Hai Ngo
L THE PHYSICAL PROBLEM

This presentation is based on the book Scattering Theory for Diffraction Gratings
by Wilcox. In this book, the author studied the propagation of two-dimensional acoustic
and electromagnetic fields in bounded planar regions whose boundaries, which are the
diffraction gratings, lie between two parallel lines and are periodic. In each case, the
medium filling the region is assumed to be either rigid or acoustically soft. In the
electromagnetic case, it is assumed to be perfectly conduction. In both cases, the sources

of the field are assumed to be localized in space and time.

IL THE MATHEMATICAL FORMULATION

The plane diffraction gratings are the boundaries of the class of planar domains G

defined by the following properties

(1) G is contained in a half-plane,
(2) G contains a smaller half-plane,

(3) G is invariant under translation through a distance a > 0.

Domains with these properties are called grating domains. The half-plane of (2) is

necessarily parallel to that of (1), and the translation of (3) is necessarily parallel to the
edges of these half-planes. The smallest a > 0 in (3) is called the primitive grating
period. It exists for all gratings except the degenerate grating for which G is a half-

plane.

We shall use the Cartesian coordinates X = (x,y) € R? in the plane of G such that the x-
axis is parallel to the edges of the half-planes of (1) and (2). We identify G with the

corresponding domain (open connected set) G ¢ R%.



T Source Region

incident.Pulse

Figure 1,

Grating with Source Region and Incident Pulse
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Flgure 2. Grating Domain with Coordinate System
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Define R? = {X € R? | y > c}, then for a suitable orientation of the coordinate axes,
conditions (1) and (2) are equivalent to RZ c G < R3 for some h > 0. Condition (3) is

equivalent to G + (a,0) = G. We shall choose a = 27 as a convenient normalization.

The acoustic or electromagnetic field in G can be described by a real-valued function

u = u(t, X) that is a solution of the initial boundary value problem
D?u—Au=0forallt >0and X €G,

and either the Neumann boundary condition

D,u=v-Vu=0forallt >0and X € 3G,
or the Dirichlet boundary condition

u=0forallt >0and X € 9G.

and
u(0,X) = g,(X) and D,u(0,X) = g,(X) forall X € G.
Here t is the time coordinate, D, = :—t, D, = ix, D, = %, Vu = (Dxu, Dyu), Au = D? + Df is

the Laplacian, 3G denotes the boundary of G, and ¥ = #(X) is a unit normal vector to 9G

at X.

In the acoustic case, u(t, X) is interpreted as a potential for an acoustic field with
velocity ¥ = —Vu and the acoustic pressure p = D,u. Then the boundary condition

corresponds to an acoustically hard (i.e., D,u = 0) or soft (i.e., u = 0) boundary.

The functions g; (X) and g, (X) characterize the initial state of the field. They are

assumed to be given or calculated from the prescribed wave sources and to be localized:
suppg; U suppgz € {X : x% + (y — y0)* < 8§}, where y, > h + 6.

In both the acoustic and the electromagnetic cases, the integral



Hai Ngo

E(uX.t) = f (vt O + IDou(t, X)|2}dx
K

is interpreted as the wave energy in the set K at time t(dX = dxdy). Under both
boundary conditions, solutions of the wave equation satisfy the energy conservation

law
E(u,G,t) = E(u,G,0).

We will assume that the initial state has finite energy .

fK (Vg COI + g2 (X) [23dX < oo.

IIl. MATHEMATICAL THEORY

1) The Reference Problem and Its Eigenfunction

Let Rj be the degenerate grating, then the initial value problem with Neumann

boundary condition will be called the reference problem. The corresponding reference

propagator is the operator 4, = —A in H = L,(R3). The solution of the scattering
problem for non-degenerate gratings is developed below as a perturbation of the

reference problem.
Recall the initial value problem
D?u —Au = Oforallt > 0and X € R.

We will solve this equation by separation of variables and seek solutions of the form

u(t, x,y) = P G (y)e ek,

Then the differential equation becomes
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w2y (NP (e — ;] NP2 (y)e ™ — g G (y)e =t = 0.

We divide this equation by u(t, x, y) to obtain

Y (X)) ¥ ()

2:
0 o T

Let (p, q) € R3 such that p? + % = w?(p, q), then we have a system of equations

Pi(x) L, O,

@ P %)

which has the solutions
P1(x) = c1eP* and P, (y) = ;¥ + cze™,
and the general solution is
Po(x,y,p,q) = C1e'@*+D) 4 (e’ Px~0),
and
D,o(x,y,p,q) = 0 = D,y (x,y,p,q) on IR

since 1 satisfies the Neumann boundary condition.

The ™ (x,y,p.q) = % e'(P*~9Y) represents a plane wave incident on the plane
boundary in the direction (p, —q), while the ¥ (x,y,p, q) = % e!(P**ay) represents the

reflection by a grating of a plane wave propagating in the direction (p, q).
Note that

I.binc (x + 271', Y, P, q) — eZnip ]pinc (x' y,P, Q)-
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2) Rayleigh-Bloch Waves

A function ¥ is said to be a Rayleigh-Bloch (R-B) wave for G if and only if there exist

numbers p € R and w = 0 such that

Y(x +2m,y) = e*™PP(x,y), (6)
AY + w’P = 0in G, and )
Y(x,y)is bounded in G ®

The parameter p is called the x-momentum and w is called the frequency of the R-B

wave. The x-momentum that satisfies —% <p< % will be called the reduced x-

momentum of .

