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Since relation (4) is symmetric in T and T%*, we have
(T** =T.

The transformations I and O — the identity and the transformation carrying
every element into the element O — coincide with their adjoints: I* =1,

0* = 0.

- The following relations are obvious consequences of the definition qf ,’.‘

adjoint transformation:
(@T)* = aT*, (Ty+ TP* =Tt + T3 (TY*=T3T%

It follows from the equality of the norms (5) that T,,':— T implies T% = T*,
" On the other hand, it is obvious that T, — T implies Th — T. However,

in general T, - T does #of imply that T% — T*3
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85. Completely Continuous Linear Transformations

Let us consider now the equations
f—Kf=gand { — K* =g,

£ which correspond, in the abstract Hilbert space 9, to our integral equations
g with adjoint kernels in L?; of course, it is no longer a question of either integrals
ik or kerncls, since X and K* are two arbitrary linear transformations of the
& space 9, adjoint to one another in the sense defined in the preceding section.

When the transformation K is of finite rank,

T

Kf =3 (f, v)os

i=1

© we have

When T possesses an snverse, that is, when there is a linear transiormation s

T-% such that T-1T = TT-1= I, we have
THT-Y* = (T-Y*T* = I*=1;
therefore T* also possesses an inverse and
(T*)-1 = (T-Y)*.

The first member of relation (4) is a bilinear form of the two variables

/ and g, which means that it possesses the following properties [denotin
it for the moment by (f|g)]:

(f + falg) = (1le) + (falg),  (fler + 82) = (Flgn) + (flge),
(aflg) = alflg), (flag) = alflg);
furthermore, it is bounded, that is,

()l < M Al llell

and the smallest possible constant M is obviously equal to [T]. Conversell){:
to every bounded bilinear form (f|g) there corresponds a linear tramsformats

T such that
(Hg) = (T1. 8)s

which we see by an argument analogous to that we used in the constructi
of the adjoint transformation.

3Let T, be the linear transformation of the space /2 defined by T{%y, %g0 -
= {¥p41, ¥n+a - - -}- Then we have T*{z, %, ...} = {0, ..., 0, %, %3, ...} yvhere*
are n zeros before #,. It is easy to see that, for every vector #, T,» — O, while ||T,,‘ F
= |j#[l. :

T

K*f = 3 (1, p)vs,

and the problem of our equations reduces to a problem of linear algebra,
just as in the case of integral equations; see Sec. 70. We remark that, as we
observed with regard to a particular problem in Sec. 78, the linear transfor-
mations of finite rank of the space § can be defined as those which transform
the entire space § into a subspace of finite dimension.

For a linear transformation K of the most general type our methods do
not suffice, which is not astonishing since in general the Fredholm alternative
Is'no longer valid. In fact, consider the following linear transformation of
the space L2 of functions defined on the interval 0, 1):

L Kf(x) = (1 — 2)f(x);

this transformation is equal to its adjoint. But the equation (I — K)f(x) = g(x),

1at~ is, the equation xf(x) = g(x), cannot be solved in L2 for all given functions
o(x) belonging to L2, despite the fact that the homogeneous adjoint equation
/() = O possesses only the single solution f(x) = 0.

b/ - However, if we restrict ourselves to the consideration of completely con-
tous linear transformations K, the method given in sections 77 to 80 for
space L? applies word for word to the abstract space §. We prove in
cular the decomposition theorem (Sec.78) and then, applying it, the
Eredholm alternative (Sec. 73)-Of course, we no longer pass from the equations
KK, = K,K = K, — K to the equations K*K* = K*K¥ — K* _ K* by
joeans of kernels (which no longer has meaning), but directly by basing our
guments on the definition and on the properties of adjoint transformations
en in Sec. 84.

nstead of this ‘‘geometric” method, we can also use the “analytic”
thod of sections 71 and 72, at least for linear transformations X which
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can be approximated arbitrarily closely, in norm, by transformations of
finite rank. Now this is true for all completely continuous linear transforma-
tions K. In fact, assuming at first that we are dealing with a separable Hilbert
space and that {p,} is a complete orthonormal sequence in it, we have the
following theorem:

