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6.9

6.10

6.11

Electromagnetic Waves

(a) Determine the equation satisfied by the eigenfrequencies
of TM modes that can propagate along the glass.

(b) A plane polarised wave of frequency w is incident on
the glass at an angle « with its magnetic field parallel to
the surface of the glass. Determine the amplitude of the
reflected wave.

Determine the near field of a time harmonic electric dipole, and
show that both the electric and magnetic fields are of O(r—).
Show that this is equivalent to the field of a static electric dipole
due to charges gy and —go at (0,0,0) and (0,0,1).

Determine the far field of two identical time harmonic electric
dipoles with moments in the same direction, separated by a
distance, d > 0. Describe the far field when (i) wd/cy < 1, (ii)
wd/cy > 1

Consider the half wavelength antenna with a piecewise linear

current distribution, given by (6.118). Show that the gain is
proportional to

sin® 0 1— 1 0 2
e cos En cos s

and that the ratio of its radiation resistance to that when the
current distribution is given by (6.110) is

64( ["sin’0 1 cos?(§7 cos 0)
b S Ly el : cosT{amceost)
" (/0 cosi D {1 ws(zncos U)} d()/f g do,

BEvaluate this ratio numerically using the trapezium rule, and
hence show that the radiation resistance only differs by about
1% between these two approximations.

Part two

Nonlinear Waves

So far we have studied only linear wave systems. With the exception
of electromagnetic waves, we formulated the governing equations by
looking at small amplitude disturbances of steady states — a string in
equilibrium, a motionless ideal gas or elastic solid, the flat, undisturbed
surface of a fluid or solid. If y; and y, are solutions of a linear system
of equations, then a;y; + a2y, is also a solution for any constants a;
and a,. In particular, this means that separation of variables and integral
transform methods allow us to determine the solution. In fact, these are
the only techniques we have used. Compare what happens for nonlinear
systems, for example, disturbances of a steady state that do not have
a small amplitude. If y; and y; is a solution of a nonlinear system of
equations, then, in general, neither y; +y2 nor ky;, with k a constant, are
solutions. Our standard mathematical techniques fail, and we must think
again.

We begin by introducing some of the techniques that can be used
to study nonlinear systems of equations by looking at some specific
examples in chapter 7. In section 7.1 we study in detail a simple model
for the flow of traffic. The governing equation determines how the density
of cars changes along a road with a single lane. In chapter 3 we studied
small amplitude disturbances to a compressible gas. In section 7.2 we
investigate finite amplitude disturbances. The system of equations has
three dependent variables, velocity, density and pressure. Each of tiese
systems can be studied in terms of characteristic curves, which carry
information from the initial conditions forward in time in a sense that
we shall explain below. Another generic feature of these systems is that
shock waves can form, and we devote some time to investigating their
properties.

We have already derived the governing equations for shallow water
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220 Nonlinear Waves

waves. The system has two dependent variables, water depth and hori-
zontal velocity, and we begin chapter 8 by considering nonlinear waves
on shallow water. After studying Stokes’ expansion for weakly nonlinear
progressive gravity waves on deep water, we move on to look at how, in
shallow water, the nonlinear steepening of water waves can be balanced
by the effects of linear dispersion, as expressed by the KdV equation.
This is a nonlinear equation, and we examine its wave solutions, known
as cnoidal waves. The KdV equation also has a family of solitary wave
solutions, which we will consider in detail in section 12.1. We also show
how we can use complex variable theory to derive some exact solutions
for nonlinear capillary waves. 1

In chapter 9 we study chemical and electrochemical waves. Chemi-
cal waves arise [rom a self-sustained balance between the tendency of
molecular diffusion to smear out distributions of chemicals and limit the
maximum concentration, and the tendency of certain reactions to cause
the maximum chemical concentration to rise. We end the chapter by
considering how we can model the propagation of nerve impulses — an
example of an electrochemical wave.

In all of these systems we are interested in how the effect of a nonlinear
process (for example, wave steepening or chemical reaction) is modified
by that of a linear process (for example, diffusion or dispersion). In
general, we find that the result is a coherent, propagating structure (a
shock, a soliton or a chemical wave), sustained by a balance between the
opposing effects of the linear and nonlinear processes. '

e |
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The Formation and Propagation of Shock Waves

In this chapter we consider various physical systems in which shock waves
arise. These systems can be studied in terms of characteristic curves, on
which information from the boundary and initial conditions propagates.
However, this approach usually only gives a valid solution for a finite
time, after which the solution at some points becomes multi-valued. This
difficulty can be dealt with by inserting discontinuities in the solution
which represent shock waves. -

f]

7.1 Traffic Waves

Traffic flow modelling has developed rapidly over the last forty years, and
sophisticated models are used in the planning of new roads and analysis
of existing road networks. The type of model that we will discuss is the
simplest possible and was one of the first to be postulated. In spite of this,
it manages to capture many of the qualitative and quantitative features
of real traffic flows. It is an excellent way of introducing the mathematics
and physics of shock waves, and the solutions can be readily interpreted
in terms of our everyday experience of road travel.

7.0.1 Derivation of the Governing Equation

We begin by stating our main assumptions.

— There is only one lane of trafiic and no overtaking. This may scem
restrictive, but the inclusion of several lanes with traffic switching
between lanes, along with a model for overtaking, is a difficult busi-
ness. Moreover, the model that we will develop has been shown to be
in reasonable agreement with observations, even for multi-lane roads

221



222 The Formation and Propagation of Shock Waves

Fig. 7.1. Bunching in lines of traffic.

(see however Kerner (1999) for an introduction to more complex
phenomena on multi-lane roads).

— We can define a local car density, p, as the number of cars per unit
length of read. Formally, we are invoking the continuum approxima-
tion, which is the basis of fluid mechanics. In fluid mechanics, we do
not want to analyse the motion of every fluid molecule, so, at any
point, we take a small but finite averaging volume surrounding the
point in question, and define the mean density in this volume to be
the effective density at the point. In traffic flow modelling, at any
point we take a small but finite length of road and define the car
density to be proportional to the number of cars within it. Of course,
small in this context means something rather different from what it
means in fluid mechanics, but the idea is the same. We end up with
a function, p (x,t), which is defined for every position x and time .

— The local car velocity, v(x,¢), is a function of the local car density
alone (v = v(p)). The underlying idea is that the velocity at which
a car is driven is dependent only on the distance from the car in
front, and hence on the local car density. This is perhaps the most
unrealistic assumption in the model, and we shall see later that we
need to modify it.

Now consider a finite length of road, x; < x < x;. The rate of change
of the number of cars in this interval is equal to the flux of cars in at x;
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minus the flux of cars out at x;, or
a Xz %
7 | PDdx=q(x;,1) —q(x1), (7.1)
T

where ¢ (x,¢) is the car flowrate. In terms of p and v,

q=pv(p). (7.2)

Equation (7.1) is the integral expression for conservation of cars, and
must hold for any x; and x,. Notice that there are no x-derivatives, a
fact that will prove useful later.

For continuous densities, we can take the limit x5 — x; and obtain the
more familiar, differential form for conservation of cars as

0 é
L+=o (7.3)
ar - ox
This is just the one-dimensional version of the generic conservation
equation

da

— 4+ V-q=0,

At

where a is a veclor whose components are the densities of all the con-
served quantities and q their fluxcs. Equation (7.3) is the canonical form
for kinematic waves. These are waves that arise purely because of the
need o conserve mass, or here cars. No force balance is involved, which
distinguishes kinematic waves from dynamic waves, ¥

The next issue to be addressed is the functional form of v(p). We
assume that:

— There is an upper limit, pya.y, on the possible density of cars, corre-
sponding to bumper-to-bumper traffic, so that v (pga.) = 0.

— As the car density increases, drivers slow down. We assume that v (p)
decreases monotonically for 0 < p < pp.x. Note that traffic flows in
the positive x-direction.

As an example, consider figure 7.2, which shows car density and flowrate
plotted against car velocity for a real road. The data comes from the M25
motorway between junctions 13 and 14, Britain’s busiest stretch of road.
Each data point represents an average over one minute between 7 a.m.
and 7p.m. on a weekday. Also shown is a straight line fit to the density
data, and the corresponding fitted flowrate. The maximum flowrate lies
at around 45 miles per hour, considerably slower than the speed limit of
70 miles per hour. The highest flowrate of cars can be achieved at this
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Fig. 7.2 Measured flowrate and density for a stretch of the M25 motorway
between 7a.m. and 7 p.m. on a weekday in 1999. Each data point is an average
over one minute,

rather low speed, but with closely packed cars. Indeed, for any density
greater than about 200 cars per mile, a higher flowrate can be obtained
if everyone slows down and reduces their distance from the car in front.

