Chapter 7

‘The Mathematics of
Photonic Crystals

Peter Kuchment

7.1 Introduction

A photonic crystal, or photonic band gap (PBG) optical material, is an artificially
created periodic low-loss dielectric medium in which electromagnetic waves of cer-
tain frequencies cannot propagate. The range of the prohibited frequencies is called
the complete band gap. A simple example of such a medium is a dielectric back-
ground material with a periodic array of air bubbles. The reason why the band gap
arises (if it does) is the coherent multiple scattering of waves and destructive inter-
ference. To put it simply, if a wave of a prohibited frequency somehow managed
to propagate in the medium, it would reflect and self-interfere in such a way that
it would cancel itself completely. It is expected that industrial manufacturing of
photonic crystals will bring about a new technological revolution in optics, comput-
ing, information transmission, and other areas. The idea of photonic crystals was
coined in [107, 192], though simpler versions of such materials like layered media
and optical gratings have been known for a long time. We will not dwell much
on the physics aspects of this field of research, since the reader can refer to the
surveys and proceedings [33, 101, 108, 134, 154, 156, 167, 168, 182, 189] devoted to
this topic, and especially to the lovely book [106]. The bibliography [153] and the
collection of photonic crystal links [190] are also very useful.

The area of photonic crystal research presents a bonanza of beautiful, important,
and hard problems for a mathematician, most of which are still unexplored or
explored only tangentially. The number of mathematics publications dealing with
PBG materials is growing (see [3, 7, 8, 21, 41, 42, 44, 45, 50, 51], [61]-[81], [86,
87, 100, 126, 127, 155, 188]) but is probably still not sufficient. We hope that
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this survey will play some role in publicizing the topic. One of the big attractions
and advantages of the PBG research is that the mathematical model one studies is
considered to be practically precise in most circumstances (see, for instance, [106]),
a luxury not very often enjoyed by applied mathematicians.

In this article the author tries to expose some basic analytic ideas and tech-
niques, to collect the recent mathematical results on PBG materials and their
acoustic analogs, to present some basic problems that still await their resolution,
and to indicate analogies with research in other areas (mostly related to solid-state
physics) that could provide some leads for the PBG studies. Due to the limited
space, the reader is referred to the corresponding literature for the details, complete
formulations of the results, precise conditions on the coefficients, or exact defini-
tions of some operators. Since the surveys [101, 152, 189] and collections cited
before do a good job describing the numerical techniques that are commonly used,
this paper addresses only a few recent, less standard numerical approaches that are
not covered by these surveys.

There are many areas of the photonic crystal research that deserve and have not
yet enjoyed close mathematical attention, but which we were not able to include in
this survey. Among these are effects of losses, finiteness of samples, surface waves,
nonlinear effects, magnetic effects, effects of metallic inclusions, gap solitons, and
many others. The reader can find discussion of all of these and many other exciting
topics in the surveys and bibliography quoted above and also in the papers [3, 41,
63, 66, 67, 86, 87, 188]. Regretfully, the important topic of Anderson localization
of classical waves, where crucial results have recently been achieved, is just briefly
mentioned due to the space limitations. We provide references to the relevant
publications on this subject in section 7.6.6.

The theory of PBG materials as an area of mathematics is still in its childhood.
As a result, there is no common choice of topics, approaches, etc. This article,
therefore, reflects the author’s views and interests and would probably be written
in a totally different (maybe even orthogonal) manner by other researchers.

7.2 The Maxwell Operator

The reader has probably already seen the Maxwell equations many times in this
book. We need, however, to briefly address them again. Our goal is to summa-
rize the information we need and to mention some specific mathematical questions
relevant to the theory of photonic crystals and to optics in general. Good general
references concerning the Maxwell equations are [103, 135]. A mathematician can
also be interested in the discussion of these equations presented in [53].

The macroscopic Maxwell equations that govern the light propagation in a pho-
tonic crystal in absence of free charges and currents look as follows:

— o) —
{VXE——%?%, V-B=0,

7.1
VxH=12  v.D=0. (7.1)

Here c is the speed of light, E and H are the macroscopic electric and magnetic
fields, and D and B are the displacement and magnetic induction fields, respectively.
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All these fields are vector-valued functions from R? (or a subset of R?) into R3. We
denote such fields with boldface letters. The standard vector notations Vx (or V*),
V-, and V are used for the curl, divergence, and gradient, although we will also
use curl, div, and grad. The system (7.1) is incomplete until we add the so-called
constitutive relations that describe how the fields D and H depend on E and B.
Although in general these relations are nonlinear and even nonlocal, in materials
other than ferroelectrics and ferromagnets and when the fields are weak enough,
the following linear approximations to the constitutive relations work:

D=¢E, B=yH (7.2)

Here € and u are the so-called material tensors. We will mostly address the case of
isotropic media, where ¢ and pcan be considered as scalar time-independent func-
tions called electric permittivity (or dielectric constant) and magnetic permeability,
correspondingly. In most photonic crystals considerations it is assumed that the
material is nonmagnetic, and hence y = 1.

After introducing the above assumptions, the Maxwell system reduces to the
form

VxE=-1u@)8 v.uH=0,
{Vtzﬁs(x)%% V-¢E =0, \7.3)
or, in the nonmagnetic case,
VxE=-180 = v.H=0,
{VxH=%g(m)a—}f, V-¢E = (7.4)

These linear partial differential equations have time-independent coefficients, so
the Fourier transform in the time domain reduces considerations to the case of
monochromatic waves E(z,t) = e*“*E(z), H(z,t) = ¢“'H(z). This leads from
(7.3) to

{V XxE=—-%2uz)H, V- -pH=0, (7.5)

VxH=%egz)E, V-eE=0,

which can be rewritten in the matrix form as

(1o 07) (5)-2(R) @

on the subspace of vectors (g) satisfying
V-eE =0, V.-uH=0. (7.7)

We use in (7.6) and in the rest of the text the notation V* for the curl operator.
We are now facing the spectral problem for the Maxwell operator

0 —iyX
M=<_z-_vx " ) (7.8)
m
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on the subspace (7.7). One of the principal tasks of the photonic crystals theory is
to choose periodic functions ¢(z) > 1 and p (although p is usually assumed to be
equal to 1) such that the corresponding spectrum has a gap. Existence of such a
gap would mean that electromagnetic waves with a frequency w in the gap cannot
propagate in the material.

7.2.1 Defining a Self-Adjoint Maxwell Operator

Before studying the spectrum of the problem (7.8), one needs to define the corre-
sponding self-adjoint operator. It is not hard to define the operator in the case when
the material tensors are smooth and the operator is considered either in the whole
space or in a smooth domain with conducting boundaries. In fact, smoothness of
the material tensors is also not a big issue when one deals with the whole space
(or with a torus, as one often does in the photonic crystal theory). However, if the
domain has nonsmooth conducting boundaries, the solutions can develop singular-
ities. Although we will constrain ourselves to the case when no metallic inclusions
are present, PBG materials with nonsmooth metallic inclusions and/or boundaries
are actually considered. In such cases one should consult with a comprehensive
study of the Maxwell operator done by Birman and Solomyak in [22, 23].

Let us assume that pu(z) and £(x) are positive measurable functions uniformly
bounded by positive constants from below and from above. In most of our discussion
p is equal to 1 and e(z) > 1 is periodic and piecewise constant. We want to define
the Maxwell operator as a self-adjoint operator in appropriate spaces. We will use
notation L?(R3, w(x)dz) for the weighted L2-space with the norm

1P = [ 15@F wa)ds

and L?(R3, w(x)dz; C?) for the corresponding space of vector fields.
Consider now the subspace J of the space

L2(R3, e(z)dz; C®) @ L?(R3, u(z)dz; C3)
that consists of all pairs of vector fields (u,ug) such that
V-eu; =V - pug =0, (7.9)

On the space J we can define the Maxwell operator M with the matrix (7.8) and
the domain consisting of pairs (u1,uz) such that

V xu; € AR?), j=1,2
The derivatives here are understood in the distributional sense.

THEOREM 7.1 (Lemma 2.2 in [22]). The Mazwell operator M defined this way
is self-adjoint.
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7.2.2 Ellipticity

The trouble with the Maxwell operator is that it is neither elliptic nor semi-bounded
(so its spectrum extends to both positive and negative infinity). There are ways to
cope with both of these problems. Squaring the operator produces a new operator

tVXLV* 0
2 € u
M (0 ﬁv%w)’

which is already positive definite. Thus, as is customarily done in photonic crys-
tals theory, we can consider either one of the following positive definite spectral
problems:

iy x iV x E=)AE
€ M ’
{V-6E=0 (7.10)
or
1 1 —
uV X EV x H= \H, (7.11)
V.- uH =0,

each of which contains only one of the electric and magnetic fields. Here we denote
A = (w/c)?. This notation will be used from now on. The spectrum of either of
these two problems determines the spectrum of M.

We will be mostly concerned with the case when p = 1, so (7.10) and (7.11)
reduce to

1YV xV x E=)\E,
{%-gE:O (7.12)
and
V x iV x H=)\H,
{V-ffzo. (7.13)

The problem (7.12) can also be rewritten after introducing a new vector field F =
e'/2E as follows:

—e~12Alle~1/2F = )\F,
V- e2F =,

where A is the Laplace operator and II is the orthogonal projector onto the space
of transverse vector fields. This restatement of the problem has proven to be useful,
for instance, in localization problems (see [42]). In most cases when we refer to the
Maxwell equations, we will mean (7.13).

Note that for A # 0 the second equation in either of the systems (7.10) or
(7.11) is a consequence of the first one. One is thus tempted to eliminate the
zero divergency conditions altogether and to study only the “Schrédinger-type”
first equations in (7.12) or (7.13), which can be called the eigenvalue problem for
the unrestricted Maxwell operator. This introduces a large kernel consisting of
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longitudal waves (gradients of scalar functions), without changing the spectrum
otherwise. Sometimes this trick works well, but in many cases the huge kernels
that arise in this approach make analytic and numerical studies harder. This is
related to the nonellipticity of the Maxwell operator. In fact, the truth is that
the Maxwell operator is elliptic, if ellipticity is understood in an appropriate sense.
Namely, this operator should not be considered alone, but rather as a part of what is
usually called an elliptic complex of operators. Rather than going into the details
of the general notion of an elliptic complex (which does not seem to bring any
insights about photonic crystals), we will provide a simple explanation of some
of the corresponding notions. Let us consider for simplicity the curl operator V*
instead of the full Maxwell operator M. What are the indications that the curl is not
an elliptic operator? If it were, then on a compact manifold its kernel (considered
in appropriate spaces) would be finite dimensional, while its range would have finite
codimension. Consider the case of the torus T = R3/Z3, where Z3 is the integer
lattice in R3. Then the gradient of any function on T belongs to the kernel of V*,
which shows that the kernel is infinite dimensional. There is a similar situation with
the range: every function in the range of V* has zero divergence, which means that
the range is of infinite codimension. The nonellipticity of curl is also clear from
its Fourier domain representation as multiplication (up to a scalar factor) by the
matrix

0 —& &
&0 ~&i
=& & 0

with the determinant identically equal to zero.
The correct point of view at the operator V* is to include it into the sequence
of operators

0= =M 3 e S e % c=(T) -0

(where the C'™ spaces can be replaced by appropriate spaces of Sobolev type).
This is an example of an elliptic complex. This means that, first, composition of
any two consecutive operators is zero. Second, the cohomologies of this complex
(i.e., the quotient spaces of the kernel of each next operator modulo the range of
the previous one) are finite dimensional. The whole Maxwell operator M can be
included into an elliptic complex in a similar way. There is a trick commonly used
in geometry that naturally reduces the study of such a complex to a single elliptic
matrix operator. A similar technique is known in the study of overdetermined
systems of partial differential equations, where it is sometimes called the method of
orthogonal extension (see [93]). Let us show how it works in the particular cases of
the curl and Maxwell operators. Consider the operator V* acting on vector fields
E, add one more scalar function f so the operator now acts on pairs (F, f), and
define the extended operator as
v VvV
(e 0)
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One can easily check ellipticity of this extended operator (for instance, by taking
the Fourier transform). The subspace of vectors of the form (E,0), where E is
divergence free, reduces the extended operator, and on this subspace it coincides
with the curl. Analogously, one can include the Maxwell operator M into the larger
elliptic operator

0 0 -ivX —iv
o 0 iV-u O
M=1:iyx v o0 0
—V-e 0 0 0

acting in the space
L*(R3,e(z)dz; C?) @ L*(R3, dz) @ L*(R?, u(z)dz; C3) @ L*(R3, dz).

Here we denoted by V - ¢ the operator acting on a vector field u as V - eu. One
can easily define 9 as a self-adjoint operator. This extension to a larger elliptic
problem is often useful in obtaining estimates and in other situations (see, for
instance, [22, 93]).

7.2.3 Variational Formulation and Energy
The energy density of the field (F, H) in (7.1) can be defined as

£(@,0) = 5 {<@) |E@ O + u(e) 1H(a, 1))

with the corresponding physical energy

= / E(z,t)dx

Each of the problems (7.12) and (7.13) allows a variational formulation of finding
stationary points of the ratios

[V x E(z)[* dz
JE@) &(z)dz

and

[V x H(z)|? e} (z)da
JH (@) de

)

respectively (subject to the natural zero divergence restrictions). This formulation
is used, for instance, in the numerical treatment of these problems by finite element
methods.
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7.2.4 Scaling Properties

The problems (7.12) and (7.13) look similar to the spectral problem for a Schrédinger
operator (with £(z) playing the role of a “potential,” or rather of a metric). Al-
though this analogy is useful, it can be misleading, since the Maxwell operator
enjoys many properties different from those of Schrodinger operators. The scaling
property is one of them. Consider, for instance, the problem (7.12):

VXV xE=JX(z)E,
V.-eE=0.

It is straightforward to compute that change of variables ' = sz and simultaneous
change of the spectral parameter N’ = )\/s? reduces the problem (7.12) to the
similar one with the rescaled dielectric function &’(z) = £(z/s). This means that
in rescaling the dielectric function of a medium, we do not need to recompute the
spectrum, since its simple rescaling would do. This observation has significant
implications. It shows that the Maxwell equations do not have any fundamental
length scale besides the requirement that they be macroscopic. For instance, if one
finds some spectral phenomenon on the microwave scale, then the similar (rescaled)
effect holds in the visible light region of frequencies. This is a significant departure
from the Schrodinger case, where the Bohr radius provides a fundamental length
scale for potentials. However, one should realize that manufacturing the materials
for one length scale (for instance, for the visual light wave length) could be much
harder than for another (microwaves).

