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43. Let M and N be subspaces of a Banach space X'suchthat M+ N= Xand M A N=
{0}. Let P be the projection of X onto M. Prove that P is bounded if and only if both
M and N are closed.

44. (a) Define the numerical range, N(T), of a bounded operator, T, on a Hilbert space,
#, by N(T)={(h, TY) | e #, IIfll = 1}. Prove that o(T) < ITT) (Hint: First
show that if A is an eigenvalue of 7 or 7%, then A € N(T); then show that if A & ao(T)
and A is not an eigenvalue of T or T*, we can find Y € 3 so that (T — |l —0.)

(b) Find an example where N(7T) is not closed and o(T) & N(T).
(c) Find an example where o(T) # N(T) = N(T).
Remark: There is a deep result of Hausdorff that N(T)is convex.

45. (a) Let {¢.}s; be an orthonormal basis for a Hilbert space &, Let A be an operator
with

sup l4gI-0  as n— oo,
veldy,... énlt
=
Prove that A4 is compact.

(b) Let {¢.}:>, be any orthonormal basis for a Hilbert space # and et A be compact.
Prove that

sup - Al -0 as n— oo,
wsm,.l?.,o,.l*" d : -
46. (a) Let A >0 with 4 compact. Prove that 4'/2 js compact. (Hint: Use Problem 45.)
(b) Let 0 < 4 < B. Prove that 4 is compact if B is compact. (Hint: Prove that 41/2
is compact using Problem 45 and part (a).)

47. Let & and o be two Hilbert spaces. If T is a bounded linear map from ¥ to #
we define T*: o — o by (T*, $)ar = (b, TP). T is called Hilbert-Schmidt if and
only if T*T: # — # is trace class. Let T be Hilbert-Schmidt. Prove that there are
real numbers, A, > 0, and orthonormal sets {¢,}¥_, < 2, {n}i=1 € #” s0 that

Th=3 Mbr, e

48. Let 5 and #” be the two Hilbert spaces and let .# 2(9¥, ) denote the Hilbert—
Schmidt operators from # to ",
(a) Prove that #,(#, 5#") with the inner product

(S, T) = Trp(S*T)

is a Hilbert space.

(b) Given gre o, ¢ e o define I, ) € F2(H#*, #') by 1G, $) = ¢(h) for any

" £ € #* Prove that the map J, taking ¢ ® ¢ into I, &), is well defined and extends
to an isometry of # ® #* and f£,(#*, #),

(c) Given ne # ® #” show that there exist reals, A, > 0, and orthonormal sets
{Pali=1 < ¥, {ha}i=1 < "’ with N finite or infinite, so that

L N
le)t,.ll =lml> and Y A, ® ha=1.
n= n=1

VIl: The Spectral Theorem

Mathematical proofs, like diamonds, are hard as well as clear, and will be touched with
nothing but strict reasoning. John Locke in Second Reply to the Bishop of Worcester

VIl.1 The continuous functional calculus

In this chapter, we will discuss the spectral theorem in its many guises.
This structure theorem is a concrete description of all self-adjoint operators.
There are several apparently distinct formulations of the spectral theorem.
In some sense they are all equivalent. '

The form we prefer says that every bounded self-adjoint operator is a
multiplication operator. (We emphasize the word bounded since we will deal
extensively with unbounded self-adjoint operators in the next chapter; there
is a spectral theorem for unbounded operators which we discuss in Section
VIIL.3.) This means that given a bounded self-adjoint operator on a Hilbert
space #°, we can always find a measure u on a measure space M and a
unitary operator U: o — L*(M, dy) so that

(UAU™f)(x) = Fx)f (%)

for some bounded real-valued measurable function F on M.

This is clearly a generalization of the finite-dimensional theorem, which
says any self-adjoint n X n matrix can be diagonalized, or in an abstract
form: Given self-adjoint operator A4 on an n-dimensional complex space V,
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there is a unitary operator U: ¥ — C" and real numbers 4,, ..., 4, so that
(UAU ) = Aifs

for each f=<{f;,...,f,> in C".

In practice, M will be a union of copies of R and F will be x, so the core
of the proof of the theorem will be the construction of certain measures.
This will be done in Section VII.2 by using the Riesz-Markov theorem. Our
goal in this section will be to make sense out of f(A4), for f a continuous
function. In the next section, we will consider the measures defined by the
functionals /' > (Y, f(AW) for fixed y € #.

