =T, 'U"
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22. The following argument gives another proof of Schur’s theorem. Let T
be a linear operator on a finite dimensional inner product space V.

(a) Suppose that 3 is an ordered basis for V such that [T] 8 is an upper
triangular matrix. Let v be the orthonormal basis for V obtained
by applying the Gram-Schmidt orthogonalization process to 8 and
then dividing each resulting vector by its length. Prove that [T],
is an upper triangular matrix.

(b) Use Exercise 32 of Section 5.4 and (a) above to obtain an alternate
proof of Schur’s theorem.

6.5 UNITARY AND ORTHOGONAL OPERATORS
AND THEIR MATRICES

In this section we continue our analogy between complex numbers and linear
operators. Recall that the adjoint of a linear operator acts similarly to the
conjugate of a complex number (see, for example, Theorem 6.11). A complex
number z has length 1 if 2Z = 1. In this section we study those linear
operators T on an inner product space V such that TT* = T*T = . We
will see that these are precisely the linear operators that “preserve length” in
the sense that || T(x)|| = [|z|| for all z € V. As another characterization, we
prove that on a finite-dimensional complex inner product space these are the
normal operators whose eigenvalues all have absolute value 1.

In past chapters we were interested in studying those functions that pre-
serve the structure of the underlying space. In particular, linear operators
preserve the operations of vector addition and scalar multiplication, and iso-
morphisms preserve all the vector space structure. It is now natural to con-
sider those linear operators T on an inner product space that preserve length.
We will see that this condition guarantees, in fact, that T preserves the inner
product.

Definitions. Let T be a linear operator on an inner product space V
(over F). If || T(z)|| = ||z|| for all z € V, we call T a unitary operator if
F = C and an orthogonal operator if F = R.

It should be noted that in the infinite-dimensional case, an operator that
satisfies the norm requirement above is generally called an isometry. If, in
addition, the operator is onto (the condition guarantees one-to-one), then the
operator is called a unitary or orthogonal operator.

Clearly, any rotation or reflection in R? preserves length and hence is an
orthogonal operator. We will study these operators in much more detail in
Section 6.10.
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Example 1

Let h € H, satisfy |h(z)] = 1 for all z. Define the linear operator T on H by
T(f) = hf. Then

2w
ITAIE = s = 5= [ he) OR@R de = 1]

since |h(t)|2 = 1 for all t. So T is a unitary operator. [

Theorem 6.18. Let T be a linear operator on a finite-dimensional inner
product space V. Then the following are equivalent.

(8) TT*=T*T=1.

(b) (T(2), T(y)) = (z,y) forall z,y € V.

(c) If B is an orthonormal basis for V, then T(08) is an orthonormal basis -
forV. :

(d) There exists an orthonormal basis 38 for V such that T(8) is an orthonor-
mal basis for V.

(&) Tl = ||| for all z € V.

Thus all the conditions above are equivalent to the definition of a uni-
tary or orthogonal operator. From (a) it follows that unitary or orthogonal
operators are normal.

Before proving the theorem, we first prove the following lemma. Compare
this lemma to Exercise 10(b) of Section 6.4.

Lemma. Let U be a self-adjoint operator on a finite-dimensional inner
product space V. If (z,U(z)) =0 for all z € V, then U = Ty.

Proof. By either Theorem 6.16 or 6.17 we may choose an orthonormal
basis 8 for V consisting of eigenvectors of U. If z € 8, then U(z) = Az for

some A. Thus _
0 = (z,U(z)) = (z, M’{= Az, )5
50 X = 0. Hence U(z) = 0 for all z € 3, and thus U = Ty. [ |

Proof of Theorem 6.18. We prove first that (a) implies (b). Let z,y € V.
Then (z,y) = (T*T(z),y) = (T(z), T(y))-

Second, we prove that (b) implies (c). Let 8 = {v1,...,vn} be an or-
thonormal basis for V, so T(8) = {T{v1),..., T(va)}. Now (T(v;), T(v;)) =
(vi,v;) = 0;;. Therefore T(3) is an orthonormal basis for V.

That (c) implies (d) is obvious.

Next we prove that (d) implies (e). Let z € V, and let 8 = {vq,...,v,}.

Now
n
T = E a;V;
i=1
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for some scalars a;, and so

3

n

- n n
lell® = <Z aiviazajvj> = Zzaia_j<vi,vj)
i=1 7j=1

i=1 j=1

n n n
=33 oz = 3o
i=1 j=1 i=1
since f is orthonormal.
Applying the same manipulations to

T(z) = iaiT(vi)
i=1

and using the fact that T(8) is also orthonormal, we obtain
IT@)I* =" lail®.
i=1
Hence | T(z)|| = [|z[.
Finally, we prove that (e) implies (a). For any z € V, we have

(@ 2) = ||zl|* = I T@)[* = (T(2), T(2)) = (&, T*T(2)).

So (z,(I = T*T)(z)) = O for all z € V. Let U = | —T*T; then U is self-adjoint,
and (z,U(z)) = 0 for all z € V. So by the lemma we have Ty = U = | — T*T,
and hence T*T = |. Since V is finite-dimensional, we may use Exercise 8 of
Section 2.4 to conclude that TT* = I. | |

It follows immediately from the definition that every eigenvalue of a uni-
tary or orthogonal operator has absolute value 1. In fact, even more is true.

Corollary 1. Let T be a linear operator on a finite-dimensional real
inner product space V. Then V has an orthonormal basis of eigenvectors of
T with corresponding eigenvalues of absolute valué 1 if and only if T is both
self-adjoint and orthogonal.

Proof. Suppose that V has an orthonormal basis {v1,...,v,} such that
T(vs) = A\jv; and || = 1 for all i. By Theorem 6.17 T is self-adjoint. Thus
(TT)vi) = T(ivs) = v = Mv; = v; for each 4. So TT* =, and again
by Exercise 8 of Section 2.4, T is orthogonal by Theorem 6.18(a).