7.1.2 Small Amplitude Disturbances of a Uniform State

Before studying the full nonlinear problem, it is prudent to consider briefly
the linearised model that governs the propagation of small disturbances
to a uniform flow of traffic.

By using the chain rule on the x-derivative, we can write (7.3) as

W tgilni = (7.4)
t oxX
where
d i
c(p) = i (pv) = v (p) + pv'(p) (7.5)

is the kinematic wave speed. We now look for solutions that are small
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Fig. 7.3. The car velocity, flux function and kinematic wave speed given by (7.14).

amplitude disturbances of a uniform state p = pg, where pg is a constant.
By writing

p=po+p withp <1, : (7.6)

and linearising (7.4) we obtain

ap ap |
+¢(po) 52 = 0. (7.7)
X
If we let § = x — ¢ (po)t and look for solutions p(n,t), we find that (7.7)
becomes ¢p/dt = 0, and hence the general solution is

p=f(x—c(po)t)

for any function, f. This is a kinematic wave that propagates in the
positive x-direction without change of form at the kinematic wave spead
appropriate to the uniform state, ¢ {(pg).

If the maximum value of the flux function, g (p) is at p = p°, then
c>0forp<p® and ¢ <0 for p > p°, as illustrated in figure 7.3 for a
simple model that we will study later. This means that kinematic waves
propagate in the opposite direction to the traffic flow when p > p*. This
demonstrates that what is propagating is not cars, but disturbances in
the medium made up of cars; no cars travel backwards when ¢ < 0. You
may have experienced this phenomenon on a busy road when a sudden
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W1

Tig. 7.4. The characteristics for the linearised problem.

increase in car density reaches you from the traffic ahead for no apparent
reason.

Kinematic waves occur in many other physical systems. A popular
explanation for the dynamics of the spiral arms of galaxies, including
our own, is that they are kinematic waves that rotate about the galactic
centre, whose underlying medium is interstellar dust and gas. It is not
stars that rotate with the arms, but an increased tendency for bright
young stars to be born in the high density regions of the wave (see
Crosswell (1993)).

Now consider the curves x = X (t} on which p is constant. Since the
solution propagates at speed ¢ (pg) without change of form, these are just
the straight lines

x = X(1) = xo + c(po) t, (7.8)

known as characteristic curves, or simply characteristics. These are illus-
trated in figure 7.4 for a case where ¢(py) < 0. This construction may not
seem to be of much use, but we shall see that characteristic curves govern
the propagation of the initial car density in the full nonlinear problem.

7.1.3 The Nondinear Initial Value Problem

We wish to solve

ép . . Gp
L el =0, (19)

subject to the initial condition

p(x,0) = po (x). (7.10)
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Can we construct a set of characteristics, x = X (), on which p is constant,
for this nonlinear problem? On these curves

and hence
d o dp dX dp
g (X (0,0} = T
If we compare this expression with (7.9), it is clear that we require
dx

o =T L

However, p is constant on each characteristic, by definition, so on each
characteristic ¢(p) is constant, dX /dt is constant and each characteristic
is a straight line given by

x=X(t) =xp +c(po(xp))t for —oo < xp < co. (7.12)
The solution is given implicitly by (7.12) and
p(x,1) = po(xo). (7.13)

This defines the solution, but it is casier to see what is going on by
considering a specific problem and examining how the characteristics
affect the development of the initial car density profile.

For our example problem, we will use the model

Ug

U(P) = (pmax i P)- (714}

niax
This is the simplest possible form for the velocity function, consistent
with our earlier assumptions about its behaviour, and, as we have seen
in figure 7.2, is in reasonable agreement with real data. In this case,
Uy \ =
e(p) = —— (pmax — 2p), (7.15)
pmax
and p* = %Pmax; as illustrated in figure 7.3. The initial conditions that we
will study are
L

PL T PRE" £ ' (7.16)

pofx) ==
for positive constants pr, pr and L. We begin by examining what happens
when pp > pr. Note that p — pp as x — —oc and p — pgp as x — o,
with the change between these two states occurring over a distance of
O(L), as illustrated in figure 7.5. We study this simple initial condition to
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X

Fig. 7.5. The initial conditions for the initial value problem givcﬁ by (7.16) with
PL = Pr-

illustrate the fundamental difference between cases where the car density
increases with x and those where it decreases.

Since the kinematic wave speed, ¢(p), is a decreasing function of p, and
the initial conditions have pg(x) a decreasing function of x, ¢(po(x)) is
an increasing function of x, with

Pmax — 2PL ME (pmax = ZPR) ex/L
14 e¥/L ’

¢ (po (x)) = —

max

(1.17)

as illustrated in figure 7.6. This means that the dX/dt increases as xg
increases, and hence the characteristics are as illustrated in figure 7.7.
There is a unique characteristic through every point in the domain of
solution. Qualitatively, the spreading out of the characteristics leads to a
spreading out of the initial density profile, as shown in figure 7.8. Note
that the solution is sketched in a {rame of reference moving to the right at
speed ¢(po(0)), so that the density at the point x — ¢(pp(0))t = 0 remains
constant. Bach point on the initial profile is shifted to the right by a
distance ¢ (py (xo0)) t. Remember, this does not mean that cars are actually
moving with speed ¢(po(xp)), simply that a disturbance propagates at
this speed. Cars accelerate out of the high density region into the low
density region, and the deficit in cars travels backwards. Cars are the
molecules that make up the medium whose properties we are studying.
Now consider the initial conditions (7.16) in the limit L — 0, so that

[ pr forx<0,
po(x) = { 0o FEEES } (7.18)
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Fig. 7.6. The initial kinematic wave speed for the initial value problem given by
(7.16) with p|. = px. :

At

/i

" X

Fig. 7.7. The characteristics for the initial value problem given by (7.16) with
PL = PR

The initial value problem given by (7.9) and (7.18) is known as the Rie-
mann problem, and is of fundamental importance both for understanding
the behaviour of this type of system and for constructing numerical so-
lution schemes (see LeVeque (1990)). The characteristics are given by

x=xp+clpL)t, forxy <0, }

x=2xgp+c(pr)t, for xg=>0. (7-19)
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x=c(p, (0

Fig. 7.8. The development of the car density for the initial value problem given
by (7.16) with py, > pg.

For characteristics that begin at the origin, xg = 0 and the ratio xo/L
is indeterminate as L — 0. To deal with this we let xo = koL, where ko
is a constant. Now x¢/L = ko for all values of L, and a characteristic
beginning at the origin is given by

vy Pmax — 2PL + (Pmax — 2pRr) efo
L
1+ ek

for any value of ko. As ko varies from —ao to oo, this describes a family
of straight lines through the origin with ¢(p1) < x/t < ¢(pr). A family
of characteristics emanating from a single point in this way is known as
an expansion fan, expansion wave or rarefaction wave. We can now sketch
all of the characteristics in figure 7.9.

To the left of the characteristic x = ¢(py )t there is a uniform density
p = pL, whilst to the right of x = ¢(pr)t there is a uniform density
p = pr. Between these two characteristics the expansion fan solution is
given by the characteristic equation itself, ¢ (p) = x/t. To summarise, the
Riemann problem with p; > py has solution

p max

oL for x < e(pL)t,
p{.‘-(, I) = %pmax (l o xfl’()f,) for C(ﬂ]_)f =x=< C(pR)t: {?21)
PR for x > ¢ (pr)t,

as shown in figure 7.10. When p;, = pna and pg = 0, we have the
situation that occurs when a traffic light goes green. From an initially
stationary line of bumper-to-bumper traffic, the front cars accelerate off

(7.20) .

7.1 Traffic Waves

) £
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—

=

Fig. 7.9. The characteristics for the Riemann problem with p;, > py.

X

Fig. 7.10. The solution of the Riemann problem with p; > pg.

into the clear stretch of road ahead, and the front of the queue spreads
out with the effect of the green light propagating back through the traffic
at a constant velocity ¢ (pmax) = —vo.