Another important scaling property deals with the values of the electric per-
mittivity function e(z). Assume that it is multiplied by a constant scaling factor
s: €'(z) = se(z). It is obvious that the spectral problem for the new dielectric
function &’ is reduced to the old one by rescaling the eigenvalues according to the
formula A = s)'. This means that there is no fundamental value of the dielectric

_ constant. In particular, in any homogeneous medium the spectrum always starts

at zero, the property that is in striking contrast with the Schrédinger case. Among
the important implications are different mechanisms of opening spectral gaps and
of creating impurity spectra.

7.2.5 Two-Dimensional Case. TM and TE Polarizations

If a medium has material tensors independent of one of the coordinates, we will call
it a “two-dimensional medium.” Let us assume that y = 1 and e(z) = e(z1, z2) is
independent on the third coordinate x3. We will consider the waves propagating
in the (z1,z2)-plane only. In other words, the electromagnetic field (E,H) is z3-
independent. It is straightforward to check that on the space of such fields the

Maxwell operator
0 —iyx
M= <z’V" 0 )

is reduced by the direct decomposition S; & S, where S; consists of the fields
(E1, E»2,0,0,0,H) and S consists of the fields (0,0, E, H;, Hy,0). In other words,
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S1 consists of the transverse electric (TE) polarized fields (or H-fields), in which
the magnetic field is directed along the x3 axis and the electric field is normal to
this axis. Analogously, Sz consists of transverse magnetic (TM) polarized fields
(E-fields) with the electric field parallel and magnetic field normal to the z3 axis.
One can come to the conclusion that this reduction of the operator is due to the
fact that in this case the Maxwell equations are mirror symmetric with respect to
any mirror orthogonal to the axis z3 (see [106]).

On the space Sy the spectral problem for the Maxwell operator reduces to the
scalar problem of Helmholtz type

—AE = )eE, (7.14)

while on S it reduces to the divergence-type problem
1
-V EVH = A\H. (7.15)

These two spectral problems also arise when one considers acoustic waves in media
with periodically varying parameters. Thus, many results obtained for photonic
crystals can be transferred to the case of such waves. The acoustic interpretation
also makes the consideration of the three-dimensional analogs of the scalar spectral
problems (7.14) and (7.15) meaningful, although they do not reduce the Maxwell
operator anymore. We will not, however, concentrate on the acoustic situation.
We would like to mention a rather standard transformation that can be applied
to the problem (7.15) in R¢ with smoothly varying £(z) to transfer it to a problem
resembling (7.14). Here we will assume that the medium is isotropic, and hence
the material tensor ¢ is just a sufficiently smooth periodic function € > 1. We are
interested in invertibility of the (suitably defined by quadratic forms) operator

1
L)\u=—V-—E-Vu—)\u

in L?(R?). The transformation works as follows:
Ly~ Hy, =+/8L 3afe. (7.16)

The multiplication by /€ is an invertible operator in L*(R%) and, if € is smooth
enough, it preserves the domain of the operator L . Thus, the operators L and
H y are invertible simultaneously. A straightforward calculation shows that

Hy =—A4V =X,

where

3(Ve)* Ae
T 4e2 2% "

We conclude that A is in the spectrum of the operator —V - %V if and only if the
operator H , is not invertible, i.e., when A is in the spectrum of the Schrodinger
operator pencil —A +V — Je.
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Lig)

Figure 7.1: The spectrum of the operator of multiplication by L(§).

The transform described above is sometimes called Liouville-Green transform
and is frequently used in problems of spectral theory (see, for instance, [16, 25, 26,
49, 117]). In particular, nonexistence of bound states for the Schrédinger operator
H , implies their absence for the operator L ). Unfortunately, this transform does
o not work in the case when the material tensors are piecewise constant, which is the
1|8 standard situation for photonic crystals.

7.3 Periodic Media and Floquet—Bloch Theory

So far our considerations do not involve any periodicity requirement for the medium.
However, as has already been mentioned, the main feature of a (pure) photonic
crystal is periodicity of its structure. Let us discuss in very general terms why
periodicity is a favorable environment for spectral gaps. In order to do this we need
to provide some information about periodic (elliptic) differential operators and
Floquet theory, which in the periodic case plays the role of the Fourier transform.
Many aspects of this theory are discussed in detail in books and surveys [54, 116,
123, 124, 145, 157, 173, 174, 179, 185]. Some additional references on this subject
will be provided later in the text. Many physics books also address this topic, for
instance, [5, 36]. '

Let us start considering a constant coefficient partial differential operator’ L(D)
in L2(R"™), where D = —iV. In fact, what we will discuss is also applicable to more
general convolution operators, where L(£) does not have to be a polynomial. The
operator is invariant with respect to the (transitive) action of the additive group
R™ on itself via translations. This leads to the natural idea of applying the Fourier
transform on this group, which is the standard Fourier transform. After applying
the Fourier transform, L becomes the operator of multiplication by the function
L(¢) in L?(R™), where £ denotes the variable dual to z. It is clear that the spectrum
of such an operator coincides with the (closure of the) set of all values of L(£). In
other words, if we draw the graph of the function A = L(£), its projection on the
A-axis produces the spectrum (Figure 7.1).

It is also important to understand when the point spectrum can arise. If there is
a nonzero L-function f(£) and an eigenvalue A such that L(£) f(£) = Af(£) a.e., one
immediately concludes that L({) = A on a set of positive measure. The converse

o

R

R R e S

|

1We intentionally avoid here any discussion of exact definition of the operator, its domain, etc.
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Figure 7.2: The band gap structure of the spectrum in the matrix case.

statement is also correct: positivity of the measure of the set where L(§) = A
implies existence of an eigenfunction. In the important particular case when L(§)
is analytic, this would imply that L(£) is constant.

Another step toward periodic operators is to consider a system L(D) (i.e., the
symbol L(§) is a self-adjoint matrix function). It is rather clear then that the
spectrum can be found as follows: find the (continuous) eigenvalue branches \;(€)
(“dispersion relations” or “band functions”) of the matrix function L(£) and take
their ranges (i.e., project their graphs onto the A-axis). Each of the branches then
provides a band (i.e., a segment) in the spectrum. One can expect that in some
cases the bands might have a gap between them (Figure 7.2).

As in the scalar case, existence of the point spectrum is equivalent to existence
of flat pieces on the graphs of the band functions, which in the analytic situation
implies existence of a constant branch.

Let us now tackle periodic operators. Consider a linear partial differential op-
erator L(z, D), whose coeflicients are periodic with respect to a discrete group of
translations I' acting on R%. Assume, for instance, that I' is the integer lattice Z¢;
this assumption is made for simplicity only and does not restrict generality of our
consideration.? In analogy with the constant coefficient case, due to invariance of
the operator with respect to this group, it is natural to apply the Fourier transform
on I'. “Fourier transform” on I' = Z¢ is in fact the Fourier series, which assigns to
a sufficiently fast decaying function h(n) on Z? the Fourier series

h(k) = Z h(n)e*™,

nezl

where k € R? (or C%). We have to somehow apply this transform to functions
defined on R?. Let f(z) be a function decaying sufficiently fast. We can define its
Floguet transform (sometimes called Gelfand transform) as follows:

Uf(z,k)y= > flz—n)e* (7.17)
nezd

This transform is an analog of the Fourier transform for the periodic case. The
parameter k is called gquasi momentum, and it is an analogue of the dual variable

2The reader can refer to [5, 106) for a brief introduction into general lattices, Brillouin zones,
etc.
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in the Fourier transform. Notice that in contrast to the Fourier transform the
transformed function still depends on the old variable . The reason is that the
action of the group I' on R? is not transitive, and hence the space of orbits of
this action contains more than one point, while in the constant coefficient case we
deal with a transitive action of R? on itself. One should notice the two following
important relations. If we shift z by a period m € Z¢, then we get the relation

US) (z +m, k) = e*™ (UF) (z, k). (7.18)

This is the Floquet condition. It shows that it is sufficient to know the function
Uf(zx,k) only at one point  on each orbit = + Z¢ in order to recover it completely.
For instance, it is sufficient to know it only for € F, where F is a fundamental
domain for the action of Z¢ on R%. A domain F in R? is called a fundamental
domain for the action of Z¢ if each orbit has a representative in the closure F of F
and every point of F' is a unique representative in F' of its orbit. In other words,

Umeza(F +m) = R?

and F 4+ m and F can intersect only along their boundaries. One way to find a
fundamental domain is to consider all points z that are closer to the origin 0 € T’
than to any other point of I'. An example of a fundamental domain for the action

of Z¢ on R? by translation is the unit cube ‘

W={zeR}0<z;<1,j=1,...,d}.

In physics the fundamental domains are often called Wigner—Seitz cells.
The second simple observation is that the function U f(z, k) is periodic with
respect to the quasi momentum k. Indeed,

Uf(z, k+2rm) =Uf(z, k), meZ

Notice that the lattice of the periods with respect to k is different from the lattice
with respect to which the operator was periodic. Now it is I'* = 27xZ¢, which is
the dual (or reciprocal) lattice to T' = Z%. We conclude that k can be considered
as an element of the torus T* = R%/2wZ%. Another way of saying this is that
all information about the function U f(z, k) is contained in its values for k in the
fundamental domain of the dual lattice I'* = 27Z¢. We can define such a domain
B as the set of all vectors k that are closer to the origin than to any other point of

- I'*. In solid-state physics this domain is called the (first) Brillouin zone.

As the result, after the Floquet transform one ends up with a function U f(z, k),
which can be considered as a function of k£ on the torus T* (or on the Brillouin zone
B) with values in a space of functions of z on the compact Wigner—Seitz cell W.
As we will soon see, compactness of the new domain plays the crucial role in the
whole Floquet theory. ' ‘

Now consider the effect of the Floquet transform on a periodic differential op-
erator L(z, D). Due to periodicity, the operator commutes with the transform

U (Lf)(z, k) = L(z, Dz )U f(2, k),
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where by the subscript z in D, we indicate that D differentiates with respect to z
rather than k. For each k the operator L(z, D, ) now acts on functions satisfying the
corresponding Floquet condition (7.18). In other words, although the differential
expression of the operator stays the same, its domain changes with k. If we denote
this operator by L(k), we see that the Floquet transform expands the operator L
in L2(R?) into the “direct integral” of operators

/ ¥ L)k

*

(see, for instance, discussion of this notion in [157]). This is analogous to the
situation of the constant coefficient systems of equations, only instead of matrices
L(&) we have to deal with operators L(k) in infinite-dimensional spaces. The crucial
circumstance is that these operators act on functions defined on a compact manifold
(a torus), while the original operator L acted in R%. Thus, under appropriate
ellipticity conditions, these operators have compact resolvents, and hence discrete
spectra. Then we can define again the band functions (dispersion relations) A;(k)
and obtain a picture analogous to Figure 7.2 with the difference that the number
of branches is now infinite. We see that the spectrum is expected to have a band
structure, and there is hope of opening spectral gaps.

We will now provide a slightly more detailed discussion of the Floquet transform
U and of its effects on function spaces and differential operators. We will still assume
that I' = Z9, since the case of a general lattice of translations does not at this stage
introduce any actual difficulties besides complicating the notations.

Let us introduce an alternative version of the transform /. This version is often
useful. We define the transform ® as follows:

Of(z,k) = Z flz —n)e"*En) = =k £ k).

neze

While the function U f(z, k) was periodic in k and satisfied the Floquet condition
with respect to z, the function ® f(z, k) is periodic with respect to = and satisfies
a cyclic condition with respect to k:

Of(z+n,k)=2f(z,k), nel =174, 7.19)

Of(z,k+7) =e " f(x,k), v € T* = 2774 (7.
Now when k changes, the values of ®f(-, k) belong to the same space of functions
of = on the torus T = R?/Z4. It is still sufficient, however, to know the values of
®f(z,k) for z in the Wigner—Seitz cell W and k in the Brillouin zone B in order
to recover the whole function. The transform ® does not commute with periodic
differential operators anymore. A straightforward calculation shows that

& (Lf) (z,k) = L(z, Dy + k)& f(z, k) = L(K)®F (-, k). (7.20)

So, while we gained a fixed function space, now the differential expression for the
operator changes with k.
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The main tools needed when one uses Fourier transform are the Plancherel and
Paley—Wiener theorems. In the periodic case we need similar statements for the
Floquet transforms 4 and ®, since they become crucial in all aspects of spectral
theory of periodic operators. Let us first formulate an analogue of the Plancherel
theorem. In the theorem below we assume that the natural measures dk on the
Brillouin zone B and the dual torus T* are normalized.

THEOREM 7.2. The transforms

U: L*RY) — LX(T*, LA(W)),  @:L*R%) — L*(B,L*T))

are isometric. Their inverse transforms are
3-ly(z) = / €=k oz k)dk
B

and

“lw(z) = w(x
Uu(e) = [ wie b,

where the function v(z,k) € L*(B,L*(T)) is considered a periodic function with
respect to x € R™ and w(z, k) € L3(T*, L*(W)) is extended from W to all z € R®
according to the Floquet condition (7.18).

This theorem, used constantly in solid-state physics since Bloch (28], was in-
troduced into mathematics for spectral analysis of periodic differential operators
by Gelfand [85] and further investigated in [149, 191] (see section XIIL.16 of [157]
and Chapters 2 and 4 of [123] for discussion and further references). The proof is
straightforward if one notices that (7.17) is just a Fourier series with coefficients in
the Hilbert space L?(W) and uses the standard Plancherel’s theorem for such series.
It is easy to prove an analogue of such a theorem for the Sobolev space H*(R%)
instead of L%(R¢). Namely, it is transformed by ® isomorphically onto the space
L?(B,H*(T)). In terms of the transform U the situation becomes more technical.
Let us define for each k € T* the closed subspace H} of the space H*(W) consist-
ing of restrictions to W of all functions from Hj (R¢Y) which satisfy the Floquet
condition (7.18). It is easy to conclude (see Theorem 2.2.1 in [124]) that

&=1U Hg
kET*
is a Hilbert vector bundle over T*. Then one can show that the transform &/ maps
isomorphically the space H*(R%) onto the Hilbert space L%(T*,£®) of L2-sections
over T* of the bundle £°.

