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U is well-defined, that is, if |4 |y = | 4| ¢ then Ay = A¢. U is isometric and
so extends to an isometry of Ran |A4| to Ran 4. Extend U to all of # by
defining it to be zero on (Ran | 4|)*. Since | 4] is self-adjoint, (Ran |4|)* =
Ker | A|. Furthermore, |A|¢ = 0 if and only if 4y = 0 so that Ker |4} =
Ker A. Thus Ker U = Ker 4. Uniqueness is left to the reader. §

In Problem 20 of Chapter VII, the reader will prove that U is a strong limit
of polynomials in 4 and A* so that U is in the ‘*‘von Neumann algebra”
generated by A.
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Therefore the functions K[B,] are equicontinuous. Since they are also
uniformly bounded by [[K||M, we can use the Ascoli theorem (Theorem 1.28)
to conclude that for every sequence ¢, € B,,, the sequence K¢, has a con-
vergent subsequence (the limit may not be in K[B,,]). Another way of saying
this is that the set K[B,,] is precompact; that is, its closure is compact in
C[0, 1]. It is clear that the choice of M was not important so what we have
shown is that K takes bounded sets into precompact sets. It is this property
which makes the so called “ Fredholm alternative’® hold for nice integral
equations like (VI.4). This section is devoted to studying such operators.

Definition Let X and Y be Banach spaces. An operator Te £(X, Y)is

~ V1.5 Compact operators t

Many problems in classical mathematical physics can be handled by refor-
mulating them in terms of integral equations. A famous example is the
Dirichlet problem discussed at the end of this section. Consider the simple
operator K, defined in C{0, 1] by

(Ko)(x) = jol K(x, »)o(y) dy (VL4)

where the function K(x, y) is continuous on the square 0 < x, y < 1. K(x, y) is
called the kernel of the integral operator K. Since

ko)l < ( sup_ 1KGe 1) ( sup 101

0<x,y<1 <y=<
we see that

Kol s( sup_| K, y)l) ol

0<x,y<
so K is a bounded operator on C {0, 1]. K has another property which is very
important. Let B,, denote the functions ¢ in C[0, 1] such that ||, < M.
Since K(x, y) is continuous on the square 0 < x, y < 1 and since the square is
compact, K(x, y) is uniformly continuous. Thus, given an ¢ > 0, we can find
d > O such that |x — x'| < J implies | K(x, y) — K(x', y)}| < eforall y € [0, 1].
Thus, if ¢ € By,

|(Ko)() — (Kp)(x)| < ( sup_|K(x,) ~ K(x, y)l) ol

<eM

t A supplement to this section begins on p. 368.

called compact (or completely continuous) if T takes bounded setsin Xinto

precompact sets in Y. Equivalently, T is compact if and only if for every
bounded sequence {x,} < X, {Tx,} has a subsequence convergent in Y.

The integral operator (V1.4) is one example of a compact operator. Another
class of examples is:

Example (finite rank operators) Suppose that the range of T is finite
dimensional. That is, every vector in the range of T can be written Tx =

N L o;y;, for some fixed family {y;}}_, in Y. If x, is any bounded sequence in
X, the corresponding af are bounded since T is bounded. The usual sub-
sequence trick allows one to extract a convergent subsequence from {Tx,}
which proves that T is compact.

An important property of compact operators is given by (compare Prob-
lem 34):

Theorem V5111 A compact operator maps weakly convergent sequences
into norm convergent sequences.

Proof Suppose x,— x. By the uniform boundedness theorem, the ! x,| are
bounded. Let y, = Tx,. Then ¢(y,) — £(¥) =(T'¢)(x, — x) for any £ € Y*.
Thus, y, converges weakly to y = Tx in Y. Suppose that y, does not converge
to y in norm. Then, there is an ¢ > 0 and a subsequence {y, } of {y,} so that
¥m — »1l = &. Since the sequence {x,,} is bounded and T is compact {y, } hasa
subsequence which converges to a j # y. This subsequence must then also
converge weakly to y, but this is impossible since y, converges weakly to y.
Thus y, converges to y in norm. [
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We note that if X is reflexive then the converse of Theorem VI.11 holds
(Problem 20). The following theorem is important since one can use it to
prove that an operator is compact by exhibiting it as a norm limit of compact
operators or as an adjoint of a compact operator.

