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1. Background

1.1. Lp and Sobolev spaces.

1.1.1. Weak convergence.

Definition 1.1. Let X be a real Banach space, X∗ its dual and 〈·, ·〉
the canonical pairing over X∗ ×X.

i. The sequence xh in X converges weakly to x ∈ X and we write

xh ⇀ x in X

if 〈x∗, xh〉 → 〈x∗, x〉 for every x∗ ∈ X∗.
ii. The sequence x∗h in X∗ converges weak* to x∗ ∈ X∗ and we

write
x∗h ⇀

∗ x∗ in X∗

if 〈x∗h, x〉 → 〈x∗, x〉 for every x ∈ X.

Theorem 1.2. Let X be a Banach space. Let (xh) and (x∗h) be two
sequences in X and in X∗ respectively.

i. Let xh ⇀ x, then there exists a constant k > 0 such that ‖xh‖ ≤
k; furthermore ‖x‖ ≤ lim infh→∞ ‖xh‖.

ii. Let x∗h ⇀∗ x∗, then there exists a constant k > 0 such that
‖x∗h‖X∗ ≤ k; furthermore ‖x‖X∗ ≤ lim infh→∞ ‖x∗h‖X∗.

iii. If xh → x, then xh ⇀ x.

iv. If x∗h → x∗, then x∗h ⇀
∗ x∗.

v. If xh ⇀ x and x∗h → x∗, then 〈x∗h, xh〉 → 〈x∗, x〉.
Theorem 1.3. Let X be a reflexive Banach space. Let (xh) be a se-
quence in X and k a positive constant such that ‖xh‖ ≤ k. Then there
exist x ∈ X and a subsequence (xσ(h)) of (xh) such that xσ(h) ⇀ x in
X.

Theorem 1.4. Let X be a separable Banach space. Let (x∗h) be a
sequence in X∗ and k a positive constant such that ‖x∗h‖X∗ ≤ k. Then
there exist x∗ ∈ X∗ and a subsequence (x∗σ(h)) of (x∗h) such that x∗σ(h) ⇀

∗

x∗ in X∗.
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1.1.2. Lp spaces.

Definition 1.5. Let Ω be an open subset of Rn.

i. Let 1 ≤ p <∞. Lp(Ω,Rn) is the set of all measurable functions
f : Ω→ Rn such that

‖f‖Lp(Ω,Rn) ≡
(∫

Ω

|f(x)|p dx
)1/p

<∞.

We have ‖·‖Lp(Ω,Rn) is a norm.

ii. Let p =∞. A measurable function f : Ω→ Rn is said to be in
L∞(Ω,Rn) if

‖f‖L∞(Ω,Rn) ≡ inf {α : |f(x)| ≤ α a.e. in Ω} <∞.
We have that ‖·‖L∞(Ω,Rn) is a norm.

iii. Lploc(Ω,Rn) denotes the linear space of measurable functions u
such that u ∈ Lp(Ω′ ,Rn) for every Ω

′ ⊂⊂ Ω (note that uh → u
in Lploc(Ω,Rn) if uh → u in Lp(Ω

′
,Rn) for every Ω

′ ⊂⊂ Ω).

If n = 1, Lp(Ω,R1) = Lp(Ω).

Remark 1.6. Note that

a. Let 1 ≤ p ≤ ∞. We denote by q the conjugate exponent of p,
i.e.,

1

p
+

1

q
= 1,

where it is understood that if p = 1 then q = ∞ and recipro-
cally.

b. Let 1 ≤ p <∞. Then the dual space of Lp(Ω,Rn) is Lq(Ω,Rn).
We point out also that the dual space of L∞(Ω,Rn) contains
strictly L1(Ω,Rn).

c. The notion of weak convergence in Lp(Ω,Rn) becomes then as
follows: If 1 ≤ p <∞, then fh ⇀ f weakly in Lp(Ω,Rn) if∫

Ω

(fh(x), g(x)) dx→
∫

Ω

(f(x), g(x)) dx

for every g ∈ Lq(Ω,Rn). For the case p = ∞, fh ⇀∗ f in
L∞(Ω,Rn) weak* if∫

Ω

(fh(x), g(x)) dx→
∫

Ω

(f(x), g(x)) dx

for every g ∈ L1(Ω,Rn).
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Theorem 1.7. For every 1 ≤ p ≤ ∞, Lp(Ω,Rn) is a Banach space.
It is separable if 1 ≤ p < ∞ and reflexive if 1 < p < ∞. Moreover,
L2(Ω,Rn) turns out to be a Hilbert space with the scalar product defined

by (f, g)L2(Ω,Rn) =

∫
Ω

(f(x), g(x)) dx.

