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Theorem 2.10 Under the assumptions of Theorem 2.9 for each f € X
the successive approzimations

Yn+1:=Aon+f, n=0,12,..., (2.3)
. with arbitrary po € X converge to the unique solution ¢ of p — Ap = f.

Proof. By induction it can be seen that

n—1
(pnzAn(p0+ZAkf1 n=12,...,

k=0
whence

o0

: _ ke _ (1 sy=1
Jlim o =3 A%f = (I-4)7f

k=0

follows. O

We explicitly want to state this result for integral equations.

Corollary 2.11 Let K be a continuous kernel satisfying
g d 1.
r;leag/G |K (2, )l dy <

Then for each f € C(G) the integral equation of the second kind

o(z) - /G K(z,1)e()dy = f(z), z€G,

has a unique solution ¢ € C(G). The successive approzimations

(,0n+1(.'b') =/GK(m,y)(Pn(y)dy+f(w), TL=0,1,2,...,

with arbitrary ¢y € C(G) converge uniformly to this solution.

‘The method of successive approximations has two drawbacks. First, the
Neumann series ensures existence of solutions to integral equations of the
second kind only for sufficiently small kernels, and second, in general, it
cannot be summed in closed form. Later in the book we will have more to
say about using successive approximations to obtain approximate solutions
(see Section 10.5).

2.4 Compact Operators
To provide the tools for establishing the existence of solutions to a wider

class of integral equations we now turn to the introduction and investigation
of compact operators.
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Definition 2.12 A lnear operator A: X — Y from a normed space X
into a normed space Y is called compact if it maps each bounded set in X
into a relatively compact set in Y.

= ogrec oAl T

Since by Definition 1.16 and Theorem 1.15 a subset U of a normed space
Y is relatively compact if each sequence in U contains a subsequence that
converges in Y, we have the following equivalent condition for an operator
to be compact.

Theorem 2.18 A linear operator A: X —Y is compact if and only if for
each bounded sequence (¢n) in X the sequence (Apy) contains a convergent
subsequence in' Y. )

We proceed by establishing the basic properties of compact operators.
Theorem 2.14 Compact linear operators are bounded.

Proof. This is obvious, since relatively compact sets are bounded (see The-
orem 1.15). o

Theorem 2.15 Linear combinations of compact linear operators are
compact.

Proof. Let A,B : X — Y be compact linear operators and let a,B € C.
Then for each bounded sequence (y,) in X, since A and B are compact,
we can select a subsequence (@n(x)) such that both sequences (Apn(x))
and (Bgnk)) converge. Hence (A + BB)pn(k) converges, and therefore
aA + BB is compact. ) O

Theorem 2.16 Let X,Y, and Z be normed spaces and let A: X — Y and
B :Y — Z be bounded linear operators. Then the product BA : X — Z is
compact if one of the two operators A or B is compact.

Proof. Let (¢,) be a bounded sequence in X. If A is compact, then there
exists a subsequence (pn(k)) such that Appy = ¥ € Y, k = oo. Since
B is bounded and therefore continuous, we have B(Apnx)) = By € Z,
k — oco. Hence BA is compact. If A is bounded and B is compact, the
sequence (Ayp,) is bounded in Y, since bounded operators map bounded
sets into bounded sets. Therefore, there exists a subsequence ((pn(k)) such
that (BA)pnxk) = B(Apn)) = x € Z, k = oo. Hence, again BA is
compact. a

Theorem 2.17 Let X be a normed space and Y be a Banach space. Let
the sequence A, : X = Y of compact linear operators be norm convergent
to a linear operator A: X —'Y, ie., |An — A = 0, n — co. Then A is
compact. :
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Proof. Let (¢r) be a bounded sequence in X, i.e., lloml] < C for all m € N
and some C > 0. Because the A, are compact, by the standard diagonal-
ization procedure (see the proof of Theorem 1.18), we can choose a subse-
quence (@m(k)) such that (An@m(k)) converges for every fixed n as k — oo.
Given € > 0, since |4, — A|| — 0, n — 00, there exists no € IN such that

|An, — All < €/3C. Because (AnoPm(k)) converges, there exists N() eNN
such that c :
1 4no@m) — Angmull < 3

for all k,I > N(c). But then we have

1 Apm(ey = Almoll < 1APm (k) = Ano@miill + | Ano i) — Angmll

+{|Ang @) — APmll <€

Thus (Apm(k)) is a Cauchy sequence, and therefore it is convergent in the
Banach space Y. O

Theorem 2.18 Let A : X — Y be a bounded linear operator with finite-
dimensional range A(X). Then A is compact.