Given a fixed operator 4, for which f can we define f(4)? First, suppose
that 4 is an arbitrary bounded operator. If f(x) = Y V_, a,x" is a polynomial,
we want f(4) = Y )., a, A". Suppose that f(x) = )<, ¢, x" is a power series
with radius of convergence R. If |A| <R, then } =, ¢, A" converges in
ZL(H#) so it is natural to set f(4) =Y 2, ¢, 4" In this last case, f was a
function analytic in a domain including all of ¢(4). In general, one can make
a reasonable definition for f(4) if f'is analytic in a neighborhood of o(4) (see
the Notes).

The functional calculus we have talked about thus far works for any
operator in any Banach space. The special property of self-adjoint operators
(or more generally normal operators; see Problems 3, 5) is that [|P(4)| =
SUP; ¢ o4y | P(A)| for any polynomial P, so that one can use the B.L.T.
theorem to extend the functional calculus to continuous functions. Our major
goal in this section is the proof of:

Theorem VIL.1 (continuous functional calculus) Let A be a self-adjoint
operator on a Hilbert space . Then there is a unique- map ¢: C(o(A)) —
ZL() with the following properties:

(@) ¢ is an algebraic *-homomorphism, that is,

o(f9) = d(N)P(g)  S(Af) = 1$(S)
¢ =1 ¢(f)=(f)*

(b) ¢ is continuous, that is, [|¢(/) gwr, < Cllf o -

(© Let fbe the function f(x) = x; then ¢(f) = 4.
Moreover, ¢ has the additional properties:

(&) If Ay = Ay, then $(f)Y = f(A)Y.

© old(N)] ={f(A)|A e a(4)} [spectral mapping theorem].

(f) Iff=0, then ¢(f) > 0.

@ le(NN =[], [this strengthens (b)].
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We sometimes write ¢4(f) or f(4) for ¢(f) to emphasize the dependence
on A.

The idea of the proof which we give below is quite simple. (a) and (c)
uniquely determine ¢(P) for any polynomial P(x). By the Weierstrass theorem,
the set of polynomials is dense in C(g(A4)) so the heart of the proof is showing
that

NP 2y = IPC) ciaqay = Asu&) | P(A)| <
The existence and uniqueness of ¢ then follow from the B.L.T. theorem.”

To prove the crucial equality, we first prove a special case of (e) (which
holds for arbitrary bounded operators):
(S]wd‘ro«ﬁ

Lemma 1 Let P(x) = Y ¥_ a,x". Let P(A) = Y N_, a,4". Then wopan ey
o(P(4)) = {P(})| A € a(A)} Hocors

Proof Let i eo(A). Since x = A is a root of P(x) — P(1), we have P(x) — P(1)
= (x — 1)Q(x), so P(4) — P(X) = (4 — A)Q(A). Since (4 — 1) has no inverse
neither does P(4) — P(4), that is, P(1) € o(P(4)).

Conversely, let ue o(P(4)) and let 4,,..., 4, be the roots of P(x) — pu,
thatis, P(x) —pu=a(x — A) - (x — 1,).If 2, ..., A, ¢ a(A), then

P - =a (A= 2)7 (A - 1)
so we conclude that some 1; € 6(A4), that is, u = P(1) for some 1 € 6(4). ||

Yo

Lemma 2 Let A be a bounded self-adjoint operator. Then
IP(I = sup |P(A)
Aea(d)

Proof IP(AI? = | PA)*P(A)
I(PP)(A)I
sup  |4] (by Theorem VI.6)

A€0(PP(A))

= sup |PPA)| (by Lemma 1)

Aco(A4)

= (ASEEB)|P()~)|)2 |

Proof of Theorem VII.1 Let ¢p(P)= P(A). Then [[¢(PY o) = IPllciocay 5O

- ¢ has a unique linear extension to the closure of the polynomials in C(a(4)).

Since the polynomials are an algebra containing 1, containing complex
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conjugates, and separating points, this closure is all of C(a(4)). Properties (a),
(b), (c), (g) are obvious and if ¢ obeys (a), (b), (c) it agrees with ¢ on poly-
nomials and thus by continuity on C(s(4)). To prove (d), note that ¢(P)y =
P(A)y and apply continuity. To prove (f), notice that if f = 0, then f = g with
g real and g € C(0(4)). Thus ¢(f) = ¢(g)* with ¢(g) self-adjoint, so ¢(f) = 0.
(e) is left for the reader (Problem 8). |

Before turning to some examples, we make several remarks:

(1) ¢(f)=0if and only if f> 0 (Problem 9).