THEOREM. If K is a completely continuous linear transformation, the
“veduced' transformations K, defined by

n

K,.f =2 (f ¢) (Keu 9)95

fi=1
tend uniformly to the transformation K when n — oo,
We observe first that the transformation KX, can be written in the form
K = P_KP_, where P, denotes the orthogonal projection onto the subspace
determined by @y, @, ..., ¢, that is

n

P.f=2 (f, p)o:

i=1
We note the following relations which we shall use:
P:=Pm ”Pn“Sl' HI—'P,,”SI, Pn—>I
If the theorem were not true, that is, if [|[K — K,|| did not tend to 0
with 1/n, we could choose a sequence of elements f, such that
(6) “fn” =1 and ”(K - Kn)fn” = 9
where ¢ is some positive quantity independent of #. In view of the complete
continuity ot K, we can assume without loss of generality that the sequences

{Kf,} and {K(I — P,)f,} are convergent; denote their limits by g and % re-
spectively. Consider the decomposition

K—K,=K-—P,KP,= (I —P)K -+ P,K(I —P,);

we have

=P KL < W —Po) (L) + I(T—Po)ell < IKf—gl + lg—Pagl >0,

(h, B) = lim (K(I—P)f,, b) = lim (f,, (I—P,)K*) = lim |[(I—P )K*}|| =0,

and consequently
K — K)fall 0,

which is a contradiction of (6). Hence the theorem is proved.

We could just as well have used the transformations KP,, or P, K instead
of K, = P,KP,. The advantage of K, is that it transforms the subspace de-
termined by @,, @, . . ., @, into itself and is zero on the orthogonal complement;
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henc; 111t is esserf1tially a transformation of an n-dimensional space into itself
€ case of a completely continuous linear transf i .
separable space § reduces to the i by virtus of th aer 1"
‘ : preceding case by virt f
K is essentially the transf i 4 pace, that o, nat
ise ormation of a separable sub. i
o 2 space, that is, #
w hz: s mth,b & separable subspftce Do which is transformed by K into itself a::;
s; ori ogon.al complement is transformed by K into the element 0] '
has ¢ 1:1 fact, suzce tlile transformation 4 = K*K is completely con.tinuous and
€ property that 4* = 4, there exists, 3 i
ot , , as we shall see in the followin,
p forresao ;figuen:e of elements g,, P ... (the characteristic elements o%
- ponding to non-zero characteristic. values), such that for ever
nt f orthogonal to all the ¥, we have Af = 0, and consequently Y

(K}, Kf) = (K*Kf, ) = (4f,) = 0, Kf=o.

The denumerable set of elements

K™y, (nrl,2,...;m=0,l,...)

E;el}{ d(iartl:l(;miitr;ifa s'eparztcll)lle subl:pace 9o of  which obviously is transformed
» Since the orthogonal complement of o is, in parti
. » ’ t
orthc’ﬁl}na&l‘ to all‘the Px 1t 1s transformed by K into the ‘:alement% riolan
i de analytic 'method has the further advantage that it can also be
p}; ied, at least partlal}y, to linear transformations K which are not completely
connuous. Let us define the Fredholm radius of the linear transformation

K to be the least upper bound £ of
: the values w > 0 for which th i
linear transformation of finite rank L such that e exists 2

1
IX — Ll < —.
®
élsl we.have just seen, 2 = oo for completely continuous linear transformations,
oosing L = 0, we see that for every transformation
1
2= —!
Il

According to sections 71—73, it f
£ —-73, ollows that the resolvent transformati
behaves in the interior of the circle ation &,

1A =2

exa.ctly as if K were completely continuous: hence it has only polar singularities
which cannot have an accumulation point in the interior of this circle, and
the Fredholm alternative holds for the functional equations

f—ABf =g f — IK* =g

*
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Let us mention several other variants of the definition of complete con-
tinuity. Recall the definition given in Sec. 76:4

DEFINITION 1. A linear transformation K is said to be completely con-
tinuous if it transforms every infinite and bounded set into a compact set, that
1s, if for every infinite sequence of elements f, such that ||f,|| < C, the sequence
{Kf.} contains a subsequence which converges in the strong sense to an element
of the space .