Proof. Let U C X be bounded. Then the bounded operator A maps U into
the bounded set A(U) contained in the finite-dimensional space A(X). By
the Bolzano—Weierstrass Theorem 1.17 the set A(U) is relatively compact.
Therefore A is compact. 0O

Lemma 2.19 (Riesz) Let X be a normed space, U C X a closed subspace
with U # X, and a € (0,1). Then there ezists an element ¢ € X with
{[¥ll =1 such that ||¢ — @|| > o for all p € U.

Proof. Because U # X, there exists an element f € X with f ¢ U, and
because U is closed, we have

= iof ||f ~ > 0.
B HC}U I ¢l
We can choose g € U such that

B
ﬂS”f"QHSE-

Now we define
= f-g9
Ilf — gl
Then ||| = 1, and for all ¢ € U we have
1 B

I =l = oy I =g+ 1 = ll bl 2 g 2

since g+ ||f —gllp € U. a
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Theorem 2.20 The identity operator I : X — X is compact if and only
if X has finite dimension.

Proof. Assume that I is compact and X is not finite-dimensional. Choose
an arbitrary ¢; € X with |lp1]| = 1. Then Uy := span{y:} is a finite-
dimensional and therefore closed subspace of X. By Lemma 2.19 there
exists @2 € X with |2l = 1 and ||@2 — ¢1]| > 1/2. Now consider Uz :=
span{p1,p2}. Again by Lemma 2.19 there exists 3 € X with ||¢s|| = 1
and |[o3 — 1| > 1/2, |lws — @2|| = 1/2. Repeating this procedure, we ob-
tain a sequence (i) with the properties |lp,|| = 1 and |lon — @m|| > 1/2,
n # m. This implies that the bounded sequence (¢,) does not contain a
convergent subsequence. Hence we have a contradiction to the compactness
of I. Therefore, if the identity operator is compact, X has finite dimension.
The converse statement is an immediate consequence of Theorem 2.18. O

This theorem, in particular, implies that the converse of Theorem 2.14 is
false. It also justifies the distinction between operator equations of the first
and second kind, because obviously for a compact operator A the operators
A and I — A have different properties. Note that by Theorems 2.16 and 2.20
the compact operator A cannot have a bounded inverse unless its range has
finite dimension.

Theorem 2.21 The integral operator with continuous kernel is a compact
operator on C(G). :

Proof. Let U C C(G) be bounded, i.e., ||¢lleo < C for all ¢ € U and some
C > 0. Then

|(Ap)(@)] < CIG| max |K ()]

for all z € G and all ¢ € U, i.e., A(U) is bounded. Since K is uniformly
continuous on the compact set G x G, for every € > 0 there exists § > 0

such that ¢
K(z,z)— K(y, —_—
K (2,2) - K@) < g

for all z,y,z € G with |z — y] < 6. Then

[(Ap)(z) — (Ap)(y)l <€

for all z,y € G with |z —y| < § and all p € U, i.e., A(U) is equicontinuous.
Hence A is compact by the Arzeld—Ascoli Theorem 1.18. a

We wish to mention that the compactness of the integral operator with
continuous kernel also can be established by finite-dimensional approxi-
mations using Theorems 2.17 and 2.18 in the Banach space C(G). In this
context note that the proofs of Theorems 2.17 and 1.18 are similar in struc-
ture. The finite-dimensional operators can be obtained by approximating
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either the continuous kernel by polynomials through the Weierstrass ap-
proximation theorem or the integral through a finite sum (see [24]).

Now we extend our investigation to integral operators with a weakly
singular kernel, i.e., the kernel K is defined and continuous for all
z,y € G CR™, z # y, and there exist positive constants M and a € (0,m]
such that

Kz, y)] < M|z —y|*™™, z,y€G, z#uy. (2.4)

Theorem 2.22 The integral operator with a weakly singular kernel is a
compact operator on C(G).

Proof. The integral in (2.2) defining the operator A exists as an improper
integral, since

K (z,y)e(y)| £ Mlp|leo|z — y|*™™

and
B - -1 Um o
/lw~yl"*mdyswm/ P ™ dp = — d*,
G 0 @

where we have introduced polar coordinates with origin at x, d is the di-
ameter of GG, and w,, denotes the surface area of the unit sphere in R™.

Now we choose a piecewise linear continuous function & : [0,00) — IR by
setting

0, 0<t<1/2,
h(t):=<¢ 2t—1, 1/2<t<1,
1, 1<t < oo,

and for n € IN we define continuous kernels K, : G x G — C by
0, T =y.

