Review of linear transformations in finite-dimen\'sion inner product spaces

A good reference (among many) is

Linear Algebra by Friedberg, Insel, Spence

The relevant chapter, Chapter 6, can be downloaded in pdf from the course website.

Defn Let \(V \) be a vector space over \(\mathbb{C} \). An inner product in \(V \) is a function \(\langle \cdot , \cdot \rangle : V \times V \to \mathbb{C} \) with the following properties:

\[
\begin{align*}
\star \quad \langle u + v, w \rangle &= \langle u, w \rangle + \langle v, w \rangle \\
\star \quad \langle c u, v \rangle &= c \langle u, v \rangle \\
\star \quad \langle u, v \rangle &= \langle v, u \rangle \\
\star \quad \langle u, u \rangle &> 0 \text{ if } u \neq 0
\end{align*}
\]

The other properties are implied by the above:

\[
\begin{align*}
\star \quad \langle u, v + w \rangle &= \langle u, v \rangle + \langle u, w \rangle \\
\star \quad \langle u, c v \rangle &= c \langle u, v \rangle \\
\star \quad \langle 0, u \rangle &= 0
\end{align*}
\]

The map \(V \to \mathbb{R} : v \mapsto \|v\|^2 \) is a norm on \(V \).

[Recall the properties of a norm.]
The adjoint T^* of a linear transformation T is defined through $\langle Tx, y \rangle = \langle x, T^*y \rangle \forall x,y \in V$

Show that this is well-defined.

Jordan canonical form (all transformations)

- Diagonalizable (min poly. has simple roots)

- Orthogonally diagonalizable (T is normal: $TT^* - T^*T = 0$)

- T is self-adjoint ($T^* = T$) orthonormal with real eigenvalues

- T is positive ($\langle T(x), x \rangle > 0 \forall x \in V$) orthonormal with real positive eigenvalues

- Isometry ($\langle T(x), x \rangle = \langle x, x \rangle$; T is a norm-preserving mapping)

- Unitary ($TT^* = T^*T = I$; or normal and $|\lambda| = 1 \forall \lambda$ eigenvalues)

- $T^2 = I$; T is an orthogonal projection

- $T = I$; T is the identity matrix

Example: $T = \text{Id}$. $T^2 = I$.

and orthonormal.
Let \(V \) be a complex inner-product space,
\[
\dim V = n < \infty.
\]

The **Spectral Theorem** for finite-dim'l inner-product spaces.
[See Friedberg, et al., for example]

A linear transformation \(T : V \to V \) is normal if and only if it is orthogonally diagonalizable.

Let us briefly look at the main points in a proof.

First observe that, if \(\mathcal{B} = \{e_1, e_2, \ldots, e_n \} \) is a basis for \(V \) and
\([T]_{\mathcal{B}}\) denotes the matrix for \(T \) with respect to \(\mathcal{B} \),
then if \(\mathcal{B} \) is orthonormal, the adjoint \(T^* \) of \(T \)
is represented by the conjugate of the transpose of
\([T]_{\mathcal{B}}\). [The conj. transpose of a matrix \(A \) is denoted by \(A^* \).]

\[
[T^*]_{\mathcal{B}} = [T]_{\mathcal{B}}^*.
\]

1. If \(T \) is orthogonally diagonalizable, there is an orthonormal basis \(\mathcal{B} \) such that \(A := [T]_{\mathcal{B}} \) is diagonal. Therefore
\(A^* = [T^*]_{\mathcal{B}} \) is diagonal and therefore commutes with \(A \). Thus \(T \) commutes with \(T^* \), so \(T \) is normal.

2. Let \(T \) be normal. First we use Thm. 6.14 in [FIS]
to obtain an orthonormal basis for \(V \) such that \([T]_{\mathcal{B}} = A \) is upper triangular. By computing successive diagonal
elements of \(A A^* - A^* A = 0 \), one shows that
the off-diagonal elements must be zero.
Our immediate objective is to present the spectral theorem for finite dimensional inner-product spaces in such a way that it can be easily generalized into the statement of the spectral theorem for (normal operators in) infinite-dimensional Hilbert spaces.