At this point, it is worth noting the self-similarity of this solution. The
only quantities involved in the Riemann problem are p, pr, pr. Pmax: Lo
x and t. There is no geometrical length scale in the problem, so we expect
the solution to be a function of some dimensionless combination of the
above quantities. The only such combinations are ratios of two densitics,
and the quantity x/vgt. This leads us to suspect that the appropriate
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Fig. 7.11. The characteristics for the initial value problem given by (7.16),
Pr = PL.

solution is of the form p = p1f (x/L‘ut) for some function f and density
p1. The solution (7.21) is clearly of this form. In addition, if we substitute
this form into (7.9) we find that

(1= (57) = i

This means that the solution must consist of spatially uniform sections
and expansion fans.

We now consider the apparently equally straightforward case, pr >
pL. By the converse of the arguments presented above, the kinematic
wave speed c(po(x)) is now a decreasing function of x, and hence the
characteristics are as shown in figure 7.11. It is clear from the figure that
characteristics must eventually intersect. By definition, p is constant on
ecach characteristic, so if two intersect, which value of p are we to take as
the solution? As it stands, our initial value problem becomes ill-posed as
soon as any characteristics meet, and we must consider what 1s missing
from our simple model. Before turning to this question we can calculate
under what circumstances characteristics will intersect, and where and
when this happens.

Consider two characteristics that intersect. Any characteristic that
begins at some point between these intersecting characteristics must
meet one of them at an earlier time, as shown in figure 7.12, ignoring
the unlikely case when all the intermediate characteristics intersect at a
single point. This means that the earliest intersection must be between
neighbouring characteristics. Consider two characteristics, x = X;(t) and
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X
Fig. 7.12.,If two characteristics intersect, any enclosed characteristic must mect

one of them at an earlier time.

x = X,(t) given by
X1(t) = xo + c(xo)t,
Xo(t) = xp + dx + c(xg + Ox)t.
I'or notational convenience we write ¢(x) for ¢(pg(x)) here. As dx — 0
we obtain neighbouring characteristics, and
Xo(t) = xg + 6x + c(xo)t + dxc’(x9)t,

where ¢'(x) = dc(po(x))/dx. If these characteristics intersect at time = T,
Xi(T) = X,(T) and hence :

There are two points to be made here:

— If ¢/(xp) > 0 for —oc < xp < oo, the characteristics never intersect
for t > 0, and the solution constructed using characteristics is valid
everywhere. This is what we found when py > pr.

— If ¢'(xp) < 0 at any point xo, a pair of characteristics will intersect
and the solution as constructed becomes ill-defined. This first occurs
whep t = Tin, Where

‘ 1
T -1 = —_—— :
min _—;;Ifcl_vlc?ac- { '(x0) } , o

I~2
Lo
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Fig. 7.13. The time, T at which neighbouring characteristics meet for the initial
value problem given by (7.16) with pr > pr.

in other words, where the initial slope of the car density is most
negative. The solution constructed using characteristics 1s, therefore,
valid for 0 <t < Thin.

For our particular example, we calculate that

> 2Lpmax 2 (X0
T=——"-——cosh’ |, 7.24
e oot (1) s
which is sketched in figure 7.13, and hence
min = ZmeM (725)

(pr — pL) V0’
with the first intersection of characteristics occurring at xop = 0. As
t — Twmin the density profile steepens until, at t = Ty, an infinite slope
develops at x = ¢(pp(0)) Tmin, as shown in figure 7.14. As we have seen,
the solution is not valid for ¢t > Tp, but we can still -sketch what we
obtain using the characteristics to construct the solution.

Figure 7.15 shows that the profile overturns and becomes multi-valued.
Within this region, there are three characteristics through each point, and
hence three possible values of p. At the boundaries of this multi-valued
region, two neighbouring characteristics meet, and hence the location of
the multi-valued region for our example problem can be deduced from
(7.24). A typical example is sketched in figure 7.13. The appearance of
an infinite slope at x = 0 when t = Ty, suggests that a shock wave is
formed. Mathematically, a shock wave is a discontinuity in one or more
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x—c(O)y .

Fig. 7.14. The solution of the initial value problem given by (7.16) with pp > pL
fort= Tain.

x—e(0)

Fig, 7.15. The multi-valued solution of the initial value problem given by (7.16)
with PR = PL for t > Thain- \

of the dependent variables (here there is only one dependent variable).
Physically, a shock wave is a thin surface across which one or more of
the physical properties changes rapidly and some physical effect, often
viscous dissipation, cannot be neglected as it can in the rest of the
domain of solution. Before considering what effects we have neglected
in our traffic flow model, and whether their inclusion allows us to show
that a shock wave actually exists, we can consider where such a shock
wave might be located. -

Where should we insert a shock wave into the profile shown in fig-
ure 7.15? Since our governing equation is an expression of the fact that

“
.,

" ¥ . = \
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Shock
= wave

Equal

areas —— |

Fig. 7.16. The equal area rule.

the number of cars is preserved, we should insert a discontinuity so as to
cut off equal areas in the profile, as shown in figure 7.16. This is known
as the equal area rule, and using it the number of cars is conserved. Note
that this solution satisfies the integral form of car conservation, (7.1).
In this form, there are no x-derivatives, and the discontinuity does not
cause us a problem. The characteristics and the position of the shock are
illustrated in figure 7.17. This procedure is known as shock fitting. Note
that characteristics enter the shock and then play no further part in the
construction of the solution. Consider the case pr = Pmaxs PL < Pmax-
This is what happens as cars approach a stationary queue behind a red
traffic light. On meeting the queue, cars slow down to a stop, and the
lengthening of the queue is achieved through a shock wave propagating
backwards.

In section 10.1, we will show how to justify this procedure by intro-
ducing some extra physics into the problem, specifically, the reasonable
notion that (most) drivers actually look a little further ahead than the
bumper of the car in front.

7.1.4 The Speed of the Shock

Now that we have found that shock waves can form, how fast do they
move? Consider a shock whose position is given by x = s(t), p = p~ at

i
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Fig. 7.17. The characteristics and shock locus for the initial value problem given

by (7.16) with pr > pr.

Shock
locus

e

x=3(1)

LI e n o

Fig. 7.18. A shock wave,

x=ys,and p = p" at x = s*, as sketched in figure 7.18. Conservation
of cars in integral form, (7.1), gives

a s(t) %
Xi s(t)

and hence

xS = 220 = q(x1,1) — qlxa, 1), (7.26)
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Fig. 7.19. The characteristics and shock locus for the Riemann problem with
PL < PR- '

If we now let x, — s(¢) and x; — s(t), the integral vanishes and we are
left with
q(p”)— p‘g =q(p")—p" %,
and hence the shock speed is given by
ds _a(p)—alp”)

T = P (7.27)
For the simple case, with g(p) = pv(p) = pro(Pmax — £)/ Pmax, We find that
ds/dt = (v(p~) +v(pt))/2. As we shall see in section 7.2, this procedure
can be generalised to systems of conservation laws.

We can now return, after our lengthy diversion, to our example initial
value problem with pp < pr. What happens as L. — 0? In other words,
what is the solution of the Riemann problem when pp < pr? Equa-
tion (7.23) shows that Ty, — 0 as L — 0, so in this limit a shock forms
immediately. The initial conditions take the form of a shock wave, and
this persists for all time, rather than opening out into an expansion wave
as was the case for pp > pp. The constant speed of the shock can be
calculated from (7.27). The characteristics are illustrated in figure 7.19.

Note that all of the characteristics terminate in the shock. Looking back -

to the case p. > pgr, we found that the characteristics for the appropriate
solution were as shown in figure 7.9. However, we can also construct
a shock wave solution of this Riemann problem, with characteristics as
shown in figure 7.20. We can exclude this solution by considering the
possible travelling wave solutions with v > 0 (see section 10.3). Another
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X

Fig. 7.20. An unphysical shock wave solution of the Riemann problem with
PL = Pr-

way of excluding this solution is by noting that it has characteristics
that originate at the shock. This is unphysical, since the solution should
depend upon the initial conditions, not on conditions at the shock.

7.2 Compressible Gas Dynamics

In chapter 3 we studied sound waves, which are small amplitude dis-
turbances of a stationary body of compressible gas. In this section we
study the dynamics of a compressible gas when the amplitude of the
disturbances is not small. In particular, we will find that shock waves can
form, and study their properties. Figure 7.21 shows a shadowgraph of the
shock waves generated by a fast moving projectile. The pressure, density,
velocity and local sound speed in the gas can all change discontinuously
across shock waves. An essential preliminary to understanding this is a
brief study of the thermodynamics of ideal gases.

