Our calculations indicate that the spectrum of $A = -\Delta x + V(x)$ (for the V chosen above) is equal to the union of a finite number of eigenvalues and $[0, \infty)$:

$$\sigma(A) = \bigcup_{i=1}^{N} \{ \lambda_i \} \cup [0, \infty),$$

where the eigenvalues $\lambda_i < 0$ are given by

$$\lambda_i = E_i^2 - M < 0,$$

where E_i satisfies Δ, and the continuous spectrum of A is $[0, \infty)$.

There is a theorem that tells us that in fact, in this case, the continuous spectrum of $-\Delta x + V$ is the same as that of $-\Delta x$.

Define the discrete spectrum $\sigma_d(T)$ of an operator T in \mathcal{H} is the set of all eigenvalues λ of T ($\lambda \in \sigma_1(T)$) such that $\dim(\text{Null}(T - \lambda I)) < \infty$ and λ is isolated in $\sigma(T)$.

The essential spectrum $\sigma_{ess}(T)$ of T is the complement of $\sigma_d(T)$ in $\sigma(T)$: $\sigma_{ess}(T) = \sigma(T) - \sigma_d(T)$.

A good reference for this is Hislop/Sigal's Introduction to Spectral Theory with Applications to Schrödinger Operators, Ch. 14.
Let A be a closed operator with $\rho(A) \neq \emptyset$. An operator B is called relatively A-compact (or compact relative to A) if

(i) $\mathcal{D}(A) \subseteq \mathcal{D}(B)$,

(ii) $B|_{\mathcal{D}(A)} : \mathcal{D}(A) \rightarrow \mathcal{H}$ is compact when $\mathcal{D}(A)$ is endowed with the graph norm of A.

Recall that the graph norm of A is given by

$$
\| v \|_A = \| v \| + \| Av \|, \quad v \in \mathcal{D}(A).
$$

Condition (ii) is equivalent to the condition

(iii) $B(\lambda I - A)^{-1} : \mathcal{H} \rightarrow \mathcal{H}$ is compact for all $\lambda \in \rho(A)$.

Theorem Let T and V be self-adjoint operators in \mathcal{H} with V relatively \mathcal{H}-compact. Then $T+V$ is self-adjoint in \mathcal{H} (with $\mathcal{D}(T+V) = \mathcal{D}(T)$) and

$$
\sigma_{ess}(T+V) = \sigma_{ess}(T).
$$

\

In the theory of expansions in generalized eigenfunctions, one learns that an arbitrary L^2-function is given uniquely by a linear combination of eigenfunctions of $-\Delta + V$ plus an integral superposition of extended states of $-\Delta + V$.\]
The Hydrogen atom

Let us now turn to the Schrödinger operator in \mathbb{R}^3.

We will omit the constant multiplying A and simply write

\[
\mathcal{H} = -\mathcal{A} - \frac{2}{|x|}, \quad \mathcal{D}(\mathcal{H}) = L^2(\mathbb{R}^3, dx)
\]

where $x \in \mathbb{R}^3$ and $|x| = \left(\sum_{i=1}^{3} x_i^2\right)^{1/2}$.

The material may be found in Reed/Simon XII.10 or in Gustafson/Sigal §7.7 or Hislop/Sigal.

The spectrum of \(\mathcal{H} \)

Through the Fourier transform, one finds that the spectrum of $-\mathcal{A}$ is $[0, \infty)$. In fact

\[
\sigma(-\mathcal{A}) = \sigma_c(-\mathcal{A}) = \sigma_{ess}(-\mathcal{A}) = [0, \infty).
\]

This is seen as in the 1D case, by considering the unitarily equivalent operator $-\hat{\mathcal{A}} = \int_0^\infty \chi \leq L^2(\mathbb{R}^3, dx)$.

It can also be shown that the operator of multiplication by $-2/|x|$ is compact relative to \mathcal{A}. Therefore, by the previous theorem,

\[
\sigma_{ess}(\mathcal{H}) = \sigma_{ess}(-\mathcal{A}) = [0, \infty).
\]

In fact, it can be shown that

\[
\sigma_p(\mathcal{H}) = \left\{ \frac{1}{j^2} \right\}_{j=1}^{\infty}
\]
In quantum mechanics, the eigenfunctions ϕ_n, satisfying

$$(-\Delta - \frac{2}{|x|}) \phi_n(x) = \frac{1}{j^2} \phi_n(x), \quad \| \phi_n(x) \|_2^2 = 1$$

are the "bound states". The interpretation is that $|\phi_j(x)|^2$ is the probability distribution for the position of an electron at energy level $-\frac{1}{j^2}$. This distribution is concentrated around $x = 0$, where a fixed proton is giving rise to the Coulomb potential

$$V(x) = -\frac{2}{|x|}.$$

[Remember that this problem is non-dimensionalized here.]

The extended states, or scattering states, can be constructed as in our 1D box model for $x \in [0, \infty)$:

$$(-\Delta - \frac{2}{|x|} - \lambda) \phi_n(x) \to 0 \quad (n \to \infty)$$

These are interpreted as steady-state wave forms arising after illuminating the proton with a plane wave emanating from infinity forever [so they are idealized].

The eigenvalues of $-\Delta - \frac{2}{|x|}$ are equal to the quantum of energy that a Hydrogen atom can take on — these are associated with the orbits studied in physical chemistry.
We will take an intuitive and heuristic approach.

The Helium atom is modeled by a Hamiltonian in $L^2(\mathbb{R}^6)$:

$$H = -\Delta_x - \frac{2}{|x|} - 4\Delta_y - \frac{2}{|y|} + \frac{1}{|x-y|}$$

where $x \in \mathbb{R}^3$ and $y \in \mathbb{R}^3$, Δ_x is the Laplacian in $L^2(\mathbb{R}^3, dx)$ and Δ_y is the Laplacian in $L^2(\mathbb{R}^3, dy)$.