We begin with considering the meaning of the statement that T is orthogonally diagonalizable. This means that

- T has distinct eigenvalues $\lambda_1, \ldots, \lambda_k$ (as does any operator!)
- The spectrum of $T = \sigma(T) = \{\lambda_1, \ldots, \lambda_k\}$ (closed)
- The resolvent set of $T = \rho(T) = \mathbb{C} \setminus \sigma(T)$ (open)
- The corresponding eigenspaces W_1, \ldots, W_k are mutually orthogonal and

\[V = \bigoplus_{i=1}^{k} W_i \quad \text{(at a direct sum of inner product spaces)} \]

Let P_i be the (orthogonal) projection onto W_i ($\text{Ran} P_i = W_i$).

The statement (*) is equivalent to the statement

\[\sum_{i=1}^{k} P_i = I, \]

Notice that $\text{Ran} P_i = W_i$ and $\text{Null} P_i = \bigoplus_{i \neq j} W_j = V \ominus W_i$.

\[T = \sum_{i=1}^{k} \lambda_i P_i. \]

Note: The word "projection" P in an inner-product space refers to an orthogonal projection, that is, $P^2 = P$ and $\text{Ran} P \perp \text{Null} P$.
The Spectral Theorem (finite dim.), reformulated.

Let V be a finite-dimensional inner-product space and $T : V \to V$ a linear transformation. Then the following two statements are equivalent.

1. T is normal.

2. There exists a finite set $\sigma(T) \subset \mathbb{C}$ and projections $\{ P_\lambda : \lambda \in \sigma(T) \}$ such that

 \[P_\lambda P_\mu = \delta_{\lambda\mu} P_\lambda \quad \text{[Range } P_\lambda \perp \text{Range } P_\mu \text{ for } \lambda \neq \mu] \]

 \[\sum_{\lambda \in \sigma(T)} P_\lambda = I \quad \text{[} V = \bigoplus_{\lambda \in \sigma(T)} \text{Range } P_\lambda \text{]} \]

 \[\sum_{\lambda \in \sigma(T)} \lambda P_\lambda = T \quad \text{["} T \text{ is diagonal"}] \]

Notice that the statement $T = \sum_{\lambda \in \sigma(T)} \lambda P_\lambda$ is saying that T is a "multiplication operator" in the sense that, with respect to the decomposition $V = \bigoplus_{\lambda \in \sigma(T)} W_\lambda$, T just multiplies the components by the eigenvalues — it does not couple the components:

\[T(V_1 + V_2 + \cdots + V_\kappa) = \lambda_1 V_1 + \lambda_2 V_2 + \cdots + \lambda_\kappa V_\kappa \]

By choosing an orthonormal basis for each W_λ and taking the union of all these bases, we obtain an orthonormal basis for V with respect to which T is diagonal, or a "multiplication operator."
By choosing an orthonormal basis for each W_i and taking the union of all these bases, we obtain an orthonormal basis B for V with respect to which T is diagonal, or a "multiplication operator" when elements of V are represented by n-tuples with respect to B:

$$[T]_B = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}, \quad \text{or} \quad [T]_B = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix},$$

where the λ_i are not necessarily distinct.

Another way to say this is that the map $U : \mathbb{C}^n \to V$ such that $(0, 0, \ldots, 1, \ldots, 0) = e_i$ is unitary and $U^* T U$ is a diagonal matrix Λ.

The Spectral Theorem (fin. dim.), reformulated.

Let V be a fin. dim. inner-prod. space and $T : V \to V$ linear. Then T is normal if and only if there exists a unitary operator $U : \mathbb{C}^n \to V$ and a diagonal matrix Λ such that

$$T = U \Lambda U^*.$$
Some observations

- $(T^*)^* = T^* - I$
- $\sigma(T^*) = [\sigma(T)]^*$
- If T is normal, then $T - I$ and $T^* - I$ have the same nullspaces (the eigenspaces of T and T^* coincide).
- If T is normal, then "$\sigma(T) \subseteq \mathbb{R}$" is equivalent to $T = T^*$.

That is, those normal operators that are self-adjoint are exactly those with real spectrum.

Note: All of these statements can be proven quite directly from the definitions of "adjoint" and "normal", without resorting to matrix representations. One of the key observations is that

If W_1 and W_2 are subspaces of V such that $W_1 = \{ v \in V : T(v) \in W_2 \}$ (W_1 is the preimage of W_2 under T), then $W_2^+ = \{ v \in V : T^*(v) \in W_1^+ \}$ (W_2^+ is the preimage of W_1^+ under T^*).

Furthermore, $T(W_1) = W_2$ and $T^*(W_2^+)$.