7.2.1 Some Essential Thermodynamics

In classical kinetic theory, the theorem of equipartition of energy tells
us that there is an average internal energy %r‘cT associated with every
degree of freedom of the molecules in an ideal gas, for which there is
no intermolecular attraction, where k is Boltzmann’s constant and T is
the absolute temperature. For an atom in translational motion there are
three degrees of freedom, so its internal energy is %kT. For one mole
of these atoms, the energy is %k;’\{.\ T, where N, is Avogadro’s number.



240 The Formation and Propagation of Shock Waves

Fig. 7.21. The shock waves generated by a projectile at Mach number M ~ 1.7.

The universal gas constant is R = kNa ~ 8.3Jmol ! K~!, so the internal
energy of a mole of atoms is E = 3 RT. For a mole of molecules composed
of two atoms, in addition to the translational degrees of freedom there
are two further rotational degrees of freedom, so that the total internal
energy is E = %RT. This is a reasonable approximation for air, which
consists mainly of the diatomic gases nitrogen and oxygen. Note that E
is directly proportional to the absolute temperature in an ideal gas.
Let’s now consider the changes in temperature and pressure that occur
when a gas is heated and its volume allowed to vary. If an amount of
heat Q is absorbed (or given up) by a volume of gas, and the work done
in any change of volume is W, then the change in internal energy (which
we consider to be reversible) is-given by the first law of thermodynamics,

dE =Q—W. (7.28)

If we neglect viscous and magnetic effects, we have W = pdV, so that
dE = Q — pdV.
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We now introduce the idea of the entropy of a gas, §, as the amount
of thermal energy that is unavailable for conversion into mechanical
energy. This leads us to regard entropy as a measure of the randomness
or disorder in the gas. In particular, if an amount of heat Q is absorbed at
an absolute temperature T, then the entropy is increased by an amount
dS = Q/T, and we can state the second law of thermodynamics as

dE = TdS — pdV. (7.29)

If we now regard E as a function of S and v,

OE E
dE= = INas g
(&), 5+ (),

so that we can formally define

oE cF
T“(Es");x f’—‘(év)s'

In these equations, the subscript indicates which variable is to be held
constant during the differentiation,

There are two further energies that will be of use to us here: the
enthalpy, H = E + pV, and the free energy, ¥ = E — TS. These are
measures of how much energy the gas has available to exchange with its
surroundings. Now dH = dE + pdV + Vdp, which, using the second law
of thermodynamics, (7.29), can be written as

dH = TdS + Vdp.

Regarding H as a function of S and p, we have

(), V-,
és 5 op /s

Assuming smoothness of the second partial derivatives of the enthalpy

gives
érT oV

A similar calculation for the free energy gives

(%)V 3 (%)T, )

a result that we will make use of shortly.

If the gas absorbs an amount of heat Q and its temperature rises by
dT, we can define the specific heat ¢ by the relation @ = ¢dT. The first
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law of thermodynamics states that dE = ¢dT — pdV. If this absorption
of heat takes place at constant volume, we have ¢ = ¢y, the specific heat
at constant volume, and dE = ¢ydT, ¢y = (6E/3T)y. As we have seen,
for a diatomic ideal gas ¢y = %R, If the absorption of heat takes place
at constant pressure, ¢ = c,, the specific heat at constant pressure, and
dp =0, so we have c,dT = dE + pdV, so that

oE v é oH
= -+ === - = | —
o (H)p‘p(aﬁ“) GG ‘”V)L (a’r),,’

which we can use to derive a relationship between ¢, and cy. If we regard
E as a function of V(p, T') and T rather than V and S, then"

JdH 3,
G e = e— V V
‘-’P (GT)P 8T (Pa 4 3 I‘P }

_(2E (VY L (¥EN , (¥
T\ ) y NG T CNBT

This means that
cp=cCy+ @ + z
p = LV F1% - D aT P.

Now, from the second law of thermodynamics, (7.29),

oF o8
(ﬁ)r”(ﬁ);p’
as iV
= T
=t () 155 ).
p av
o=t (53), (57),

For one mole of an ideal gas pV = RT. Evaluating the partial derivatives

%) _R (V) _R
8T, ¥ AT, B

3

so that

and from (7.31)

then gives ¢, = cy + R. For a diatomic ideal gas, ¢, = %K.
From the second law of thermodynamics, (7.29),
dT dv dT av
dS =cy— +p— = R—,
Cy T +p T v T + %
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and hence
dS dT £y dav
+ | +=—-1)—.
C\( T Cvy V

If we define 3 = ¢,/cy, the ratio of specific heats of the gas, then this
relationship is easily integrated to give TVi~! = 4¢5/% for some constant
A. Using the ideal gas law, this gives

;% = log (%) + constant, (7.32)

and hence
p = weS/v gl (7.33)
for some constant, x. For a diatomic ideal gas, y = 1.4. This is the

equation we used in section 3.1 when we determined the speed of sound
in a gas. As we will show below, the entropy of a gas satisfies a very
simple equation, and the thermodynamics that we have studied in this
section is enough to allow us to investigate the properties of shock waves.
It is now clear that the internal energy E of a umt mass of gas can be

written as

3 Eemile i (7.34)

y—1p

7.2.2 Equations of Motion

We will now assume that the gas is inviscid and that the effect of gravity
is negligible, as we did in section 3.1, but we will not assume that the
motion of the gas is a small disturbance to a stationary body of gas. It
i1s most convenient to write the equations [or the conservation of mass
and momentum in the form

Dp —I-pV u=_0, (7.35)
Du 1

peasa — 7. 36]
Di + PVp 0. (7.30)

We now also need the equation for conservation of enerﬂy The energy
per unit mass of the gas consists of the internal energy, E, and the kinetic
energy, 2|u|2‘ The equation for conservation of energy Ieldles the flux of
this energy to the rate of working of the pressure forces and is given by

ai ( plu)? +p5) +V- {(%p|u'2+p£ +p) u} =0. (7.37)
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This can be rearranged to give
D /1 1 !
D (ip[uf +pE> + (ip!ul2 +pb) Vou+V-(pu)=0,

and hence

1 ,Dp Du Dp
) P S o il AN ol o
g P HAN o H g, e

DE

D - (%p!u';2 + pb‘) V- u+pV-utu-Vp=0.

If we now eliminate V- u and Du/Dt using (7.35) and (7.36), we obtain
DE _p Dp _ 0

Dt p? Dt
Since we know that

T dS = dE — pdV = dE — EPE dp,

we finally arrive at

bs _,

Dt
This is the simplest possible way of expressing conservation of energy
in an ideal, inviscid flow, and states that entropy is advected with the
flow, and hence is constant on streamlines. Physically, this result comes
directly from the notion of an ideal gas, where the molecular diffusivity
is zero. Consequently, no heat can be transferred between fluid particles,
and the entropy must be in thermodynamic equilibrium. This type of
flow is said to be isentropic. If the entropy is spatially uniform, the flow
is said to be homentropic. In particular, in a homentropic flow with no
shock waves, S = Sp, then p = kp?, where k = xe%/“ is a constant. This is
the relationship between pressure and density that we used in chapter 3.
Equations (7.35) and (7.36) become

-
op

—— . = 7.38
B + V- (pu) =0, (7.38)
Ju 49
2 +u-V-u+kyp' “Vp=0. (7.39)
For one-dimensional flows these are
dp ¢ (pu) :
il =0, 7.40
BT ox (40}
an + ué{ -+ r‘c"p"'_zé—p =0 (7.41)
at ox 0x '
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7.2.3 Construction of the Characteristic Curves

Can we construct characteristic curves for the system (7.40) and (7.41)?
The easiest way to answer this question is to consider the system in terms
of u and the local sound speed,

o 1/2
= (2-2) = /ykpr~L.
op ) g

In terms of ¢, (7.40) and (7.41) become

de de . Ou

— 2 — M — —_— = 3
28: - uax—i—(, Ucé.»c 0, : (7.42)

6_u du 2¢ de

= 0. (7.43)

=
=]

U e
it dx y—10dx

If we now add or subtract appropriate multiples of these equations we

obtain
é 2c o 2c
—(u+ +ute)— |ut =1. 7.44
@I(_}'—l) ( _}L’.‘CL ;r—l) ( )
By analogy with our analysis of the cquations for one-dimensional traffic
flow, we can see that the functions Ry = u 4 2¢/(y — 1) are constant on
the two sets of characteristic curves, X_(f), where
dX. .
= =u+tec. (7.45)
dt

Note that these are not necessarily straight lines. The functions Ry(u, ¢)
are called the Riemann invariants of the system. To summarise:

— On the C,. characteristics, given by dX_._/dt = u+¢, the C. invariant,
R. =u+2¢/(y — 1), is constant.