Originally, HILBERT introduced the notion of complete continuity for
numerical-valued functions F(f, g, ..., v), where f, g, ..., v are variable ele-
ments of the space $; the function F is completely continuous if

F(fp: 8ns ---»vn) > F(f, 8 ...,

ahen he elemen 0 end wear 0 he ele

e = “Iaron n

With the aid of this notion we can define complete continuity for a linear
transformation in the following manner:

ments O ]

DEFINITION 2. A linear transformation K is said to be completely
continuous if the bilinear form (f|g) = (Kf, g) vs a weakly continuous function
of the elements | and g: [, — f,8,— gimply (f|g.) — (flg)-

Two other definitions, which are more convenient in certain applications,
are: )

DEFINITION 3. A linear transformation K is said to be completely
continuous if it transforms every weakly comvergent sequence of elements into a
strongly convergent sequence, that is, if

fn—1 implies Kf, - Kf.
DEFINITION 4. A linear transformation K is said to be completely

continuous if from every bounded infinite sequence of elements we can select a
subsequence {f,} for which

(fn '—fmlln_fm) = (K(f'n_fm)' /n'_fm) 0 for m, N —> oo,

We shall show that all these definitions are equivalent.

1 — 2. We assume that K is completely continuous according to definition
1, and show that then f, —f, g, — ¢ imply (Kf,, g,) = (K/, g). If this were
not the case, there would be a positive quantity ¢ such that

|(KYa 80) — (KT, B)| 2 ¢

for an infinite number of indices # = #,, n,, .... Since the sequence {f,} is
weakly convergent and hence bounded, we can also require, without loss of

$Cf. F. Riesz [9] (p. 74).
§ HiLBeRrT [*] (Note 4) and Riesz [*] (p. 96).
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generality, that the sequence {Kf.} be convergent in the strong s
ny ense, O
the other hand, f, —f implies Kf, — Kjf, since ¥ e
(Kfw ) = (f,, K*h) — (f, K*h) = (K}, ),

for every element %; hence we necessarily have K
follows that y fa, = Kf. From this it

(Bt s gn) — (Bt &) = |(Bto, — K, g2) + (Kf, g0, — g)| <
= ”Kf'nk - Kf” ”g'nk” + I(Kf' gnk - g)l -0

for 2 — co. Since on the other hand the first member is = ¢ > 0, we have

encountered a contradiction. Therefore K is also completely continuous in
the sense of Definition 2.

2 - 3. We have seen that fa—{ implies Kf, — K} for every linear

> 3

txaubffn‘n{ation K "When in addition X is completely continuous in the sense
of definition 2 we have that hpn=f,—f—0andg, = Kf
%

”Kf'n - Kf”2 = (Kh'm gn) g 0:

— Kf— 0 imply

hence

Kf, - Kf,

which proves that K is also completely continuous in the sense of Definition 3
3—4. Let {k,} be a bounded infinite sequence of elements of .i).
5.l < C. By virtue of the theorem of choice proved in sections 32 and 35’
we can select a weakly convergent subsequence {/,} from the sequence { }'
Smc?e_tpe transformation K is assumed completely continuous in the sense zf
Definition 3, the sequence {Kf,} will be strongly convergent and hence

I(K(fn_fm)’fn_fm)] = ”Kfn—Kfm”'zcﬁo

when m, n — oo. Therefore K is also compl i i
m, . etely continuous
of Definition 4. g Y n the sense

4 — 1. We assume that the linear transformation K is completely con-

tinuous in the sense of Definition 4. Let {#.} be a bounded infinite sequence
of elements of §; the sequences

Mo = hy + Khy, hyy = h, — Kh,, hyy = h, + iKhy, hyy = h, — iKh,

are then also bonded. Hence we can determine a sequence of integers {n,}
such that, denoting B, BY frand k,, by f,. (r=1,23, 4), we have

(K(f-rk_frj)» frk_frj) -0 (7:k'_>°°; ¥ = 1: 2, 3: 4)

Inasmuch as

(K(fre — ha)s Fe — hy) — (K (for — fai)s fax — fas) + ]
+ z.(K(/':uc - /31), far — fs;) - 'i(K( % — fu): Tax — f41) =
= 4K(fx — 1), K(f — 1)),
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we shall have
|IKf, — Kfj)l >0 when 7§,k — oo;

therefore the sequence {Kf,} is (strongly) convergent. The transformation K
is consequently also completely continuous in the sense of Definition 1.
This completes the proof of the equivalence of the four definitions.