1.1.3. Sobolev spaces.

Definition 1.8. Let Ω be an open subset Rn and 1 ≤ p ≤ ∞. The
Sobolev space W 1,p(Ω) is defined by

W 1,p(Ω) = {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω,Rn)} ,

where ∇u = (∇1u,∇2u, ...,∇nu) =
(
∂u
∂x1
, ∂u
∂x2
, ..., ∂u

∂xn

)
denotes the first

order distributional derivative of the funtion u.

On W 1,p(Ω) we define the norm

‖u‖W 1,p(Ω) =
(
‖u‖pLp(Ω) + ‖∇u‖pLp(Ω,Rn)

)1/p

.

Definition 1.9. Let 1 ≤ p < ∞. W 1,p
0 (Ω) denotes the closure of

C∞0 (Ω) in W 1,p(Ω). W−1,q(Ω) indicates the dual space of W 1,p
0 (Ω).

Remark 1.10. If p = 2, the notation H1,2(Ω) or H1(Ω) are very com-
mon for W 1,2(Ω). Moreover, H1,2

0 (Ω) or H1
0 (Ω) stand for W 1,2

0 (Ω).
The spaces H1,2(Ω) and H1,2

0 (Ω) are naturally endowed with the scalar
product

(u, v)H1,2(Ω) = (u, v)L2(Ω) +
n∑
i=1

(∇iu,∇iv)L2(Ω)

which induces the norm ‖u‖H1,2(Ω).

Theorem 1.11. The space W 1,p(Ω) is a Banach space for 1 ≤ p ≤ ∞.
W 1,p(Ω) is separable if 1 ≤ p <∞ and reflexive if 1 < p <∞.

Moreover, the space W 1,p
0 (Ω) endowed with the norm induced by

W 1,p(Ω) is a separable Banach space; it is reflexive if 1 < p <∞.
The spaces H1,2(Ω) and H1,2

0 (Ω) are separable Hilbert spaces.
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We now quote the Sobolev and Rellich-Kondrachov imbedding the-
orems.

Theorem 1.12. Let Ω be a bounded open subset of Rn with Lipschitz
boundary.

i. If 1 ≤ p <∞, then

W 1,p(Ω) ⊂ Lq(Ω) for every 1 ≤ q ≤ np

n− p
and the imbedding is compact for every 1 ≤ q < np

n−p .

ii. If p = n, then

W 1,p(Ω) ⊂ Lq(Ω) for every 1 ≤ q <∞
and the imbedding is compact.

iii. If p > n, then
W 1,p(Ω) ⊂ C(Ω)

and the imbedding is compact.

Remark 1.13. We have that

a. The regularit of the boundary δΩ in the theorem can be weak-
ened. Note that if the space W 1,p(Ω) is replaced by W 1,p

0 (Ω),
then no regularity of the boundary is required.

b. The compact imbedding can be read in the following way. Let

uh ⇀ u in W 1,p(Ω).

I. If 1 ≤ p < n, then uh → u in Lq(Ω), 1 ≤ q < np
n−p ;

II. If p = n, then uh → u in Lq(Ω), 1 ≤ q <∞;

III. If p > n, then uh → u in L∞(Ω).

Let us state two important inequalities.

Theorem 1.14. We have the following

i. (Poincaré Inequality) Let Ω be a bounded open set and let 1 ≤
p <∞. Then there exists a constant k > 0 such that

‖u‖Lp(Ω) ≤ k ‖∇u‖Lp(Ω;Rn)

for every u ∈ W 1,p
0 (Ω).

ii. (Poincaré-Wirtinger Inequality) Let Ω be a bounded open convex
set and let 1 ≤ p <∞. Then there exists a constant k > 0 such
that ∥∥∥∥u− 1

|Ω|

∫
Ω

u(x)dx

∥∥∥∥
Lp(Ω)

≤ k ‖∇u‖Lp(Ω;Rn)

for every u ∈ W 1,p(Ω).
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Remark 1.15. From the previous theorem it follows that ‖∇u‖Lp(Ω;Rn)

defines a norm on W 1,p
0 (Ω), denoted by ‖u‖W 1,p

0 (Ω), which is equivalent

to the norm ‖u‖W 1,p(Ω).