The corresponding integral operators A, : C(G) — C(G) are compact by
Theorem 2.21. We have the estimate

[(Ap)(2) — (Anep)(z)| =

/ {1 - h(n|z — y)} K (z, y)p(y) dy
GNB(z;1/n]

1/n )
< M@]lootom / P ™1 dp
0

=Mlplo—%, z€G.

w.
an®
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From this we observe that A,p — Ap, n — oo, uniformly, and therefore
Ay € C(G). Furthermore it follows that

|4 - Anlloo S M 2™ 50, 1 oo,
: an
and thus A is compact by Theorem 2.17. m]

Finally, we want to expand the analysis to integral operators defined on
surfaces in IR™. Having in mind applications to boundary value problems,
we will confine our attention to surfaces that are boundaries of smooth
domains in R™. A bounded open domain D ¢ IR™ with boundary 8D is
said to be of class C™, n € IN, if the closure D admits a finite open covering

such that for each of those V, that intersect with the boundary D we have
the properties: The intersection V,N D can be mapped bijectively onto the
half-ball H := {x € R™ : |z| < 1, ,, > 0} in R™, this mapping and its
inverse are n times continuously differentiable, and the intersection VyNoD
is mapped onto the disk H N {z € R™ : z,,, = 0}.

In particular, this implies that the boundary 8D can be represented
locally by a parametric representation

z(u) = (z1(u), ..., Tm(w))

mapping an open parameter domain U ¢ R™! bijectively onto a surface
patch S of D with the property that the vectors :

o
Bu,- ’

are linearly independent at each point z of §. Such a parameterization
we call a regular parametric representation. The whole boundary 8D is
obtained by matching a finite number of such surface patches.

On occasion, we will express the property of a domain D to be of class
C™ also by saying that its boundary 8D is of class C™.

The vectors 0z/0u;, ¢ = 1,...,m — 1, span the tangent plane to the
surface at the point . The unit normal v is the unit vector orthogonal to
the tangent plane. It is uniquely determined up to two opposite directions.
The surface element at the point z is given by

ds = \/gdll,l . -dum_l,
where g is the determinant of the positive definite matrix with entries

7]
9ij1='a_x 22 ,7=1,...,m—1.

du; Bu;

t=1,...,m—1,
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In this book, for two vectors @ = (ay,...,am) and b = (by,...,bn) in R™
(or C™) we denote by a-b=aiby + -+ + ambm the dot product.

Assume that 0D is the boundary of a bounded open domain of class C!.
In the Banach space C'(0D) of real- or complex-valued continuous functions
defined on the surface 4D and equipped with the maximum norm

llplloo == max |o(z)I,

we consider the integral operator A : C(8D) — C(6D) defined by

(Ap)() := /a _K(@)e)ds(y), @€ D, (2.5)

where K is a continuous or weakly singular kernel. According to the di-
mension of the surface D, a kernel K is said to be weakly singular if it is
defined and continuous for all z,y € 8D, = # y, and there exist positive
constants M and « € (0, m — 1] such that

|K (z,)| < Mlz —y|*™), =,y €D,z #y. (2.6)
Analogously to Theorems 2.21 and 2.22 we can prove the following theorem.

Theorem 2.23 The integral operator with continuous or weakly singular
kernel is a compact operator on C(8D) if D is of class C*.

Proof. For continuous kernels the proof of Theorem 2.21 essentially remains
unaltered. For weakly singular kernels the only major difference in the proof
compared with the proof of Theorem 2.22 arises in the verification of the
existence of the integral in (2.5). Since the surface 8D is of class C, the
normal vector v is continuous on 9D. Therefore, we can choose R € (0,1]
such that

v(z) - v(y) > % (2.7)

for all z,y € 8D with |z — y| < R. Furthermore, we can assume that R
is small enough such that the set S[z;R] := {y € 8D : ly —z| < R} is
connected for each z € @D. Then the condition (2.7) implies that S[z; R]
can be projected bijectively onto the tangent plane to 8D at the point z.
By using polar coordinates in the tangent plane with origin in z, we now
can estimate '

K(z,y)e(y) ds(y)
S[x;R)

< Miglleo / lz — y|* ™+ ds(y)

[z
R
< 2M | llootimo1 / M2 g
1]

Ra
= 2M||¢lloowm—1— .
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Here we have used the facts that |z — y| > p, that the surface element

expressed in polar coordinates on the tangent plane, can be estimated with
the aid of (2.7) by ds(y) < 2p™ %dpdw, and that the projection of S[z; R]
onto the tangent plane is contained in the interior of the disk of radius R
and center z. Furthermore, we have

< Moo RO™™* ds(y)
8D\ S[z;R]

[ K
8D\S[z;R]

< Mlplloo R*=™+10D|.

Hence, for all z € D the integral (2.5) exists as an improper integral. For
the compactness of A, we now can adopt the proof of Theorem 2.22.