Theorem V1.12 Let X and Y be Banach spaces, Te Z(X, Y).

(a) If {T,} are compact and T,— T in the norm topology, then T is

compact.

(b) Tis compact if and only if T’ is compact.

(c) If Se £(Y,2Z) with Z a Banach space and if T or S is compact, then
ST is compact.
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ITY, |l = 4/2. Since ¢, 0, Ty, -0 by Theorem VI.11. Thus, A=0. As a
result

Zl((/’j , ')T(Pj =T
j=

in norm since 4, is just the norm of the difference. J

We have discussed a wide variety of properties of compact operators but
we have not yet described any property which explains our special interest in
them. The basic principle which makes compact operators important is the
Fredholm alternative: If A4 is compact, then either Ay = has a solution

—1 HP fe io ot o .
OF (.’ A} exists—This—is—not—a property shared by all-bounded—tmear

Proof (a) Let {x,} be a sequence in the unit ball of X. Since 7, is compact
for each n, we can use the diagonalization trick of 1.5 to find a subsequence of
{xn}, call it {x,, }, so that T, x,, — y, for each n as k — co. Since |ix,, || < 1 and
IT, — Tll— 0, an g¢/3-argument shows that the sequence {y,} is Cauchy, so
y»— . Itis not difficult to show using an ¢/3 argument that Tx,, —y. Thus T
is compact.

(b) See the Notes and Problem 36.

(c) The proof is elementary (Problem 37). |

~ We are mostly interested in the case where Tis a compact operator from a
separable Hilbert space to itself, so we will not pursue the general case any
further (however, see the discussion in the Notes). We denote the Banach
space of compact operators on a separable Hilbert space by Com(s#). By the
first example and Theorem VI.12 the norm limit of a sequence of finite rank
operators is compact. The converse is also true in the Hilbert space case.

Theorem VI.13 Let s be a separable Hilbert space. Thenevery compact
operator on 4 is the norm limit of a sequence of operators of finite rank.

Proof Let{¢p;};=, be an orthonormal set in 3. Define

A= sup | Ty|
veler, ., on]lt
ol =1

Clearly, {/,} is monotone decreasing so it converges to a limit A > 0. We first
show that A =0. Choose a sequence ¥, € [¢;,..., ¢,]*, IW,ll=1, with

transformations. For example, if A is the operator (4¢)(x)=x¢(x) on L2[0, 2],
then Ag = ¢ has no solutions but (/ — 4)~! does not exist (as a bounded
operator).. In terms of *‘solving equations” the Fredholm alternative is
especially nice: It tells us that if for any ¢ there is at most one y with y =
@ + Ay, then there is always exactly one. That is, compactness and uniqueness
together imply existence; for an example, see the discussion of the Dirichlet
problem at the end of the section.

As one might expect, since the Fredholm alternative holds for finite-
dimensional matrices, it is possible to prove the Fredholm alternative for
compact operators (in the Hilbert space case) by using the fact that any
compact operator A4 can be written as 4 = F + R where F has finite rank and
R has small norm. Compactness combines very nicely with analyticity so we
first prove an elegant result which is of great use in itself (see Sections XL.6,
X1.7, XII1.4, and XIII.5).