Let us now move to the Paley—~Wiener-type theorems. By this we mean the
theorems that describe the images under the Floquet transform of spaces of suf-
ficiently fast decaying functions on R™. One can notice that while the classical
Paley—Wiener theorem deals with spaces of compactly supported functions, such
a theorem, although easily provable, has not been useful so far for the Floquet
transform.
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It is a commonplace that Paley—Wiener theorems require extension into the
complex domain of the dual variable. The same is true for the Floquet transform.
One can see that both transforms ¢/ and ® can be defined on compactly supported or
sufficiently fast decaying functions also for complex quasi momenta k. The bundles
&° also extend into the complex domain to analytic infinite-dimensional bundles
(see Theorem 2.2.1 in [124]). The reader unfamiliar with the technique of infinite-
dimensional bundles can think of a closed subspace of a fixed Hilbert space, where
the subspace depends analytically upon the parameter k (for instance, there is a
projector onto the subspace, which depends analytically on k). One can now obtain
analogues of the Paley—Wiener theorem for several spaces of decaying functions.
This is done in the Theorem 2.2.2 of [124]. In order to avoid technicalities, we will
loosely describe the corresponding results, referring the reader to [124] for details.
For instance, the space of functions that belong to H; .(R") and decay exponentially
in the H® sense

||f”Hs(W+n) < Ce™alm (7.21}

goes over to the space of sections of the bundle £° that are analytic over a specific
neighborhood of the real space R? in C¢. Availability of the estimate (7.21) for
arbitrary a > 0 is equivalent to the fact that the function U/ f is entire with respect
to k. If the estimate (7.21) is strengthened to require decay of order higher than 1,

AN s (wamy < Ce el"l",  p>1,

this is reflected in growth estimates on the corresponding entire function. All
these theorems are important for periodic partial differential equations and for
the spectral theory in particular, as will be mentioned later (one can also refer to
Chapter 4 of [124] and to papers [9, 10, 78, 120, 131, 132] for examples of such
applications).

Let us now reflect a little bit on the effect that the Floquet transform has on the
operators. As we have mentioned already, the periodic operator L(z, D) in R? after
the Floquet transform becomes a family (in fact, a polynomial with respect to k)
of operators L(k) = L(z, D + k). Here each of the operators L(k) acts on the torus
T, which is a compact closed manifold. In particular, if L is elliptic, we are dealing
with an analytic (polynomial) operator function L(k) whose values are Fredholm
operators in appropriate spaces. This enables one to invoke the rich theory of such
operator functions (see, for instance, [193] and Chapter 1 of [124] for its discussion
and further references).

Ellipticity (or at least hypoellipticity, for instance, parabolicity) of the operator
is crucial. It influences not only the technique, but also the results one might
expect (see [124]). Here one can see what kind of difficulties can be expected with
the Maxwell operator. As we have already discussed before, the Maxwell operator
taken alone is not elliptic. The correct idea is to include it into an elliptic complex
(or to extend to a larger elliptic operator, which is essentially the same). Consider
the example of the homogeneous Maxwell operator M = (Vx)2 acting from the
cokernel of the gradient into the kernel of divergence. Here arises the problem:
after the Floquet transform the operator M (k) will act between the cokernel of
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grad(k) = (V + ik) and the kernel of div(k) = (V + ik)-, where all operators are
acting now on periodic functions. It is easy to check by the Fourier series expansion,
however, that these spaces (i.e., cokernel and kernel, respectively) do not depend
analytically on k. If

Fl) = Y Fye™
is the Fourier series of a periodic vector field F, then
(V—ik) - F =) i(y+k) Fe®

One can see a degeneration of the kernel at the point k = 0. Namely, for k # 0 the
condition (V + ik) - F' = 0 implies that the vectors (y+ k) and F', are orthogonal,
and so F., belongs to the two-dimensional orthogonal complement of (y + k). On
the other hand, for £ = 0 the coefficient Fj can be arbitrary. This means a non-
analytic behavior of Ker(div(k)) at kK = 0. The same thing is true for the cokernel
of grad(k). In technical terms this requires one to work with sections of analytic
sheaves instead of sections of analytic vector bundles. Although this is possible
(see, for instance, [150], where the main result of [123, 124] was extended to the
case of elliptic complexes), the technical complications can sometimes be severe.

7.4 Spectra in Periodic Media

In this section we will focus on the spectral properties of periodic (elliptic) differ-
ential operators, including the Maxwell operator.

7.4.1 Band Gap Structure

As we have already explained, the spectra of periodic elliptic differential operators
exhibit band gap structure. Let us discuss this a little bit more (see [157, 179, 124]
for details and references). If we have a self-adjoint periodic operator L = L(z, D)
in L?(R9), the Floquet transform expands it into the direct integral of operators
L(k) = L(z, D + k) on the torus T.

One can prove the main spectral statement:

o(L)= U, o(L(k)) (7.22)

(see [91, 54, 149, 157, 179, 124]). Due to ellipticity, the spectrum of each L(k) is
discrete. If L is bounded from below, the spectrum of L(k) accumulates only at
the positive infinity. Let us denote by A, (k) the nth eigenvalue of L(k) (counted
in increasing order with their multiplicity). This continuous function of k € B is
called a band function (or one branch of the dispersion relations). We conclude that
the spectrum o (L) consists of the closed intervals (called the spectral bands)

S = [mkm An(k), max An(k)],
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where ming A, (k) — oo when n — oo. It is well known that for ordinary differential
operators of the second order the bands cannot overlap (although they can touch),
which explains why it is a generic situation in one dimension that gaps open in

the spectrum between adjacent bands (see [157]). In dimensions 2 and higher the

bands can and normally do overlap, which makes opening gaps much harder. It
is still conceivable that at some selected locations the bands might not overlap
and hence open a gap in the spectrum. What we have just described is called the
band gap structure of the spectrum for elliptic (or hypoelliptic) periodic differential
operators. This is what triggered hopes for creating photonic crystals as dielectric
materials of periodic structure.

It is not difficult to derive the band gap structure of the spectrum of the periodic
Maxwell operator. This can be done either by including it into an elliptic complex
(and following the line of [150]) or by using an orthogonal extension to an elliptic
operator, as was discussed above. It looks like this standard derivation of the band
gap structure of the spectrum for the periodic Maxwell operator has never been
written down, except the two-dimensional version described in [78]. One usually
refers to this as “according to the Floquet theory” (with no references provided).

One can make a simple useful remark about the representation (7.22). Namely,
not all quasi momenta k are needed in the right-hand side of (7.22). It is sufficient
to use any dense subset S of the Brillouin zone B and then take closure of the union
of the corresponding spectra:

o(L) = U, o(LTR)). (7.23)

There are at least two important choices for the subset S. First, as we mentioned
in section 7.3, there are values of the quasi momentum that are “bad” for the
Maxwell operator (i.e., at which the cokernel of the gradient and the kernel of the
divergence lose analyticity). One can just skip these values and then take the closure
of the union of the remaining spectra instead. In some cases (like, for instance, in
[78]) this works just fine, while it does not eliminate the problem completely in
other situations. This trick can also be used in numerics, when some values of
quasi momenta cause trouble. Second, it is often useful and commonly used in
solid-state physics to represent the spectrum o (L) as the limit of spectra on finite
domains. Consider a cube K in R? and stretch it: K,, = mK,m=1,2,.... We can
naturally define operators L., in L?(K,,) using the differential expression L(z, D)
with periodic boundary conditions on K,,. If L is elliptic with sufficiently decent
coefficients, there is no ambiguity in such a definition. Then one can show that the
spectrum o (L) coincides with the closure

Uo(Ly) = lim o(Lm). (7.24)

This is clearly just a particular case of (7.23) when we use the subset of all quasi
momenta with components commensurable with a given number. The important
relation (7.24) is often proven for specific operators, although it holds for periodic
elliptic operators in general and follows from (7.23).
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7.4.2 Fermi and Bloch Varieties

We are now going to define two objects of paramount importance for the theory
of periodic elliptic (and hypoelliptic) operators. Although they are often used in
solid-state physics, their roles are not always completely appreciated. They are
analogues of the set of zeros of the symbol of a constant coefficient operator, which
is known to determine many properties of such an operator.

Let L(z, D) be a periodic elliptic operator in R%. We define its complex Bloch
variety as follows: '

B(L) consists of all points (k,A) € C4*! such that the equation
L(k)u = Au has a nonzero solution u(z) satisfying (7.18).

The real Bloch variety Br(L) is the intersection of B(L) with the real space
RI+1, It is clear that the real Bloch variety of the operator L is just the union of
graphs of all band functions A;(k). In other words, the Bloch variety is the graph of
the multivalued dispersion relations for the operator L. In particular, the spectrum
of the self-adjoint operator L is equal to the projection of Br(L) onto the A-axis.

The level sets of the dispersion relations are also of interest. For a given A € C
we call the Fermi surface of the operator L on the level A the set F')(L) consisting
of all points k& € C? such that the equation L(k)u = A\u has a nonzero solution u(z)
satisfying (7.18). Analogously to the real Bloch variety, we define

Fr(L) = FA(L) NR%.
It is immediately clear that for a self-adjoint operator L
A€ U(L) <= FR,)‘(L) # 0.

One can imagine that when A changes, the (complex) Fermi surface moves, and the
values of A for which the surface touches the real space constitute the spectrum of
the operator.

The following theorem establishes an important property of the Bloch and Fermi
varieties. .

THEOREM 7.3 ([124]; see also [120, 123]). The set B(L) coincides with the set
of all zeros of an entire function f(k,\) of a finite order in C4+1. (Here an entire
function f(z) in C™ is said to be of the finite order p if it satisfies an estimate
|f(2)| < Cexpalz|’.) A similar statement holds for the Fermi surface at any level
A

One can refer to Theorem 4.4.2, Corollary 3.1.6, and Theorem 3.1.7 of [124]
for exact formulations, including the precise order of the entire function (see also
further discussion and references in sections 3.5 and 4.7 of [124]). In particular, one
concludes that B(L) is an analytic subset of C¢*! in the sense of several complex
variables [94], i.e., that it can be locally (and even globally) described by analytic
equations (this particular corollary was probably first proven in [191]).

As is explained in [124], a similar statement holds for matrix operators. One
can also show that it holds for the Maxwell operator as well (analyticity of B(L)
for this case, although without estimates, can be also extracted from [150]).

v
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There is a natural action of the dual lattice I'* on the Bloch and Fermi varieties
by shifts: (k,\) — (k+~,A) and k — k + v correspondingly, where v € I'*.
Considering the case of a constant coeflicient operator L(D) one easily finds that

B(L) = {(k,\)| L(k + ) — A = Ofor some v € I'*}
and
F\(L) = {k| L(k +v) — A = Ofor some vy € I'*}.

In other words, one needs to find the set of zeros of the symbol L(k) — A and then
take its orbit with respect to I'*.

An analytic set X is said to be reducible if it can be represented as the union of
two smaller analytic subsets: X = X; UXs. We remind the reader not familiar with
this concept that if the function f(z) whose set of zeros is X allows a nontrivial
factorization f = fifo, then the sets of zeros of factors reduce X. An analytic set
that is not reducible is called irreducible [94]. The example of a constant coefficient
operator in the previous paragraph shows that one should discuss irreducibility of
the Bloch and Fermi varieties only modulo thé dual lattice. Irreducibility plays an
important role in many problems of the spectral theory of periodic operators: in
inverse spectral problems [90, 120], behavior with respect to impurities [131, 132],
and others. The irreducibility of B(L)/I'* was proven for the one-dimensional pe-
riodic Schrédinger operator by Kohn [121] and conjectured for the general periodic
Schrédinger operator in [6, 120, 145]. It was proven in [120] in two dimensions
using an intricate algebrogeometric approach. It is conjectured that F'»(L)/I™* is
also irreducible in this case.

CONJECTURE 7.4. The varieties B(L)/T* and Fx(L)/T* are irreducible for
any periodic second-order elliptic operator L, including the Mazwell operator.

This problem looks even harder for the Fermi surface than for the Bloch variety.
It was studied in detail for the discrete Schrédinger operator in the book [90] and
for the discrete Maxwell operator in [9]. In both cases results on irreducibility
of the Fermi surface F(L)/I"* were obtained by methods of algebraic geometry.
It was shown in [10] that Fx(L)/T* is irreducible for the Schrédinger operator in
two dimensions with a separable periodic potential v;(z1) + v2(z2) and in three
dimensions for a separable periodic potential vy (z1) + v (22, x3).

Another consideration of interest is the following. When A approaches the spec-
trum, the Fermi surface approaches the real space, and when A enters the spectrum,
Fg » is not empty. It is natural to expect that when A goes into the interior of a
spectral band, the Fermi surface becomes sufficiently “massive.” In fact, one can
show that if A belongs to the interior of a spectral band, then the Fermi surface
F'r ) as a real analytic set has dimension at least d — 1.

It is also natural to assume that one should be able to estimate the distance
from the point X to the spectrum by the distance between the Fermi surface F'y and
the real space. Here is how this argument can go. First, if the Fermi surface is at a
certain distance from the real space, this means that the equation Lu = Au has a
Floquet-Bloch solution u = e***y(z) with a periodic v(z) and with an estimate on
[Imk|. In other words, we have an exponential estimate on u(x). Then an argument
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of the type provided in the section 54 of [91] for the Schrédinger operator should
lead to an estimate on the distance d(\,o(L)). It would be very interesting to
extend this type of an argument to more general operators than Schrédinger (in
particular, to the Maxwell operator) and to improve the estimates of [91] to the
extent that one can deduce exponential localization estimates obtained in [42] (see
section 7.6.3).

Concluding this section, I want to emphasize that analytic properties of the
Bloch and Fermi varieties are very important for understanding spectra of cor-
responding operators: analyticity of these sets imply absolute continuity of the
spectrum (section 7.4.3), irreducibility is crucial for inverse spectral problems [120]
and for the absence of embedded impurity eigenvalues (section 7.6.4), and the way
the Fermi surface approaches the real space is related to embedded eigenvalues (sec-
tion 7.6.4) and to the exponential localization of impurity modes (section 7.6.3).