Problems

2.1 Let A: X - Y be a bounded linear operator from a normed space X into
a normed space ¥ and let X and Y be the completions of X and Y, respectively.
Then there exists a uniquely determined bounded _linear operator A: X —» Y
such that Ap = Ay for all ¢ € X. Furthermore, [|A]| = ||All. The operator A is
called the continuous ertension of A. (In the sense of Theorem 1.13 the space X
is interpreted as a dense subspace of its completion X D
Hint: For ¢ € X define Zcp = limpe0 Apn, where () is a sequence from X
with ¢n = @, n — co.

2.2 Show that Theorem 2.10 remains valid for operators satisfying || A*| < 1
for some k € IN.

2.3 Write the proofs for the compactness of the integral operator with contin-
uous kernel in C(G) using finite-dimensional approximations as mentioned after
the proof of Theorem 2.21.

2.4 Show that the result of Theorem 2.8 for the norm of the integral operator
remains valid for weakly singular kernels.
Hint: Use the approximations from the proof of Theorem 2.22.

2.5 For the integral operator A with continuous kernel use the Cauchy—Schwarz
inequality to establish that each set U C C(G) that is bounded with respect to
the mean square norm is mapped into a set A(U) C C(G) that is bounded with
respect to the maximum norm and equicontinuous. From this, deduce that the
integral operator with continuous kernel is compact with respect to the mean
square norm. Use the same method and the approximations from the proof of
Theorem 2.22 to extend this result to-weakly singular kernels with o > m/2.



3
Riesz Theory

We now present the basic theory for an operator equation
p—Ap=f

of the second kind with a compact linear operator A : X — X on a normed
space X. This theory was developed by Riesz [153] and initiated through
Fredholm’s [42] work on integral equations of the second kind.

3.1 Riesz Theory for Compact Operators

We define
L:.=1-A,

where I denotes the identity operator.

Theorem 3.1 (First Riesz Theorem) The nullspace of the operator L,
i.e.,
N(L):={peX:Lp=0},

is a finite-dimensional subspace.

Proof. The nullspace of the bounded linear operator L is a closed subspace
of X, since for each sequence () with ¢, — ¢, n — oo, and Ly, = 0
we have that Ly = 0. Each ¢ € N(L) satisfies Ap = ¢, and therefore the
restriction of A to N(L) coincides with the identity operator on N(L). The
operator A is compact on X and therefore also compact from N(L) onto
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N(L), since N(L) is closed. Hence N(L) is finite-dimensional by Theorem
2.20. : O

Theorem 3.2 (Second Riesz Theorem) The range of the operator L,
i.e.,
L(X):={Lp:pc X},

s a closed linear subspace.

Proof. The range of the linear operator L is a linear subspace. Let f be an
element of the closure L(X). Then there exists a sequence (y,).in X such
that Ly, — f, » — oco. By Theorem 1.24 to each ¢, we choose a best
approximation y, with respect to N(L), i.e.,

—xnll = inf — |-
lion = xall =izt llon =l

The sequence defined by

[ﬁn = Pn — Xnoy n €N,

is bounded. We prove this indirectly, i.e., we assume that the sequence
() is not bounded. Then there exists a subsequence (@n(x)) such that
|@nckyll > k for all k € IN. Now we define

Prn(k)
Wp 1= 7= »
||<Pn(k)||

Since ||1x|| = 1 and A is compact, there exists a subsequence (i (;)) such
that

ke IN.

A’(ﬁk(j)—)'lpEX, j— oo.
Furthermore,
L, Ly
L]l = I fn(k)ll < | L)l
”‘Pn(k)” k

since the sequence (L) is convergent and therefore bounded. Hence

-0, k- o0,

L"/"k(j) -0, j7—o0.
Now we obtain
Yry = L) + A¥r) = ¥, J 00,

and since L is bounded, from the two previous equations we conclude that
Ly = 0. But then, because xnk) + ||Pryil¥ € N(L) for all k in IN, we
find

1 -
o = — _ +
“wk ¢“ ”Son(k)” ”‘Pn(k) {Xn(k) Hson(k) ” 1/’}”
> 1 int o —xll = —— ll¢ =1
T | @awyll xeN(@) ¥nk) [@rgiyll "7 ) Xn(e) ] = =
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This contradicts the fact that Yy = ¥, § = .

Therefore the sequence (@, ) is bounded, and since A is compact, we can
select a subsequence (Pn(x)) such that (AF,x)) converges as k — oc. In
view of Lgyky — f, k — o0, from @, Pn(k) = LPn(k)+ APn(ry We observe that
Pn(k) =+ ¢ € X, k — oo. But then Lnwy = Ly € X, k — 00, and there-

fore f = Ly € L(X). Hence L(X) = L(X), and the proof is complete. O

For n > 1 the iterated operators L™ can be written in the form
LI"=I-A"=1-A,,

where

An = zn“l(—nk-l (:) AF

k=1
is compact by Theorems 2.15 and 2.16. Therefore by Theorem 3.1 the

nullspaces N(L") are finite-dimensional subspaces, and by Theorem 3.2
the ranges L™(X) are closed subspaces.