If T is self-adjoint, then by Theorem 6.17 we have that V possesses an
orthonormal basis {vy,...,v,} such that T(v;) = A\; for all i. If T is also
orthogonal, we have

Adl - fvll = I Asvill = | T(wa)ll = llwill;
so |Aj| =1 for everyi. [
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Corollary 2. Let T be a linear operator on a finite-dimensional complex
inner product space V. Then V has an orthonormal basis of eigenvectors of T
with corresponding eigenvalues of absolute value 1 if and only if T is unitary.

Proof. The proof is similar to the proof of Corollary 1. [

Example 2

Let T: R? — R? be a rotation by 6, where 0 < 8 < . It is clear geometrically
that T “preserves length”, that is, that || T(z)|| = ||z|| for all z € R2, The
fact that rotations by a fixed angle preserve perpendicularity not only can-
be seeh geometrically but now follows from (b) of Theoreom 6.18. Perhaps
the fact that such a transformation preserves the inner product is not so
obvious geometrically; however, we obtain this fact from (b) also. Finally, an

inspection of the matrix
cosf@ —sinf
sin @ cosf

reveals that T is not self-adjoint for the given restriction on 8. As we men-
tioned earlier, this fact also follows from the geometric observation that T
has no eigenvectors and from Theorem 6.15. It is seen easily from the matrix
above that T* is the rotation by —6. |

‘We now examine the matrices that represent unitary and orthogonal trans-
formations.

Definitions. Let A be a square matrix with entries in an arbitrary field
F. A is called an orthogonal matrix if AtA = AA'=1. fF=C or R
and A*A = AA* = I, then A is called a unitary matrix.

Since for a real matrix A we have A* = Xt, a real unitary matrix is also
orthogonal. In this case we call A orthogonal rather than unitary.

Note that the condition AA* = I is equivalent to the statement that the
rows of A form an orthonormal basis for F™ because

§ij = Iy = (AA*)i; = Y Au(A"es = > Awdj,
o k=1 k=1

and the last term represents the inner product of the ith and jth rows of A.
A similar remark can be made about the columns of A and the condition
A*A=1.
It also follows from the definitiori above that a linear operator T on an
inner product space V is unitary [orthogonal] if and only if [T]g is unitary
[orthogonal] for some orthonormal basis 8 for V.
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Example 3
From Example 2 -the matrix

cosf —sinf
sinf  cosf
is clearly orthogonal. Omne can easily see that the rows of the matrix form

an orthonormal basis for R?. Similarly, the columns of the matrix form an
orthonormal basis for R2. |}

We know that for a complex normal [real symmetric] matrix A there is an
orthonormal basis 5 for F™ consisting of eigenvectors of A. Hence A is similar
to a diagonal matrix D. By Theorem 5.1 the matrix  whose columns are
the vectors in A is such that D = @1 AQ. But since the columns of Q are an
orthonormal basis for F”, it follows that  is unitary [orthogonal]. In this case
we say that A is unitarily equivalent [orthogonally equivalent] to D.
It is easily seen (see Exercise 17) that this relation is an equivalence relation
on Myxs(C) [Mpxn(R)]. More generally, A and B are unitarily equivalent
[orthogonally equivalent] if and only if there ezists a unitary [orthogonall
matriz P such that A = P*BP.

The preceding paragraph has proved half of each of the following two
theorems.

Theorem 6.19. Let A be a complex n X n matrix. Then A is normal if
and only if A is unitarily equivalent to a diagonal matrix.

Proof. By the remarks above we need only prove that if A is unitarily
equivalent to a diagonal matrix, then A is normal.

Suppose that' A = P*D P, where P is a unitary matrix and D is a diagonal
matrix. Then

AA* = (P*DP)(P*DP)* = (P*DP)(P*D*P) = P*DID*P = P*DD*P.

Similarly, A*A = P*D*DP. Since D is a diagonal matrix, however, we have
DD* = D*D. Thus AA*=A*4A. |

Theorem 6.20. Let A be a real n x n matrix. Then A is symmetric if
and only if A is orthogonally equivalent to a real diagonal matrix.

Proof. The proof is similar to the proof of Theorem 6.19 and is left as an
exercise. ||

Example 4
Let

i

I
SN
[N
N

Sec. 6.5 Unitary and Orthogonal Operators and Their Matrices 363

Since A is symmetric, Theorem 6.20 tells us that A is orthogonally equivalent
to a diagonal matrix. We now find an orthogonal matrix P and a diagonal
matrix D such that P*AP = D.

To find P, we first obtain an orthonormal basis of eigenvectors. It is easy
to show that the eigenvalues of A are 2 and 8. The set {(~1,1,0), (~1,0, 1}
is a basis for the eigenspace corresponding to 2. Because this set is not
orthogonal, we apply the Gram-Schmidt process to obtain the orthogonal
set {(~1,1,0),—%(1,1,-2)}. The set {(1,1,1)} is a basis for the eigenspace
corresponding to 8. Notice that (1,1, 1) is orthogonal to the preceding two
vectors as predicted by Theorem 6.15(d). Taking the union of these two bases.
and normalizing the vectors, we obtain the following orthonormal basis for
R3 consisting of eigenvectors of A:

(1 1 1
{E(—I, 1,0), 2=(1,1,-2), 7?_)(1, 1, 1)} .

Thus one possible choice is

=1 1 1
Vi V6 V3 2 00
P=|% 7% 75| and D={0 2 0|. 1
0 =2 L 0 0 8
75 V3

Because of Schur’s theorem (Theorem 6.14), the next result is immediate.
As it is the matrix form of Schur’s theorem, we also refer to it as Schur’s
theorem.