— On the C_ characteristics, given by dX_/di = u— ¢, the C_ invariant,
R_ =u—2¢/(y — 1), is constant.

For the solution of a given initial value problem to be well-defined, a
single C.. characteristic and a single C_ characteristic must pass through
each point in the domain of solution. The values of u and p at each
point can then be determined from the initial values of Ry on ecach
characteristic.

We have already scen in section 7.1 how shock waves may develop in
this type of system, but that not every mathematically plausible shock
solution is physically correct. How can we extend these ideas to shock
waves in ideal gases? One approach is to study the effect of viscosity
and heat conduction in the neighbourhood of a shock. We will do this
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in section 10.2 by using the method of multiple scales to determine the
behaviour of a small disturbance of a uniform state. For general distur-
bances, it can be shown that characteristics must enter the shock locus, as
we found in section 7.1 for shocks in traffic. An alternative but equivalent
constraint is that the entropy of a fluid particle must increase as il passes
through a shock. Outside the shock, we have seen that DS/Dt = 0, but
the assumptions involved in the derivation of this equation break down
at the shock. In particular, molecular diffusivities cannot be neglected at
the shock, and entropy is generated there.

Example: The Generation of a Shock by a Uniformly Accelerating Piston.
Consider an ideal gas confined in a long, straight cylinder by a tightly

fitting piston, initially at rest at x = 0. In chapter 3, we showed how -

small amplitude oscillations of such a piston generate sound waves that
propagate along the tube. We now consider the case where the gas and
piston are initially at rest, and the piston moves into the gas with uniform
acceleration a. The piston therefore lies at x = -%ar:’-, and the gas in the
region x > %atz, initially with sound speed ¢, as shown in figure 7.22.
We can anticipate some of what will happen here using linear theory.
Combining ¢§ = y/p, and the equation of state pV = RT we have ¢
proportional to /T. When the piston starts to compress the gas the
temperature will rise. As this process continues the wave speed ¢q will
rise and waves produced at later times will catch up with those produced
earlier giving a multivaluedness to the solution. Let us now analyse this
more quantitatively. We assume that the C_ characteristics that originate
in the gas when ¢ = 0 fill the domain. On these characteristics,
2c 2(30

}L:H_ T
7—1 v—1

and hence
c=cp+ - 1)
-1 L‘ — ) —
0 2U u,

throughout the gas. This also shows that all of the C. characteristics are
straight lines, since on these, R., and hence u, ¢ and dX, /dt, are each
constant. In particular, the C characteristic that originates at the piston
when t = {; satisfies

X,
dt

1
=ut+c=cy+ 5{? + 1)at,
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Fig. 7.22. The characteristics and shock path for the uniformly accelerating
piston,

and hence

1 il :
Xi(t:ty) = Eat% -+ {Cu 4 5{-;.- + l)m‘g} {t —1g).

The slopes of these straight lines increase with tp, and we therefore
expect them to intersect at some finite time 5, when a shock forms, as
shown in figure 7.22. As usual, we expect this to occur on neighbouring
characteristics. For dfy < 1,

0X.

(?Ig

X (t,tp +0tg) = X (t,tp) + ot

(£, tp).

Neighbouring characteristics therefore intersect when 6X /8ty = 0, and
hence
2¢ 2y
aiy=h1] -yl
This first occurs on the characteristic for which ¢y = 0, when

2
2¢cq 2c

£=£:—"'"“, =Xy = —————.
Tap+1y T T A+
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Fig. 7.23. The local sound speed when a piston accelerates at 100ms™2 into a
tube of air at atmospheric pressure and room temperature. A shock wave forms

when ¢ = t, = 2.84s at x = x, = 969m. Note that the initia]l sound speed is
cp ~ 34l ms .

The gradual acceleration of the piston causes the wave that it generates
to steepen until a shock wave forms in the body of the gas at x = x,. This
is illustrated in figure 7.23, which shows the local sound speed when the
acceleration of the piston is 100ms™. The local sound speed increases
behind the point x = ¢gt, until the gradient becomes infinite and a shock
wave forms.

If the motion of the piston is started impulsively when = 0, so that
it lies at x = V't with ¥ > 0, a shock forms immediately at the [ace of
the piston (see subsection 8.1.1 for a qualitatively similar solution in-the
theory of shallow water waves}). S

For the shock waves that we have encountered so far in traffic flow,
a simple application of conservation of cars sufficed to fix the position
of the shock for ¢ > ¢; through an application of the equal areas rule
to the multi-valued solution obtained by the method of characteristics.
The significant difference for shocks in gases is that, as we discussed
above, the entropy of the gas changes across a shock. This means that
once the shock has formed, the solution obtained using the method of
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characteristics is no longer valid, since it was obtained on the assumption
that the entropy of the gas is spatially uniform. A shock generates entropy
in its wake.

In the next subsection, we determine what conditions must be satisfied
at a shock in an ideal gas, and also demonstrate how the equal area rule
can be resurrected when the shock wave is sufficiently weak.

7.2.4 The Rankine—Hugoniot Relations
We can learn a lot about how the various quantities change at a shock
by considering the equations for conservation of mass, momentum and
energy, (7.35), (7.36) and (7.37), in the ncighbourhood of a shock. As-
suming that the shock is planar and lies at x = s(t), we can write (7.35)
in integral form as
d. [

L pdx+ [pul2 =0. ' (7.46)
dt Jy, i

We note that

s(t) X2 wslt) X2 a
i (/ '1"] ) ,de 2 (j = / ) Tpdl ‘!‘PRS—" pLS,
dt x| s(1) X1 Jsto) ot

where quantities immediately to the left and right of the shock are
denoted by subscripts L and R. Taking the limits x; — s(t) and x — (1)
in (7.46) then shows that

(P, — pR)S = pLUL — PRUR.

If we define it = u — §, the velocity of the gas relative to the shock, we
finally arrive at

pLEL = pRIUR. (7.47)
Similarly, (7.36) and (7.37) show that

pLAL + pL = prEg + PR, (7.48)

1 1|4 “
(EpLﬁi +pLEL + PL) i, = (S,ORH:;} + prER + p]{) up. (7.49)

These are known as the Rankine-Hugoniot relations, and express the fact
that the flux of mass, momentum and energy must be continuous at a
shock, swhilst the pressure, density and internal energy of the gas may not
be continuous. Figure 7.24 shows a planar shock in a frame of reference
moving with the shock, with spatial coordinate X = x — .
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Fig. 7.24. The various physical quantitics on either side of a planar shock.

For an ideal gas, E = p/p(y — 1), so the equation for continuity of the
flux of energy, (7.49), can be written as

L. Y P 1., 7 PR
( = pLuL = 2“R+,J 1% PRUR.

Finally, using (7.47),

1_, ¥ opi 1o Y PR
=iy — =iy + —— (7.50)
y—1lpr 2°% " y—1pr’
The Rankine—Hugoniot relations can also be written in terms of the local

sound speed, ¢ = \/yp/p, as
pLUL = PRUR, (1.51)

1 1
pL (ai o ;ci) = pr (ﬁi & ;ci) : (7.52)
F

1 1 g — 13
R L e

(1.53)

This is the usual form in which the Rankine-Hugoniot relations are
written for an ideal gas.