(2) Since fy =gfforallf, g, {f(4)]| fe C(c(A))} forms an abelian algebra
closed under adjoints. Since ||f(Al =1fll, and C(a(A4)) is complete,
{f(A)|fe C(6(A))} is norm-closed. It is thus an abelian C* algebra of
operators.

(3) Ran ¢ is actually the C* algebra generated by A, that is, the smallest
C*-algebra containing 4 (Problem 10).

(4) This result, that C(6(A4)) and the C*-algebra generated by A are
isometrically isomorphic, is actually a special case of the *commutative
Gelfand—Naimark theorem " which we discuss in Chapter XV.

(5) (b) actually follows from (a) and abstract nonsense (Problem 11).
Thus (a) and (c) alone determine ¢ uniquely.

Finally, we consider two specific examples of ¢(f):

Example 1 As a corollary, we have a new proof of the existence half
of the square-root lemma (Theorem VI.9) for if 4 > 0, then o(A4) = [0, o0)
(Problem 12). If f(x) = x'/2, then f(4)® = A4

Example 2 From (g) of Theorem VII.I we see that ||[(4 — )7 =
[dist(, o{4))] ! if 4 is bounded, self-adjoint, and 4 ¢ o(A).

VIl.2 The spectral measures

We are now ready to introduce the measures we have anticipated so often
before. Let us fix 4, a bounded self-adjoint operator. Let € #. Then fr—
(Y, f(A)) is a positive linear functional on C(o(4)). Thus, by the Riesz-
Markov theorem (Theorem IV.14), there is a umque measure € Hy on the
compact set o(A) with (, f(AWY) = [ya SR dp,. — "
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Definition The measure p, is called the spectral measure associated with
the vector .

The first and simplest application of the p, is to allow us to extend the
functional calculus to #(R), the bounded Borel functions on R. Let g € #(R).
Itis natural to define g(4) so that (¥, g(AW) = f,(4, 9(A) dpy(2). The polariza-
tion identity lets us recover (, g(4)¢) from the proposed (i, g(A)y¥) and
then the Riesz lemma lets us construct g(A4). The properties-of this * measur-
able functional calculus™ are given in (Problem 13): -

Theorem VII.2 (spectral theorem—functional calculus for{n) Let Abea
bounded self-adjoint operator on 5. There isaunique map ¢: Z(R) - L(#)
so that

(a) ¢ is an algebraic s-homomorphism.

(b) § is norm continuous: (/)] ¢.r) < Il

(c) Let f be the function f(x) = x; then ¢(f) =

(d) Suppose f(x) - f(x) for each x and || f,||,, is bounded Then §(f,) -
() strongly.

Moreover ¢ has the properties:

(e) If Ay = Ay, then (/)Y = f(A.
() Iff=0, then ¢(f) = 0.
(8) If BA = AB, then $(f)B = BH(f).

Theorem VII.2 can be proven directly by extending Theorem VIL1; part
(d) requires the dominated convergence theorem. Or, Theorem VIL.2 can be
proven by an easy corollary of Theorem VII.3 below. The proof of Theorem
VIL3 uses only the continuous functional calculus. & extends ¢ and as before
we write ¢(f) = f(A4). As in the continuous functional calculus, one has
F(A)g(4) = g(4) f(A).

Since #(R) is the smallest famlly closed under limits of form (d) containing
all of C(R), we know that any $(f) is in the smallest C*-algebra containing A
which is also strongly closed; such an algebra is called a von Neumann or
W*-algebra. When we study von Neumann algebras in Chapter XVIII we will
see that this follows from (g).

The norm equality of Theorem VII.1 carries over if we define | f]}’, to be
the L*-norm with respect to a suitable notion of *almost everywhere.”
Namely, pick an orthonormal basis {i,} and say that a property is true a.e.
if it is true a.e. with respect to each . Then [ $(/ M ey = I f1I% -

In the next section, we will return to the operators yo(4) where xq is a
characteristic function; this is the most important set of operators in the
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measurable but not in the continuous functional calculus. For the time being,
we turn to using the spectral measures to form L? spaces. We first define:

Definition A vector e # is called a cyclic vector for A if finite
linear combinations of the elements {A"}}%, are dense in 2.