Theorem 3.3 (Third Riesz Theorem) There exists a uniquely deter-
mined nonnegative integer r, called the Riesz number of the operator A,
such that

{0} =NIZYZN(E) Z - NI =NT+)=--,  (3.1)

and
X=L'X)ZL'(X)2 - 2L07(X) = L' (X) =---.  (3.2)

Furthermore, we have the direct sum
X=N{L")Y® L (X),

i.e., for each ¢ € X there exist uniquely determined elements ¢ € N (L")
and x € L"(X) such that ¢ =9 +x.

Proof. Our proof cousists of four steps:
1. Because each ¢ with L™¢ = 0 satisfies L™1p = 0, we have

{0} =N c N(LY) C N(L¥) C---.°
Now assume that
{0} = N(L%) & N(L') E N(I?) % ---

Since by Theorem 3.1 the nullspace N(L") is finite-dimensional, the Riesz
Lemma 2.19 implies that for each n € IN there exists ¢, € N (L""‘l) such
that ||,|| =1 and

lon —oll > 5
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for all € N(L™). For n > m we consider
Apn — Apm = Pn ~ (Pm + Lpn — Lom).
Then ¢, + Lo, — Ly, € N(L™), because
L™(m+ Lon — Lpm) = L™ ™1 L™y, + LM, — LM L™+, = 0.
Hence 1
4pn ~ Apml > &

for n > m, and thus the sequence (Ay,) does not contain a convergent
subsequence. This is a contradiction to the compactness of A.

Therefore in the sequence N (L") there exist two consecutive nullspaces
that are equal. Define

r:=min{k : N(L¥) = N(L*+1)}.
Now we prove by induction that
N(L"y=NL*)=NL*) =-..

Assume that we have proven N(L*) = N(L*+!) for some k > r. Then
for each ¢ € N(L¥*2?) we have L¥*1Lp = [*t2p = 0. This implies that
Lo € N(L*') = N(L*). Hence L**'¢ = L¥Ly = 0, and consequently
@ € N(L*+1). Therefore, N(L*+?) ¢ N(L**!), and we have established
that

{0} = N(LO) E N(LY) & --- ZN(L") = N(L™) = ...

2. Because for each ¢ = L™y € L™t (X) we can write ¢ = L"Lp, we
have
X=IX)o LY{(X)D>L¥X)D>---.

Now assume that
X =I%X)2 LY(X) 2 L3(X) 2 - --

Since by Theorem 3.2 the range L"(X) is a closed subspace, the Riesz
Lemma 2.19 implies that for each n € IN there exist ¢, € L™(X) such that
%nll =1 and

o~ 9l > 5
for all ¢ € L™*(X). We write ¢, = L™, and for m > n we consider
AYn — AYm = Yn — (Ym + Lpn — Lthm).
Then ¥, + Lpp, — Lipr, € L™F1(X), because

Ym + Lpn — Lipy, = Ln+1(Lm_n_1‘Pm +@n ~ L™ " 0n).
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Hence 1
|46 = Al > 5

for m > n, and we can derive the same contradiction as before.
Therefore in the sequence L™(X) there exist two consecutive ranges that
are equal. Define

q := min{k : LF(X) = LF+(X)}.
Now we prove by induction that
LY(X)=L""YX)=L1?(X)=".-.

Assume that we have proven L¥(X) = L*+!(X) for some k > g. Then for
each ¢ = L*"1¢p € L**!(X) we can write LFp = L*+'& for some § € X,
because LF(X) = LF+1(X). Hence ¢ = L¥*23 € L*¥*+2(X), and therefore
LX) c L¥+2(X), i.e., we have proven that

X =LX)2 LX) 7 - 2 LX) = L7(X) =

3. Now we show that r = g. Assume that r > q and let ¢ € N(L"). Then,
because L™ 1p € L™"Y(X) = L"(X), we can write L'l = L™ for some
@ € X. Since L™'¢ = L"p = 0, we have § € N(L™1) = N(L"), i.e.,
L™~} = L% = 0. Thus ¢ € N(I"~1), and hence N(L"~1) = N(L"). This
contradicts the definition of r.