1.1.4. Extension and convergence lemmas for periodic functions. Let
Y = (0, 1)n be the unit cube in Rn and let 1 < p < ∞. By W 1,p

per(Y )

we denote the subset of W 1,p(Y ) of all the functions u with mean value
zero which have the same trace on the opposite faces of Y . In the case
p = 2 we use the notation H1,2

per(Y ).

Lemma 1.16. Let f ∈ W 1,p
per(Y ). Then f can be extended by periodicity

to an element of W 1,p
loc (Rn).

Lemma 1.17. Let g ∈ Lq(Y ; Rn) such that

∫
Y

(g,∇v) = 0 for every

v ∈ W 1,p
per(Y ). Then g can be extended by periodicity to an element of

Lqloc(Rn; Rn), still denoted by g such that −divg = 0 in D
′
(Rn).

Theorem 1.18. Let f ∈ Lp(Y ). Then f can be extended by periodicity
to a function (still denoted by f) belonging to Lploc(Rn). Moreover, if
(εh) is a sequence of positive real numbers converging to 0 and fh(x) =

f
(
x
εh

)
, then

fh ⇀ 〈f〉 =
1

|Y |

∫
Y

f(y)dy weakly in Lploc(R
n)

if 1 ≤ p <∞, and

fh ⇀
∗ 〈f〉 in L∞(Rn) weak*

if p =∞.

Remark 1.19. Let us point out some features of the weak convergence.
To this aim, let us consider Y = (0, 2π) and let f(x) = sin x. Let (εh)
be a sequence of positive real numbers converging to 0. By the previous

theorem we have that fh(x) = f
(
x
εh

)
converges to 0 in L∞(Y ) weak*

(hence weakly in L2(Y )).
In particular ∫ 2π

0

fh(x)dx→ 1

2π

∫ 2π

0

sin ydy = 0,
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i.e., the mean values of fh converges to 0. On the other hand, we have
that (fh) does not converge a.e. on Y . Furthermore,

‖fh − 0‖2
L2(Y ) =

∫ 2π

0

sin2

(
x

εh

)
dx→

(
1

π

∫ π

0

sin2 ydy

)
2π = π 6= 0,

which shows that we do not have convergence of (fh) to f in the strong
topology of L2(Y ).

This example shows also another mathematical difficulty one meets
by handling with weak convergent sequences. More precisely, it two
sequences and their product converge in the weak topology, the limit
of the product is not equal, in general, to the product of the limits.
Indeed the remark above proves that f 2

h = fh × fh does not converge
weakly in L2(Y ) to 0.

1.2. A Compensated Compactness Lemma.

Lemma 1.20. Compensated Compactness Lemma
Let 1 < p < ∞. Let (uh) be a sequence converging to u weakly in

W 1,p(Ω), and let (gh) be a sequence in Lq(Ω; Rn) converging weakly to
g in Lq(Ω; Rn). Moreover assume that (−divgh) converges to −divg
strongly in W−1,q(Ω). Then∫

Ω

(gh,∇uh)ϕdx→
∫

Ω

(g,∇u)ϕdx

for every ϕ ∈ C∞0 (Ω).

Proof. The lemma is a simple case of compensated compactness. It can
be proved by observing that∫

Ω

(gh,∇uh)ϕdx = 〈−divgh, uhϕ〉 −
∫

Ω

uh (gh,∇ϕ) dx

for every ϕ ∈ C∞0 (Ω). �

Note that (gh,∇uh) is the product of two sequences which converge
only in the weak topology, and that by passing to the limit we get
the product of the limits. This fact is known as the phenomenon of
”compensated compactness”.
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1.3. Abstract existence theorems.

1.3.1. Lax-Milgram Theorem. Let H be a Hilbert space. A bilinear
form a on H is called continuous (or bounded) if there exists a positive
constant k such that

|a(u, v)| ≤ k ‖u‖ ‖v‖ for every u, v ∈ H
and coercive if there exists a positive constant α such that

a(u, u) ≥ α ‖u‖2 for every u ∈ H.
A particular example of a continuous, coercive bilinear form is the

scalar product of H itself.

Lemma 1.21. Let a be a continuous, coercive bilinear form on a
Hilbert space H. Then for every bounded linear functional f ∈ H∗

there exists a unique element u ∈ H such that

a(u, v) = 〈f, v〉 for every v ∈ H.