86. Biorthogonal Sequences. A Theorem of Paley and Wiener

We say that the sequences {f,}, {g,} of elements of the Hilbert space $
form a normalized biorthogonal system if

(fur 8m) = O for n f=m and (f,, g.) = I

This biorthogonal system is said to be complete if each of the systems {f,},
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and we have
L+ O < (310 g < (1 — 01y,
(L=0) Al < (St 1)1 < (1 + 6) ).

To prove this theorem, we obser

the series ve first that under the given hypothesis,

2 (o) (pn — 1)

converges for every f and, denoting i
. rery , g its sum by Kf, that the t i
K thus defined is linear and bounded, [|K|| < 6. In fact weehal:lemforlmltlon

12 ¢ 24) (9n — 1)1 < 02 3 107, 912 > 0

for m, n — oo, which assures the exist

for m . ence of Kf: the linearit i i ;
AHIally, = SITICE

{gn} is complete in 9, that is, if the linear combinations of the fnr as well
as those of the g,, are everywhere dense in . Then we have the biorthogonal
developments

M3

f =3 gfw f=§1(f, F)Ew

n

1

valid whenever the series in the second member converges. It clearly suffices
to consider the first series. Denoting its sum by f’, we shall have

(s ) = 3 (F 82) (s €m) = (Fs g,

n=1

hence
(f = gm) =0 m=12...),

which implies that /' — f=0, f = f.

The following theorem is very useful in the theories of various different
series of functions. Its proof will be based on the fact that, for every linear
transformation K such that ||K| < 1, the transformation (I — K)~? exists.

THEOREM.® Assume that the sequence {f,} differs only slightly from the
complete orthonormal sequence {p,}, in the sense that there exists a constant 0,
00 <1, such that

“ 2 an((pn - /ﬂ)“2 = 62 2 |an|z

for every finite sequence {a,} of complex numbers. Then there exists a sequence
{g.} which, with {{,}, forms a complete normalized biorthogonal system ; furthermore,
every element f of Hilbert space has convergent developments

f=2(hgatn =2 (f [n)En

¢ PALEY and WIENER [*] (p. 100). The above proof is due to Sz.-NaGy [5]; moreover,
a more general theorem is to be found there,

IKAPR = }.ﬂ” kgl (o0 (9 — RDIF < }.if:qﬂz ki_l (7, @u)12 = 62 |Ifi12,
we have |K]|| s 6 and hence also IK*| < 6.
The transformation T =7 — K therefore has an inverse and we have
(L= O) 1Al < ITH < (1 + 6) |, (L —=0) Il < IT*#l < (1 + 6) Iy,

(I —6) IT~¢ll < llghl < (1 + 6) | T-1g|.

Since T, is clearly equal to f,, we sh

. ow that — (T—
satisfy the theorem. In fact, we have at the elements g, = (T Yke

(fn' gm) = (T(pm (T_l)*wm) = (T—IT(])", (Pm) = (‘pm ¢m> =34
and, whatever be the element f of 9,

=TT =T 3 (T, p)p, = 2 T 0)T o, =3 (¢, g

= (T%7T*f = (T%)1 nZ (T*, @don = 3 (1, To,) (T4, = 3 (1, f.)g0;

consequently the systems {f,} and {g.} are complete. Furthermore, we have
Zn‘, 0, 812 = 3 (T, )12 = T3,
; 10, 1212 = 25 UT*, @,)2 = TP,

which completes the proof.

nm

harmZVe. g;'e as an e>fample t}.1e following application of the theorem to non-
mc Louner series. Consider, in the space L*— &, n), the functions

Fal®) = — gitas

Vo (m=0, %1, +2..)