Theorem 6.21 (Schur). Let A € My,»,,(F) be a matrix whose charac-
teristic polynomial splits over F.
(a) If F = C, then A is unitarily equivalent to a complex upper triangular
matrix. '
(b) If F = R, then A is orthogonally equivalent to a real upper triangular
matrix. ‘

Rigid Motions in the Plane

The purpose of this application is to characterize the so-called rigid mo-
tions of R%. One may think intuitively of such a motion as a transformation
that does not affect the shape of a figure under its action, hence the name
rigid. For example, reflections, rotations, and translations (x = ©+ z0) are
examples of rigid motions. In fact, we prove that every rigid motion is a com-
posite of these three transformations. The general situation in R™ is handled
in Section 6.10 and uses the results obtained here.
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Definition. Let V be a real inner product space. A function f: V — V
is a rigid motion if

£ (@) = fIl = ll= =yl
forallz,y € V.

Although we prove a number of general results about rigid motions, our
main result is in the setting of R2.

Theorem 6.22. Every rigid motion in R? is one of two types: a rotation
(about the origin) followed by a translation, or a reflection (about the z-axis)
followed by a rotation (about the origin) followed by a translation.

Throughout we assume that f Is a rigid motion on a real inner pfoduct
space V and that T: V — V is defined by

T(z) = f(z) - f(0)
for all z € V.

Lemma 1. Forallz,yeV
(a) @)l = [l
(b) IT(2) = Tl = ll= - yl;
(©) (T(2), T(¥)) = (=, v);
(d) T is linear.
Hence T is an orthogonal operator.

Proof. (a) Because f is a rigid motion, we have

IT@) = 11f(z) - £(O)l = ll= - 0lf = |||

forallz e V.
(b) For all z,y € V we have

IT(@) = Tl = I(f(=z) — £(0)) - (f() = FOONI
= If (@) - f@ll = llz -yl

(c) For all z,y € V we have

IT(2) = T@)I* = IT@)I* - 2(T(=), T) + ITW)I

and
lz -yl = llzl* - 2 (z,¥) + ly]>.

(c) now follows from (&) and (b) and the two equations above.
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(d) For all z,y € V and a € R, we have by (b), (a), and (c):
IT(z + ay) — T(z) — aT(@)|? = [[T(z + ay) — T(2)] - aT®)|?
=Tz +ay) - T@)|* + I TW)I* ~ 20 (T(2 + ay) — (=), T())
=I(z + ay) ~ 2|I* + a*|ly||* - 2a[(T(z + ay), T(¥)) - (T(=), T())]
=a’yll* + ®lyll* - 2a[{z + ay, v) — (2,v)]
2a?lyll* — 2a[(z,y) + allyll* ~ {z,y)]
=0. 1

Lemma 2. The function f is an orthogonal operator followed by a”
translation.

Il

Proof. By Lemma 1, T is an orthogonal operator. If-we define U: V — V
by U(z) =z + f(0) for all z € V, then U is a translation. So for any z,

UT(2) =U(T(z)) = T(z) + £(0) = f(=). NI
Lemma 3. IfV is finite-dimensional, then det(T) = +1.

Proof. Let 3 be an orthonormal basis for V. Then by Theorem 6.10 and
Exercise 16 of Section 6.3, we have

det(T*) = det([T*]g) = det([T]3) = det([T]s) = det(T).

Because T is orthogonal by Lemma. 1(a), we have that | = T*T by Theo-
rem 6.18(a). So

1 = det(l) = det(T*T) = det(T*)- det(T) = det(T) det(T) = det(T)%. Wl

Lemma 4. Suppose that V = R? and that B is the standard ordered
basis for R%. Then there exists an angle § (0 < 8 < 27; such that

mo= (528 58) it dem =

and
sin @

cos . _
[Tls = (sin&‘ ~cos9) if det(T) = —1.

Proof. Let A = [T|g. Because T is an orthogonal operator by Lemma 1, we
conclude from Theorem 6.18(c) that T(8) = {T(e1), T(e2)} is an orthonormal
basis for R®. Because T(e;) is a unit vector, there exists an angle § (0 <
0 < 2m) such that T(ey) = (cosf,sinf). Since T(ez) is a unit vector and is
orthogonal to T(e;), there are only two possible choices for T(es). Either

T(ez) = (—sinf,cosf) or T(ez) = (sinf, —cos¥).

If det(T) = 1, we must have the first case; if det(T) = —1, we must have the
second case. [
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Proof of Theorem 6.22. By Lemma 2 we need only analyze the orthogonal
operator T. By Lemma 3 det(T) = +£1. By Lemma 4, if det(T) = 1, we see
that T is a rotation by 6. If det(T) = —1, then using

[Ts = 6 sinf\ _ fcosf —sinf) (1 O
A= \sin@ —cos@#)  \sinh cosf/\0 —1)°
we have that T is a reflection about the z-axis followed by a rotation. 1

Conic Sections

As an application of Theorem 6.20, we consider the quadratic equation

az® + 2bzy + cy® +dz +ey + f = 0. (2)
For special choices of the coefficients in (2), we obtain the various conic
sections. For example, if a = c =1, b=d=¢e¢ =0, and f = -1, we

obtain the circle 2% + y> = 1 with center at the origin. The remaining
conic sections, namely, the ellipse, parabola, and hyperbola, are obtained
by other choices of the coefficients. Each of the preceding examples is easy to
graph by the method of completing the square because the zy-term is absent.
For example, the equation 2z + 2z + y% + 4y + 2 = 0 may be rewritten as
(z 4+ 1)% + (y + 2)? = 3, which describes a circle with center at (—1,—2) in
the zy-coordinate system and radius v/3. If we consider the transformation
of coordinates (z,y) — (2/,v’), where 2’ = z + 1 and ¥ = y + 2, then our
equation simplifies to (z')? + (y’)2 = 3. This change of variable allows us to
climinate the z- and y-terms.

We now concentrate solely on the elimination of the zy-term. To accom-
plish this, we consider the expression

az? + 2bzy + cy? (3)

which is called the associated quadratic form of (2). Quadratic forms are
studied in more generality in Section 6.7.