1.3.2. Maximal Monotone Operators. Let X be a Banach space and
X∗ its dual space. Let A be a single-valued operator from D(A) to X∗,
where D(A) is a linear subspace of X and is called the domain of A.
The range R(A) of A is the set of all points f of X∗ such that there
exists x ∈ D(A) with Ax = f . Then

a. A is said to be monotone if

〈Ax1 − Ax2, x1 − x2〉 ≥ 0 for every x1, x2 ∈ D(A).

b. A is said to be strictly monotone if for every x1, x2 ∈ D(A)

〈Ax1 − Ax2, x1 − x2〉 = 0 implies x1 = x2.

c. A is said to be maximal monotone if for every par [x, y] ∈
X ×X∗ such that

〈y − Aξ, x− ξ〉 ≥ 0 for every ξ ∈ D(A)

if follows that y = Ax.

d. A is said to be hemicontinuous if

lim
t→0

A(x+ ty) = Ax weakly in X∗

for any x ∈ D(A) and y ∈ X such that x + ty ∈ D(A) for
0 ≤ t ≤ 1.
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Theorem 1.22. Let X be a Banach space and let A : X → X∗ be
everywhere defined (i.e., D(A) = X), monotone and hemicontinuous.
Then A is maximal monotone. In addition, if X is reflexive and A is
coercive, i.e.,

lim
‖x‖→∞

〈Ax, x〉
‖x‖

=∞,

then R(A) = X∗.
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2. Introduction

The Theory of Homogenization dates back to the late sixties, it has
been very rapidly developed during the last two decades, and it is now
established as a distinct discipline within mathematics.

Composites are materials that have inhomogeneities on length scales
that are much larger than the atomic scale (which allows us to use
the equations of classical physics at the lenght scales of the inhomo-
geneities) but which are essentially homogeneous at macroscopic lenght
scales.

Composite materials (e.g. fibred, stratified, crystalline, porous,...)
play an important role in many branches of Mechanics, Physics, Chem-
istry and Engineering.

The main problem is to determine macroscopic effective properties
(for example heat transfer, elasticity, electric conductivity, magnetic
permeability, flow, etc.) of strongly heterogeneous multiphase materi-
als. A common feature in such problems is that the governing equations
involve rapidly oscillating functions due to the heterogeneity of the un-
derlying material, i.e. the physical parameters (such as conductivity,
elasticity coefficients,...) are discontinuous and oscillate very rapidly
between the different values characterizing each of the components.

These rapid oscillations render a direct numerical treatment very
hard or even impossible. Therefore one has to do some kind of averag-
ing or asymptotic analysis. We may think to get a good approximation
of the macroscopic behaviour of such a heterogeneous material by let-
ting the parameter εh , which describes the fineness of the microscopic
structure, tend to zero in the equations governing phenomena such as
heat conduction and elasticity. It is the purpose of homogenization
theory to describe these limit processes, when εh tends to zero.

More precisely, homogenization deals with the asymptotic analysis
of Partial Differential Equations of Physics in heterogeneous materi-
als with a periodic structure, when the characteristic length εh of the
period tends to zero.

3. Basic Ideas

Suppose we would like to know the stationary temperature distri-
bution in an homogeneous body Ω ⊂ R3 with an internal heat source
f , heat conductivity a (which describes the relation between the heat
current and the temperature gradient) and zero temperature on the
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boundary δΩ. Or maybe we are interested in the deflection of a mem-
brane of shape Ω ⊂ R2 made of an homogeneous material with stiffness
a, loaded by a vertical force f and clamped on the boundary δΩ (has de-
flection 0 on the boundary). A good model to describe these problems
is given by the following boundary value problem: Find u ∈ W 1,p

0 (Ω),
1 < p <∞, such that

(3.1) −div (a (∇u)) = f on Ω,

where Ω is a bounded open subset of Rn, f is a given function on Ω, and
a : Rn → Rn satisfies suitable continuity and monotonicity conditions
that allows the existence and uniqueness of the solution of (3.1).

Here W 1,p
0 (Ω) is the closure of C∞0 (Ω) in W 1,p(Ω), or the space of

funtions u with boundary value 0 such that u ∈ Lp(Ω) and ∇u ∈
Lp(Ω,Rn).

Now, suppose that we would like to be able to model the case when
the underlying material is heterogeneous, that is, Ω consists of a ma-
terial with different properties in different positions of Ω. Then we
replace a in (3.1) with a map a : Ω× Rn → Rn to get the equation

(3.2)

{
−div (a (x,∇u)) = f on Ω

u ∈ W 1,p
0 (Ω).

Since (3.2) depends on x, this is much more difficult to handle than
(3.1).