7.4.3 Absolute Continuity

As we have already discussed, the spectrum of any periodic elliptic or hypoelliptic
operator L has a band gap structure. The natural question is about the type of
spectrum that can arise (e.g., absolutely continuous, singular continuous, point).
The general expectation is that in principle the spectrum must be absolutely con-
tinuous; i.e., no eigenvalues or singular continuous spectrum can arise. In fact, this
is not true in general, since one can show existence of periodic elliptic operators of
the fourth order that do have point spectrum (see [124, pp. 135-136]). However,
there is very little doubt that absolute continuity holds for any second-order peri-
odic elliptic operator, including Maxwell. There is one simple thing one can prove
for a periodic elliptic operator of any order: the singular continuous spectrum is
empty. The reason is that (as was understood since [28, 85]) the Floquet-Bloch
transform represents the operator L as the infinite sum of operators of multiplica-
tion by the band functions A, (k). Another important ingredient is that the band
functions are piecewise analytic. Then it is not hard to conclude that each of these
multiplication operators either is absolutely continuous or has an eigenvalue. In
the latter case, the corresponding band function must be constant on a positive
measure set of quasi momenta k and hence constant. This kind of consideration
goes back to [184] and is presented in several places, for instance, in [157, 174, 124].

The task of proving absolute continuity of the spectrum now reduces to showing
absence of eigenvalues. Although it has been unanimously believed by physicists
for a long time, proving this statement happens to be a hard problem. For the
Schrédinger case in three dimensions it was proven in the celebrated paper [184]
by Thomas and then extended to more general potentials in [157] (see also [14]).
Attempts to extend this theorem to more general periodic elliptic operators had
failed for about 20 years, except the results of [50] for the Dirac operator and
[98] for the magnetic Schrodinger operator with small magnetic potential. Then
an avalanche of papers was triggered in 1997 by the paper [24], where absolute
continuity was proven in two dimensions for the Schrodinger operator with both
magnetic and electric potentials. The same year this result was extended in [180] to
any dimension, which required a new technique. The proof of [180] was simplified

v
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in [128, 129]. The recent paper [142] contained the absolute continuity result for
the two-dimensional Schrédinger operator with periodic metric. The paper [170]
contains improved conditions on the potential. One can find more references and a
nice survey of known results in [26].

We will now indicate the main thrust of Thomas’s proof [184] and of all its
extensions. The major step is to use analytic continuation into the domain of
complex quasi momenta. The following theorem holds.

THEOREM 7.5 (Theorems 4.1.5 and 4.1.6 in [124]). Let L be a periodic elliptic
operator. Then the following statements are equivalent:

(a) The point X is an eigenvalue of L in L?*(R%), i.e., there is a nonzero L?-
solution of the equation Lu = Au in RY;

(b) The Fermi surface F coincides with the whole space C%;

(c) There exists a nonzero solution of the equation Lu = Au in R? that decays
faster than any exponent:

|u(z)| < Cexp(—alz|) for all a > 0;

(d) There exists a nonzero solution of the equation Lu = Au in R? that decays
superexponentially:

lu(z)| < Cexp(—|z|'t*) forsomea > 0.

In fact, statements (c) and (d) are not needed for the standard proof of absolute
continuity, but they are interesting on their own. The exact technical conditions on
the operator can be found in [124]. Let us concentrate on the equivalence of (a) and
(b), which can be easily explained. As we have already discussed, the operator of
multiplication by A, (k) has an eigenvalue A if and only if the level set A, (k) = A has
a positive measure. In terms of the Fermi surface Fig x(L) this means that Fg x(L)
has a positive measure in R%. However, as we know already, it is an analytic set.
The uniqueness theorems for analytic functions immediately imply that this can
happen only when F'y(L) = C¢, and thus the equivalence of (a) and (b) is proven.

Let us interpret this result in a different way. If for each A we can prove that
Fy # C4, then we conclude that there are no eigenvalues and hence that the
spectrum is absolutely continuous. Recalling the definition of the Fermi surface,
one obtains the following key corollary.

COROLLARY 7.6. If for any X\ there erists a quasi momentum k € C? such
that the equation L(k)u = Au has no nontrivial solutions on the torus T, then the
spectrum of the operator L is absolutely continuous.

Now one proves absolute continuity of the spectrum of the Schrodmger operator
—A + v(z) with a periodic potential v if one can show the absence of periodic
solutions of the equation (D-+k)?u+vu = Au for an appropriately chosen (depending
on \) quasi momentum k. It is not hard to choose a quasi momentum with a large
imaginary part in such a way that the (D+k)? term dominates the zero-order terms,
and hence no nontrivial solutions are allowed (see, for instance, [184, 157, 124] for
details). Although the idea stays the same, treatment of more general operators
becomes much more complex when one wants to show that F'y # C9.
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At this moment we want to address the case of the Maxwell operator, which is
of main interest here. Unfortunately, absolute continuity of its spectrum has not
been proven yet even for the case of smooth material tensors and for the isotropic
medium.? Considerations of [128, 129] show that the technology developed in [180]
leads for the Maxwell operator with smoothly varying parameters to a model prob-
lem that involves a simple covariant Cauchy—Riemann derivative operator on the
torus.

For the case of a two-dimensional medium and for the waves propagating in the
periodicity plane the result on absolute continuity can be extracted from the known
results about operators of the Schrodinger type. Let us recall that, as was discussed
in section 7.2.5, in this case the spectral problem for the Maxwell operator splits
into the direct sum of two scalar problems:

—Au = Ae(z)u
and

-V- 1Vu = A\u.
€

Now the following theorem resolves the problem of absolute continuity in two di-
mensions (although its first statement holds in any dimension). ‘

THEOREM 7.7. (a) Under the conditions* on the periodic dielectric function
e (z) that imply the absolute continuity of the spectrum of the Schridinger operator
(—A —g), the spectrum of the problem

—Au = de(z)u

is absolutely continuous in R%.

(b) Let the dielectric tensor e(x) be smooth and periodic (not necessarily scalar);
then the spectrum of the operator —V - e~ 1V in L2(R?) is absolutely continuous.

Proof. (a) If ~Au = Xe(z)u has a nonzero L?-solution, then the Schrédinger
operator (—A — X&) has a zero eigenvalue, which is impossible according to the
known results. (b) This is essentially the result of [142], modulo an application of
the transform (7.16).

The equivalence of (a) and (b) in the Theorem 7.5 for Schrodinger operators
is essentially due to Thomas [184]. We now want to call the reader’s attention to
the statements (c) and (d) of this theorem. The proof requires a technique from
the several complex variables theory [124]. In principle, these statements suggest a
different way of proving absolute continuity of spectra of periodic elliptic operators
of the second order. Namely, for such operators existence of a superexponentially

3When the author was finishing the last revision of this text, the preprint [143] appeared, where
the absolute continuity result for the isotropic periodic Maxwell operator was proven.

4The best currently known conditions were established in [26, 170]. In dimension d = 2 it
is that € € L} (R?) for some r > 1 (or equivalently ¢ € L"(W), where W is the Wigner—

Seitz cell). For d = 3 and 4 one requires € € Lg /2 oo (W). This means that the function pe(t) =

mes {x € W||e(zx)| > t} satisfies pe (t) = o(t—%/?). In dimensions d > 5 the (nonoptimal) condition
is € € L%¥2(W). Shen has recently announced the optimal condition for any dimension [171].
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decaying solution like in (d) should be an impossible pathology that would violate
uniqueness of continuation at infinity (see, for instance, [84, 136, 137, 140], and
references therein). If one could prove nonexistence of such solutions, the imme-
diate consequence would be absolute continuity of the spectrum. However, partial
differential equation results that guarantee absence of such solutions are probably
not currently available for periodic operators.

7.4.4 Spectral Gaps

In this section we will consider the nature, existence, and number of gaps in the
spectrum of a periodic operator. This is probably the central issue of the whole
photonic crystals theory. Existence of gaps is a prerequisite to most applications
of photonic crystals.

Let us discuss briefly one mechanism of opening gaps that exists in the case of
a periodic Schrodinger operator —A + v(x). Imagine that we start with a constant
potential. Then the spectrum of the operator is continuous and covers a semiaxis
[, 00). Let us add a localized potential well. This will create a few eigenvalues
below the continuous spectrum. The corresponding eigenfunctions (bound states)
are localized in a vicinity of the well. Let us now repeat the well periodically with
a sufficiently large period. The former bound states can now tunnel to the other
wells and hence will not be localized anymore. This will lead to spreading the
eigenvalues into narrow bands, which correspondingly will be separated from the
rest of the spectrum by gaps. So, the major factor in opening gaps is that by adding
a potential one can change the bottom of the spectrum. In the case of photonic
crystals, however, this is exactly what is missing. The operators involved in both
two- and three-dimensional photonic cases are multiplicative rather than additive
perturbations of the corresponding free operators:

_1__ (VX)2 _1_

VAN

in three dimensions and

A

Sak
NN

and

V.- lv
€
in two dimensions (TM and TE polarizations). The outcome is that in all these
cases the spectrum starts at zero. Indeed, consider, for instance, the TM case. If
¢n, is an approximate eigenfunction for L = —A at zero, i.e., if ||¢n||;2 > ¢ > 0
and ||Léy,|| — O, then the functions 9, = 1/e¢, are approximate eigenfunctions
for (—e=1/2Ae~1/%). This shows that the mechanism of opening gaps in the PBG
case is different. In particular, while the gaps for the Schrédinger operator can be
opened at the bottom of the spectrum, in the photonic case they normally open in

w the medium-frequency range (see, for instance, [106]).
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It is well known that in one dimension (i.e., for the Hill operator) the generic
situation is that infinitely many gaps are open (see, for instance, [157]). On the
other hand, it is commonly believed that the number of gaps one can open in a
periodic medium in dimension higher than 1 is finite. In the case of a periodic
Schrédinger operator, this constitutes the Bethe-Sommerfeld conjecture [15], first
proven by M. Skriganov (see [52, 96], [110]-[116], [124, 141], [175]-[179], [181, 187]
for the discussion of this problem and several different approaches to its proof).
The proofs are by no means simple and often employ results from number theory.
The following analogue of the Bethe-Sommerfeld conjecture almost certainly holds
true.

CONJECTURE 7.8. In dimensions 2 and higher the spectrum of any photonic
crystal (or of its acoustic analogue) has at most a finite number of gaps.

The main idea of the proof in the case of Schrodinger operators is that the
overlap of spectral bands of the free Hamiltonian for sufficiently high energies is
so strong that addition of a periodic potential cannot open gaps at these energies.
However, in the photonic case one deals with a multiplicative rather than additive
perturbation of the free Hamiltonian, which will probably lead to the necessity of
involving a different approach to the proof. On the other hand, it looks like it is
harder to open gaps in the photonic case, which raises a hope that the proof of
finiteness of number of gaps could be simpler than in the solid-state situation.

Let us now address the problem of existence of spectral gaps for the periodic
Maxwell operator. While there is a lot of numerical and experimental evidence of it
(see the surveys [33, 101, 106, 108, 134, 156, 182, 189]), analytic results on existence
of gaps are scarce. We are not aware of any such theorems for the full-vector
three-dimensional case, which is the main interest in the PBG theory (the result
announced in [75] is erroneous). There are, however, a few cases when existence of
gaps was proven for the scalar problems analogous to (7.14) and (7.15) in two and
higher dimensions. The authors of [49] studied the Laplace-Beltrami operator

1 g
i E 81, LU 8

in R? with a conformally flat periodic metric g;; = a(x)d;;. In the one-dimensional

case it reduces to
1 d\?
Vadz )’

which in turn can be reduced by a simple change of variables to —d?/dy?. This
shows that when d = 1 the spectrum of Ly coincides with the positive half-axis
and hence has no gaps. This is in contrast with the case of periodic Schrodinger
operators, since such an operator in one dimension (the Hill operator) generically
possesses infinitely many spectral gaps. Experience with Schrédinger operators
also shows that when dimension increases, it becomes increasingly difficult to cre-
ate spectral gaps. Surprisingly enough, the situation with the periodic Laplace—
Beltrami operators is different: while there are no gaps in the spectrum of such an
operator in one dimension, it was shown in [49] that in any higher dimension there
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exist periodic metrics such that the corresponding Laplace—Beltrami operators have
gaps in the spectrum. The idea of the proof is that using a procedure similar to the
one described in section 7.2.5, one can reduce the operator to a Schrédinger form.
If one succeeds in reducing to a Schrédinger operator with a separable potential,
then one can use the well-developed theory of spectra of the Hill operators to check
existence of gaps. This study was continued in the paper [92], where it was shown
that in two dimensions one can achieve any finite number of gaps in the spectrum
of a periodic Laplace-Beltrami operator. It is not known whether the number of
gaps must always be finite and whether it is not limited in dimensions higher than
2. It is interesting to note that the method used in [92] to show that the number of
gaps is not limited in two dimensions is essentially the same one that was applied in
[76]-[78] for showing existence of gaps in spectra of some two-dimensional photonic
crystals (see description of these results below).

There is not much hope for analytic (rather than purely numerical) prediction of
spectral gaps in a general situation. However, when some parameters of the problem
approach extremal values (for instance, the dielectric contrast becomes very high,
the dielectric regions become very narrow, etc.), one can try to understand the
asymptotic situation and therefore to predict the behavior of the spectrum. This
is the idea that was employed in [76]-[81] and [8, 100, 126, 127, 172] for studying
spectra of the problems (7.14) and (7.15). Due to their specific flavor, we will
address these results in the next section.

Suppose that [a,b] is a gap in the spectrum of one of the periodic problems
we discuss. This means that a is the maximal value of a band function A;(k).
Analogously, b is the minimal value of another band function. In many cases (some
of which will be mentioned later) it is important to know in which way these extrema
are attained: are they isolated, nondegenerate, etc.?” Unfortunately, there is almost
no information about this, except the recent result of [119] on generic simplicity of
the endpoints of bands. Probably the only thing known for some periodic operators
is the behavior of the band functions at the bottom of the spectrum (which is the
upper end of the infinite gap (—o0,a]). The result obtained in [117] concerns a
periodic Schrédinger operator H = —A + V(z) in R%. Let us denote as before

H(k) = (D +k)* + V(2).

Then the band functions A;(k) provide the eigenvalues of H(k), where A;(k) is the
lowest one.

THEOREM 7.9 (Theorem 2.1 in [117]). Let 9y be the positive periodic solution
Of H'(,bo = /\1 (O)'l,bo Then

(min 4o/ max o) ?k? < Ay (k) — A1(0) < k2.