If we let
A=<“ b) and X=<”>,
b ¢ y

then (3) may be written as X*AX = (AX, X). For example, the quadratic
form 322 + 4zy + 6y? may be written as

. (3 2
x (2 2)x
The fact that A is symmetric is crucial in our discussion. For, by Theo-

rem 6.20, we may choose an orthogonal matrix P and a diagonal matrix D
with real diagonal entries A\; and Ay such that PPAP = D. Now define

'
x=(7)
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by X' = P*X or, equivalently, by PX’' = PP*X = X. Then

X*AX = (PX')'A(PX') = X" (PP AP)X' = X"' DX’ = A1 (z')? + Ao(y/)2.
Thus the transformation (x,y) — (z’,y’) allows us to eliminate the zy-term
in (3) and hence in (2).

Furthermore, since P is orthogonal, we have by Lemma 3 to Theorem 6.22
(with T = Lp) that det(P) = £1. If det(P) = —1, we may interchange the
columns of P to obtain a matrix . Because the columns of P form an
orthonormal basis of eigenvectors of A, the same is true of the columns of Q.

Therefore,
tany_ (A2 O
QR AQ = ( 0 A/

Notice that det(Q) = —det(P) = 1. So, if det(P) = —1, we can take Q
for our new P; consequently, we assume that det(P) = 1. By Lemma 4 to
Theorem 6.22 (with T = Lp), it follows that matrix P represents a rotatiorn.

In summary, the zy-term in (2) may be eliminated by a rotation of the
z-axis and y-axis to new axes =’ and v’ given by X = PX’', where P is an
orthogonal matrix and det(P) = 1. Furthermore, the coefficients of (z')? and
(v')? are the eigenvalues of

a b
A= ( ‘ C) .

_This result is a restatement of a result known as the principal azis theorem
for R2, The arguments above, of course, are easily extended to quadratic
equations in n variables. For example, in the case n = 3, by special choices
of the coefficients, we obtain the quadratic surfaces—the elliptic cone, the
ellipsoid, the hyperbolic paraboloid, etc. -~

As an example, consider the quadratic equation

222 — 4oy + 5y% — 36 =0,

for which the associated quadratic form is 2z? — 4zy +- 5y%. In the notation

above 0
2 —
=(3 7))

so that the eigenvalues of A are 1 and 6 with associated eigenvectors

) e ()

As expected (from Theorem 6.15(d)), these vectors are orthogonal. The cor-
responding orthonormal basis of eigenvectors
2 =1
s | E| |7
L 2
v5/ \vB
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Figure 6.3

determines new axes ' and ¢’ as in Figure 6.3. Hence if
=1

L)
2 vE\l 2)7

tip_ (10
PM_QG.

Under the transformation X = PX' or

v
Shsk
5

then

2 1 .
= =7 —_
1

2 .
= —:1)/ + ==
Y V5 \/gy ’
we have the new quadratic form (z')? + 6(y')%2. Thus the original equation
2z? ~ 4zy + 5y? = 36 may be written in the form (z’)? + 6(y’)? = 36 relative
to a new coordinate system with the z’- and y'-axes in the directions of the

first and second elements of G, respectively. It is clear that this equation
represents an ellipse (see Figure 6.3). Note that the matrix P above has the

form
cos@ —sinf
sin 8 cosf )’

1 2~ 96.6°. So P is the matrix representation of a rotation

where 6 = cos™

of R? through the angle #. Thus the change of variable X = PX’ can be ac-
complished by this rotation of the z- and y-axes. There is another possibility
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for P, however. If the eigenvector of A corresponding to the eigenvalue 6 is
taken to be (1, —2) instead of (—1,2), then we obtain the matrix

12
V5 VB
=2 1
Vs V5

which is the matrix representation of a rotation through the angle § =

sin~? —% ~ —63.4°. This possibility produces the same ellipse as the

one in Figure 6.3 but interchanges the names of the z'- and y’-axes.

EXERCISES

1. Label the following statements as being true or false. Assume that the
underlying inner product spaces are finite-dimensional.

(a) Every unitary operator is normal.

(b) Every orthogonal operator is diagonalizable.

(c) A matrix is unitary if and only if it is invertible.

(d) If two matrices are unitarily equivalent, then they are also similar.
(e) The sum of unitary matrices is unitary.

(f) The adjoint of a unitary operator is unitary.

(g) If T is an orthogonal operator on V, then [T]s is an orthogonal
" matrix for any ordered basis 8 for V.

(h) If all the eigenvalues of a linear operator are 1, then the operator

must be unitary or orthogonal. ~
(i) A linear operator may preserve the norm but not the innér product.

2. For each of the following matrices A, find an orthogonal or unitary
matrix P and a diagonal matrix D such that P*AP = D.

(@) @ ?) (b) ((1" ‘3) (©) (3 2 3;31-)

0 2 2 2 1 1
@2 02| (121
1 1 2

2 2 -0/

3. Prove that the composite of unitary [orthogonal] operators is unitary
[orthogonal].

4. For z € C define T,: C = C by T,(u) = zu. Characterize those z for
which T, is normal, self-adjoint, or unitary.

5. Which of the following pairs of matrices are unitarily equivalent?
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(b) (2 (1)) and

L Ll el
O W=
S——

(a) (é (1)) and <(1) é)

010 2 00
(¢} {-1 0 0 and 0 -1 0
0 01 0 00
010 10 0
(@ |-1 0 0] ad {0 & 0
0 01 0 —1
110 1 00
(e) {0 2 2 and 0 20
0 0 3 0 0 3

Let V be the inner product space of complex-valued continuous func-
tions on [0, 1] with the inner product

1 .
(f,9) =/0 F)g(®) dt. -

Let h € V, and define T: V — V by T(f) = hf. Prove that T is a
unitary operator if and only if |A(t)| =1for 0 <¢ < 1.