Theorem V114 (analytic Fredholm theorem) Let D be an open con-
nected subset of C. Let f: D — £(s#) be an analytic operator-valued function
such that f(z) is compact for each z € D. Then, either

(@) (I —f(2))"! exists for no ze D.
or
(i-e. a set which has no limit points in D). In this case, (/ — f(2))"* is mero-
morphic in D, analytic in D\S, the residues at the poles are finite rank opera-
tors, and if z € S then f(z)y = ¥ has a nonzero solution in 5,

Proof We will prove that near any z, either (a) or (b) holds. 4 simple con-
nectedness argument allows one to convert this into a statement about all of D
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(Problem 21). Given z,€ D, choose an r so that |z —zy| <r implies
1f(z) — f(zo) |l < % and pick F, an operator with finite rank so that

1/ (z0) — Fll < %

Then, for z € D,, the disc of radius r about z,, ||f(z) — F|| < 1. By expanding
in a geometric series we see that (I — f(z) + F)™! exists and is analytic.

Since F has finite rank, there are independent vectors ¥, ..., ¥y so that
F(p) =Y N, ai(oW;. The a;(-) are bounded linear functionals on # so by
the Riesz lemma there are vectors ¢, ..., ¢y so that F(p) =>¥_, (¢;, o),
for all ¢ € #. Let ¢,(z) = (I — f(z) + F)")*¢, and :

66) = FU~ @)+ F)™ = 3. (8.0, W,
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Corollary (the Fredholm alternative) If A is a compact operator on J#,
then either (/ — 4)™! exists or Ay = ¥ has a solution.

Proof Take f(z) = zA and apply the last theorem at z = 1. |

Theorem VL15 (Riesz-Schauder theorem)  Let 4 beacompact operator
on #, then o(4) is a discrete set having no limit points except perhaps
A = 0. Further, any nonzero 1 € o(4) is an eigenvalue of finite multiplicity
(i.e. the corresponding space of eigenvectors is finite dimensional).

Proof Let f(z) = z4. Then f(z) is an analytic compact operator-valued
function on the entire plane. Thus {z|zAy =y has a solution ¥ 3 0} is a
di L. . N . .

By writing

U—~f@)=U—-g@NI - f(z) +F)
we see that / — f(z) is invertible for z € D, if and only if I — g(2) is invertible
and that ¢ = f(2)y has a nonzero solution if and only if ¢ = g(z)e has a
solution.

If g(z)p = @, then ¢ =Y \_, B, ¥, and the B, satisfy
N
b= 3 (@@, Y)b (V1.5a)

Conversely, if (V1.5a) has a solution {f;, ..., By, then o =3, B, ¢, is a
solution of g(z)¢ = ¢. Thus g(z)¢ = ¢ has a solution if and only if the
determinant

d(Z) = det{anm - (¢"(Z), ‘lbm)} =0
Since ($,(2), Y.} is analytic in D, so is d(z) which means that either S, =
{z]z e D,, d(z) = O} is a discrete set in D, or S, = D,. Now, suppose d(z) # 0.

Then, given ¥, we can solve (I — g(z))¢ = ¥ by setting o =y + Y N_, 8, ¢, if
we can find f, satisfying

b= @0+ Y. @42 VB (VL5b)

But, since d(z) # 0, this equation has a solution. Thus (7 — g(z)) ! exists if and
onlyifz ¢ S,.

The meromorphic nature of (/ — f(z)) ! and the finite rank residues follow
from the fact that there is an explicit formula for the 8, in (VI.5b) in terms of
cofactor matrices. |

This theorem has four important consequences:

1/4 is not in this discrete set then

A=A = ! (1 IA)_1
’ T 2
exists. The fact that the nonzero eigenvalues have finite multiplicity follows
immediately from the compactness of 4. ||

Theorem VI1.16 (the Hilbert-Schmidt theorem) Let 4 be a self-adjoint
compact operator on #. Then, there is a complete orthonormal basis,
{¢.}, for A so that A, = 4, ¢, and 1, > 0 as n — 0.

