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Abstract

An algorithm is developed by which one can manipulate the coefficients
of transmission, with the aim of controlling the amount, localization, and
phase of the transmitted field. The algorithm is based on the variational
calculus of the transmission coefficients (the objective functionals) as
functions of the dielectric coefficients, centers, and radii of the rods. We
use the "adjoint method", in which the variational gradient of the
coefficient of each transmitted plane wave is represented by an adjoint
problem. We present two examples in which we utilize the algorithm to
modify a slab consisting of a periodic array of dielectric rods in air such
that a desired transmission is obtained.

This project builds on the work of R. Lipton, S. Shipman, and S.
Venakides (SPIE 2003)



SCATTERING PROBLEM RECAP

The scattering problem in strong form: Find a field u(z, z) such that

(

Viu(z, 2) + epw?u(z, 2) = 0 away from 0D (Helmholtz equation)

Uint = Uext " :
. = on 0D (conditions on the rod boundaries)

o\

HextOnlUint = Hint OnUext
u(x, z) = u(x, 2)e"™*, 1 2m-periodic in z.
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SOLUTION TO THE SCATTERING
PROBLEM
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General Solution:
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The scattering problem in weak form: Find u(z, z) such that

( /(—,u_IVu-VX—l—schuX) dA—I—/,u_IX(?nuds =0
Q r

for all pseudoperiodic A

. . m . .
m2 iNm 2 ,i(m+kK)x
\ U~ Zm:ml tme mre (z — OO)

where 02 + (m + k)% = gouow?.




VARIATIONAL CALCULUS

e —> u—>{1,

E+E, U+ U—>U+ it—e{tm +?m}




transmi itted field B reflected field cident field for \,,,

THE ADJOINT PROBLEM &s 54 L
Find a pseudo-periodic function \,,, such that e : :Kl e
( /(—,LF1V¢-VXm/ +5w2¢Xm/)dA+/u_lgb8n)\m/ ds = 0
< ’ for all pseudoperiodic ¢ )
ot sz oy Tm €/ Z el (M) (left)
| A o L@ e L S minnzgilnt)e (right)

where 72 + (m + k)% = gouow?.

The p,, are the coefficients of the reflected field on the right, and the 7,, are

the coefficients of the transmitted field to the left.




MODIFYING TRANSMISSION

atm — Iuexti -1 -1 . - y
or. - 4ﬂnm faDj [(‘u] _‘ueﬂ )Vw Vlm - (g] _gext)a) w)"m]ds

J

atm — luexti

P Amn faD.[(Mj_l-Mex[l)Vw'V)L_m—(gj—gm)afq;)t_m]dx
J m J

atm _ luexti -1 -1 . - 5 T
9y A faD; () - oy VYV A = (2, =2, )0 P A, |dy

atm M ti 5 —
=—=—(-w AmdA
0  4mmm ( J;Djw )




THE JACOBIAN MATRIX
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CHANGE IN PARAMETERS

Ax Ax
Ay, Ay,
A A |=b — 447y=b — |Ar|=4"y

Ar, Ar

The vector b = [ARt,, ..., ASt,,,] contains the desired directions
in which the transmission coefficients are to be moved, and the vec-
tor [Axy, Ayy, Ary, ..., Az, Ay, Ar,]" contains the corresponding
variations of the structural parameters.




THE ALGORITHM

1. Specify a rod structure whose transmission
coefficients t_, we would like to modify.

3. Find gradients of complex transmission
coefficients with respect to structural
parameters (rod centers and radii).

—

4. Choose a vector b of desired changesint,.

5. Solve matrix equation for the vector Ap such

that AAp = ; .




- OUR GRAPHICAL USER INTERFACE
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SIMULATIONS

Expanding the Modulus of Transmission Coefficients

For the first simulation, we take the pyramidal rod structure and
attempt to manipulate the single propagating harmonic by
steadily increasing the modulus while holding the phase constant.
Using the previously described algorithm, for each iteration we
aim to find a structure which will increase the modulus of the
sole propagating mode t, by adding a small portion of the
propagating mode to itself to create an outwardly dilating
sequence.

t, =t,+6-1, =R, )+ NR(1,),3(t,)+8-3(t,))
where t_ 1s the dilated mode we seek to achieve
at each step and o is the dilating factor.



SIMULATIONS
t,.=t,+6t, =R, )+ R, ) Jt,)+6-3(t,))

We then compare the initial periodic structure and several perturbations with
their corresponding complex transmission coefficients. Each structure’s
transmission graph is also plotted for comparison.
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SIMULATIONS
Changing the Phase

For the next simulation, we construct a period in the shape of a
square lattice and attempt to change the phase of a single
propagating harmonic while holding the modulus constant.

For each iteration, we now choose to add a small portion of tml to
rotate the coefficients of the harmonic while maintaining a

constant modulus.
|
o _ =7 P — e X X .
o=t +pt=ty+ipt )= )-p-3a ) )+ p-R )

where t _° 1s the rotated mode we seek for each
iteration and p 1s the rotating factor.



SIMULATIONS
o =t,+pti=ty it =R )-p-Sc )3 )+ p-Ka ),

The 1nitial structure (in blue) and several of its perturbations (last in red) are
shown along with their corresponding complex transmission coefficients. Also,
the structures’ transmission graphs are adjacently plotted for comparison.
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SIMULATIONS
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Future Prolects

Combining these results, one could manipulate the transmission of
several propagating modes to localize the transmitted field to a small
region.

u\xr,z) —

( ’ ) ¢ einmzei(m—}—/{)x
§ m
ne

So if t, =t for every m, this becomes an infinite sum of cosines, and
thus the energy will be localized for cos(®) when ® =0, 2, ...

This strategy can be used to optimize efficiency of solar power technologies.