The property (6) is sometimes called quasi-periodicity or p-periodicity. It is equivalent
to the property that

Y(x,y) = eP* ¢(x,y)forall (x,y) €G

where

¢(x + 2m,y) = ¢p(x,y)forall (x,y) € G.

(7) is the Helmholtz equation, and its solutions are known to be analytic functions. In
particular, each R-B wave satisfies 1 € C*(G). Hence, the function ¢(x,y) € C*(G) and

has period 27 in x since RZ € G. Then for (x,y) € R? , ¢ has an expansion

Y06y) = ) hiG)e e

lez

The series converges absolutely and uniformly on compact subsets of RZ. Moreover, we
may differentiate ¥ term-by-term, and hence the partial derivatives of 3 also have

expansions of the same form and have the same convergence properties.
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Recall that p? + g% = w?(p,q). For y > h, the coefficients 1, (y) must satisfy
Y )+ (@ = @+ D) =0.
Casel:w > |p+1|.

Letp; =p + 1, g7 = w? — (p + )? > 0, then we have the ordinary differential equation

¥ )+ afp() = 0.
So there exist constants ¢;” and ¢;” such that
Pi(y) = cl‘"eiqu’ + Cl_e_iqu,
and hence
1p(x' y) = Z lpl (y)ei(p+l)x = 2 Cl"'ei(plx'*'qu’) + Z Cl_ei(plx_qu)_
IEL 1€Z leZ

These two terms describe the plane waves propagating in the directions (p;,  q;). Also,
since p? + qf = w?, these vectors lie on the circle of radius w with center at the origin

and their x-components differ by integers.

If ¢; = 0 for all I such that w > |p + [|, then we obtain an outgoing R-B wave for G, i.e,

¥ypq) = Z Cfei(Plx+QIY)_
[{=V/A

If ¢ = 0 for all I such that w > [p + [|, then we have an incoming R-B wave for G, i.e,

¢i¢ (x'y' D, q) = z cl_ei(Plx—LIl}’)_
leZ

If ¢ = 0 = ¢ for all l such that w > |p + ], then 3 will be said to be an R-B surface

wave for G.



Hai Ngo
Case2: w < |p+1|. Then (p + 1)? — w? > 0 and

¥ ) = ((p + D? — 0D (y) = 0.

Since Y (X) is assumed to be bounded in G, it follows that there exists constant ¢; such

that

1/2
/}’

Pi(y) = ¢ e @+D*-0?)

and hence

Y(x,y) = Z ¢ e—(@+D?-02)"?y i +Dx
lez
In the application to diffraction gratings, terms of this type will be interpreted as
PP grating typ "

surface waves.
Case3:w = |p +1|.

Then ‘(/J;, (¥) = 0.In this limiting case, the boundedness condition (8) implies that there

exists constant ¢; such that ¥;(y) = ¢, , and hence

V)= ) a el@rx,
lez

This describes a plane wave that propagates parallel to the grating; i.e., the grazing
wave. These waves divide the plane waves in case 1 from the surface waves in case 2.
The frequencies {w = Ip + | | | € Z} are called the cut-off frequencies for R-B waves

with x-momentum p.

Note that the plane waves ¢ (x,y,p,q) = E};ei@’x ~) and Y€ (x, y,p,—q) =

1

—e!?**9) are incoming and outgoing R-B waves, respectively, with x-momentum p

and frequency w = w(p, q) = \/p? + q*. The scattering of these waves by a grating will
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produce outgoing and incoming R-B waves, respectively, with the same x-momentum p

and frequency w. This leads to the following

Definition: An outgoing R-B diffracted plane wave for 4 with momentum (p, q) € Rj is
a function Y, (x, y, p, q) such that

Y, (-, p, q)is an R-B wave for A, and
¥.(0yp, 0 =9I (Y0, 0 + ¥ (%, y,p,9)
where ¢ (x,y,p, q) is an outgoing R-B wave for G.

Note that

l/J__(x, Y, D, q) = ¢+(xr Y, —D, q)

In the half plane RZ above the grating, the (p;,q;) = (p + L,\/p? + ¢ — (p + )%) € R}

defines the momentum of the reflected plane wave of order I. The R-B waves 1, has the

expansion
1 . 1 ,
-(l)_l_(x v, P q) — _el(px_q}’) + — Cif'(p’q)el(plx'{'my)
Al 2 2
(p+D)%<p?+q?
+ zi Z ¢ (p‘ q)eiplxe—ym—_qz,
7T(p+l) 2p2+q2
and

Ip_(x v,p q) =__:!.._ei(px+qy) +i Cl_(p’q)ei(plx+ql}')
P 27 21
(p+D%<p?+q?

+—2}— Z o (p,qePre e P=T,
n(p+l) 2p2+q2

Since Y_(x,y,p,9) = ¥, (x,y, —p, q), it follows that for all (p,q) € R and [ € Z,
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c (0,q) = & (—p,q).

Note that w?(p;, q;) = pf + qf = p* + ¢* = w*(p, q), hence the wave frequency is

preserved under scattering.

The terms in the second sum are surface waves for the grating since they propagate in

the x-direction, parallel to the grating, and are exponentially decreasing functions in y,

except in the case w(p, q) = /p? + q2 = |p + l| for some | € Z. These are precisely the

cut-off frequencies.
We may rewrite the R-B waves i, as

¢i(x;)’;p; Q) = .‘/)linc (x, }’;p; q) + Il)ic(xlylp' q)'

Hence we may express the R-B wave eigenfunctions for G as a perturbations of those

for R3.