Prove that if T is a unitary operator on a finite-dimensional inner prod-
uct space, then T has a unitary square root; that is, there exists a

‘unitary operator U such that T = U2,

Let T be a self-adjoint linear operator on a finite-dimensional inner
product space V. Prove that (T+41)(T —¢1)~! is unitary using Exercise 9
of Section 6.4.

Let U be a linear operator on a finite-dimensional inner product space
V. If ||U(z)|| = ||z|| for all z in some orthonormal basis for V, must U
be unitary? Prove or give a counterexample.

Let A be an n x n real symmetric or complex normal matrix. Prove
that

n

tr(A) =) A and tr(4*4) =) |\[%
i=1 i=1

where the A;’s are the (not necessarily distinct) eigenvalues of A.
Find an orthogonal matrix whose first row is (3, %, 2).

Let A be an n x n real symmetric or complex normal matrix. Prove
that

det(4) = J] A,
i=1

where the );’s are the (not necessarily distinct) eigenvalues of A.

Sec
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19.
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Suppose that A and B are diagonalizable matrices. Prove or disprove
that A is similar to B if and only if A and B are unitarily equivalent.

Let U be a unitary operator on an inner product space V, and let W be
a finite-dimensional U-invariant subspace of V. Prove

(a) UW)=Ww;

(b) W+ is U-invariant.

Contrast (b) with Exercise 15.

Find an example of a unitary operator U on an inner product space and
a U-invariant subspace W such that W+ is not U-invariant. -

Prove that a matrix that is both unitary and upper triangular must be
a diagonal matrix.

Show that “is unitarily equivalent to” is an equivalence relation on
Mexn(C).

Let W be a finite-dimensional subspace of an inner product space V.
By Theorem 6.7 and the exercises of Section 1.3, V = W @ WL, Define
U:V =V by U(v; + v2) = v1 — vg, where v; € W and v, € WL, Prove
that U is a self-adjoint unitary operator.

Let V be a finite-dimensional inner product space. A linear operator U
on V is called a partial isometry if there exists a subspace W of V such
that ||U(z)|| = ||z|| for all z € W and U(z) = 0 for all z € W-. Observe
that W need not be U-invariant. Suppose that U is such an operator

and {v1,...,v} is an orthonormal basis for W. Prove the following.
(a) (U(z),U(y)) = (z,y) for all 2,y € W. Hint: Use Exercise 20 of
Section 6.1. :

(b) {U(v1),...,U(wg)} is an orthonormal basis for R(U).

(c) There exists an orthonormal basis vy for V such that the first
k columns of [U], form an .orthonormal set and the remaining
columns are zero.

(d) Let {wy,...,w;} be an orthonormal basis for R(U)L. Let 8 =
{U(v1),...,U(vk),w1,...,w;}. Then B is an orthonormal basis
for V.

(e) Let T béthe linear operator on V that satisfies T(U(v;)) = v;
(1 <i<k)and T(w;) = 0 (1 <4 < 7). Prove that T is well-
defined and that T = U*. Hint: Show that (U(z),y) = (=, T(y))
for all z,y € B. There are four cases.

(f) Prove that U* is a partial isometry.

This exercise is continued in Exercise 9 of Section 6.6.
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Let A and B be n x n matrices that are unitarily equivalent.

(a) Provethat tr(A*A) = tr(B*B).
(b) Use (a) to prove that

n n
ST 142 =D IByl*

3,j=1 i,j=1

Find new coordinates z',y' so that the following quadratic forms can
be written as A1 (z')% + A2(y')2. I

(a) 22+ dzy + y?
(b) 222 + 2zy + 22
(c) 2 — 122y — 49>
(d) 322+ 2zy + 3y?
(e) z%—2zy+y?

Consider the expression X*AX, where X* = (z,y, z) and A is as defined
in Exercise 2(e). Find a change of coordinates z’,3,2’' so that the
expression above can be written in the form A1 (2')? + A2 (y’)? + As(2')2.

Let wy, ..., w, be linearly independent vectors in F™, and let u3,...,un
be the orthogonal vectors obtained from w,,...,w, by the Gram-
Schmidt orthogonalization process. Let vi,...,v, be the orthonormal

basis obtained by setting

Vg = ———Ug for all k.
[|k]

(a) Solving (1) in Section 6.2 for wy in terms of vy, show that

k—1
we = |lugllos + Y (we,v)v; (1< k<n).
i=1
(b) Let A and Q denote the n x n matrices in which the kth columns
are wy and v, respectively. Define R € My xn(F) by
luslt 5=k
Rjk = (wk,vj) ifj<k
0 ifj>k.
Prove A = QR.
(¢) Compute Q and R as in (b) for the 3 x 3 matrix whose columns are

the vectors w;, wa, ws, respectively, in Example 4 of Section 6.2.
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24.

25.

26.

(d) Since @ is unitary [orthogonal] and R is upper triangular in (b),
we have shown that every invertible matrix is the product of a uni-
tary [orthogonal] matrix and an upper triangular matrix. Suppose
that A € My, (F) is invertible and A = Q1 R; = Q,R,, where
Q1,Q2 € Mpxn(F') are unitary and Ry, Ry € Mpxn(F) are upper
triangular. Prove that D = RoRT lisa unitary diagonal matrix.
Hint: Use Exercise 16.

(e) The QR factorization described in (b) provides an orthogonaliza-
tion method for solving a linear system Az = b when A is in-
vertible. Decompose A to QR, by the Gram-Schmidt process or
other means, where @ is unitary and R is upper triangular. Then
QRz = b, and hence Rz = Q*b. This last system can be easily
solved since R is upper triangular.

At one time, because of its great stability, this method for
solving large systems of linear equations with a computer was be-
ing advocated as a better method than Gaussian elimination even
though it requires about three times as much work. (Later, how-
ever, J. H. Wilkinson showed that if Gaussian elimination is done
“properly,” then it is nearly as stable as the orthogonalization
method.)