Now that we have obtained (7.51), (7.52) and (7.53), what can we
find out from them? Since these are three equations in six unknowns,
iiL, pL. CL, R, pr and cg, we can always eliminate two of these and

7.2 Compressible Gas Dynamics 251

obtain a single equation that involves any four unknowns. For example,
to eliminate @iz and cg, we use equation (7.51) to write

S (7.54)

PR

and (7.53) and (7.54) to write
9 2 1 i )
G=cd+50—1) ( LR) e (7.55)

If we now use (7.54) and (7.55) to eliminate fig and ¢k from (7.52) we
find that

% 1 '\r_l
L(l—"p—L)ﬁi—F:(PL—PR]C =pR—5— (1‘—&) L
PR 7 2y PR

If we remove the factor of (pr — pL). we obtain

g LYl s oy = o
PR . PR 2y ; - 7 &
and a final rearrangement gives
PL 2cf
G+ ==y—1+—.
. PR Uy

If we write this in terms of the local Mach number to the left of the
shock, My = fip /¢, we obtain

& = (r -+ 1 iw?'
. (p—DME+2
It is most useful to write this equation in the final form
or - p— 1) M? +2M}
oL p—UOM:E+2

(7.56)

It is now clear that if M > 1 then pg > pp, and vice versa. In other
words, if the flow is locally supersonic (M7 > 1), the density on that side
of the shock is lower than it is on the other. By symmetry, we can deduce
from (7.56) that
pL _ (7 —1) M} +2M3
PR (’}-‘— ])le%‘"_‘z

; (7.57)

and hence that M2 > 1 if and only if M < 1. In other words, the flow
must be supersonic on one side of the shock and subsonic on the other.
Many other deductions can be made from the Rankine-Hugoniot
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relations using similar manipulations. In particular, the entropies on
either side of a shock, S, and Sg, satisfy (see exercise 7.6)

(7.58)

L P 10,{<1 +2) 2+ =Dz }
cy (2}) + {} -+ I)Z) :
where z = (pr —pr)/pL is the strength of the shock. When z < 1, we say
that the shock is weak. An expansion of (7.58) for z < 1 shows that

SR —SL _ e s (7.59)
ey 1272

This means that for sufficiently weak shocks very little entropy is gener-
ated. We will prove a similar result for the loss of energy across a shallow
water bore in subsection 8.1.2. Figure 7.25 is a graph of (7.58), which
shows that even when z = 1, (Sg — Sp)/cy = 0.01, and the change in
entropy is small. From (7.32), a small change in entropy across the shock

leads to a small change in the gas law across the shock. This means that, -

for sufficiently weak shocks, to a good approximation we can assume
that the flow remains isentropic and apply the equal area rule to the
density predicted using the method of characteristics. This is the basis of
weak shock theory, which we shall discuss in more detail in section 10.2.

Figure 7.26 shows a shock wave in air interacting with a sharp edge.
The shock wave is generated using a shock tube and the air is at rest
ahead of it. Behind the shock the pressure initially increases to 2.4 bar.
From these measured quantities, the Rankine-Hugoniot relations give
the density behind the shock as 1.8 kgm™3, the shock speed as 550 ms~1,
and the gas velocity behind the shock as 250ms™!.

Example: Reflection of a Shock Wave at a Planar, Solid Wall. As a final
example of how the Rankine—Hugoniot relations can be used, let’s con-
sider the reflection of a shock wave that is incident normally on a planar,
solid wall, as shown in figure 7.27. This is the approximate situation
when the shock wave caused by an explosion hits a solid structure. We
are particularly interested in the pressure at the wall immediately after
the shock is reflected, since it is this that causes the force exerted on the
solid structure. If the shock is incident at a significantly oblique angle,
the situation is rather more difficult to analyse, and we do not consider
this case here. X

. N 4 et
The first equation that we need, which comes from eliminating pr and
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Fig. 7.25. The change in entropy across a shock of strength z.

pr from (7.51) to (7.53), is (see exercise 7.5)

0\ 2 _ 290N Py ;
(“;a‘ . 1) ui + 1y (g — 0ip) — (7-:'_—1) ;}: = (7.60)

Just before the shock wave reaches the wall, propagating with velocity
U,, the gas pressure and density at the wall take the initial values py and
po. We also know that the normal velocity of the gas is zero at the wall.
If the gas pressure, density and normal velocity behind the shock wave
are ps, ps and us, we have ip = us— U and fig = —U,. Substituting this
into (7.60) shows that

= L i 22 Y 7
(?T_i.)(us—b—] — ug(us — U) (?_H) i 0. (7.61)

Immediately after the shock is reflected, its normal velocity is —U_, and
the gas pressure and density at the wall are the unknowns, p; and py.
However, the normal velocity at the wall must still be zero. In addition,
the gas pressure, density and velocity on the other side of the shock are
still ps, ps and ug, as shown in figure 7.27. This means that @iy = us + U_
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Fig. 7.26. A shadowgraph photo of a shock interacting with a sharp edge.

and @ig = U_, so that

( ? )(us+U Y — ug(us + U_) — ( ?Ifl) B (7.62)

Comparing (7.61) and (7.62), we find that ug — U, and u; + U_ satisfy
the same quadratic equation, and must therefore be the two roots, whose

product is
tus}{n{us +UY=—1% (7.63)
5

i1

i
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Fig. 7.27. The reflection of a shock wave incident normally on a solid wall.

The other equation that we need is

2 Npew . om =
LT ) S e 7.64
(?+l) L 2 R ot 78]

which comes from (7.51) to (7.53) by eliminating ugz and pr. From the
values on either side of the shock before and after reflection, this implies

that
2 Nomw—=U): p ¥4 .
e 7.65
(?+1) pL A (255)
2 \prlw+U)2  pi v=4 .
=14 ) 7.6¢
(?+1) pr ps | 71 Laa0)

If we now multiply these two equations together and use (7. 63} to
eliminate all the velocities, we find that

2
il R
(psl}"t‘l pslf“|'1 Ykt e
Finally, when an explosion causes a shock wave to be incident on a wall,

we expect that the pressure behind the shock wave will be much greater
than that in front of it, so that py < ps. Using this approximation in
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(7.67), we arrive at the strikingly simple result

By Iy —1

Ds p—1"
For atmospheric air, with y ~ 1.4, this gives p; =~ 8p,. Not only does a
solid structure, for example a bunker designed to protect its occupants
from a conventional or nuclear blast, have to cope with the high pressure
ps incident upon it, the instantaneous pressure is magnified by a factor
of eight by the dynamics of the reflection process.

(7.68)

7.2.5 Detonations”

When a shock wave passes through a gas, the temperature behind the
shock is greater than that ahead of the shock. We can see this for an
ideal gas by eliminating ug and u;, from the Rankine-Hugoniot relations
(7.51) to (7.53). The gas law shows that prpr/prLpr = Tr/TL, and leads
to

T {(“/ + gL+ y—Lpe } PR (7.69)

T, \G=DpL+@G+Dpr S pu’

Simple calculus shows that the right hand side of this expression is a
strictly increasing function of pr/pp, and hence that Tg > Tp when
pr > pr. For the shock shown in figure 7.26, the absolute temperature
initially increases from about 20°C to 110°C. In the limiting case of a
strong shock propagating from right to left, so that pp > pr (see exercise

7.6),
B ()2
TL y+1/) p
The stronger the shock, the greater the temperature increase.
If the gas through which the shock travels is combustible, for example
a mixture of methane and air or hydrogen and air, the rise in temper-
ature across the shock may be sufficient to initiate a chemical reaction
and ignite the gas. Since the chemical reactions involved in combustion
are extremely rapid, there are a region where the mixture of gases is
burnt, and a region where the mixture is unburnt, separated by a thin
detonation wave. We will assume that this wave is sufficiently thin relative
to any geometrical length scales that we can model it as a surface of
discontinuity, just as we did for a shock wave. ‘
We can distinguish two different situations where a detonation wave
can exisl{ which, as we shall see below, it propagates in slightly

\ .

(8]
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Fig. 7.28. Soot deposited on foil after a CI detonation wave in a mixture of
methane and oxygen has passed down a tube. The cellular pattern indicates that
in this case the wave was laterally unstable.

different ways. Firstly, a shock wave may be incident on a combustibie
mixture and ignite it. Secondly, a combustible mixture may be ignited
at a point by a local source of heat, such as a spark, and a detonation
wave generated spontaneously by the violence of the chemical reaction.
In the second situation, there is also the possibility of a deflagration wave
propagating. These are rather similar to the chemical waves that we will
study in chapter 9, where there is a balance between chemical reaction and
diffusion of the heat generated. The dynamics of the compressible gas is
of secondary importance in deflagration waves, and there is certainly no
shock. The stability of deflagrations and detonations remains the subject
of lively debate (for example, Brailovsky and Sivashinsky (1997), Sharpe
and Falle (1999)). The effect of a passing detonation wave is shown in
figure 7.28.