Not all operators have cyclic vectors (Problem 14), but if they do:

Lemma 1 Let A be a bounded self-adjoint operator with cyclic vector .
Then, there is a unitary operator U: 3# — I*(o(A), dp,) with

(UAU ) = ()
Equality is in the sense of elements of [*(a(A4), duy).

Proof Define U by Udp(f)Y = f where f is continuous. U is essentially the
inverse of the map ¢ of Theorem VIIL.1. To show that U is well defined we

compute v
IeUWN? = (b, $* (NS W) = (b, d(FW)
= [ 171> dy,
Therefore, if f=g a.e. with respect to y,, then ¢(f W = ¢(g). Thus U is
well defined on {¢(f )| f€ C(6(4))} and is norm preserving. Since ¥ is cyclic
{d( W] fe Clo(A))} = o#, so by the B.L.T. theorem U extends to an iso-
metric map of & into I*(a(A4), du,). Since C(6(A4)) is dense in I?, Ran U =
I*(o(A), dp,). Finally, if f'e C(o(4)),
(UAU ™)) = [UA$(N)(A)

= [Up(xNID)

= ()
By continuity, this extends from f& C(a(4)) to fe I*. |

To extend this lemma to arbitrary 4, we need to know that A4 has a family
of invariant subspaces spanning 3# so that 4 is cyclic on each subspace:

Lemma2 Let 4 be a self-adjoint operator on a separable Hilbert space
#. Then there is a direct sum decomposition # = @Y., #, with N=1,
2, ..., 0r @ so that:

(a) A leaves each s, invariant, that is, Y € 5, implies Ay € 5#,,.

(b) For each n, there is a ¢, € #, which is cyclic for 4 [ #,, i.e. #,

= {f(A)¢.| f€ C(s(4))}.
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Proof A simple Zornication (Problem 15).

We can now combine Lemmas 1 and 2 to prove the form of the spectral
theorem which we regard as the most transparent:

Theorem V113 (spectral theorem—multiplication operator form) Let 4
be a bounded self-adjoint operator on #, a separable Hilbert space. Then,
there exist measures {u,}¥., (N=1,2,... or o) on d(4) and a unitary
operator -

U: # — é LZ(Ra dﬂn)
so that "
(UAU '), (0) = M, (A)

where we write an element y € @Y., I*(R, du,) as an N-tuple (¥,(4), ...,
Yn(A)). This realization of A is called a spectral representation.

Proof Use Lemma 2 to find the decomposition and then use Lemma 1 on
each component. ||

This theorem tells us that every bounded self-adjoint operator is a multi-
plication operator on a suitable measure space; what changes as the operator
changes are the underlying measures. Explicitly:

Corollary Let 4 be a bounded self-adjoint operator on a separable
Hilbert space #. Then there exists a finite measure space {M, u>, a bounded
function F on M, and a unitary map, U: 3¢ — I*(M, du), so that

(UAU™f)m) = F(m) f(m)

Proof Choose the cyclic vectors ¢, so that ||¢,| =27" Let M = [ JI_|R,
i.e. the union of N copies of R. Define u by requiring that its restriction to the
nth copy of R be p,. Since u(M) = Y N_,u,(R) < o, u is finite. |

We also notice that this last theorem is essentially a rigorous form of the

physicists’ Dirac notation. If we write y,(x) = y(x; n), we see that in the
*“new representation defined by U one has

W) =3 [ dn, B WA )

W, 46) = T, [ du, Y& mAg(4; m)
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These are the Dirac type formulas familiar to physicists except that the
formal sums of Dirac are replaced with integrals over spectral measures,
where we define:

Definition  The measures dy, are called spectral measures; they are just
du, for suitable .

These measures are not uniquely determined and we will eventually discuss
this nonuniqueness question. First, let us consider a few examples:

Example1 Let A be an n x n self-adjoint matrix. The “usual” finite-
dimensional spectral theorem says that 4 has a complete orthonormal set of
eigenvectors, Y, ..., ¥,, with Ay; = 1;y;. Suppose first that the eigenvalues
are distinct. Consider the sum of Dirac measures, p=)1-; 6(x — 4;).
IR, dy) is just C" since feI? is determined by f= {(f(4,),...,f(.)D.
Clearly, the function Af corresponds to the n-tuple {4, f(4,), ..., 4, S (4,.)D,
so A is multiplication by 4 on L*(R, du). If we take i = Y 7., a;8(x — 1)) with
a;, ..., a,>0, A can also be represented as multiplication by A on I*(R, dfi).
Thus, we explicitly see the nonuniqueness of the measure in this case. We
can also see when more than one measure is needed: one can represent a
finite-dimensional self-adjoint operator as multiplication on I*(R, du) with
only one measure if and only if A has no repeated eigenvalues.