Use the orthogonalization method and (c) to solve the system

T1 + 2x9 + 223 = 1
T +2z3 = 11
T2+ z3=—1.

Suppose that 3 and 7 are ordered bases for an n-dimensional real [com-
plex| inner product space V. Prove that if Q is an orthogonal [unitary]
n X n matrix that changes y-coordinates into S-coordinates, then 3 is
orthonormal if and only if vy is orthonormal. '

Let V be a finite-dimensional complex [real] inner product space and let
u be a unit vector in V. Define the Householder operator H,: V — V
by Hu(z) =z — 2 (z,u) u for all z € V. Prove the following.

(a) H, is linear.

(b) Hyu(z) =z if and only if z is orthogonal to u.

(c) Hy(u) =~u.

(d) Hi = H, and HZ = |, and hence H, is a unitary [orthogonal]

operator on V.
(Note: If V is a real inner product space, then in the language of Sec-
tion 6.10, H,, is a “reflection.”)

Let V be a finite-dimensional inner product space over F. Let = # y be
nonzero vectors in V such that [z|| = ||y]|.
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(a) If F = C, prove that there exists a unit vector v in V and a
complex number § with |#| = 1 such that H,(z) = 6y (as defined
in Exercise 25). Hint: Choose 8 so that (z,8y) is real and set

“= oy Y
(b) If F = R, prove that there exists a unit vector u in V such that
Hy(z) =y.

6.6 ORTHOGONAL PROJECTIONS
AND THE SPECTRAL THEOREM

In this section we rely heavily on Theorems 6.16 and 6.17 to develop an elegant
representation of a normal operator (if F = C) or a self-adjoint operator (if
F = R) T on a finite-dimensional inner product space. We prove that such
an operator can be written in the form A\yT1 + -+ 4+ Ay Tk, where A1, ..., Ag
are the distinct eigenvalues of T and T1,..., Tk are orthogonal projections.
We must first develop some results about these special projections.

We assume that the reader is familiar with the results about direct sums
developed at the end of Section 5.2. The special case where V is a direct sum
of two subspaces is considered in the exercises of Section 1.3.

Recall from the exercises of Section 2.1 that if V = W; @ W5, then a linear
operator T on V is the projection on Wy along W, if whenever z = x; + 3,
with z; € W; and 25 € W5, we have T(z) = z;. By Exercise 24 of Section 2.1,
we have

RM=W;={zeV:T(z) =z} and N(T)=W-.

So V = R(T) & N(T). Thus there is no ambiguity if we refer to T as a
“projection on W;” or simply as a “projection.” In fact, it can be shown
(see Exercise 16 of Section 2.3) that T is a projection if and only if T = T2,
Because V = W; ® Wy = W; ® W3 does not imply that Wy = W3, we see that
W; does not uniquely determine T. For an orthogonal projection T, however,
T is uniquely determined by its range.

Definition. Let V be an inner product space, and let T: V — V be a
projection. We say that T is an orthogonal projection if R(T)* = N(T)
and N(T)* = R(T).

Note that by Exercise 12(c) of Section 6.2 if V is finite-dimensional, we
need only assume that one of the conditions above holds. For example, if
R(T)* = N(T), then R(T) = R(T)*+ = N(T)*.

Now assume that W is a finite-dimensional subspace of an inner product
space V. In the notation of Proposition 6.6, we can define a function T: V — V
by T(y) = u. It is easy to show that T is an orthogonal projection on W.
We can say even more—there exists exactly one orthogonal projection on
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W. For if T and U are orthogonal projections on W, then R(T) =W =R(U).
Hence N(T) = R(T)+ = R(U)* = N(U), and since all projections are uniquely
determined by their range and null space, we have that T = U. We call T the
orthogonal projection on W.

To understand the geometric difference between an arbitrary projection
on W and the orthogonal projection on W, let V = R? and W = span{(1,1)}.
Define U and T as in Figure 6.4, where T(v) is the foot of a perpendicular
from v on the line y = z and U(ai1,a2) = (a1,a1). Then T is the orthogonal
projection on W, and U is a projection on W that is not orthogonal. Note
that v — T(v) € W, whereas v — U(v) ¢ W-L.

-

v/ T(v)

1 Uv)

Figure 6.4

From Figure 6.4 we see that T(v) is the “best approximation in W to v”;
that is, if w € W, then [Jw — v|| > ||T(v) — v||. In fact, this approximation
property characterizes T. These results follow irnmediately from the coroliary
to Proposition 6.6.

As an application to Fourier analysis, recall the inner product space H and
the orthonormal set S in Example 9 of Section 6.1. Define a trigonometric
polynomial of degree 7 to be a function g € H of the form

n

gy = Y aifit)= Y aze,

j=-n j=—n

where a,, or a_, is nonzero.

Let f € H. We show that the best approximation to f by a trigonometric
polynomial of degree less than or equal to n is the trigonometric polynomial
whose coefficients are the Fourier coefficients of f relative to the orthonormal



376 Chap. 6 Inner Product Spaces

set §. For this result, let W = span({f;: |j| < n}), and let T be the orthog-
onal projection on W. The corollary to Proposition 6.6 tells us that the best
approximation to f by an element of W is

n

T(F) = > (f ) fi-

i=—n

An algebraic characterization of orthogonal projections follows in the next
theorem.

Theorem 6.23. Let V be an inner product space, and let T be a linear
operator on V. Then T is an orthogonal projection if and only if T has an
adjoint T* and T2 =T = T*.