On the other hand, assume that » < ¢ and let ¥ = L9~ 1p € L9~1(X).
Because Ly = L% € LU(X) = LI*(X), we can write Ly = LI+ for
some ¢ € X. Therefore LY(p — L) = Lyp — L¥F = 0, and from this
we conclude that L9 (¢ — L@) = 0, because N(LI~1) = N(L9). Hence
% = L9g € LI(X), and consequently L9~1(X) = L9(X). This contradicts
the definition of q.

4. Let ¢ € N(L") N L"(X). Then ¢ = L™y for some ¢ € X and L™y = 0.
Therefore L?"¢ = 0, whence ¢ € N(L?") = N(L") follows. This implies
%=Ly =0.

Let ¢ € X be arbitrary. Then L"¢ € L7(X) = L?*(X) and we can
write L™ = L*' @ for some & € X. Now define ¢ 1= L"@ € L™(X) and
X =¢—9¢. Then L"x = L"p — L**$ = 0, i.e., x € N(L"). Therefore the
decomposition ¢ = x + 9 proves the direct sum X = N (LMNe L7(X). O

We are now ready to derive the following fundamental result of the Riesz
theory.

Theorem 8.4 Let A: X — X be a compact linear operator on a normed
space X. Then I — A is injective if and only if it is surjective. If I — A
is injective (and therefore also bijective), then the inverse operator
(I-A)"1: X - X is bounded.
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Proof. By (3.1) injectivity of I — A is equivalent to r = 0, and by (3.2)
surjectivity of I — A is also equivalent to r = 0. Therefore injectivity of
I — A and surjectivity of I — A are equivalent.

It remains to show that L~! is bounded when L = I — A is injective.
Assume that L~! is not bounded. Then there exists a sequence (fr)in X
with || fnl| = 1 such that ||L71£,| > n for all n € IN. Define

Jn L7 fn
=i PnE groaege e
N 2y G 2
Then g, — 0, n = 00, and ||¢,|| = 1 for all n. Since A is compact, we can
select a subsequence (py(x)) such that A,y + ¢ € X, k — oo. Then,
since

Pn — Apn = gn,
we observe that ¢,k — ¢, kK = 00, and ¢ € N(L). Hence ¢ = 0, and this
contradicts ||, = 1 for all n € IN. O

We can rewrite Theorems 3.1 and 3.4 in terms of the solvability of an
operator equation of the second kind as follows.

Corollary 3.5 Let A: X — X be a compact linear operator on a normed
space X . If the homogeneous equation

p—Ap=0 (3’§)

only has the trivial solution ¢ = 0, then for each f € X the inhomogeneous
equation
p—Ap=f (34)

has a unigue solution ¢ € X and this solution depends continuously on f.

If the homogeneous equation (8.83) has a nontrivial solution, then it has
only a finite number m € IN of linearly independent solutions ¢, ..., om
and the inhomogeneous equation (8.4) is either unsolvable or its general
solution is of the form

m
Tp= [ﬁ + Z XkPky
k=1
where ai, . .., am are arbitrary compler numbers and § denotes a particular
solution of the inhomogeneous equation.

The main importance of the Riesz theory for compact operators lies in the
fact that it reduces the problem of establishing the existence of a solution
to (3.4) to the generally much simpler problem of showing that (3.3) has
only the trivial solution ¢ = 0.

It is left to the reader to formulate Theorem 3.4 and its Corollary 3.5 for
integral equations of the second kind with continuous or weakly singular
kernels.
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Corollary 3.6 Theorem 8.4 and its Corollary 3.5 remain valid when [ — A
is replaced by S — A, where S : X = Y is a bounded linear operator that
has a bounded inverse S™1:Y — X and A: X = Y is a compact linear
operator from a normed space X into a normed space Y.

Proof. This follows immediately from the fact that we can transform the
equation

Sp—Ap=f

into the equivalent form
Y- S_lA(p = S_lfy
where S7'A : X — X is compact by Theorem 2.16. O

The decomposition X = N(L") @ L"(X) of Theorem 3.3 generates an
operator P : X — N(L") that maps ¢ € X onto Py := 1 defined by the
unique decomposition ¢ = 9 + x with ¢ € N(L") and x € L"(X). This
operator is called a projection operator, because it satisfies P2 = P (see
Chapter 13). We conclude this section with the following lemma on this
projection operator.

Lemma 3.7 The projection operator P : X — N(L") defined by the de-
composition X = N(L") ® L™(X) is compact.