This theorem implies that the bottom of the spectrum is attained only at the
zero quasi momentum k = 0, and around that point the lowest band function
behaves as

A (k) = M (0) + (k) + O(kY),

where (k) is a positive definite quadratic form of k.
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The analogous result was recently obtained in [25] for periodic Pauli operators
Py =(D-A)?+B

in two dimensions, where A = (A4;, Ay) is a periodic magnetic potential and B =
0142 — 02A; is the corresponding magnetic field. Besides, it was shown that the
quadratic form (k) has the form ak? with an explicit formula for the coefficient c.

It is interesting to mention that such band edge behavior is closely related to
Liouville-type theorems on the structure and dimension of the spaces of polynomi-
ally growing solutions of periodic elliptic equations [130].

A similar result about the way the bottom of the spectrum is attained has been
obtained recently by Birman and Suslina [21] for the full-vector Maxwell operator
in three dimensions (in which case the statement applies to the two first band
functions). This, in particular, provides a rigorous justification of the known linear
behavior of the band functions w(k) at zero frequency (recall that the eigenvalues
are related to the frequencies as A = (w/c)?). From the physical point of view the
situation is rather clear: long waves do not notice the periodic structure of the
medium and see it as a homogeneous one. Clearly, some kind of homogenization
technique (see [13, 104]) is required in order to find the slope of the dispersion
relation close to zero frequency. This was done for several cases in physics papers
(see, for instance, [48, 95, 122]) although it looks like a rigorous mathematical
analysis is still due.

Any results for the higher gaps of the kind that we described for the bottom of
the spectrum would be of great importance. It is very common to see in papers
devoted to impurity spectra and localization (see section 7.6.2 below) conditions of
the following kind. Let [a,b] be a gap in the spectrum. Then a is the maximum of
a band function A;(k). It is assumed that this function attains its maximum at a
single point (or a finite set of points) in the Brillouin zone and that this maximum
is nondegenerate (i.e.,

Aj(k) = Aj(ko) +v(k — ko) + O(|k — kol?),

where + is a positive definite quadratic form). However, it is apparently not known
how to verify such a condition, or even how common it is. It is believed that this
condition holds generically. The only result in this direction known to the author
is that of [119], where the simplicity of the band edge was shown in the generic
situation.

7.5 Asymptotic Analysis of High-Contrast PBG
Materials

It has been recognized (see [106, 189]) that high dielectric contrast of a photonic
crystal favors spectral gaps. Under some circumstances it was also noticed that gaps
could benefit from narrowness of optically dense dielectric “walls” separating the air
bubbles. It is natural to try to understand what happens in the asymptotic limits
when the contrast goes to infinity and the filling fraction of the dielectric (or the air)
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Figure 7.3: Two-dimensional square PBG structure. The dark strips of width 6
represent dielectric with ¢ > 1. The white areas are filled with air (¢ = 1).

portion of the medium goes to zero. In this section we will address spectral results
known for the PBG materials in such asymptotic situations. One should notice,
however, that neither very high contrasts nor very low dielectric filling fractions
are currently achievable technologically (for instance, 12 is considered to be a high
value for the dielectric contrast). The asymptotic study still makes sense for several
reasons. First, it might reveal spectral effects which are hard to recognize otherwise.
Second, since often the asymptotic problems are much simpler to study numerically
and analytically, they might provide quick ways to estimate the situation. Third,
information obtained for the asymptotic models can suggest better algorithms for
numerics for the full problem. In particular, one can try to use the spectra and
eigenmodes computed for the asymptotic models as seeds for iterative methods
for the full problem and/or for creating suitable preconditioners for such methods.
One also discovers that asymptotic results can sometimes provide unexpectedly
good approximation in the cases when neither the contrast is very high, nor the
structure is very thin [8]. One can hope that with further advances in technology
the values of parameters closer to the asymptotic limits might become one day
technologically feasible. Finally, in the acoustic situation, which is also of interest,
one can already achieve such high contrasts. This section is devoted to discussion
of the known asymptotic results about PBG materials.

7.5.1 Square Geometry

Probably the first successful asymptotic study of the PBG materials was undertaken
in [76]-[78] and in a less detailed form in [172].> These papers addressed the square
geometry of a two-dimensional PBG medium (Figure 7.3).

The medium has period 1 in both z- and y-directions. The dark areas have
thickness § < 1 and are filled with a dielectric with the dielectric constant € > 1,
while the light areas are filled with air (¢ = 1). The dielectric function ¢(z) then
takes values € and 1 in the dielectric and air regions correspondingly. The scaling
properties of the Maxwell equations (see section 7.2.4) guarantee that our choice
of the period and of the dielectric constant of the “air” regions does not restrict
generality of the consideration. The square structure was chosen for its simplicity
. with the hope that one could understand it and then move on to more complex
geometries.

5We use the word “successful” here since the three-dimensional result announced in [75] was
erroneous.
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We remind the reader that for the in-plane harmonic waves the Maxwell system
reduces to the following two scalar spectral problems (7.15) and (7.14):

-V —l—Vu = \u
e(z)

(TE polarization) and
—Au = Xe(z)u

(TM polarization), where A = (w/c)2. The papers [76]-[78] are devoted to the study
of these two spectral problems for the square two-dimensional geometry described
above in the asymptotic limit when 6 — oo and €62 — 0. The TE polarization
happens to be the simplest one, and its asymptotic spectral behavior is described
by the following result.

- THEOREM 7.10 (see [76]). Let N be an arbitrary positive number and

S1 = {wz(nf +n3)| n=(ny,n2) € Z?}.

Denote by org the spectrum of the problem (7.15) for the square geometry described
above. Then the Hausdorff distance between Sy N [0, N] and org N[0, N] tends to
zero when €6 — oo and €6 — 0. Moreover,

d(S1 N[0, N], o7z N[0, N]) < Cy max {(e&)'l ,552} ,

where d denotes the Hausdorff distance.

This theorem says that the spectrum of the TE modes for small values of (¢6)~*
and €62 concentrates in a small vicinity of the discrete set Sy, and hence large gaps
at exactly known locations open up. The reader has probably noticed that the
set S; to which the spectrum o7 g converges is just the spectrum of the Neumann
Laplacian on the unit square (which is the Wigner—Seitz cell of the considered
geometry). A more precise description of this result can be found in [76]. An

~additional observation made in [76] was that the Floquet-Bloch eigenmodes have

most of their energy concentrated in the air region.

We would also like to mention that the same result holds for the problem (7.15)
for the cubic geometry in three dimensions [76], where one can think of (7.15) as
describing acoustic rather than electromagnetic waves.

This study was finished in [78], where the asymptotic behavior of the TM modes
(7.14) was investigated. We will present here the main result of [78], omitting some
details.

Consider the spectral problem (7.14) for the square structure in two dimensions.
Denote by Ss the following set:

Sy = {m?*(n} + n3)| n = (ny,nz) € Z*\{(0,0)}}.

It is clear that Sy is the spectrum of the Dirichlet Laplacian on the unit square.
THEOREM 7.11 (see [78]). The spectrum oray of the problem (7.14) for the
square geometry described above splits into two parts: orp = o1 U 0.
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Figure 7.4: The three asymptotic spectra arising in the high-contrast square PBG
structure.

Ifw=(8)"" — 0 and 6*/3 — 0, then the following spectral asymptotics hold:

Let N be an arbitrary positive number.

(a) The Hausdorff distance between Sy N [0, N] and o1 N [0, N] tends to zero.
Moreover,

d(S2N[0,N],o1N[0,N]) < Cn (e6)7".
(b) There ezists a set of disjoint segments

D= [D,,D]]
n>0

not depending on € and § such that

Dy =0, Df=4, Dp.,>D}, D, ~2mm, D,

n ~2mn4+T

when n — oco. The spectrum o allows the representation
02N [0,N] = { Y [w;D;,w;:D:{]} N o, N],
nz

where w ~ w = (e6) L.

One can find a more precise formulation in [78]. This theorem shows that the two
subspectra o7 and oy behave differently in our asymptotic limit. The subspectrum
o1 behaves essentially like o7 g, except for the absence of the band at zero. The
bands shrink to the spectrum of the Dirichlet Laplacian on the unit square, therefore
becoming almost discrete and opening large gaps at exactly described locations.
Another similarity with org is that the eigenmodes are also the air modes, which
have most of the energy concentrated in the air bubbles. A completely different
behavior is observed in the second subspectrum ;. Namely, it splits into narrow
bands separated by narrow gaps, both of the asymptotic size w = (¢§)~!. Besides,
the Floquet—Bloch eigenmodes behave differently: they concentrate in the dielectric
regions, quickly dying out in the air. One can attribute this effect to the total
internal reflection [103]; i.e., the narrow dielectric regions behave as a waveguide.
Figure 7.4 represents these three spectra schematically.
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(a) . (b)

Figure 7.5: (a) The graph X and its faces ;. (b) The dielectric PBG material
corresponding to the graph ¥. The dark areas of width é represent dielectric with
dielectric constant € > 1. The white areas are the air bubbles with £ = 1.

One of the by-products of this study is the following statement.

THEOREM 7.12 (see [78]). For the square geometry of the two-dimensional
material, for any given integers N and M the number of gaps in (org Uoram) N
[0, N] is at least M for sufficiently small values of €6*/® and (¢6)~*. The spectral
bands in [0, N| are of asymptotic size (¢5)™' and are separated by gaps of the same
asymptotic size.

This theorem proves in particular that it is possible to open spectral gaps in
PBG materials. It also shows that the TM modes responsible for the subspectrum
o2 present the main obstacle for the gaps opening, since all other TM and TE waves
tend to create an almost discrete spectrum with large gaps.

The proofs of the quoted theorems are rather technical and rely on availability
of an exactly solvable model with separable variables in a vicinity of the spectral
problem of interest. This approach restricts the consideration to the square case.
On the other hand, both the result about splitting the spectrum into subspectra
with different asymptotics and the understanding of behavior of the correspond-
ing eigenmodes are of general importance. They will be exploited in our further
considerations.

7.5.2 General Two-Dimensional Geometry

The results of the previous section raise several natural questions. The main ones
are about the possibility of carrying over a similar analysis for nonsquare geometries,
which do not allow separation of variables, and the explanation of the origin of the
spectrum o». To some extent, these questions were answered in [79, 80]. The proofs
presented in [80] are much simpler than the ones in [76]-[78]. A wide range of PBG
geometries is covered. On the other hand, the price paid was a somewhat weaker
nature of the results.

Consider a periodic graph ¥ on the plane that divides it into compact faces €2;.
Imagine that all its edges are fattened to the width 6 (the dark areas in Figure 7.5)
and filled with a dielectric with the dielectric constant € > 1. The rest of the plane
(the white faces §2;) is filled with air (Figure 7.5).
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We will consider now the asymptotic behavior of the spectrum of TM modes
when § — 0 and (¢6)™! — W < oo. We address the TM modes since in the
asymptotic limit they are the “worst” modes as far as gaps are concerned (see
the previous section). The case of the TE modes will be discussed in [81]. One
can notice that in the previous theorems we assumed that W = 0. We now allow
nonzero (albeit finite) limits of (¢6)~1. This is a much more realistic assumption,
at least at the current level of technology, since the technologically feasible values
of (€6)~! are of order 1.

Theorem 7.11 shows that the sizes of bands and gaps of the “worst” spectrum o5
are of order (6)~!. It is natural, then, before trying to understand this spectrum,
to zoom in on it by introducing a rescaled spectral parameter D = (¢§)A. Then the
spectral problem (7.14) becomes

~Au = (£6) " De(z)u. (7.25)

THEOREM 7.13 ([80]; see also [79]). For any positive N the part of the spec-
trum o (in terms of the parameter D) of the problem (7.25) that belongs to [0, N|
converges to the corresponding part of the spectrum of the following problem:

—Au = D(bg + W)u. (7.26)

Here b5, is the delta function supported by the graph 3; i.e., for any compactly
supported smooth function ¢(z)

(65.6) = [ dla)de.

There are several comments on this theorem:

(1) All the details, exact definitions of the operators, etc., can be found in [80].

(2) The constant W = lim(¢6)™! plays the role of a coupling constant. We saw
that when W = 0 (i.e., in the situation considered in the previous section) the air
and dielectric modes decouple.

(3) This theorem allows nonzero values of W, which is much more realistic under
the current technological conditions.

(4) Although the statement of the theorem looks similar in spirit to the ones
of the previous section, it is in fact weaker for W = 0. Indeed, if in the previous
section we stated results of convergence of any finite part of the spectrum in terms
of the spectral parameter ), this is now done in terms of the rescaled parameter
D = (e6)\. If D € [0, N], then X € [0, (e6) "' N]. This shows that when (¢§) — oo
(i.e., when W = 0), we are zooming in on an ever smaller segment of the A-axis. It
is desirable to extend this result to any finite part of the spectrum, in the spirit of
Theorem 7.11.

When W = 0, the problem (7.26) reduces to

—Au = Désu. (7.27)

In this case the natural domain for consideration of this spectral problem is the
graph X itself. In order to understand this we need to introduce the notion of
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the Dirichlet-to-Neumann (D-N) operator on the graph ¥. Take a function ¢(z)
defined along the edges of the graph ¥. We will further assume that ¢ € L?(%),
but so far one can think of a sufficiently smooth compactly supported function on
the plane restricted to the graph Y. Take any of the compact faces {2; and solve
the following Dirichlet problem:

{ —-AUj(.'L‘) =0, xz€ Qj,
ujlon; = ¢.

Then on each face €2; we obtain a harmonic function u;. Due to the construction,
these functions agree across the graph’s edges, while their normal derivatives dis-
agree. Let us now define a function 1) on the graph as the sum of all exterior normal
derivatives of all the functions u;:

ou;
‘”:;5?;’

where n; are the exterior normal vectors to 0§}; C X.
The D-N operator on the graph ¥ is the operator

A):Z(]S—-—V(p.

It is not hard to define Ay as a self-adjoint operator on L%(X) (see, for instance,
[80, 126]).

THEOREM 7.14 (see [80]). The spectrum of the operator As. coincides with the
spectrum of the problem (7.27).

This theorem explains the origin of the “bad” spectrum oy in the previous
section: it asymptotically behaves as the spectrum of the D-IN operator Ay, rescaled
with the small parameter (£6)~!.