Proof. Suppose that T is an orthogonal projection. Since T2 = T because
T is a projection, we need only show that T* exists and T = T*. Now
V = R(T) ® N(T) and R(T)* = N(T). Let =,y € V. Then z = z; + 2 and
y = y1 + Yo, where z1,y1 € R(T) and z3,y2 € N(T). Hence

(IB,T('!./)) = <$1 + 3_72ay1) = (wlayl) + <~T2,y1> = ($1>y1>
and
(T(z),y) = {@1,91 + y2) = (=1, 41) + (21, ¥2) = (T1,91) -

" So {z, T(y)) = (T(z),y) for all z,y € V, and thus T* exists and T = T*.

Now suppose that T2 = T = T*. Then T is a projection by Exercise 16 of
Section 2.3, and hence we must show that R(T) = N(T)* and R(T)* = N(T).
Let z € R(T) and y € N(T). Then z = T(z) = T*(z), and so

(z,y) = (T"(2),y) = (z, T(y)) = (z,0) = 0.

Therefore, z € N(T)+, from which it follows that R(T) C N(T)*.
Let y € N(T)Y. We must show that y € R(T), that is, T(y) = y. Now

ly —T@I* = (- T,y —T))
=(y,y—T®) —(TW),y —T)).

Since y — T(y) € N(T), the first term must equal zero. But also

(TWy—TyN =@ T y-TW) =@ Ty - T(y)) ={y,0)=0.

Thus y — T(y) = 0; that is, y = T(y) € R(T). Hence R( )=

Using the results above, we have that R(T): = N(T ) ( ) (by
Exercise 12(b) of Section 6.2). Now suppose that = € R(T )*. For any YEV,
we have (T(z),y) = (£, T*(¥)) = {2, T(y)) = 0. So T(z) = 0, and thus

z € N(T). Hence R(T)* = N(T).
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Let V be a finite-dimensional inner product space, W be a subspace of V,
and T be the orthogonal projection on W. We may choose an orthonormal
basis 8 = {v1,...,v,} for V such that {v1,...,vx} is a basis for W. Then
[T]g is a diagonal matrix with ones as the first k diagonal entries and zeros
elsewhere. In fact, [T|s has the form

Iy O
0O, 0O3)°
If U is any projection on W, we may choose a basis v for V such that [U]., has

the form above; however + is not necessarily orthonormal.
We are now ready for the principal theorem of this section.

Theorem 6.24 (The Spectral Theorem). Suppose that T is a linear
operator on a finite-dimensional inner product space V over F with the dis-
tinct eigenvalues Ay,..., A\ . Assume that T is normal if F = C and that T
is self-adjoint if F = R. For each i (1 <i < k) let W; be the eigenspace of T
corresponding to the eigenvalue X;, and let T; be the orthogonal projection
on W;. Then the following are true.

(8) V=W & & W.

(b) If W] denotes the direct sum of the subspaces W, j # i, then W} = W!.
(C) TiT]‘ = (57;3'Ti for 1 S 2,_7 S k.

() I=T1 4+ Tg.

(e) T=XT1++ ATk

Proof. (a) By Theorems 6.16 and 6.17, T is diagonalizable; so
V=W;&-- & W

by Theorem 5.16.

(b) If z € W; and y € W, for some i # j, then (z,y) = 0 by Theorem
6.15(d). It follows easily from this that W, C W;-. Now from (a) we have
that

dim(W)) = Zdlm dlm(V) — dim(W;).
I

On the other hand we have that dim(W;) = dim(V) — dim(W;) by Theo-
rem 6.7(c). Hence Wi = W}, proving (b).- :

(c) The proof of {c) is left as an exercise.

(d) Since T; is the orthogonal projection on W;, we have from (b) that
N(T:) = R(T;)* = Wi = W.. Hence for z € V we have that z = z; +- - -+,
where z; € W; and T,(z) = z;, proving (d).

{e) For z € V write z = 21 + - -+ + z, where z; € W;. Then

T(m) = T(afl) + ...+ T(.’I}k) =Xz + o+ ATk
=XTi(z)+ -+ MTe(z) = (MTa+ -+ X Te)(2). ]
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The set {A1,...,Ax} of eigenvalues of T is called the spectrum of T,
the sum | = Ty + «-- + Ty, in (d) is called the resolution of the identity
operator induced by T, and the sum T = A T1+4---+ ATy in (e) is called
the spectral decomposition of T. Since the distinct eigenvalues of T are
uniquely determined (up to order) by the subspaces W; (and hence by the
orthogonal projections T;), the spectral decomposition of T is unique.

With the notation above, let 8 be the union of orthonormal bases of the
W;'s and let m; = dim(W;). (Thus m; is the multiplicity of A;.) Then [T]g
has the form

MIm, O - O
0 delp, - O
o) Io) oo eI,

that is, [T]g is a diagonal matrix in which the diagonal entries are the eigen-
values \; of T, and each ); is repeated m; times. If ATy 4+ -+ + ATk
is the spectral decomposition of T, then it follows (from Exercise 7) that
g(T) = g(A1)T1 + -+ + g(A) Ty for any polynomial g. This fact is used
below.

We now list several interesting corollaries of the spectral theorem; many
more results are found in the exercises. For what follows we assume that T
is a linear operator on a finite-dimensional inner product space V over F'.

Corollary 1. If F = C, then T is normal if and only if T* = g(T) for
some polynomial g.

Proof. Suppose first that T is normal. Let T = A;T; +--- + Ax T be the
spectral decomposition of T. Taking the adjoint of both sides of the equation
above, we have T* = X\; Ty +- -+ T, since each T; is self-adjoint. Using the
Lagrange interpolation formula (see Section 1.6), we may choose a polynomial
g such that g(\;) = A; for 1 <i < k. Then

9(T) =g(M) T+ + g(Me) Tk
=T+ + Tk
=T"
Conversely, if T* = ¢(T) for some polynomial g, then T commutes with

T* since T commutes with every polynomial in T. So T is normal. [l

Corollary 2. If F = C, then T is unitary if and only if T is normal and
A\ =1 for every eigenvalue A of T.