Proof. Assume that P is not bounded. Then there exists a sequence (@)
in X with |jp,|| = 1 such that | Pg,|| = n for all n € IN. Define
Pn

i=—— . nelN.
U = P

Then v, — 0, n = o0, and [}Py,|| = 1 for all n € IN. Since N (L") is
finite-dimensional and (P%,) is bounded, by Theorem 1.17 there exists a
subsequence (¢n(k)) such that Py, — x € N(L"), k& — oo. Because
¥n = 0, n — oo, we also have Ptn(x) — Ynk) — X, k — oo. This implies
that x € L"(X), since Pinky — Ynx)y € L7(X) for all k and L7(X) is
closed. Hence x € N(L") N L"(X), and therefore x = 0, i.e., Pipx) — 0,
k — oo. This contradicts ||Py,|| = 1 for all n € IN. Hence P is bounded,
and because P has finite-dimensional range P(X) = N(L"), by Theorem
2.18 it is compact. o

3.2 Spectral Theory for Compact Operators

We continue by formulating the results of the Riesz theory in terms of
spectral analysis.
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Definition 3.8 Let A: X — X be a bounded linear operator on a normed
space X. A complex number X is called an eigenvalue of A if there exists
an element ¢ € X, ¢ # 0, such that Ap = Ap. The element ¢ is called an
eigenelement of A. A complex number X is called a regular value of A if
(AT —A)™1: X = X exists and is bounded. The set of all regular values of
A is called the resolvent set p(A) and R()\; A) := (A — A)~! is called the
resolvent of A. The complement of p(A) in C is called the spectrum o(A)
and
r(A):= sup ||
A€o (A)

15 called the spectral radius of A.
For the spectrum of a compact operator we have the following properties.

Theorem 3.9 Let A: X — X be a compact linear operator on an nfinite-
dimensional normed space X. Then X = 0 belongs to the spectrum o(A) and
o(A)\ {0} consists of at most a countable set of eigenvalues with no point
of accumulation except, possibly, A = 0.

Proof. Suppose that A = 0 is a regular value of A, i.e., A~! exists and is
bounded. Then I = A~14 is compact by Theorem 2.16, and by Theorem
2.20 we obtain the contradiction that X is finite-dimensional. Therefore
A = 0 belongs to the spectrum o(A4).

For A # 0 we can apply the Riesz theory to the operator Al — A. Either
N(M — A) = {0} and (A — A)™! exists and is bounded by Corollary 3.6
or N(AI — A) # {0}, i.e., A is an eigenvalue. Thus each ) # 0 is either a
regular value or an eigenvalue of A.

It remains to show that for each R > 0 there exist only a finite num-
ber of eigenvalues A with |A\| > R. Assume, on the contrary, that we
have a sequence (\,) of distinct eigenvalues satisfying |\,| > R. Choose
eigenelements ¢, such that Ay, = A,¢, forn =0,1,..., and define finite-
dimensional subspaces

Uy :=span{yo,...,¢n}

It is readily verified that eigenelements corresponding to distinct eigenval-
ues are linearly independent. Hence, we have U,y C Uy, and U,_; # U,
for n = 1,2,.... Therefore, by the Riesz Lemma 2.19 we can choose a
sequence (%) of elements v, € U, such that ||,|| = 1 and

1
o — 91l > 2
for all 4 € Up—1 and n = 1,2,.... Writing
n
Yn = Zankﬂok

k=0
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we obtain
n—1

Anthn — Atpn = Y (An — M) ank@k € Un—1-
k=0

Therefore, for m < n we have
A A = Ao = O A+ As) = Ml — ),

where 9 1= A2 (Anthn — Aty + Athy) € Up_y. Hence

|>\ |

=]

|A%n — Al > > =

2

for m < n, and the sequence (A,) does not contain a convergent subse-
quence. This contradicts the compactness of A. O

3.3 Volterra Integral Equations

Integral equations of the form

[ Ko ay = £, el
and

o@) - [ Koty = f@), o€ o

with variable limits of integration are called Volterra integral equations of
the first and second kind, respectively. Equations of this type were first
investigated by Volterra [180]. One can view Volterra equations as special
cases of Fredholm equations with K(z,y) = 0 for y > z, but they have
some special properties. In particular, Volterra integral equations of the
second kind are always uniquely solvable.

Theorem 3.10 For each right-hand side f € Cla,b] the Volterra integral
equation of the second kind

o@) - [ K@owdy= 1@, ¢ o,

with continuous kernel K has a unique solution ¢ € Cla,b].

Proof. We extend the kernel onto [a,b] x [a,b] by setting K(z,y) := 0 for
y > z. Then K is continuous for z # y and

(o) € M= max_, [K(@,)

for all z # y. Hence, K is weakly singular with o = 1.
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Now let € Cla, b] be a solution to the homogeneous equation

o) - [ K@0pl)dy=0, 2 €lob]

By induction we show that

o)l < ligloo 2EZ 5 e a1 (3.5

for n = 0,1,2,.... This certainly is true for » = 0. Assume that the
inequality (3.5) is proven for some n > 0. Then

x n+l( _ ,\n+l
lo(z)] = / K(ﬂc,:u)sa(y)dy!Sll<PI|c>oMﬁ((ifﬁ)Jr

Passing to the limit n — oo in (3.5) yields ¢(z) = 0 for all z € [a,b]. The
statement of the theorem now follows from Theorems 2.22 and 3.4. O

In terms of spectral theory we can formulate the last result as follows:
A Volterra integral operator with continuous kernel has no spectral values
different from zero.