An interesting special case is a two-phase composite where one mate-
rial is periodically distributed in the other. In this case the underlying
periodic inclusions are often microscopic with respect to Ω. By period-
icity, we can divide Ω into periodic cells Y (the microstructure of a given
periodic material can be described by several different period cells).

This is usually described by maps of the form ah(x, ξ) = a
(
x
εh
, ξ
)

,
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where a(·, ξ) is assumed to be Y -periodic and εh is the fineness of the
periodic structure (ah(·, ξ) is εhY -periodic). Equation (3.2) becomes

(3.3)

{
−div (ah (x,∇uh)) = −div

(
a
(
x
εh
,∇uh

))
= f on Ω

uh ∈ W 1,p
0 (Ω).

(The function uh can be interpreted as the electric potential, mag-
netic potential, or the temperature and ah describes the physical prop-
erties of the different materials constituting the body (they are the
dielectric coefficients, the magnetic permeability and the thermic con-
ductivity coefficients, respectively)).

Remark 3.1. The partial differential equations in these notes should be
interpreted in the weak sense. The model problem (3.3), for instance,
should be read as

(3.4)


∫

Ω

〈ah (x,∇uh) ,∇φ〉 =

∫
Ω

fφ for every φ ∈ W 1,p
0 (Ω),

uh ∈ W 1,p
0 (Ω),

where 〈·, ·〉 denotes de Euclidean inner product.

Let εh be a sequence of positive real numbers such that εh → 0 as
h→∞. In this way we get a sequence of problems, one for each value
of h. The larger h gets, the finer the microstructure becomes.

The natural question arises as if there is some type of convergence
of the solutions uh.

Assume that we can establish convergence in some appropiate sense,
that is

uh → u, as h→∞.
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Now, do we get that u satisfies an equation of a similar type as the one
uh satisfies? {

−div (b (x,∇u)) = f, on Ω

u ∈ W 1,p
0 (Ω).

If this is the case, how do we find b? For large values of h, the material
macroscopically appears to behave like a homogeneous material, even
though the material is strongly heterogeneous on the microscopic level.
This makes it reasonable to assume that b is independent of x, which
means that u satisfies an homogenized equation of the form

(3.5)

{
−div (b (∇u)) = f, on Ω

u ∈ W 1,p
0 (Ω).

The ”homogenized” b may be interpreted as the physical parameters
of a homogeneous body, whose behaviour is equivalent, from a ”macro-
scopic” point of view, to the behaviour of the material with the given
periodic microstructure, described by (3.3).

The subject that deals with these types of questions is known as
Homogenization. In particular, the convergence of partial differential
operators of the type above is an important case of G-convergence of
monotone operators (Introduced by Spagnolo in 1967).

Another approach to study different physical phenomena in hetero-
geneous materials is by using the fact that the state of the material u
can be often found as the solution of a minimization problem of the
form

Eh = min
u∈W 1,p

0 (Ω)

{∫
Ω

g

(
x

εh
,∇u(x)

)
dx−

∫
Ω

fudx

}
,

where the local energy density function g(·, ξ) is periodic and is assumed
to satisfy the so called natural growth conditions. The convergence of
this type of integral functionals is called Γ-convergence (Introduced by
DeGiorgi). From the theory of Γ-convergence it follows that Eh →
Ehom, as h→∞, where

Ehom = min
u∈W 1,p

0 (Ω)

{∫
Ω

ghom (∇u(x)) dx−
∫

Ω

fudx

}
.

Here the homogenized energy density function ghom is given by

ghom(ξ) =
1

|Y |
min

u∈W 1,p
per(Y )

∫
Y

g(x, ξ +∇u)dx,
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where W 1,p
per(Y ) is the set of all functions u ∈ W 1,p

per(Y ) which are Y -
periodic and have mean value zero. Again we note that the limit prob-
lem does not depend on x, that is, ghom is the energy density function
of a homogeneous material.

4. Example

To demonstrate some of the techniques and difficulties encountered in
the homogenization procedure, we consider homogenization of the one
dimensional Poisson equation. The homogenization process is much
simpler in R than in higher dimensions, however it reveals the main
difficulty.

Let Ω = (0, 1), f ∈ L2(0, 1), and a ∈ L∞(0, 1) be a measurable and
periodic function with period 1 satisfying

(4.1) 0 < β1 ≤ a(x) ≤ β2 <∞, for a.e. x ∈ R.