Example 2 Let A be compact and self-adjoint. The Hilbert-Schmidt
theorem tells us there is a complete orthonormal set of eigenvectors
{Wnt  with Ay, = 4, Y, . If thereis no repeated eigenvalue, Y =2, 27"6(x ~ 4,)
works as a spectral measure.

Example 3 Let 3 =/*(— o0, o), that is, the set of sequences, {a,}* _ ,
with Y= _ |a,|? < c0. Let L: # — # by (La), = a,4,, that is, L shifts to
the left. L* = R with (Ra), = a,_,. Let A = R + L which is self-adjoint. Can
we represent A as a multiplication operator? Map # into I2[0, i] by U: {a,}
- ¥ o ae?™. Then ULU™' is multiplication by e”2"* and URU™*
is multiplication by e*2** so UAU ™! is multiplication by 2 cos(2nx). The
necessary transformations needed to represent 4 as multiplication by x on
AR, du,) @ I2(R, du,) are left for the problems. u, and u, have support in
[—2,2]
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Example 4 Consider i “d/dx on I*(R, dx). This is an unbounded opera-
tor and thus not strictly within the context of this section, but we will prove
an analogue of Theorem VIL.3 in Section VIIL.3. We thus seek an operator U
and a measure du (it turns out that only one u is needed) with U: I*(R, dx) —
IA(R, du(k)) so that

u(; =1 )® = kur@

The Fourier transform (Uf)(k) = 2r)™ "2 | f(x)e™** dx which we study in
Chapter IX precisely does the trick. Thus, the Fourier transform is one
example of a spectral representation.

We now investigate the connection between spectral measures and the
spectrum.

Definition  If {g,})_, is a family of measures, the support of {y,} is the
complement of the largest open set B with u,(B) = 0 for all n; so

w~
supp {u,} = | supp 4,

Proposition Let 4 be a self-adjoint operator and {u,}'-, a family of
spectral measures. Then

o(A) = supp {#t}=1

There is also a simple description of 6(4) in terms of the more general
multiplication operators discussed after Theorem VII.3:

Definition Let F be a real-valued function on a measure space (M, u).
We say A is in the essential range of F if and only if

pulm|A —e < Fim)<i+¢>0
foralle > 0.

\/ Proposition - Let F be a bounded real-valued function on a measure

space (M, u). Let Ty be the operator on [*(M, dy) given by
(Tr g)(m) = F(m)g(m)

Then a(Ty) is the essential range of F.

Proof See Problem 17b.
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We can now see exactly what information is contained in the spectrum.
A unitary invariant of a self-adjoint operator A is a property P so that
P(A) = P(UAU™Y) for all unitary operators U. Thus, unitary invariants are
“intrinsic” properties of self-adjoint operators, that is, properties inde-
pendent of ““representation.” An example of such a unitary invariant is the
spectrum o(A). However, the spectrum is a poor invariant: for example,
multiplication by x on I*([0, 1], dx) and an operator with a complete set of
eigenfunctions having all rationals in [0, 1] as eigenvalues are very different
even though both have spectrum [0, 1].

At the conclusion of this section, we will see that there is a canonical
choice of “spectral measures” which forms a complete set of unitary in-
variants, that is, a set of properties which distinguish two self-adjoint opera-
tors A and B unless A = UBU ~! for some unitary operator U. This explains
why o(4) is such a bad invariant for different sorts of measures can have the
same support. If we wish to find better invariants which are, however,
simpler than measures, it is reasonable to first decompose spectral measures
in some natural way and then pass to supports. Recall Theorem I.13
which says that any measure u on R has a unique decomposition into
B = Py e + Ugine Where p, is a pure point measure, p,. is absolutely
continuous with respect to Lebesgue measure, and u;,, is continuous and
singular with respect to Lebesgue measure. These three pieces are mutually
singular so

(R, dy) = IR, du,p) @ AR, ditye) © IA(R, digyy)