Actually, you only need the weaker statement

$,\text{Ran}(T^*) = [\text{Null}(T)]^+.$

Since $T^{**} = T$, we have also $\text{Ran}T = [\text{Null}(T^*)]^+$.

This is a concise statement of the "Fredholm alternative" for operators in finite-dimensional inner-product spaces.
Observations, continued

Let T be normal and $\sigma(T)$ and P_λ for $\lambda \in \sigma(T)$ be defined as in the spectral theorem. Observe that

- $\|v\|^2 = \sum_{\lambda \in \sigma(T)} \|P_\lambda v\|^2$
- $\|Tv\|^2 = \sum_{\lambda \in \sigma(T)} |\lambda|^2 \|P_\lambda v\|^2 \leq (\max_{\lambda \in \sigma(T)} |\lambda|^2) \sum_{\lambda \in \sigma(T)} \|P_\lambda v\|^2$

 \[= (\max_{\lambda \in \sigma(T)} |\lambda|^2) \|v\|^2\]

with equality if and only if $v \in W_{\lambda^+}$ (λ^+ is the right σ-module)

- $\Rightarrow \|T\| = \sup_{\|v\| = 1} \|Tv\| = \max_{\lambda \in \sigma(T)} |\lambda|$

Polynomial functions of T (normal)

Let \mathcal{P} denote the space of polynomials and λ in one indeterminate $p(\lambda) \in \mathbb{C}[\lambda]$

$T = \sum_{\lambda \in \sigma(T)} \lambda P_\lambda \implies T^n = \sum_{\lambda \in \sigma(T)} \lambda^n P_\lambda$

\Rightarrow for $p \in \mathcal{P}$, $p(T) = \sum_{\lambda \in \sigma(T)} p(\lambda) P_\lambda$

Consequences:

- $p(T)$ is normal with adjoint $p(T^*)$, where T^* is defined from T by conjugating the coefficients.
- $\sigma(p(T)) = p(\sigma(T)) = \{ p(\lambda) : \lambda \in \sigma(T) \}$

This is the "Spectral Mapping Theorem".

\[\|p(T)\| = \max_{\mu \in \sigma(p(T))} |\mu| = \max_{\lambda \in \sigma(T)} |p(\lambda)| = \|p\|_{\infty}(\sigma(T)}\]
Continuous functions of a normal operator $T: V \rightarrow V$, dim $V < \infty$

This presentation will seem too technical for the simple case of finite dimension, but remember that it is for the purpose of setting the framework for the infinite-dimensional case.

$$C(\sigma(T)) = \mathcal{F}(\sigma(T)) = C^0(\sigma(T))$$

The set coincides because $\sigma(T)$ is finite.

We now define a map $\Phi: C(\sigma(T)) \rightarrow \mathbb{L}(V)$ that is an isometric homomorphism.

- Given the spectral theorem, we can do this direktly by
 $$\Phi: f \mapsto \sum_{\lambda \in \sigma(T)} f(\lambda) P_{\lambda}$$

- A more abstract framework arises from this:
 $$\Phi = \Phi_k \oplus \text{Null}(\Phi)$$

 Φ_k is defined by restricting a polynomial to $\sigma(T)$:
 $$[\Phi_k(p)](\lambda) = p(\lambda) \text{ for } \lambda \in \sigma(T)$$

 Φ is defined by applying a polynomial to T:
 $$\Phi(p) = p(T)$$

By (**) we see that $\|\Phi(p)\| = \|\Phi_k(p)\|$; so $\text{Null } \Phi = \text{Null } \Phi_k$, and since Φ is surjective, the homomorphism Φ exists:

$$\Phi(f) = \Phi_k(p)$$

where p is chosen in the preimage E. [SFE3]

We denote $\Phi(f)$ by $f(T)$.

You may show that \(\psi \) is a \(\ast \)-homomorphism of algebras. This means that it preserves all of the algebraic structure and, in addition, takes the conjugates to adjoints:

\[
\psi : \mathcal{L}^{-}(\mathfrak{h}(\tau)) \rightarrow \mathcal{L}(\mathfrak{v})
\]

\[
\begin{align*}
\psi(af + bg) &= a\psi(f) + b\psi(g) \\
\psi(fg) &= \psi(f)\psi(g) \\
\psi(1) &= 1 \\
\psi(\overline{f}) &= (\psi(f))^\ast
\end{align*}
\]