Moreover, we define ah = a
(
x
εh

)
. Then equation (3.4) takes the

form

(4.2)


∫ 1

0

ah (x)
duh
dx

dφ

dx
dx =

∫ 1

0

fφdx for every φ ∈ W 1,2
0 (0, 1),

uh ∈ W 1,2
0 (0, 1),

(4.3)

−
d

dx

(
ah(x)

duh(x)

dx

)
= f in (0, 1),

uh ∈ W 1,2
0 (0, 1), uh(0) = uh(1) = 0.

By a standard result in the existence theory of partial differential
equations, there exists a unique solution of these problems for each h.
By choosing φ = uh in (4.2) and taking (4.1) into account, we obtain
by Hölder’s inequality that

β1

∥∥∥∥duhdx
∥∥∥∥2

L2(0,1)

≤
∫ 1

0

ah(x)

∣∣∣∣duh(x)

dx

∣∣∣∣2 dx
=

∫ 1

0

f(x)uh(x)dx

≤ ‖f‖L2(0,1) ‖uh‖L2(0,1) .
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The Poincaré inequality for functions with zero boundary values states
that there is a constant k only depending on Ω = (0, 1) such that

‖uh‖L2(Ω) ≤ k

∥∥∥∥duhdx
∥∥∥∥
L2(Ω)

.

This implies that

(4.4) ‖uh‖2
W 1,2

0 (Ω) ≤ C,

where C ia s constant independent of h. Since W 1,2
0 (Ω) is reflexive,

there is a subsequence, still denote (uh), such that

(4.5) uh ⇀ u∗ in W 1,2
0 (Ω).

Since W 1,2
0 (Ω) is compactly embedded in L2(Ω), we have by Rellich

embedding theorem that

uh → u∗ in L2(Ω).

In general, however, we only have that

duh
dx

⇀
du∗
dx

in L2(Ω).

Moreover, since a is 1-periodic, we have that (ah) converges weakly*
to its arithmetic mean 〈a〉, that is

(4.6) ah ⇀
∗ 〈a〉 =

∫ 1

0

a(x)dx in L∞(Ω).

From (4.2), (4.5), and (4.6), it is then reasonable to assume that, in
the limit, we have


∫ 1

0

〈a〉 du∗(x)

dx

dφ(x)

dx
dx =

∫ 1

0

f(x)φ(x)dx for every φ ∈ W 1,2
0 (0, 1),

u∗ ∈ W 1,2
0 (0, 1).

However, this is not true in general, since ah
duh
dx

is the product of
two sequences which only converges weakly. This is the main difficulty
in the limit process. To obtain the correct answer we proceed in the
following way: first we note that, according to (4.6) and (4.4), ah

duh
dx
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is bounded in L2(Ω) and that (4.2) implies that − d
dx

(ah(x)duh
dx

) = f .
Hence there is a constant C independent of h such that∥∥∥∥ahduhdx

∥∥∥∥
W 1,2(Ω)

≤ C.

Since W 1,2(Ω) is reflexive, there exists a subsequence, still denoted

(ah
duh
dx

) and a γ ∈ L2(Ω) such that

ah
duh
dx
→ γ in L2(Ω).

This combined with the fact that
(

1
ah

)
converges to

〈
1
a

〉
weakly* in

L∞(Ω) (hence weakly in L2(Ω)) gives us

(4.7)
duh
dx

=
1

ah
ah
uh
dx

⇀

〈
1

a

〉
γ in L2(Ω).

Thus in view of (4.5) and (4.7), we see that

γ =
1〈
1
a

〉 du∗
dx

.

Now, by passing to the limit in (4.2) we obtain that


∫ 1

0

b
du∗
dx

dφ

dx
dx =

∫ 1

0

f(x)φ(x)dx for every φ ∈ W 1,2
0 (0, 1),

u∗ ∈ W 1,2
0 (0, 1).

where the homogenized operator is given by b = 1

〈 1a〉
, the harmonic

mean of a. Now since
1

β2

≤
〈

1

a

〉
≤ 1

β1

,

we conclude that the homogenized equation has a unique solution and
thus that the whole sequence (uh) converges.

One shall refrain from drawing the conclusion that the weak* con-
vergence in (L∞(Ω))n×n of the inverse matrices A−1

h of Ah is the key
to the understanding of the problem in higher dimensions. In this
case, the problem of passing to the limit is rather delicate and requires
introduction of new techniques. One of the main tools to overcome
this difficulty is the compensated compactness method introduced by
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Murat and Tartar. This method shows that under some additional as-
sumptions, the product of two weakly convergent sequences in L2(Ω)
converges in the sense of distributions to the product of their limits.