It is easy to see (Problem 18) that any ¢ € I*(R, du) has an absolutely con-
tinuous spectral measure dy, if and only if ¥ e I*(R, dy,.), and similarly
for pure point and singular measures. If {i1,}¥_. , is a family of spectral measures,
we can sum @, I*(R, du,,,.) by defining:

Definition Let A be a bounded self-adjoint operator on #. Let #°,, =
{¢|u, is pure point}, H#, = {y|y, is absolutely continuous}, #
{¢| u, is continuous singular}.

sing =
We have thus proven:

Theorem V1.4 ¥ =, ®H, ®H,,. Each of these subspaces is
invariant under 4. 4 [ 3, has a complete set of eigenvectors, 4 [ #,, has
only absolutely continuous spectral measures and 4 [ 2#;,, has only con-
tinuous singular spectral measures.
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Definition 6,.(A) = {1] A is an eigenvalue of 4}
Ocont(A) = 0(A [ H con =H si0g DHyc)
Oac(A) = 0(A [ #,)
Oing(A) = 0(4 I sing)

These sets are called the pure point, continuous, absolutely continuous, and
singular (or continuous singular) spectrum respectively.

While it may happen that o, (] 6,1, | 0, # 0, this is only true because

we did not define o, as 6(4 | H ,,) but rather as the actual set of eigenvalues.
One always has

PrOPOSition ocont(A) = 0,.(4) U asing(A)
G(A) = app(A) U acnm(A)

The sets need not be disjoint, however. The reader should be warned that
O,ing(A) may have nonzero Lebesgue measure (Problem 7). For many pur-
poses, breaking up the spectrum in this way gives useful information. In
Section VII.3, we introduce another breakup which is also useful.

As we discussed in the notes to Section V1.3, some authors use a notion
of “continuous spectrum” which is distinct from the above, namely they
define the continuous spectrum to be the set of A € o(T) which are neither in
the point spectrum nor in the residual spectrum. To illustrate the difference
between the two definitions we let # = C @ I2[0, 1]and define 4: <{a, f(x)> -
{42, xf(x)>. With our definition, the point A = } is in both the pure point and
the continuous spectrum. The other authors assign 4 = 4 to the point spectrum
and their continuous spectrum is [0, 4) U (3, 1).

Finally, we turn to the question of making canonical choices for the
spectral measures, a subject which goes under the title of “multiplicity
theory.” We will describe the basic results without proof:

1. Multiplicity free operators

We must first ask when 4 is unitarily equivalent to multiplication by x on
IXR, dy), that is, when only one spectral measure is needed. A look at
Example 1 tells us this happens in the finite-dimensional case only when 4
has no repeated eigenvalues, so we define:
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Definition A bounded self-adjoint operator A is called multiplicity free
if and only if 4 is unitarily equivalent to multiplication by A on I*(R, du) for
some measure u.

One is interested in intrinsic characterizations of “ multiplicity free” and
there are several:

Theorem VII.5  The following are equivalent:

(a) A is multiplicity free.
(b) A has a cyclic vector.
(¢) {B|AB = BA}is an abelian algebra.

2. Measure classes

Next we must ask about the nonuniqueness of the measure in the multi-
plicity free case. The situation in the finite-dimensional multiplicity free case
was seen in Example 1: the ““acceptable”” measures were Y n_; &, (4 — 4,)
with each a, # 0. There is a natural generalization. Suppose du on R is given
and let F be a measurable function which is positive and nonzero a.e. with
respect to p and locally L'(R, du), that is, ¢ | F| du < oo for every compact
set C «R. Then dv = F dyu is a Borel measure and the map, U,

. U AR, dv) — IA(R, dy)

given by (Uf)(A) = \/F (4)f(A) is unitary (onto since F # 0 a.e.) and A(Uf) =
U(Xf). Thus, an operator A with a spectral representation in terms of u could
just as well be represented in terms of v. By the Radon—-Nikodym theorem,
dv = F du with F a.e. nionzero if and only if v and u have the same sets of
measure zero. This suggests the definition:

Definition Two Borel measures u and v are called equivalent if and only
if they have the same sets of measure zero. An equivalence class {u) is called
a measure class.