We begin by considering the operator

$$H_0 = -\Delta_x - \frac{2}{|x|} - 4\Delta_y - \frac{2}{|y|}$$

which we may call the "unperturbed" operator.

Functions in $L^2(\mathbb{R}^6)$ are interpreted as giving a joint probability distribution for the positions of two electrons (when normalized).

The term $\frac{1}{|x-y|}$ models the Coulomb interaction between the two electrons, which is ignored in H_0.

We proceed to find eigenfunctions of H_0, allowing them to be general functions (not necessarily in $L^2(\mathbb{R}^6)$).

Since H_0 is the sum of two operators, one on $L^2(\mathbb{R}^3, dx)$ and one on $L^2(\mathbb{R}^3, dy)$, eigenfunctions can be formed by considering the separable form

$$\psi(x,y) = \Phi_1(x) \Phi_2(y)$$

It can be shown that all eigenfunctions of H_0 are separable.
Let \(\psi(x, y) = \psi_1(x) \psi_2(y) \) be an eigenfunction of \(H_0 \) with eigenvalue \(\lambda \) :

\[
(H_0 - \lambda) \psi(x, y) = 0,
\]

or

\[
\left[(-4x - \frac{1}{|x|}) \psi_1(x) \right] \frac{\psi_1(x)}{\text{fn of } x} + \left[(-4y - \frac{1}{|y|} - \lambda) \psi_2(y) \right] \frac{\psi_2(y)}{\text{fn of } y} = 0
\]

Since this equality holds for each \((x, y) \), we obtain

\[
\begin{align*}
(-4x - \frac{1}{|x|}) \psi_1(x) &= \lambda \psi_1(x) \\
(-4y - \frac{1}{|y|} - \lambda) \psi_2(y) &= -\lambda \psi_2(y)
\end{align*}
\]

and we obtain two separate eigenvalue problems

\[
\begin{align*}
(-4x - \frac{1}{|x|}) \psi_1(x) &= \lambda \psi_1(x) \\
(-4y - \frac{1}{|y|}) \psi_2(y) &= \lambda \psi_2(y)
\end{align*}
\]

This heuristic leads to the conjecture (which can be proved) that the spectral values of \(H_0 \) are obtained as sums of spectral value of \(-4x - \frac{1}{|x|}\) and \(-4y - \frac{1}{|y|}\) and that the corresponding eigenfunctions are products of eigenfunctions of the individual operators:

\[
\sigma(H_0) = \{ \lambda_1 + \lambda_2 : \lambda_1, \lambda_2 \in \sigma(-4 - \frac{1}{|x|}) \}
\]

For \(\lambda \in \sigma(H_0) \), the (generalized) eigenfunctions are

\[
\psi(x, y) = \psi_1(x) \psi_2(y) \text{ where } (-4 - \frac{1}{|x|}) \psi_1 = \lambda \psi_1,
\]

\[
(-4 - \frac{1}{|y|}) \psi_2 = \lambda \psi_2 \text{ and } \lambda_1 + \lambda_2 = \lambda.
\]
Thus we obtain the spectrum of H_0:

$$\sigma(H_0) = \left\{ \lambda_1 + \lambda_2 : \lambda_1, \lambda_2 \in [0, \infty) \cup \left\{ -\frac{1}{j^2} \right\}_{j=1}^{\infty} \right\}$$

Continuous spectrum:

$$\left\{ -1 - \frac{1}{j^2} \right\}_{j=1}^{\infty} \cup [1, \infty)$$

States that are extended in x and y

Discrete spectrum (isolated energy levels of finite model)

Bound states (robust)

Eigenvalues embedded in the continuous spectrum

Bound states (not robust)

Continuous spectrum

States that are extended in x

Extended states: $\psi(x,y) = \psi_1(x) \psi_2(y)$, where either

- ψ_1 or ψ_2 are eigenfunctions of $-\Delta - \frac{1}{4}$
- $\psi_1^2 + \psi_2^2$ is isolated if ψ_1 or ψ_2 has level 1.

Extended states: $\psi(x,y) = \psi_1(x) \psi_2(y)$, where one (or both) of

- ψ_1 or ψ_2 is an extended state of $-\Delta - \frac{1}{4}$.
Now let's consider H_p or, more generally, a family of operators

$$H_p = H_0 + pV,$$

where $V = \frac{1}{|x-y|^2}$.

By a theorem of Kato and Rellich (Reed/Simon Thm. XII.3, Vol. III), each element of the discrete spectrum \mathcal{S} of H_p, $\lambda - \frac{1}{2} \sum \delta_{\gamma}$, splits into m isolated eigenvalues of H_p for p small enough, where m is the multiplicity of the eigenvalue of H_0.

Thus, we see that the discrete spectrum, counted according to multiplicity, is robust under (small) perturbations of p.

However, embedded eigenvalues typically "dissolve into the continuous spectrum" and are therefore nonrobust under perturbations. This is known as "autoionization" in physical chemistry. The idea is that an eigenvalue of H_0, say $\lambda = -1/2$ (corresponding to $\gamma = -\frac{1}{2}$ and $\gamma = -\frac{1}{2}$ with bound state $\psi(x,y)$), ceases to exist when $p \neq 0$. The state morphs into a state that is extended in the x- or y-direction, i.e., one of the electrons escapes to infinity and the atom becomes an ion.

This autoionization is related to anomalous scattering ($0 < p \ll 1$) near the frequency of the embedded eigenvalue ($\lambda = 0$). [See diagrams in Reed/Simon.]