Proof. Suppose first that T is unitary and hence normal. Let A be an eigen-
value of T with z as a corresponding eigenvector. Then |A|+||z|| = || \z]| =
IT(z)|| = ||z||, and hence |A| = 1 since = # 0.
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Now suppose that |A| = 1 for every eigenvalue A of T, and let T = A\, T; +
-+ + Ag Tk be the spectral decomposition of T. Then by (c) of the spectral
theorem

TT* = (/\1T1 + 4 Aka)(_)\—lTl 4 +Xka)
= l)\1|2T1 R o I’\klsz
= Tl + e +Tk
=1.

Hence T is unitary. §

Corollary 8. IfF = C and T is normal, then T is self-adjoint if and
only if every eigenvalue of T is real.

Proof. Let T = ATy 4+ «-- 4+ A Tx be the spectral decomposition of T.
Suppose that every eigenvalue of T is real. Then T* = X; Ty +-+- + ATy =
AMTi4 o+ XTe=T.

The converse has been proved in the lemma to Theorem 6.17. |

Corollary 4. Let T be as in the spectral theorem with spectral decom-
position T = ATy + -+ A\ Tg. Then each T, is a polynomial in T.

Proof. Choose a polynomial g; (1 < j < k) such that g;(\;) = 6§;;. Then
g](T) = gj()\l)Tl + 4 gj(Ak:)Tk = 51]»T1 404 5ijk — Tj-

EXERCISES

1. Label the following statements as being true or false. Assume that the
underlying inner product spaces are finite-dimensional.

(a) All projections are self-adjoint.

(b) An orthogonal projection is uniquely determined by its range.

(¢) Every self-adjoint operator is a linear combination of orthogonal
projections.

(d) If T is a projection on W, then T(z) is the vector in W that is
closest to z. :

(e) Every orthegonal projection is a unitary operator.

2. Let V =R?, W = span({(1,2)}), and 8 be the standard ordered basis
for V. Compute [T]g, where T is the orthogonal projection on W. Do
the same for V = R® and W = span({(1,0,1)}).

3. For each of the matrices A in Exercise 2 of Section 6.5:

(1) Verify that L4 possesses a spectral decomposition.
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(2) For each eigenvalue of L 4, explicitly define the orthogonal projec-
tion on the corresponding eigenspace.

(8) Verify your results using the spectral theorem.

Let W be a finite-dimensional subspace of an inner product space V.
Show that if T is the orthogonal projection on W, then | — T is the
orthogonal projection on W+,

Let T be a linear operator on a finite-dimensional inner product space
V.

(a) If T is an orthogonal projection, prove that |[T(z)|| < |lz| for all
x € V. Give an example of a projection for which this inequality
does not hold. What can be concluded about a projection for
which the inequality is actually an equality for all z € V?

(b) Suppose that T is a projection such that ||T(z)|| < ||z|| for z € V.
Prove that T is an orthogonal projection.

Let T be a normal operator on a finite-dimensional inner product space.
Prove that if T is a projection, then T is also an orthogonal projection.

Let T be a normal operator on a finite-dimensional complex inner prod-
uct space V. Use the spectral decomposition A\; Ty 4+ -+ + A\ Tx.of T to
prove the following.

(a) If g is a polynomial, then

k

g(M) = g()T..

i=1

(b) If T" =T, for some n, then T = Ty,

(¢) Let U be a linear operator on V. Then U commutes with T if and
only if U commutes with each T;.

(d) There exists a normal operator U on V such that U2 =T,

(e) T isinvertible if and only if A\; #0 for 1 < i < k.

(f) T is a projection if and only if every eigenvalue of T is 1 or 0.

(g) T =-T*if and only if every ); is an imaginary number.

Use Corollary 1 of the spectral theorem to show that if T is a normal
operator on a complex finite-dimensional inner product space and U is
a linear operator that commutes with T, then U commutes with T*.

Referring to Exercise 19 of Section 6.5, prove the following facts about
a partial isometry U.

(a) U*U is an orthogonal projection on W.
(b) UU*U = U.
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10. Simultaneous diagonalization. Let U and T be normal operators on a
finite-dimensional complex inner product space V such that TU = UT.
Prove that there exists an orthonormal basis for V consisting of vectors
that are eigenvectors of both T and U. Hint: Use the hint of Exercise 14
of Section 6.4 along with Exercise 8.

11. Prove (c) of the spectral theorem.

6.7* BILINEAR AND QUADRATIC FORMS

There is a certain class of scalar-valued functions of two variables defined om
a vector space that is often considered in the study of such diverse subjects as
geometry and multivariable calculus. This is the class of bilinear forms. We
study the basic properties of this class with a special emphasis on symmetric
bilinear forms, and we consider some of its applications to quadratic surfaces
and multivariable calculus.

Throughout this section all bases should be regarded as ordered bases.

Bilinear Forms

Definition. Let V be a vector space over a field F. A function H from
the set V X V of ordered pairs of vectors to F is called a bilinear form on V
if H is linear in each variable when the other variable is held fixed, that is, if

(a) H(azy + z2,y) = aH(z1,y) + H(zs,y) forallzy,z,y€Vandac F
(b) H(z,ay1 + y2) = aH(z,y1) + H(zx,y2) forallz,y;,ys € Vanda € F.

We denote the set of all bilinear forms on V by B(V). Observe that an
inner product on a vector space is a bilinear form if the underlying field is
real but that it is not if the underlying field is complex.

Example 1
Define a function H: R? x R? = R by

H @1 , by = 2a1b; + 3a1bs + 4asby — azby  for % , by € R2.
az bg az b2

We could verify directly that H is a bilinear form on RZ. However, it is more
enlightening and less tedious to observe that if

_‘2 3 _f{aa _ b1
A= D) == () =)

H(z,y) = z* Ay.

The bilinearity of H now follows directly from the distributive property of
matrix multiplication over matrix addition. [}

then