Then, the nonuniqueness question is answered by:

Proposition  Let x4 and v be Borel measures on R with bounded support.
Let A4, be the operator on I*(R, du) given by (4, f)(A) = Af(4) and similarly
for A, on I*(R, dv). Then A4, and A, are umtanly equivalent if and only if u
and v are equivalent measures.

i <~ B
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3. Operators of uniform multiplicity

If one wants a canonical listing of the eigenvalues of a matrix, it is natural
to list all eigenvalues of multiplicity one, all eigenvalues of multiplicity two,
etc. We thus need a way of saying that A is an operator of uniform muiti-
plicity two, three, etc. It is natural to take:

Definition A bounded self-adjoint operator A is said to be of uniform
multlphcnty m if A is unitarily equivalent to multiplication by A on I*(R, aw)
@ ' @ L*(R, du) where there are m terms in the sum and y is a fixed Borel
measure.

That this is a good definition is shown by

Proposition If A4 is unitarily equivalent to multiplication by 1 on
PR, d)® - @ AR, dy) (m times) and on AR, dN @ - - @ IA(R, dv)
(n times), then m = n and u and v are equivalent measures.

4. Disjoint measure classes

In listing eigenvalues of multiplicity one, two, three, etc. in the finite-
dimensional case, we must add a requirement that prevents us from counting
an eigenvalue of multiplicity three once as an eigenvalue of multiplicity one
and once as an eigenvalue of multiplicity two. In the finite-dimensional case,
we avoid this *error” by requiring the lists to be disjoint. The analogous
notion for measures is:

Definition Two measure classes {u) and (v) are called disjoint if any
iy € {u) and v; € {v)> are mutually singular.

5. The muitiplicity theorem

We can now state the basic theorem:

Theorem VII. 6 (éommutative multiplicity theorem)  Let 4 be abounded
self-adjoint operator on a Hilbert space #. Then there is a decomposition
H=H DH, D @ H, so that

(a) A leaves each 4#,, invariant.
(b) A [ ##, has uniform muitiplicity m.
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(c) The measure classes {u,) associated with the spectral representation
of A [ #,, are mutually disjoint.

* Moreover, the subspaces #,,..., #,, ..., #, (some of which may be
zero) and the measure classes {y;, ..., (U, - .., {Uo» are uniquely deter-
mined by (a)-(c).

The spectral theorem with the multiplicity theory just described is thus
one of those gems of mathematics: a structure theorem, that is, a theorem
that describes all objects of a certain sort up to a natural equivalence. Each
bounded self-adjoint operator A4 is described by a family of mutually
disjoint measure classes on [— || 4||, || A||]; two operators are unitarily equiva-
lent if and only if their spectral multiplicity measure classes are identical.

VIl.3 Spectral projections

In the last section, we constructed a functional calculus, fi—f(A4) for any
Borel function fand any bounded self-adjoint operator 4. The most important
functions gained in passing from the continuous functional calculus to the
Borel functional calculus are the characteristic functions of sets.

Definition Let A be a bounded self-adjoint operator and Q a Borel set
of R. Py = yq(A) is called a spectral projection of A.

As the definition suggests, P, is an orthogonal projection since y2 = yq =
Xa pointwise. The properties of the family of projections {Pq| Q an arbitrary
Borel set} is given by the following elementary translation of the functional
calculus (Problem 22).

Proposition The family {Pg} of spectral projections of a bounded
self-adjoint operator, 4, has the following properties:

(a) Each P is an orthogonal projection.
(b) Py =0;P_, =1for somea.
(© IfQ=)>, Q,with Q, n Q, = for all n % m, then
N
P, = s-lim ( y Pn")
1

N- oo n=
(d) PO,P02=P91 N
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Condition (c) is very reminiscent of the condition defining a measure and
in fact one defines:

Definition A family of projections obeying (a)-(c) is called a (bounded)
projection-valued measure (p.v.m.).

We remark that (d) follows from (a) and (c) by abstract considerations
(Problem 22).

As one might guess, one can integrate with respect to a p.v.m. If Pg is-a
p.v.m., then (¢, Po¢) is an ordinary measure for any ¢. We will use the
symbol d(¢, P, ¢) to mean integration with respect to this measure. By
standard Riesz lemma methods, there is a unique operator B with (¢, B¢) =

[ (A d(¢, P, ). Thus: ,

Theorem VIIL7 If Py is a p.v.m. and f a bounded Borel function on
supp Py, then there is a unique operator B which we denote | f(4) dP, so
that

(9. BS) = [fD) d(d, P:9),  Vhe i

Example If A is a bounded self-adjoint operator and {Pg} its associated
p.v.m., it is easy to see (Problem 23) that f(4) = [ f(4) dP,. In particular
A={AdP,.