Despite the fact that, in general, integral equations of the first kind are
more delicate than integral equations of the second kind, in some cases
Volterra integral equations of the first kind can be treated by reducing
them to equations of the second kind. Consider

f K(z, o) dy = f), @€ lab], (3.6)

and assume that the derivatives K, = 0K /0z and f’ exist and are con-

tinuous and that K(z,z) # 0 for all z € [a,b]. Then differentiating with
respect to = reduces (3.6) to

7 Ka(z,y) - _ =)
« K(z,z) (y) dy = K(z,z)’
Equations (3.6) and (3.7) are equivalent if f(a) = 0. If K, = 0K /dy exists
and is continuous and again K (z,z) 7 0 for all z € [a,}], then there is a

second method to reduce the equation of the first kind to one of the second
kind. In this case, setting

Y(z) == /z o(y)dy, =z € [a,b],

and performing an integra.tion by parts in (3.6) yields

,y) f(=z)
dy = ——— b). .
v@ - [ D vway - 2, cepy s

We leave it as an exercise to extend this short discussion of Volterra
integral equations to the case of Volterra integral equations for functions
of more than one independent variable.

o(z) + z € [a,b]. (3.7)
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Problems

3.1 Let A: X — Y be a compact linear operator from a normed space X into
a normed space Y. The continuous extension 4 : X — Y of A is compact with
A(X) C Y (see Problem 2.1).

3.2 Let X be a linear space, let A,B : X — X be linear operators satisfying
AB = BA, and let AB have an inverse (AB)™' : X — X. Then A4 and B have
inverse operators A™! == B(AB)™! and B! = A(AB)™*

3.3 Prove Theorem 3.4 under the assumption that A™ is compact for some
n>1

Hint: Use Problem 3.2 to prove that the set (g(A))™ := {X" : XA € oc(A)} is
contained in the spectrum o(A"™). Then use Theorem 3.9 to show that there
exists an integer m > n such that each of the eperators

2mik

Ly :=exp I—A, k=1,....m—1,

has a bounded i inverse. Then the equations R(I — A)p = Rf and (I — A)cp 7
where R := Hk = Lk, are equivalent.

3.4 Let X;,i=1,...,n, be normed spaces. Show that the Cartesian product
X := X3 x--- x X, of n-tuples ¢ = (¢1,...,¢n) is a normed space with the
maximum norm

llplloo = max iell.

Let Aix : X — X, i,k = 1,...,n, be linear operators. Show that the matrix
operator A: X — X defined by

(Ap)i == Z Aikpr

k=1

is bounded or compact if and only if each of its components A, : X — X; is
bounded or compact, respectively. Formulate Theorem 3.4 for systems of operator
and integral equations of the second kind.

3.5 Show that the integral operator with continuous kernel

o0

K(z,y) := Z (k: -I— N {cos(k + 1)z sin ky — sin(k + 1)z cos ky}
k=0

on the interval [0, 27} has no eigenvalues.

4

Dual Systems
and Fredholm Alternative

In the case when the homogeneous equation has nontrivial solutions, the
Riesz theory, i.e., Theorem 3.4 gives no answer to the question of whether
the 1nhomogeneous equation for a given inhomogeneity is solvable. This
question is settled by the Fredholm alternative, which we shall develop in
this chapter. Rather than presenting it in the context of the Riesz—Schauder
theory for the adjoint operator in the dual space we will consider the Fred-
holm theory for compact adjoint operators in dual systems generated by
nondegenerate bilinear or sesquilinear forms. This symmetric version is
more elementary and better suited for applications to integral equations.

4.1 Dual Systems via Bilinear Forms

Throughout this chapter we tacitly assume that all linear spaces under
consideration are complex linear spaces; the case of real linear spaces can
be treated analogously.

Definition 4.1 Let X, Y be linear spaces. A mapping {-,): X xY — C
15 called a bilinear form if

(a1 + azpa, ¥) = ai(p1, ¥) + az{ps, ¥),

(@, B19p1 + Barhe) = Bi{p, ¥1) + Ba{ip, ¥2)

for all p1,02,0 € X, Y1,92,9 €Y, and a1, 00,B1,8: € C. The bilinear
form is called nondegenerate if for every ¢ € X with @ # 0 there exists