Remark 4.1. The corresponding homogenization problem for the one-
dimensional Poisson equation
∫

Ω

ah(x) |∇uh|p−2∇uh∇φdx =

∫
Ω

f(x)φ(x)dx for every φ ∈ W 1,p
0 (Ω),

uh ∈ W 1,p
0 (Ω)

gives the homogenized operator b =
〈
a

1
1−p

〉1−p
.

5. Homogenization in Rn

Assume that a satisfies suitable structure conditions.

Remark 5.1. A common assumption is that a(x, ξ) satisfies the condi-
tions

|a(x, ξ1)− a(x, ξ2)| ≤ c1λ(x) (1 + |ξ1|+ |ξ2|)p−1−α |ξ1 − ξ2|α ,

(a(x, ξ1)− a(x, ξ2), ξ1 − ξ2) ≥ c2λ(x) (1 + |ξ1|+ |ξ2|)p−β |ξ1 − ξ2|β ,
for c1,c2 > 0, 0 ≤ α ≤ min(1, p− 1) and max(p, 2) ≤ β <∞.

These conditions are for instance satisfied by the p-Poisson operator

a(x, ξ) = λ(x) |ξ|p−2 ξ,

where the constants c1 and c2 can be chosen as c1 = max
(
p− 1,

(
2
√

2
)2−p

)
,

c2 = min
(
p− 1,

(
2
√

2
)2−p

)
.

Theorem 5.2. Let 1 < p <∞ and q such that

1

p
+

1

q
= 1.

The main result for the homogenization problem connected to the
Dirichlet problems{

−div (ah (x,∇uh)) = f on Ω,

uh ∈ W 1,p
0 (Ω),

is that
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(5.1) uh ⇀ u in W 1,p
0 (Ω),

ah (x,∇uh) ⇀ b(∇u) in Lq(Ω,Rn),

where u is the solution of the homogenized equation{
−div (b (∇u)) = f on Ω,

u ∈ W 1,p
0 (Ω).

The homogenized operator b : Rn → Rn is defined by

(5.2) b(ξ) =
1

|Y |

∫
Y

a(x, ξ +∇ωξ(x))dx,

where ωξ is the solution of the local problem on Y

(5.3)


∫
Y

〈
a
(
x, ξ +∇ωξ

)
,∇φ

〉
dx = 0 for every φ ∈ W 1,p

per(Y ),

ωξ ∈ W 1,p
per(Y ).

A common technique to prove this theorem is Tartar’s method of os-
cillating test functions related to the notion of compensated compact-
ness mentioned above. Another technique is the two-scale convergence
method.

6. Correctors

Returning to (5.1), we see that uh − u converges to 0 weakly in
W 1,p

0 (Ω). The Rellich embedding theorem then implies that uh − u
converges to 0 strongly in Lp(Ω). Unfortunately, in general, we do not
have strong convergence of ∇uh −∇u to 0 in Lp(Ω,Rn).

However, it is possible to express ∇uh in terms of ∇u up to a rest
which strongly converges to 0 in Lp(Ω,Rn). Results of this type are
called corrector results.

Indeed, let Ph : Ω× Rn → Rn be defined by

Ph(x, ξ) = ξ +∇ωξ
(
x

εh

)
,

where ωξ is the periodic extension of the solution to the local problem
(5.3).
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Now we define the step function Mhφ : Rn → Rn by

(Mhφ)(x) =
∑
i∈Ih

χY ih(x)
1

|Y i
h |

∫
Y ih

φ(y)dy

for every φ ∈ Lp(Ω,Rn), where

Y i
h = εh(i+ Y )

and

Ih =
{
i ∈ Zn : Y i

h ⊂ Ω
}
.

Then

∇uh − Ph (·,Mh∇u)→ 0 in Lp(Ω,Rn).

This result was proved by DalMaso and Defranceschi.

7. Some special cases with closed form expressions for
the homogenized operator b

As we saw before, the homogenized operator (5.2) depends on the
solution of a cell problem (5.3). There are, however, some special cases
when we can get form expressions for b. We give a few of them below.

Some of these special cases are intimately connected to the concept
of bounds. For simplicity, we concentrate on linear heat conductivity
in the plane, that is, we consider the case p = 2 and a(y, ξ) = λ(y)ξ
where ξ ∈ R2.

7.1. The Hashin structure. In the early sixties, Hashin and Shtrik-
man investigated bounds for the effective properties of isotropic three
dimensional mixtures with arbitrary phase geometry. Hashin and Rosen
later showed that these bounds were optimal, meaning that one can find
phase geometries such that they are obtained. The so called Hashin
structure, which consists of coated spheres, is one such case.