Now, suppose a bounded p.v.m. P, is given and we form 4 = | 1 dP;.
Not surprisingly (Problem 23), P is just the p.v.m. associated with A.
Summarizing:

Theorem VIL8 (spectral theorem—p.v.m. form) There is a one-one
correspondence between (bounded) self-adjoint operators 4 and (bounded)
projection valued measures {Pg} given by:

A—{Pq} = {xa(4)}
(P} A = jupl
It is through this theorem and its generalization to unbounded operators

that self-adjoint operators arise in quantum mechanics, for the observables
occur most naturally as projection-valued measures (see Section VIII.3 for
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the generalization and the notes to Section VIIL.I1 for the quantum-
mechanical explanation).

l Spectral projections can be used to investigate the spectrum of A:

Proposition A€ a(4)if and only if P, _, ,4.(4) #0 for any ¢ > 0.

The essential element of the proof is that |(4 — 2)~'|| = [dist(4, a(4))]
The details are left to Problem 24.
This suggests that we distinguish between two types of spectrum:

Definition We say A € 0.,(A4), the essential spectrum of A, if and only if
Pa—¢, 1+(4) is infinite dimensional for all ¢ > 0. If A € 6(4), but P, _,, arey(A4)
is finite dimensional for some & > 0, we say A € 6,;..(4), the discrete spectrum

of A. P is infinite dimensional means Ran P is infinite dimensional.

Thus, we have a second decomposition of o(4). Unlike the first, it is a
decomposition into two necessarily disjoint subsets. We note that g, is not
necessarily closed, but:

Theorem VIL.9 0..(A4) is always closed.
Proof Let A, A with each 2, € 0, (A4). Since any open interval I about A
contains an interval about some A,, P/(4) is infinite dimensional. §

The following three theorems give alternative descriptions of o,;,, and ¢
their proofs are left to the reader (Problem 26).

€ss )

Theorem VIIL10 A € 0y, if and only if both the following hold:

(@) A is an isolated point of o(A4), that is, for some ¢, (A —¢, A +¢) N
o(A) = {4}.

(b) A is an eigenvalue of finite multiplicity, i.e., {{/| 4y = Ay} is finite
dimensional.

Theorem VIilL.11 L €0, if and only if one or more of the following
holds:

(a) }' € o'cont(A) = Uac(A) o o-sing(A)-

(b) 4 is a limit point of o,,(4). _

(c) 4 is an eigenvalue of infinite multiplicity.
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Theorem VII.12 (Weyl’s criterion) Let 4 be a bounded self-adjoint
operator. Then A € 6(4) if and only if there exists {1,};>, so that |, =1
and lim,, ., (4 — )y, =0. X € 6,.,(4) if and only if the above {i,} can be
chosen to be orthogonal.

As one might guess, the essential spectrum cannot be removed by essentially
finite dimensional perturbations. In Section XIIL.4, we will prove a general
theorem which implies that o, (4) = 0,(B) if A — B is compact.

Finally, we discuss one useful formula relating the resolvent and spectral
projections. It is a matter of computation to see that

0 x¢élab]
ﬂ(x)—»{% x=aqorx==b
1 xe(a, b)

if ¢ | 0 where

1 b 1 1
= - da
) 21u'J; (x—l—ie x-—l+ia)
Moreover, |f,(x)] is bounded uniformly in &, so by the functional calculus,
one has:

/Theorem VII.13 (Stone’s formula) Let 4 be a bounded self-adjoint
operator. Then

b
s-lim (2ni)~ f [(A—2—ig)™' —(A—A+ie) ' 1dA=HPp s + Pia.s)]
0 a

V.4 Ergodic theory revisited: Koopmanism

In Section I1.4 we defined ergodicity for a measure preserving bijective
map, T: Q — Q where Q is a measure space with a finite measure yx, and
u(T~Y(M)) = u(M) for any measurable set M < Q. Koopman’s lemma
told us that the map U defined by (Uf)(w) = f(Tw), is a unitary operator
on I*(Q, du). T was called ergodic if and onlyif 1 wasa simpleeigenvalue of U
(that is, an eigenvalue of multiplicity one). In this section, we wish to examine
in detail the idea of Koopman that interesting properties of T can be described
in terms of spectral properties of U.