Proof For each eigenvalue of 4 choose an orthonormal basis for the set of
eigenvectors corresponding to the eigenvalue. The collection of all these
vectors, {¢,}, is an orthonormal set since eigenvectors corresponding to
distinct eigenvalues are orthogonal. Let .# be the closure of the span of {¢,}.
Since A is self-adjoint and A: # — M, A: #M* — #*. Let 4 be the restriction
of A to #*. Then A4 is self-adjoint and compact since 4 is. By the Riesz—
Schauder theorem, if any A # 0 is in o(A), it is an eigenvalue of 4 and thus of

. A. Therefore the spectral radius of 4 is zero since the eigenvectors of A4 are in

. Because A is self-adjoint, it is the zero operator on .#* by Theorem VI.6.
Thus, #* = {0} since if ¢ € .#*, then A@ =0 which implies that ¢ € .#.
Therefore, # = #.

The fact that 1, - Oisa consequence of the first part of the Riesz-Schauder
theorem which says that each nonzero eigenvalue has finite multiplicity and
the only possible limit point of the 4, is zero.

Theorem VI.17 (canonical form for compact operators)  Let A be
a compact operator on . Then there exist (not necessarily complete)
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orthonormal sets {{,})_, and {¢,}"_, and positive real numbers {43, with
2, =0 so that

N
4= 3 L., I, (VL6)

The sum in (VI.6), which may be finite or infinite, converges in norm. The
numbers, {4,}, are called the singular values of A.

Proof Since A4 is compact, so is 4*4 (Theorem VI.12). Thus A*4 is compact
and self-adjoint. By the Hilbert-Schmidt theorem, there is an orthonormal set
{W, 0=, so that A*Ay, = p,, with p, # 0 and so that 4*A is the zero operator
on the subspace orthogonal to {y,}~_,. Since A*4 is positive, each y, > 0. Let

n n n n°

shows that the ¢, are orthonormal and that
N
Ay = 4,0, ), |

The proof shows that the singular values of A are precisely the eigenvalues
of |A4].
We conclude with a classical example.

Example (Dirichlet problem) The main impetus for the study of
compact operators arose from the use of integral equations in attempting to
solve the classical boundary value problems of mathematical physics. We
briefly describe this method. Let D be an open bounded region in R® with a
smooth boundary surface dD. The Dirichlet problem for Laplace’s equation
is: given a continuous function fon 8D, find a function u, twice differentiable
in D and continuous on D, which satisfies

Au(x) =0 xeD
u(x) = f(x) xedD
Let K(x, y) = (x — y, n,)/2r|x — y|* where n, is the outer normal to 4D at

the point y € dD. Then, as a function of x, K(x, y) satisfies A, K(x, y) =0in
the interior which suggests that we try to write « as a superposition

ux) = [ Kex )00 dS0) (VL.6a)

where ¢(y) is some continuous function on 8D and dS is the usual surface
measure. Indeed, for x e D, the integral makes perfectly good sense and
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Au(x) =0 in D. Furthermore, if x, is any point in dD and x— x, from
inside D, it can be proven that

ux) > = xo) + [ Klxo, )o() dSO) (VL6b)
If x — xo from outside D, the minus is replaced by a plus. Also,

f K(xo, y)o(y) dS(y)
oD

exists and is a continuous function on 3D if ¢ is a continuous function on
0D. The proof depends on the fact that the boundary of D is smooth which
implies that for x D, (x = ~elx =yl =3

Since we wish u(x) = f(x) on D, the whole question reduces to whether we

can find ¢ so that
f&) = —9@) + [ K& 2)0()dS(),  xedD

Let T: C(0D) — C(0D) be defined by

To = faD K(x, y)o(y) dS(y)

Not only is T bounded but (as we will shortly see) T'is also compact. Thus, by
the Fredholm alternative, either A = 1 is in the point spectrum of Tin which
case there is a € C(0D) such that (/- T)y =0, or —f= (I — T)e has a
unique solution for each f e C(0D). If u is defined by (V1.6a) with  replacing
¢, then ¥ =0 in D by the maximum principle. Further, du/on is continuous
across 0D and therefore equals zero on dD. By an integration by parts this
implies that u =0 outside dD. Therefore, by (VI.6b), 2y/(x) = 0 on dD, so
the first alternative does not hold.
The idea of the compactness proof is the following. Let

(x—2z,n.)