The Shock and Detonation Adiabatics and the Chapman—Jouguet Point

In order to investigate the propagation of detonation waves, it is first
useful to consider the notion of the shock adiabatic for ordinary shock
waves. Eliminating the gas temperature from (7.69) in favour of the gas
density gives

pr _ @+ 1ot — (v = DoR’

== = A (7.70)
PL (7 + 1)pg (y )P]_,

For given values of p. and pr!, this equation relates pr to px' and

is known as the shock adiabatic. It takes the form of a rectangular
hyperbola, as plotted in figure 7.29. From the first two Rankine-Hugoniot
relations,

g PLT PR

J=—T— (7.711)
a1
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Fig. 7.29. The shock adiabatic for an ideal gas with y = 1.4 (solid line), along
with a typical straight line given by (7.71), (dashed line). -

where j = prilp = priip is the flux of mass through the shock. If
we consider the straight line joining the points (pz',pr) and (p;',pL)
on the shock adiabatic, as shown in figure 7.29, its slope is there-
fore —j*. We conclude that, for a given state (p;',pr) ahead of the
shock and a given mass flux j through the shock, the state of the
gas behind the shock, {pil,pk), can be determined graphically from
the shock adiabatic by drawing a line of slope —j* through the point
(pz', pL). The other point of intersection will then give the final state,
(pEIsPR)-

For a detonation wave, the Rankine-Hugoniot relations in the form
(7.47) and (7.48) still hold. The first modification to our analysis that
we need to make for a detonation wave is to take into account the
energy released by the chemical reaction in (7.49). The chemical reaction
is confined to a thin region behind the shock wave, which we treat as a
discontinuity in the internal energy of the gas. The second is to note that
the ratio of specific heats may be different on each side of the detonation,
since thé\.{:hemical composition is different. The third Rankine-Hugoniot
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relation (7.49) therefore becomes

1 ve pr 1

_Q%{_|_ /R J_R=_._ﬁi+ /L Pr

2 yR—1pr 2 Y=l p1
where g 4s the energy per unit mass released by the chemical reaction
and yr and yp are the different specific heat ratios of the burnt and un-
burnt gases. If we now eliminate #tg and @i from the Rankine-Hugoniot
relations for the detonation we arrive at the equation of the detonation
adiabatic,

+4, (7.72)

petilpn yxelpr pLo pw

S e = —2q.
yr-— 1 o1

(7.73)

R —1pr PR PL

In contrast to the shock adiabatic, the detonation adiabatic does not
pass through the initial point (py, pr'). The shock and detonation adia-
batics are shown in figure 7.30. The detonation adiabatic lies at a higher
pressure for a given value of p~" than the shock adiabatic because of the
extra heat generated by the chemical reaction. However, (7.71) still holds,
since it is derived from conservation of mass and momentum only. This
means that the slope of the straight line from the initial state, (pr, it
to the final state, (pr, pg'), which now lies on the detonation adiabatic,
is still —j2. Tt is clear from figure 7.30 that there is now a Jower bound
on the value of j2 corresponding to minus the slope of the detonation
adiabatic at the point marked CJ, called the Chapman—Jouguet point,
where the straight line (7.71) is tangent to it. Moreover, for j* greater
than this minimum value, the line (7.71) meets the detonation adiabatic at
two different points, B and C in figure 7.30. Only the state C corresponds
to a physically realisable shock. We could deduce this from arguments
involving entropy production at the detonation. There is, however, a
simpler, physical argument.

The internal structure of the detonation, which we neglect in idealising
it as a discontinuity, consists of a shock wave followed by a combustion
region. Across the shock, the initial state of the gas changes to that given
by the point D on the shock adiabatic, as shown in figure 7.30. Theun,
across the combustion region, the chemical reaction releases heat and the
pressure of the gas decreases until it reaches the equilibrium state given
by C on the detonation adiabatic. Thus the state C rather than the state
B is reached across the detonation wave, simply because the associated
shock heats the gas and precedes the combustion, not the other way
around. We conclude that the set of possible states that the gas can reach
across a detonation wave is given by the part of the detonation adiabatic
lying above the CJ point.
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Fig. 7.30. The shock and detonation adiabatics for an ideal gas with yp = 3 =
1.4, along with a typical straight line given by (7.71), which meets the detonation
adiabatic at points B and C, and the unique line that meets the detonation
adiabatic at the Chapman-Jouguet point CJ (dash-dotted lines).

At the CJ point, dpr /dpp' = —j?. Since dpg /dpr = ¢} and j2 = p%iid,
this means that fig = cg at the CJ point. The detonation wave therefore
moves at the local sound speed relative to the velocity of the burnt gas
if its burnt state corresponds to the CJ point. This is not possible for
a shock wave, since the line given by (7.71) can never be tangent to
the shock adiabatic, as is clear from figures 7.29 and 7.30. We can also
note that on the part of the detonation adiabatic that lies above the CJ
point, for example point C in figure 7.30, —j* > dpg /dpg' = —pici,
and hence fix < cgr. We conclude that, in general, a detonation wave
moves at or below the speed of sound relative to the burnt gases behind
it, and that the uniquely determined detonation that moves at the local
speed of sound corresponds to the Chapman-Jouguet point, CJ, on the
detonation adiabatic, and hence the lowest possible pressure and density
in the burnt gases.

When a shock wave is incident on a combustible gas and becomes a
detonation wave, the strength of the detonation depends on the strength
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Fig. 7.31. A spherical detonation wave initiated using high explosives,

of the incident shock, and the state of the burnt gases can lie anywhere‘on
the detonation adiabatic above the CJ point. We say that the de.tonatlon
may be over-driven (see exercise 7.8). However, when a detonation wave
is ignited from within a combustible mixtur‘e by some local source F’f
heating, it usually corresponds to the CJ point. As an e?(ample of T.hls,
we will consider the propagation of a spherical detonation wave away
from its point of ignition. This has some relevance to the behaviour of
supernovas (for example, Wiggins, Sharpe and Falle (1998)).

Example: a Spherical Detonation Wave. Figure 7.31 shows a spherical
detonation wave, initiated using high explosives. Let’s sce if we can
describe such a wave mathematically. In spherical polar coordinates,
the equations for conservation of mass momentum and energy for a

spherically symmetric flow are

ep | opw)  2pv _ (7.74)
. at * ar i r :
b . O (7.73)

ot i ar per
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ot ar
For a detonation wave generated at a point, there is no geometrical
length scale, and the only parameters in the problem are py and pg,
the initial pressure and density in the unburnt gases, and g, the heat
generated by the chemical reaction. We can form just two dimensionless
groups involving r and t, namely por?/pot? and r*/qt*>. We conclude that
the solution will be of similarity form, with all the dependent variables
functions of ¥ = r/t. We need to solve (7.74) to (7.76) for 0 < n < iy,
with a detonation at # = 5o and the gas at rest in its unburnt state for
> .
If we write p = p(n), u = u(n) and p = p(n), (7.76) becomes

0. (7.76)

(u—n)s' =0, : (1.77)

where a prime denotes d/dy. Provided that u # 5, which we shall see below
does not occur, the entropy S must be a constant behind the spherical
detonation wave. We therefore have p’ = ¢?p’, and can eliminate p and p
between (7.74) and (7.75) to obtain

s f-m? TN =) [e=n T
(7.78)

These nonlinear ordinary differential equations determine how the gas
velocity u and local sound speed ¢ vary behind the detonation wave. We
can write (7.78) in dimensionless form by defining

el gm® gl ®
o Co Co

which gives

au 2U dC _ (y—1)CUU —X) (1.79)
X  X{U-XxP-1} dX  X{(U-XP-1}’ '

Since there are no sources of mass, the gas velocity must be zero at
X = 0, and it is helpful to consider the solution when U <« 1,C ~ 1.
Provided X is not close to one, (7.79) gives at leading order

U U
X  XXE—1)

We can solve this separable equation and obtain

U=k (1 —}%ﬁ), (7.81)

(7.80)
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Fig. 7.32. Numerical solutions of (7.83) for various values of K.

where k is a constant. Since U — 0 as X — 1, we cannot in fact assume
that X is not close to one, and this solution is not valid. We have therefore
shown that U can only be small in the neighbourhood of X = 1. To
proceed, we define D l,é = C — 1, and seek a solution for U,C
and X small. At leading order

dU U de -l U

e i 5(? —

=, — = = (7.82)
dx . Rl de

yoe———=
N =l —C

This equation is linear in X, and has the implicit solution

X=KU-1l3p+1)UlogU, C~i(y—1U,
which gives
X ~1-3(+1)UlogU+KU, C~1+5(—1)U, asU—0, (7.83)
for some constant K. This shows that U — 0 and dU/dX — 0 as
X — 1*. We conclude that the solution has U = 0,C =1 for 0 < X < 1,
with U and C given implicitly by (7.83) for (X — 1) small and positive.