The operator Ay can be thought of as a “pseudodifferential” operator on the
graph ¥. Although this is probably possible, we will not try to define the notion of a
pseudodifferential operator on graphs. It is known that if the graph is smooth (and
in particular has no vertices or loose ends) the operator Ay is in fact a pseudodiffer-
ential operator. D-N operators have been intensively studied recently, in particular
due to the needs of inverse problems (see, for instance, [186] and references therein).
The only thing different in the photonic situation is that the operator Ay is a “two-
sided” one. This means that in order to define it, we solve Dirichlet problems on
both sides of an edge and then take the jump of normal derivatives from both sides,
while in standard considerations the Dirichlet problem is solved on only one side,
and then the exterior normal derivative at the boundary is taken. For a standard
D-N operator it is known that it is pseudodifferential and that its symbol is the
square root of the symbol of the Laplace-Beltrami operator on the boundary (see,
for instance, [183]). It is easy to conclude then that if the graph ¥ is smooth,
the operator Ay is pseudodifferential with the symbol 2 || (i.e., the symbol of the
operator 24/—d?/ds?, where s is the arc length). This understanding is important
for what follows.

The study of [80] was devoted to the case of TM modes in two dimensions only.
It is continued in the paper under preparation [81], where the TE modes in two



Chapter 7. The Mathematics of Photonic Crystals ) 239

dimensions are treated in a similar asymptotic limit. It is shown, in particular, that
the spectrum of the TE modes converges to the spectrum of the following problem:

—Au=MXu, z€R?-3,
(] =0, =zez, (7.28)

g—z =Wlu], z€%,
where [%] and [u] stand for the jumps of du/On and of u, respectively, across &
and 0/0n is the normal derivative at smooth points of ¥. Some three-dimensional
cases were also considered in [81].

7.5.3 Study of the Graph Models

As we saw in the previous section, study of thin high-contrast dielectric structures
leads to spectral problems on graphs. In three dimensions, analogous study also
leads to similar problems on surface structures. It is interesting to mention that
in recent years, due to progress in nanotechnology and microelectronics, problems
in thin domains (“fattened” points, graphs, or surfaces) were considered in meso-
scopic physics. These are in particular studies of circuits of thin semiconductor
strips (“quantum wires”; see a mathematical discussion in [59]), thin supercon-
ducting structures [160]-[162]), and others. In all these cases a natural asymptotic
consideration was applied, which led to differential problems on graphs. One can
also mention related considerations in different branches of mathematics ([30]—[32],
[37]-[39], [57, 58, 165, 82, 83, 89, 133], [146]—[148], [163, 166]), chemistry [164], and
other areas. The eigenvalue problems that arise in these studies usually look as
follows: along each edge of the graph one has the problem
d?u
—.d—SE = )\2U

with “appropriate” boundary conditions at each vertex. These boundary conditions
at the vertices are still problematic, since it looks like convergence of spectra on thin
domains to spectra on graphs are harder to prove in mesoscopic physics than in the
photonic case. The only known results of this kind are probably the ones obtained
in [82, 83, 133, 166, 163]. The theorems proved there and some handwaving in
other cases show that normally these conditions are probably the following: the
function u must be continuous through each vertex, and at each vertex the sum of
the outgoing derivatives along each edge must be equal to zero. A further study of
this problem is required.

Let us now discuss some spectral properties of the operator Ay on a periodic
graph X in the plane. We remind the reader that this is the asymptotic model for
the TM waves propagating mostly in the thin dielectric regions along the edges of
the graph and that waves of this kind are responsible for the main difficulties in
opening spectral gaps in the high-contrast case.

A thorough numerical and analytic study of this operator was done in [8, 126,
127]. We refer the reader to [126] for a description of the numerical algorithm used
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Figure 7.6: Square structure and its spectrum.

for finding spectra of operators Ay, and present here only some of the obtained
results.

Figure 7.6 presents the spectrum computed for the square lattice graph formed
by the lines z = n and y = m (n,m € Z) and also explains our graphing system.
In this picture the spectral axis is vertical. The first column represents the graphs
of several branches of the dispersion relations D;(k) (we remind the reader that we
have a rescaled spectral parameter D instead of the former A). In order to avoid
graphing surfaces, the dispersion relation is commonly graphed only for the values
of the quasi momentum k on the boundary of the irreducible Brillouin zone, which
in this case is the triangle with the vertices I'(0,0), X(m,0), and M(m, 7). The
second column contains the graph of the density of states over the spectral axis.
The third column shows the band gap structure of the spectrum.

Consider now disconnected graphs ¥. For instance, take a circle of a radius
less than 0.5 and repeat it periodically with the period group Z2. One can view
the resulting disconnected graph as a model of the structure of thin optically dense
dielectric pipes in the air. A similar procedure can be applied to a segment, cross,
square, etc., each time yielding a disconnected graph ¥. The numerical study of all
of these and of some other disconnected structures produced dispersion relations
with band functions that flatten very fast with the growing band number, leading
to spectra that consist of very narrow spectral bands and thus are almost discrete
for high frequencies. Besides, the spectra appear to be asymptotically periodic.
Figure 7.7 represents the results of the calculation for the disconnected structure
composed of disjoint circles of radii 0.2.

We present now an analytic result that explains this spectral behavior. It holds
in any dimension, not necessarily in two dimensions. Let S be a smooth closed
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Figure 7.7: The disconnected structure of period 1 consisting of circles of radius
0.2 (top) and its spectrum (bottom).

hypersurface in R% and ¥ = U ¢z¢(S +n) be the disjoint union of the integer shifts
of S. One can define the D-N operator Ay on X, as was done above for d = 2.

THEOREM 7.15 (see [126]). Let {D,} C R be the (discrete) spectrum of the
(positive) Laplace-Beltrami operator Ag on the surface S. Then there exists a
sequence of positive numbers p, — 0 such that the spectrum of operator Ay on %
belongs to the union of intervals

o(N) cU [2\/—11 — pn, 2/ Dy + pn] ;

and each of these intervals contains a nonempty portion of o(N).
Remark. In fact, if S is smooth, one can guarantee that

Pn < ch;p

for any p. The case when S is a circle can be solved explicitly using Fourier series.
It shows that analyticity of S probably implies exponential decay of p,.

Theorem 7.15 explains the “almost discrete” nature of the spectrum and pro-
vides its asymptotic location for disconnected smooth structures. For instance, in
the two-dimensional case we conclude that the spectrum at higher frequencies must
concentrate around values 4mnL~}, where L is the length of S. In particular, for
a circle of radius R this leads to 2nR~!. These numbers are indicated along the
spectral axis in Figure 7.7, and one can see perfect agreement with the numeri-
cal results. This also provides an explanation of the asymptotic periodicity of the
spectrum in two dimensions that was observed in numerics.
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A few words are due about the method of proof. First, one can show that for
high frequencies the eigenmodes decay very fast in the air regions, so the distinct
copies of S essentially decouple. Then one is almost in the situation when the wave
is zero on a surface surrounding a copy of S. Now the standard technique shows
that we are dealing with a first-order pseudodifferential operator on S which is equal
to 2y/Ag + R, where Ag is the (positive) Laplace-Beltrami operator on S and R
is a smoothing pseudodifferential operator. This in turn leads to the properties of
the spectrum claimed in the theorem.

We would like to mention that numerics show a very fast convergence of the
asymptotics claimed in the last theorem. So, one can make rather accurate predic-
tions about the spectra using this theorem.

A very restrictive assumption is smoothness of S, since graphs that represent
thin dielectric structures will normally have vertices and/or corners. One might
expect that if instead of circles we use squares of the same length, the asymptotic
nature of the spectrum will stay the same. However, numerical tests show that
this is not the case. One could suspect that maybe just the rate of the asymptotic
convergence is much slower in the nonsmooth case, but in fact the spectra look
systematically shifted from the values predicted according to the formula 4mnL 1.
Our current understanding is that this effect is due to the vertices (corners), which
require some special boundary conditions. These conditions will be discussed later.
So, the treatment of nonsmooth graphs (which are most common) requires addi-
tional study.

Connected structures are certainly the most interesting. The paper [126] con-
tained results of computations for different geometries that show how the spectrum
reacts to geometry. We will not present all these numerical results here, but rather
address an interesting resonance phenomenon observed in [126]. Consider, for in-
stance, the same disconnected circle structure and add dielectric edges connecting
the circles along the symmetry axes of the structure. Figure 7.8 represents the
computed dispersion relations and spectrum for this model.

One can notice resonance-type behavior: some branches of the dispersion rela-
tion become practically flat, and the density of states shows high delta-type peaks
at the corresponding locations. As the following result (which at the moment of
initial submission of this article was stated as a conjecture) shows, this does not
indicate presence of actual eigenvalues, but rather of resonances.

THEOREM 7.16 (see [27]). For any periodic graph %, the spectrum of Ay is
absolutely continuous.

It is interesting to look at the Floquet—Bloch eigenmodes that correspond to
these observed resonances. Figure 7.9 represents the density plot of two such eigen-
modes.

What one can see is that the wave is strongly localized at one circle (it is stuck in
the loop), in spite of availability of the dielectric edges connecting different circles
that allow the wave to propagate. One can also observe that the frequencies at
which these resonances occur coincide with a subset of the spectrum computed for
the disconnected circle structure. This is not a coincidence. One can show (the
corresponding theorem is proven in [126]) that the eigenmodes of the disconnected
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Figure 7.8: The structure of connected circles of radius 0.25 (top) and its spectrum
(bottom).

Figure 7.9: Density plots of the first two “localized” eigenmodes for the connected
circle structure. Notice that the modes apparently do not propagate along the
dielectric edges connecting the circles.

circle structure that are antisymmetric with respect to both symmetry axes of the
structure, lead to resonances in the connected structure.

Similar resonant behavior was also observed in [126] for several other geome-
tries, including, for instance, the honeycomb one. There is, however, no complete
understanding of this effect. For instance, one can show both analytically and
numerically that these resonances do not occur in the square geometry. It is not
clear yet what differentiates this geometry from those with resonances. The study
of these resonances suggests that it is in principle conceivable to “almost localize”
electromagnetic waves in a purely periodic PBG material with no impurities, just
by using an appropriate geometry. It is interesting to note that existence of signif-
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icantly flattened band functions is of practical importance and has recently been
used successfully for enhancement of spontaneous emission [29] and lasing [102].

The results of [126] show that there are often infinitely many gaps in the spec-
trum of the D-N operator Ay, on a periodic graph ¥ in the plane. Is the same true
for higher dimensions? The following theorem shows that the answer is probably
negative.

THEOREM 7.17 (see [126]). Let the space R? be tiled with unit cubes and & be
the union of their surfaces. The spectrum of the corresponding D-N operator Ax
has only a finite number of gaps. Moreover, there are no gaps in the spectrum for
the values of the spectral parameter D > 40m.

This theorem was proved by separating variables and consequently studying
the resulting system of transcendental inequalities. It is interesting to note that
the threshold between infinite and finite numbers of gaps lies for the periodic D-N
operators between dimensions 2 and 3, while for the periodic Schrédinger operators
it is between 1 and 2. The reason is probably that the D-N operator on a graph X is
to a large extent a one-dimensional, rather than a purely two-dimensional, operator.
Similarly, such an operator in three dimensions acts on a surface and hence is to
some extent a two-dimensional operator. One should remember, however, that
the operator Ay on a graph ¥ still has two-dimensional features; for instance, its
spectral bands can overlap.

CONJECTURE 7.18. For any periodic hypersurface structure . C R%,d > 3, the
number of gaps in the spectrum of Ay is finite.

Let us now address the most interesting case of nonsmooth graphs ¥. The main
feature of Theorem 7.15 is that it reduces a complex pseudodifferential problem
to a much simpler (especially in two dimensions) differential one. The question is
whether such reduction is possible in the nonsmooth case. It is not clear whether
the answer is affirmative in general. However, there are situations when this is
possible. First, since the D-N operator is “almost” twice the square root of the
negative second derivative with respect to the arc length, it is clear that it is
reasonable to consider the eigenvalue problem

d?u [ D\?

along each edge (or maybe

m A2y D\*™
(=1) ds?m <5) u

for some integer m). The difficult question arises, however, of what boundary
conditions at the vertices and corners one should use. Although the general answer
is not known, some special geometries can be treated. The analysis developed in
[127], although not completely rigorous, provides an interesting heuristic technique.
Due to space limitations, we cannot discuss the details of this method. In order to
understand the boundary behavior at a vertex or corner (junction of several edges),
one blows it up by applying the Mellin transform in the radial directions from the
vertex. Then one needs to study the singularities of analytic continuation of the
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resulting function. The spectral problem for the D-N operator becomes a functional
equation that can be used to study these singularities. We will just present one of
the results that can be obtained this way. If one has a symmetric junction of three
edges at a vertex and u; is the restriction of the function to the jth edge, then our
analysis leads to the following conditions at the vertex:

u1(0) = u2(0) = u3(0),
{ s £L(0) = —(32) cot Zu(0). (7.30)
An interesting feature here (besides a funny trigonometric factor) is that the spec-
tral parameter D also enters the boundary conditions. The problem (7.29) with
conditions similar to (7.30) leads to simple algebraic equations and hence in many
cases can be analyzed analytically. For instance, the dispersion relations for the case
of the honeycomb structure with the edge size L can be found explicitly. Namely,
one can derive existence of a series of eigenvalues D = 2n7/L and of a series of
nonflat bands given by

2 1 1 1
Dpk)=—=|mn+ Ty arcsin {/ - + — cosky & ~+/(1+cosk;)(1+cosky) | .
L 3 4 6 6
(7.31)

Tests on the disconnected union of three-edge stars, honeycomb structures, and
some other geometries lead to an amazing agreement between the differential and
pseudodifferential results. Figure 7.10 presents the results of computing the spec-
trum using the differential model (7.29)—(7.30) and the pseudodifferential operator
Ay for the honeycomb lattice in the plane.

One can see that the pictures differ a little bit for the lowest band functions,
but otherwise are practically identical. No rigorous justification of this effect is
known. One should note, though, an important difference between the pseudod-
ifferential and differential models. Namely, the almost flat band functions for the
pseudodifferential model (left graph) are not exactly flat and do not correspond
to actual eigenvalues [27], while one can show that the corresponding bands for
the differential model (right) are flat and lead to infinitely degenerate eigenvalues
(bound states).