K= p+s

If 6 > 0, the kernel X; is continuous, so, by the discussion at the beginning of
this section, the corresponding integral operators T}, are compact. To prove
that T is compact, we need only show that |T— T,|| - 0 as 6 —» 0. By the
estimate

(TN = (TN < 1Sl f 1K, 2) =~ Ky(x, 2)] dS(2)
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we must only show that the integral converges to zero uniformly in x as
0 — 0. To prove this, divide the integration region into the set where |x—z| >
and its complement. For fixed ¢, the kernels converge uniformly on the first
region. By using the fact that K is integrable, the contribution from the
second region can be made arbitrarily small for ¢ sufficiently small.

V1.6 The trace class and Hilbert—-Schmidt ideals

In the last section we saw that compact operators have many nice properties
criteria for determining when a given operator is compact or, better yet,
general statements about whole classes of operators. In this section we will
prove that the integral operator

(TN = [ K »I0) duty)

on L*(M,dy) is compact if K(-,")eL*(M x M,du® dy). First we will
develop the trace, a tool which is of great interest in itself. Theorem VI.12
shows that Com(s#), the compact operators on a separable Hilbert space J#,
form a Banach space. At the conclusion of the section, we will compute the
dual and double dual of Com(s#). These calculations illustrate the difference
between the weak Banach space topology on &(5#) and the weak operator
topology and give a foretaste of the structure of abstract von Neumann
algebras which we will study later.

The trace is a generalization of the usual notion of the sum of the diagonal
elements of a matrix, but because infinite sums are involved, not all operators
will have a trace. The construction of the trace is analogous to the construction
of the Lebesgue integral where one first defines f fdu for £ > 0; it has values
in [0, 0], including co. Then #! is defined as those fso that { | f| du < oo.
£ is a vector space and f— § f du a linear functional. Similarly we first define
the trace, tr(-), on the positive operators; 4 — tr 4 has values in [0, ©]. We
then define the trace class, £, to be all 4 € Z(#) such that tr | 4| < 0. We
will then show that tr(-) is a linear functional on #, with the right properties.

Theorem V1.18 Let # be a separable Hilbert space, {¢,}=., an ortho-
normal basis. Then for any positive operator 4 € £(s#) we define tr 4 =
Y 2 (¢n. Ap,). The number tr A is called the trace of 4 and is independent

of the orthonormal basis chosen. The trace has the following properties:
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(@ tr(A+B)=tr 4 +tr B.

(b) tr(AA) = A tr A for all A > 0.

(¢) tr(UAU ') = tr 4 for any unitary operator U.
(d) IfO<A<B, thentrd <trB.

Proof Given an orthonormal basis {¢,}= ,, define tr(A) =32, (¢., Ap,).
If {¢/n}m=1 is another orthonormal basis then

tro(d) = 3 (9, 40) = 3, 14" 20,

o0

= 3 (£ 100 470017)

n=

= le ";l | (Al/z'p"l k4 (pn) | 2

™s

= 2 14"

1

= 3 (. AU
= try(4)

m

8

Since all the terms are positive, interchanging the sums is allowed.
Properties (a), (b), and (d) are obvious. To prove (c) we note that if {0}
is an orthonormal basis, then so is {Ug,}. Thus,

tr(UAU ™) = try, (UAU ~Y) = tr (4) = tr(4).. ||

Definition An operator 4 e £(#) is called trace class if and only if
tr | 4| < co. The family of all trace class operators is denoted by S,

The basic properties of #, are given in the following:

Theorem VI.19 S, is a x-ideal in Z(5#), that is,

(a) 4, is a vector space.
(b) If Ae S, and Be L(#), then ABe S and BA e #,.
() If Ae £, then A*e 4,.

Proof (a) Since [14] =|A| |A4| for LeC, #, is closed under scalar
multiplication. Now, suppose that 4 and B are in #,, we wish to prove that