We now need to consider how U and C behave for X > 1. Before doing
this, let’s consider where a detonation wave can exist. For X > U + C,
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Fig. 7.33. The position at which dU/dX becomes infinite as a function of K.

in terms of the physical variables, r > ut + ct. If the detonation wave
lies at r = ro(t) with ro(t) > ut + ct, the local speed of sound is less than
the velocity of the burnt gas relative to the speed of the shock. We have
already seen that this is not physically possible, and we therefore need
to insert the detonation at some point where X < U 4 C.

It is rather easier to treat X and C as functions of U. Some numerical
solutions of (7.79) are shown in figure 7.32 using (7.83) to begin the
integration at X = 1 + ¢ with e < 1 for various values of K. From
(7.79) we can see that dX/dU = 0 when X = U + C. Each of the
solutions shown in figure 7.32 has X > U + C until it meets the line
X = U+ C at X = X;, where it has a local maximum. Treating these
solutions as giving U as a function of X, they are valid for | < X < X,
at which point dU/dX becomes unbounded. Numerical integration of
(7.79) suggest that such solutions exist for each K < K, with Kg ~ —2.1.
For K > K, X becomes unbounded at a finite value of U, and does not
provide a solution appropriate to a detonation, since X > U + C. The
function X(K) is plotted in figure 7.33 for K < K.

To complete the solution, we must insert a detonation wave at X = X,
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Fig. 7.34. A typical similarity solution for a spherical detonation.

across which U falls to zero, its initial value. This gives a family of so-
Iutions.with U = 0 for X < 1 and X = X(K), and U monotonically
increasing for 1 < X < Xo(K). A typical solution is shown in fig-
ure 7.34. However, at X = Xo, X = U + C, and hence u = Xgcg — c.
Since, the detonation lies at r = ry = Xyeot and therefore moves with
speed Xpco, we conclude that the burnt gases behind the detonation
move at the local sound speed relative to the detonation, and hence
that the detonation corresponds to the CJ point on the detonation adi-
abatic. For a mixture of gases, this CJ detonation is associated with a
unique value of u, the velocity of the burnt gases behind the detonation,
and hence a unique value of X;. The appropriate similarity solution is
therefore selected by the Rankine—Hugoniot conditions at the detona-
tion, in particular, by the amount of heat gencrated by the chemical
reaction.

Physically, we can see that the solution consists of a stationary sphere
of gas of radius ¢yt centred on the point of ignition, r = 0, connected to
a spherical Chapman-Jouguet detonation at r = Xgcot by an expansion
wave across which u increases continuously from zero to Xpep — c.
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Exercises

The flow of traffic along a single lane road is modelled using

gp @

Sl I e =0

ar o) =0,

where p(x, t) is the density of cars and v(p) their velocity.

If v(p) = vo (Pmax — £) / Pmax and

0 for x <0,
(@) p(x,0)=< pix*/L? forO0<x=<L,
P1 for x = L,

(b} p(x,0) = ps exp(—k|x}),

where L, k and p; < pmax are positive constants, determine
when and where the solution first becomes undefined and hence
a shock forms in each case. Sketch the solutions up to the
development of the shock. Use the equal areas rule to make
sketches of the progress of the shock in each case.
Using the model given in the previous exercise, the initial car
density is

p(x,0) = po + H (n — |bx|) asin bx,

where po, a and b are constants, with po > 0, |al < po and
Po + jal < pmax, and H is the Heaviside step function.

Show that when ab. is positive, a single shock wave forms
at time t = pmax/2vo0labl, and that if ab is negative, two shock
waves are formed simultaneously, again at time { = pgax /200 ab|.
In each case, where are the shock waves when they form?

By fitting appropriate shocks to the multi-valued solution in
each case, show that for t > 1 the maximum value of p is
approximately '

. ?Tpmnx
POt Srelblt

when ab is positive, and

| —=2Pmaxa
{ T <M max
P \/ vobt
when ab is negative.
The flow of cars along a single lane road can be described using
a continuous car density, p (x,t), with car velocity given by
Up
vip) = 02 (Pmax — .9}2 s

max
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for 0 < p < pmax- Write down the equation satisfied by p, and
determine the kinematic wave speed, ¢ (p). Show that ¢ (p) is zero
at p = 1pmax and has a minimum at p = % P

At time t = 0, the car density is

SpLtrelt
2D S S

with 0 < pr < %p,m and %pmx < pL < fmax- Sketch the
function ¢ (p(x,0)). Sketch the development of the car density
for t > 0. How does this solution differ from the solution with
v (P) =1 (pmax = .0) /Pma,\'?

By considering the limit L — 0, show that the car density
changes discontinuously from pr to pmax — pi/2 at a shock
wave, which propagates with velocity ¢ (pmax — oL/2).

A piston confines a ideal gas within a semi-infinite tube of
uniform cross-section. When ¢t = 0 the gas is at rest and has
sound speed ¢g. For t = 0:

(a) The piston moves with a constant velocity —V with V = 0.
Show that the solution takes the form of an expansion
fan and determine the solution.

(b) The piston moves with velocity Ae sin wi, where 4 and
w are positive constants. Show that a shock wave first
forms when t = t, = 2co/Aw?(y + 1).

Derive (7.60) and (7.64) from the Rankine-Hugoniot relations. .
A plane shock wave is propagating in an ideal gas with ratio
of specific heats y. In a frame of reference where the shock is
stationary at x = 0, the sound speed, gas pressure, density and
velocity are given by cr, pr, pr and iig for x >0, and ¢, pL, pL
and @i for x < 0. In addition, i, > 0, so the gas passes from left
to right through the shock. Use the Rankine-Hugoniot relations
to show that

v (M2 —
7 = Z(iL_L), (7.84)
w41

15 o e ) (7.85)

oL Zy+(p—=1)z
Sr — SL (1+2}(2?+{‘;f'rl)2)}'} i
=1 . 7.86
s



268

7.7

7.8

The Formation and Propagation of Shock Waves

where z = (pr —pL) /pL, My, = @} /c}, Sp and Sy are the en-
tropies on either side of the shock, and ¢y is the specific heat of
the gas at constant volume.

Using (7.86), show that d(Sg —SpL)/dz > 0 for y > 1 and
z > —1, and hence that for the entropy of the gas to increase as
it passes through the shock, z > 0. Now use (7.84) and (7.85) to
show that pr > pr, and that the flow is subsonic for x > 0 and
supersonic for x < 0.
A strong detonation wave is normally incident upon a rigid
plane wall. What is the pressure at the wall after the detonation
is reflected?
A piston initially at x = 0 confines an ideal combustible mixture
of gases in a straight, semi-infinite tube lying in x > 0. When
t = 0 the piston moves into the tube at speed V > 0. If a
detonation wave forms immediately, show that an over-driven
detonation is formed if ¥V = V; and determine V.

-I--.---.-.I--Hlfg S R e T T

Nonlinear Water Waves

We begin our examination of nonlinear water waves by studying the
nonlinear shallow water equations. We looked at the linearised version of
these equations in chapter 4. The nonlinear equations are closely related
to those that we studied in chapter 7, and there is the possibility of
shock, or bore, formation. We then consider the effect of nonlinearity
on deep water, progressive gravity waves, determining in particular how
the wave speed and waveform depend upon the small amplitude of the
wave. When the competing effects of linear dispersion and nonlinear
wave steepening act in a shallow water flow, we will show that the
Korteweg—de Vries equation can control the leading order behaviour of
the waves. In the final section, we consider nonlinear capillary waves in
deep water, and demonstrate how complex variable theory can be used
to derive analytical solutions.

8.1 Nonlinear Shallow Water Waves

In section 4.7 we derived the equations, (4.80) and (4.81), that govern the
flow of shallow water, where the horizontal wavelength of disturbances
is much greater than the vertical depth. For shallow water flowing over
a horizontal bed, with hg(x) constant, these equations become

5 h @
L L) (8.1)
ct 0x X

u ol
o ST et o (8.2)
Gt ox ox

where- 1 is the horizontal velocity and h the vertical depth. We have
already looked at the linearised version of these equations. We now wish
to study the full nonlinear equations.
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