Let us now address the asymptotic problem with W # 0:

—Au = D((Sz + W)’LL

In this case there is the dielectric-air coupling, and the problem cannot be conve-
niently reduced to the graph ¥. One of the ways one can handle this is to consider
the auxiliary problem with two spectral parameters (c, D):

—Au — cu = Désu - (7.32)

and then to intersect its spectrum in the (c, D)-plane with the line ¢ = WD. Fig-
ure 7.11 represents the results of such calculation for the square structure (i.e.,
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Figure 7.10: The honeycomb structure (top), the spectrum of the corresponding
D-N operator (bottom left), and the spectrum of the differential model (bottom
right).

formed by the lines x = n and y = m, m,n € Z). The case of the square structure
is exactly solvable. Analogous graphs for other geometries can be obtained numeri-
cally. The computation of the spectrum is done by fixing ¢, using the Green’s func-
tion to rewrite the problem on ¥, and finally numerically finding the spectrum with
respect to D. Doing so for many values of ¢, one can recover the two-dimensional
spectrum of the problem.

The D-axis is horizontal and the c-axis is vertical. The shaded areas show the
two-dimensional spectrum and the inclined line is ¢ = D. One can see that the
(¢, D)-spectrum shows two distinct patterns. First, almost vertical strips originate
at ¢ = 0 from the bands of the spectrum of the D-N operator. Another set of
narrowing strips goes in the horizontal direction. The horizontal lower edges of these
strips indicate that at the corresponding values of ¢ the D-spectrum of the problem
(7.32) degenerates and covers the whole real line (and hence, due to an analyticity
1 statement, the whole complex plane). The two different patterns intersect the
’§ ‘ line ¢ = D over two different subspectra, which correspond to the subspectra o;

!

e
—ow T

a0y

—

S

e 4 F, s <i

(horizontal strips) and oy (vertical strips), respectively (these spectra were discussed
: in section 7.5.1). The next result explains when the spectral degeneration observed
& at the straight edges of the horizontal strips can occur. This can provide guidance
il for creating geometry in a way that eliminates or lifts the horizontal pattern higher.
: THEOREM 7.19 (see [127]). The degeneration observed on the picture occurs at
: a level ¢ if and only if
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Figure 7.11: Calculation of the spectrum of the problem —Awu — cu = Déxu for the
square structure.

(a) c is in the spectrum of the Floquet Laplacian —Ay = (—iV + k)2 on the
torus for some real value of the quasi momentum k;

(b) X is in the nodal set of an eigenfunction ¢ of —Ay corresponding to the
eigenvalue c.

7.5.4 High-Contrast Materials with Dielectric Inclusions

In this section we present the results obtained in [100].

Let Q C R? be an open connected set, which is periodic with respect to Z¢. The
complement M = Q€ is assumed to have a positive distance from the boundary of
the Wigner-Seitz cell W = [0,1]¢. Denoting by My the part of M that resides
inside W, we see that M = |J,,c z«(Mo + n). Let xq be the characteristic function
of the domain €. Now consider the spectral problem for the following operator:

T,=-V-(1+vxa)V, v>>1

(the operator must be defined in a standard way through the quadratic form).
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In two dimensions this represents the case of TE modes in a high-contrast PBG
material formed by an array of optically dense dielectric columns with sections
My +n,n € Z4. In three dimensions we may think of this as a model of acoustic
waves in a high-contrast periodic medium. We are interested in the asymptotic
behavior of the spectrum when the coupling constant v (and hence the dielectric
contrast) tends to infinity. In particular, do the gaps open in the case of high
contrast? The positive answer is given by the following theorem.

THEOREM 7.20 (see [100]). (a) Let on, and Bn, denote the lower and upper
band edges of T, listed in increasing order, so that o(T}) = J, [onv,Onv]-

Then there exists a sequence of numbers ., satisfying 0 = p; < ug < --- that
interlaces with the eigenvalues 6, of the Dirichlet Laplacian (—Apg,) on My,

P < 6n < Upt1

such that the spectrum of T, converges to |J,, [tin,0n] in the sense that for all n

lim oy, = pin, lim ,Bn,v = 0n.
V00 V—r00
(b) If bg—1 < b6 = -+ = O, < Oy for some k < m, and additionally there

exists an eigenfunction u of —Ap,u = bxu that satisfies

/udx #0,

then pr < O and 6y, < pm+y1. In particular, a gap opens above 6, and a band
extends below 6 when v — o0.

Under some mild conditions on regularity on My, one can conclude from this
theorem that the gap between the first two bands necessarily opens when v — oo.
As a by-product one can also extract a statement about absolute continuity of the
bottom part of the spectrum.

It was also established in [100] that although the bands in the asymptotic limit

~ are extended and do not shrink into points, the density of states concentrates mostly

at the Dirichlet eigenvalues 6,,, so the rest of each band becomes what is often called
a pseudogap.

7.6 Defects in a Photonic Crystal

We have dealt so far with purely periodic media only. However, it is well known
that practically important modifications of properties of materials can be made by
doping them, i.e., by introducing localized or random defects into a purely periodic
structure (see, for instance, [5, 106]). In this section we address the mathematics of
impurities in PBG materials. The analogous problem for perturbations of periodic
Schrédinger operators has been studied intensively in recent decades. We will not
describe the corresponding results, referring the reader to the surveys [18]-[20].

7.6.1 Stability of the Essential Spectrum

Consider the dielectric medium described by a periodic electric permittivity eo(z) >
1, which is assumed to be a bounded measurable function. Then, as we have
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already discussed, the frequency spectrum of waves propagating in this medium is
determined by the spectrum of the Maxwell operator My = V* %V * appropriately
defined on the subspace of transversal fields.® Inserting a localized defect into
this periodic structure means adding a compactly supported perturbation ;(z) to
eo(z): € = g9 + &1 > 1. Then the operator itself is perturbed: M = M + M.
The first question we want to address is what kind of change of the spectrum this
perturbation can bring. A similar question can be posed for the acoustic operator
-V. %V. The answer is given by the following result.

THEOREM 7.21. In both the electromagnetic and acoustic cases introduction of
a localized defect does not change the essential spectrum of the operator.

This theorem was established in the stated form in [72] by using Corollary 4
to Weyl’s Theorem XIII.14 in [157]. This required showing that the perturbation
is relatively compact in the sense of quadratic forms with respect to a power Mg
of the unperturbed operator. A similar statement for the acoustic case was also
proved in [1]. A general approach that implies this theorem is presented in [16].

Assume now that the unperturbed (acoustic or Maxwell) operator has a gap in
the spectrum. Then the last theorem shows that the spectrum that might arise
in the gap due to the added defect must consist of isolated eigenvalues of finite
multiplicity. The physical meaning of this is rather simple. In the purely periodic
medium these values of frequencies are prohibited. If, due to a localized impurity,
a wave of a prohibited frequency does arise around the defect, it must decay fast
as soon as it enters the unperturbed periodic part of the medium. Thus a bound
state (eigenvector) is created. As we will see soon, these impurity modes must
decay exponentially (another term used for such waves is “evanescent”). The ques-
tion is, however, whether these impurity levels actually arise and, if so, in what
number. This problem is addressed in the next section, along with a study of the
corresponding impurity modes.

7.6.2 Impurity Levels in Spectral Gaps

Probably the first paper where the problem of defect modes was considered in
a setting relevant for photonic crystals was [1]. In that paper a divergence-type
operator in R? was studied:

A=— Z 8ia,-,- (:L')aJ

with a positive definite, Lipschitz continuous, bounded away from zero, and infinity
matrix function a;;(z). This operator is perturbed by

B=-— Z 61;bij (:U)aJ

with a nonnegative definite matrix b decaying to zero at infinity. Assume that the
spectrum of A has a gap and that E belongs to this gap. The perturbed operator

6We use here the letter M to denote the operator VX -i—Vx, while in section 7.1 M was used
for a different version of the Maxwell operator.
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A + kB is considered for k > 0. As is noted in the preceding section, the essential
spectra of the operators A and A + kB are the same. Hence, if F belongs to the
spectrum of the perturbed operator A + kB, it must be an eigenvalue of finite
multiplicity. One can introduce the counting function

N(k,b,E) =#{0 < p < k| E € 0(A+ uB)}.

The following theorem establishes the possibility of creating an impurity eigenvalue
at F if the support of the perturbation is sufficiently large.

THEOREM 7.22 (see [1]). There ezists R > 0 such that if b(z) is positive definite
for any z in the ball of radius R, then E € o(A+ kB) for some k > 0.

The next statement deals with perturbations of small support. In particular,
it shows the impossibility of creating an eigenvalue at F if the support of the
perturbation is too small.

THEOREM 7.23 (see [1]). Let d > 2. There exists a constant cg > 0 such that

N(k,b,E) < coR®
forall R > 0, k > 0, and all b(z) with support in the ball of radius R. In particular
N(k,b,E) =0

if the support of b(x) is too small.

The paper [1] also contained a study of the asymptotic behavior of N(k,b, E)
for large values of x under additional conditions on the behavior of b(z) at infinity.
One can find some further extensions of these results in [17, 34]. One should also
note a difference between dimension d > 2, where no impurity spectrum in the gap
arises below a threshold value of k, and d = 2, where no such threshold exists.

A series of papers, [72]-[74], attacks the problem of defect modes in a setting
coming from the photonic crystal theory. Namely, acoustic

Ag=-V- lV
€o
and Maxwell
X 1 X
My=V"—V
&0

operators are considered (the latter one on the subspace of transverse fields). The
dielectric function eo(z) is assumed to be a periodic measurable function bounded
from above and below by positive constants. Suppose that the spectrum of the
operator has a gap. Let us now create a localized defect as follows. Choose a
cube with the side [ and fill it with a dielectric material with a constant electric
permittivity . The considerations of the previous section show that only isolated
eigenvalues of finite multiplicity can be created inside the gap. The questions are
whether such eigenvalues do arise and, if so, then in what quantity. The next
theorem guarantees existence of defect eigenvalues if the defect is “strong enough.”
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THEOREM 7.24 (see [72, 73]). Let (Aa, \s) be a gap in the spectrum of M.
Also let T € (Mg, M) be such that [T(1 —),7(1+7)] C (A, As) for some v € (0,1).
If we change the value of () to € in a cube of side l such that

2 > —g,
Y
then the corresponding Mazwell operator has at least one defect eigenvalue inside
the segment [T(1 —7), 7(1 + v)].

The papers [73, 74] also contain important theorems that provide estimates from
above of the total number of defect eigenvalues that can arise in the gap. They
require, however, some conditions of regularity of the ends of the gaps (see the
discussion of this topic in the section 7.4.4). In particular, the following statement
on the absence of defect eigenvalues in the case of “weak” defects holds.

THEOREM 7.25 (see [73, 74]). Let eo(z) be a measurable periodic function such
that

0<e_<egp(zr)<er <o

and (Ag,Ap) be a gap in the spectrum of the corresponding Mazwell operator My.
Let us insert a defect by changing the dielectric function as follows:

_ Eo(z)
E(.’E) - T-*-_O(.'ZS’

where 0(x) is a measurable function supported inside of a cube of side | and such
that

—1<0_<0(z) <4 < 0.

Then

(a) if the left end A, of the gap is regular (in an appropriate sense) and 6_ =0,
then there exists a constant ¢ > 0 depending only on M., €4, and l such that if
0+ < c, then there are no defect eigenvalues in (Ag, Ap);

(b) if the right end A, of the gap is regular and 6, = 0, then there ezists a
constant ¢ > 0 depending only on Ay, €+, and | such that if |0_| < c, then there are
no defect eigenvalues in (Aq, Ap).

The papers [73, 74] also contain an approach to the problem of the mid-gap
defect modes based on a version of the Birman—Schwinger method. A Birman-
Schwinger-type compact operator depending upon the mid-gap frequency A €
(Xa, Ap) is defined such that its eigenvalues considered as functions of A completely
determine behavior of the defect eigenvalues. This method is probably also suitable
for numerical implementation. We refer the reader to the papers [73, 74] for further
details.

7.6.3 Exponential Localization

As we mentioned in the section 7.6.1, the impurity modes (eigenfunctions) that

_arise in spectral gaps due to localized defects are exponentially localized. Although
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the physics explanation of this effect is rather clear, its rigorous justification and
especially determination of the rate of the exponential decay require some work.
The main idea is that if A is either acoustic or a Maxwell operator that has a gap
(Aa, Ap) in its spectrum, then the Green’s function G(\, z,y) of A— AI for A in this
gap decays exponentially with |z — y|. As soon as one establishes this, the rest is
simple. If we have a localized perturbation operator B and an eigenfunction f with
the eigenvalue A € (\,, \p), then we get the equation

(A— M) f = —Bf (7.33)

or
f@) == [ 60ua,) (B W)y

Now the exponential decay of the Green’s function together with the local nature
of the operator B yield the exponential decay of f. This type of argument was
made precise in the papers [72]-[74], where a version of the arguments of [43] was
used to get the resolvent estimates.

If an eigenfunction decays as O(exp(— |z| /L)), the constant L is called the ra-
dius of localization. It is often important to have some information about this
radius. The considerations of [72]-[74] and [43] yield an estimate of the expo-
nential decay of the type O(exp(—Cdist(),o(A))|z|)) for a defect eigenfunction
corresponding to the eigenvalue A in a finite gap (A4, Ap) in the spectrum o(A) of
the unperturbed operator A. In other words, it estimates the radius of localization
from above by the inverse distance to the spectrum of the unperturbed operator.
It is known, however, that this estimate is not optimal close to the spectrum. Sec-
tion 3 of [11] contains a general operator-theoretic approach that improves on the
estimates of [43] and enables one to obtain a decay estimate of the form

O(exp(—=CV/|X = Xa| [A = Ny [2])) (7.34)

(we remind the reader that A belongs to the spectral gap (s, Ap) of the unper-
turbed operator). Although considerations of [11] were devoted to the magnetic
Schrodinger operator only, the approach is rather general and works for acoustic
and Maxwell operators as well, as is shown in Appendix 3 of [42]. These estimates
actually do not rely on periodicity. There is, however, a different approach, which
does employ periodicity of the unperturbed medium. Although it is limited to pe-
riodic media only and besides it has not led to the precise estimates (7.34) yet, it
might be useful in some circumstances. Here is how it goes. Consider (7.33) and
apply the Floquet transform U to it:

A(RUS (- k) = —U(BS)(- k), (7.35)

where we denoted by A(k) the operator A—AI restricted to the space of functions on
the Wigner—Seitz cell that satisfy the Floquet condition with the quasi momentum
k. Due to the local nature of the operator B and Paley—-Wiener theorems for the
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Floquet transform, the vector function U(Bf)(-, k) is analytic with respect to k in
a neighborhood of the real space. Taking into account that we are at some distance
from the spectrum of the operator A (since A is in a spectral gap), it is possible
to show that the analytic operator function A(k) is invertible in a neighborhood
of the real space. This statement is equivalent to the following: distance to the
spectrum of A can be estimated using the distance of the complex Fermi surface to
the real space (see section 7.4.2). Then solving (7.35), U f(k) = —A(k)~*U(Bf)(k),
we derive analyticity of U f(k) in a neighborhood of the real space, which in turn,
due to a Paley-Wiener theorem for the Floquet transform, implies that f decays
exponentially. Implementation of this program for the Schrédinger case using re-
sults of [91] leads to an estimate weaker than (7.34). It would be interesting to
extend this to the Maxwell case and to achieve (7.34).