We study a three-phase composite consisting of three isotropic ma-
terials, let us call them material 1,2, and 3, with conductivity

λ(x)I = [α1χΩ1(x) + α2χΩ2(x) + α3χΩ3(x)] I

where χΩi is the characteristic function for the set Ωi and I the unit
matrix.
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Let the unit cell geometry be described by

Ω1 = {x : |x| ≤ r1} , Ω2 =

{
x : r1 ≤ |x| ≤ r2 <

1

2

}
,

Ω3 =

{
x : |xi| <

1

2
∧ |x| ≥ r2, i = 1, 2

}
.

In order to compute the homogenized coefficients (5.2), we need to
solve the cell problem (5.3)

(7.1) −div
(
λ(x)∇φξ(x)

)
= 0 on Y ,

where φξ(x) = 〈ξ, x〉+ ωξ(x) and ωξ(x) is Y -periodic.

In the case ξ = e1 =[1 0]T , we look for a solution of the type

(7.2) φe1(x) =


C1x1, x ∈ Ω1,

x1

(
C2 + K2

|x|2

)
, x ∈ Ω2,

x1, x ∈ Ω3.

It is easily seen that (7.2) satisfies (7.1) on Y .

By physical reasons, the solution φξ(x) as well as the flux λ(x)∂φ
ξ

∂n
must be continuous over the boundaries Ω1 ∩ Ω2 and Ω2 ∩ Ω3. This
gives four equations to solve for the three unknowns C1, C2, and K2.
In order to get a consistent solution, we get that α3 must be

(7.3) α3 = α2

(
C2 −

K2

r2
2

)
=
α2

(
1 + α1

α2
+m1

(
α1

α2
− 1
))

1 + α1

α2
−m1

(
α1

α2
− 1
) ,

where m1 =
r21
r22

, the volume fraction of material 1 in material 2. Since

we now know the solution ωe1(y) = φe1(y)−〈e1, y〉 of the cell problem,
we can compute the homogenized coefficients

b(e1) =

∫
Y

λ(x)(e1 +∇ωe1)dx = [α3 0]T

and similarly

b(e2) =

∫
Y

λ(x)(e2 +∇ωe2)dx = [0 α3]T .

This means that we can put the coated cylinder consisting of ma-
terial 1 coated by material 2 into the homogeneous isotropic material
3 without changing the effective properties. By filling the whole cell



20 SILVIA JIMENEZ

with such homothetically coated cylinders, we get an isotropic two-
phase composite with conductivity α3.

We also mention the fact that if α1 ≥ α2, then α3 above is the
lower Hashin-Shtrikman bound. By letting material 1 and 2 change
places and solving a similar problem as above, we get the upper Hashin-
Shtrikman bound.

7.2. The Mortola-Steffe structure. We define our unit cell Y =
(0, 1)2 and divide it into four equal parts

Y1 =

(
0,

1

2

)
×
(

1

2
, 1

)
, Y2 =

(
1

2
, 1

)
×
(

1

2
, 1

)
,

Y3 =

(
0,

1

2

)
×
(

0,
1

2

)
, Y4 =

(
1

2
, 1

)
×
(

0,
1

2

)
.

We study a four-phase composite consisting of four isotropic mate-
rials, let us call them materials 1, 2, 3, and 4, with conductivity

λ(x)I = [αχY1(x) + βχY2(x) + γχY3(x) + δχY4(x)] I,

where χYi(x) is the characteristic function for the set Yi and I the unit
matrix.

In 1985, Mortola and Steffe conjectured that the homogenized con-
ductivity coefficients of this structure are
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(λij) =

(
λ11 0
0 λ22

)
,

where

λ11 =

√
αβγ + αβδ + αγδ + βγδ

α + β + γ + δ

(α + γ) (β + δ)

(α + β) (γ + δ)
,

λ22 =

√
αβγ + αβδ + αγδ + βγδ

α + β + γ + δ

(α + β) (γ + δ)

(α + γ) (β + δ)
.

This conjecture was proven to be true by Craster and Obnosov and
independently by Milton in 2000.

If we let δ = α and γ = β, we get the so called checkerboard struc-
ture. We immediately see that the homogenized conductivity coeffi-
cients for the checkerboard structure are

λ11 = λ22 =
√
αβ,

the geometric mean. This was proved already in 1970 by Dykhne, but
Schulgasser(1977) showed that this was a corollary of Keller’s phase
interchange identity in 1963.
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