7.6.4 Embedded Impurity Levels

In the discussions of the previous two sections we considered a background seli-
adjoint operator A (an elliptic periodic differential operator) with a gap in the
spectrum and then added a local perturbation operator B. Then we discussed the
behavior of the impurity spectrum in the gap. However, the natural question arises
of whether the impurity eigenvalues can arise inside the spectrum of the operator
A rather than in its gaps. Such eigenvalues (if they exist) are called the embedded
ones. If this does occur, then we have a peculiar situation. Consider, for instance,
the Schrédinger operator with a periodic potential A = —A + v(z) and add to it a
localized potential w(z). If there is an impurity eigenvalue A of —A + v(z) + w(zx)
that resides inside the spectrum of A, then the corresponding bound state u of
the electron is very strange: the electron has sufficient energy to propagate (since
A € o(A)), but for some reason it stays attached to the defect. There is large lit-
erature devoted to discussion of embedded eigenvalues (see, for instance, the book

w [55]). It is known that if the impurity potential does not decay sufficiently fast, then
embedded eigenvalues can occur. There are plenty of results saying that if the per-
turbation decays fast enough, then there are no embedded eigenvalues. However,
no such results appear to cover the case of a periodic background operator (even
for Schrodinger operators). The only exception is the one-dimensional result of
[158, 159] that states that for sufficiently fast decaying perturbations of the Hill op-
erator no embedded eigenvalues arise. Probably the only known multidimensional
result of this kind is proved in [131, 132] (papers [88, 118] contain theorems about
discreteness of the set of embedded eigenvalues). Let us introduce some notation
first. We denote by Hy = —A + ¢(z) the unperturbed Schrédinger operator with a
periodic potential ¢, whose spectrum has the band structure

O'(H()) =iL>Jl [a,-, bz]

We now add a decaying perturbation potential v(x) to get the operator H = —A +
q(z) + v().
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THEOREM 7.26 (see [131, 132]). If a real periodic potential g(z) belongs to
L®(R%) (d < 3), the operator Hy satisfies Conjecture 7.4 about the Fermi surface,
and the impurity potential v(z) is measurable and satisfies the estimate

lv(z)| < Ce™1*" for somer >4/3 (7.36)

almost everywhere in R?, then the spectrum of H contains no embedded eigenvalues.
In other words,

0 (e b) =0,

i>1

where {A;} is the impurity point spectrum of H.

As was mentioned in section 7.4.2, in the case when the potential ¢(z) is sep-
arable, Conjecture 7.4 holds true. Hence, in this case the theorem claims that no
embedded impurity spectra can arise.

It would be very interesting to extend this result to arbitrary periodic potentials
and to other periodic elliptic operators of interest, including the ones arising in
PBG studies. However, this is probably a difficult task, since the considerations of
[131, 132] show that validity of Conjecture 7.4 is crucial. In fact, we believe that
the following conjecture holds true.

CONJECTURE 7.27. If for a periodic self-adjoint elliptic operator A and a point
A € o(A) there is an wrreducible component of the complex Fermi surface Fy(A)
that does not intersect the real space, then there exists a local perturbation operator
B such that A is an eigenvalue for A+ B.

This conjecture is supported by the following example. For a fourth-order self-
adjoint ordinary differential equation with periodic coefficients the Fermi surface F')
is discrete and contains four points. When A belongs to the spectrum, two of these
points (irreducible components) can be complex. In this particular case we do have
irreducible components “hidden” in the complex domain. One can construct an
example of such an equation and of a local perturbation that leads to an embedded
eigenvalue [151].

7.6.5 Linear Defects and Waveguides

Besides localized impurities linear defects are of great importance for applications.
By a linear defect we mean a strip (column) of a dielectric, whose dielectric proper-
ties differ from the ones dictated by the underlying periodic structure. For instance,
imagine a row of a homogeneous dielectric material inserted into a periodic struc-
ture. It is conceivable that such a row might support a propagating mode, whose
frequency falls into the frequency gap of the background periodic material. In this
case such a mode must be evanescent when it leaves the defect. In other words, one
creates a perfect optical waveguide without standard drawbacks of the fiber-optic
cables, like leakage through sharp bends. This explains attention paid to this topic
in physics literature (see, for instance, [60, 106, 138, 139] and references therein).
Although a rather extensive study was done numerically and experimentally, no
rigorous mathematical analysis of the problem is available. Some statements are
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easy to prove. For instance, similarly to the case of the localized defects one can
show that the propagating modes with frequencies in the gap must be evanescent
in the periodic part of the crystal. This can be done either by using the estimates
of the exponential decay of the Green’s function or by employing the Paley—Wiener
theorems for the Floquet transform (see section 7.3). It would be interesting to
have a study similar to the one done in [72]-[74] that would guarantee existence or
nonexistence of the propagating modes depending on the properties of the linear
defect. When this is done, a study is due of transmission through a bend in a linear
defect (a numerical study of this problem was done in [139]).

7.6.6 Anderson Localization

An important and extensively studied part of the photonic crystal research is An-
derson localization of classical (for instance, electromagnetic or acoustic) waves in
a periodic medium perturbed by random impurities. While the study of a simi-
lar phenomenon for the Schrédinger operator has attracted a lot of attention from
mathematicians, the case of classical waves has been considered in only a handful
of articles. We, however, cannot address this problem here due to space limitations.
A large survey article could probably be written on this topic alone. The reader
can consult with the physics surveys [4, 107]-{109] and with the recent publications
[42], [68]-[71], and [73] that rigorously established important results on existence
of Anderson localization of acoustic and electromagnetic waves.

7.7 Some Numerical Methods and Optimization

The numerical approaches commonly used in the photonic crystals theory amount
to the plane wave (Fourier expansion) methods, transfer matrix methods, finite-
difference time-domain methods, and some others. The surveys [101, 152, 189]
describe most of these techniques rather well. Links to websites containing descrip-
tions of algorithms and codes can be found in [153, 190]. So, in this section we will
briefly discuss only a few recent developments in this area.

7.7.1 Finite Elements and Vector Elements

The finite element method has been successfully used in many applied areas, in-
cluding electromagnetics. We address the reader to the book [105] for a survey of
electromagnetics applications. A finite element approach to computing dispersion
relations and spectra of two-dimensional PBG materials was developed indepen-
dently in the papers [7, 50]. Although the algorithms developed there are not
identical, they are very close. The method is applicable to both TE and TM modes
described by (7.15) and (7.14), respectively. First, a mesh is generated that has the
same periodicity as the problem. In [7] the mesh generator Easymesh 1.4 created
by Bojan Niceno, University of Trieste, was used. This generator, which produces
high-quality triangular two-dimensional meshes, adjusts the mesh to the prescribed
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geometry of the air-dielectric interfaces. A square mesh was utilized in [50]. Con-
sider the TE polarization (the TM polarization is handled similarly)

1

The algorithm handles arbitrary lattices of periods, but as before we will concen-
trate on the case when the structure is one-periodic with respect to each variable.
For the Floquet waves with the quasi momentum k the problem reduces to

1

e(z)

on periodic functions u. One can rewrite (7.37) as follows:

—(V +ik) (V +ik)u = \u (7.37)

1 ; (V + ik)vdz = uvdz
/EE@;S(V-I—zk)u-(V-f—zk)vdm—)\A da.

Here T is the two-dimensional torus T = R?/Z2, Z? is the two-dimensional integer
lattice, u is the eigenmode, and v is an arbitrary periodic function from H(T).
Using the mesh, a basis of functions ¢;(z) is chosen (in [7] the basis functions are
linear, and in [50], bilinear on each element). Representing u = Y £;¢; and then
choosing v = ¢;, we get a generalized eigenvalue problem

A(k)¢ = AB¢ (7.38)

on the corresponding subspace of linear combinations of the basis functions in
L4(T). Here

1 . =
Ajl = /T ;(—x)(v + Zk)¢j . (V + Zk)@dm

and
le =/ d)jal_dm.
T

Now the task is to solve numerically the generalized eigenvalue problem (7.38) to
find the band functions A;(k). Since the matrices A and B are very sparse, in
order to cut the memory requirements and to increase the speed of calculations,
one wants to use eigenvalue solvers that employ this sparsity pattern efficiently. In
both papers [7, 50] versions of the subspace iteration method were used. The al-
gorithm described in [7] uses the SICOR (simultaneous coordinate overrelaxation)
method [169], while [50] is based on the (similar in spirit) subspace preconditioning
method developed in [35]. The advantage of [50] is usage of clever preconditioners
of two types. First, moving along a path in the Brillouin zone, the algorithm uses
the results obtained for the previous value of the quasi momentum as a seed for
the current one. Second, each iteration step involves solving the problem for a ho-
mogeneous medium. These preconditioners significantly speed up the convergence.
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Testing of both algorithms shows good numerical convergence and good agreement
with previously known numerical results and with explicitly solvable models. The
algorithms are fast. Due to economical use of memory and employing sparseness,
they can handle significantly larger meshes in comparison with the number of modes
that one can use with the plane wave methods. The finite element method is also
known to capably handle nonsmooth interfaces and singular solutions, the factors
that significantly slow down convergence of Fourier series. For instance, the analy-
sis of the high-contrast PBG structures presented in this survey shows existence of
modes (the dielectric modes that led to the “bad” spectrum o2) would be hard to
catch with the plane wave methods.

The full-vector three-dimensional case can also be handled by the finite element
method, but in this case the method is known to lead to spurious spectra [105].
Using the so-called vector (or edge) elements one completely (or almost completely)
eliminates this problem [105] (see [144] for mathematical theory of vector elements).
This project was realized in [51].

7.7.2 Using Soluble Models

Analysis of the two-dimensional square structure done in [76]-[78] led in [64, 155]
to development of an unusual method of computing spectral characteristics of PBG
materials. Namely, in the case of the square structure one can find exactly solvable
models in a vicinity of both problems (7.14) and (7.15). If one now finds explicit
eigenfunctions and spectra for these approximate models, one hopes that they rep-
resent a good basis of functions to use for the accurate model. For instance, one
can use Galerkin-type methods, or any other variation on the theme. This was
done a little bit differently in the cited papers, but the general ideas are the same.
The results presented in [64, 155] agree very well with each other, and also with
the computations presented in [7]. The drawback of this approach is that it relies
on existence of an analytically solvable model sufficiently close to the one that we
want to solve, which is probably a rather exceptional situation.

7.7.3 Optimization

The question of optimizing a PBG structure comes naturally to mind. How should
one change geometric and physical parameters of a medium in order to widen an
existing gap or to try to open a new gap between a couple of bands? Until recently,
noone had tried to consider this as an optimization problem in the technical sense.
This was done for the first time for the TM modes in two dimensions in [44].
The results are rather promising. The Helmholtz equation Au + A2eu = 0 in two
dimensions is considered, where the electric permittivity € is a measurable periodic
function satisfying fixed bounds 0 < ¢; < g(z) < ¢z < 00. The idea is to start with
a dielectric function ¢ in this class for which existence of a gap between the bands
Aj(k) and Aji1(k) is known, i.e., Aj(k) < @ < Ajy1(k) for all £ in the Brillouin
zone B. Then one considers the goal of maximizing the function

G(e) = inf (min{a = A;(k), Aj11(k) —a})

inf
keB
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over the set of dielectric functions satisfying
c1 < e(z) < co.

The problem is with nonsmoothness of the goal function. This forces us to create
a clever generalized gradient ascent algorithm, where the generalized gradient is
understood in the sense described in [40]. Due to the multivaluedness of the gen-
eralized gradient, choosing the directions on each step involves solving an auxiliary
linear programming problem. Although convergence of the algorithm was not rig-
orously established, the results of the performed numerical experiments are very
encouraging [44]. The TE case was recently treated in a similar manner in [45].
This direction of study definitely deserves further development. One also notices
that the optimization procedure involves multiple computations of spectra of PBG
materials. This explains the need to have efficient methods of computing the PBG
spectra like those described in section 7.7.1.

7.8 Conclusions

I would divide the mathematical problems of the photonic crystals theory into two
broad categories. The first one consists of problems whose answers are known with
a high level of certainty, while justification of these answers is hard to achieve. I
can mention here the problems of absence of bounded states (localized waves) in
a purely periodic photonic crystal, finiteness of the number of gaps, absence of
embedded impurity eigenvalues, and some others. Although neither physicists nor
mathematicians doubt what the correct answers to these questions are, our inability
to provide rigorous proofs shows that sufficient understanding of these phenomena,
has probably not been achieved yet. Another category consists of problems whose
L resolution could have an immediate impact on applications. Among these I would
mention developing tools of analytic prediction of existence and size of gaps de-
pending on the geometric and physical parameters of the medium, understanding
the behavior of the impurity spectra, creating significantly flattened bands, and
studying properties of PBG waveguides, nonlinear effects, tunable crystals, Ander-
son localization, and many other phenomena. Some of the outstanding problems
are mentioned in the text. Many more can be easily found in the available physics
literature.

I hope that the reader is persuaded by now that the field of photonic crystals
research is an applied mathematician’s dream: it is of high practical importance; its
mathematical models are practically exact; it involves great mathematics ranging
from algebraic geometry to several complex variables, to functional analysis, to
numerics—you name it; most mathematical problems are largely unexplored.
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