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that we now obtain by using (12.45) in (12.37) is a function of the two
travelling wave coordinates, x — 4«7}t and x —4ic3t. It is now instructive to
consider the behaviour of the solution for t > 1. Unless x — 4t = O(1)
or x —4i3t = O(1), we have
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u(x,t) ~
: iy — 122

ast— oo,
assuming that the bound state eigenvalues are ordered so that x; <
k2. The solution is therefore exponentially small away from an O(1)
neighbourhood of the two points x = 4«x}t and x = 4«it.

When x — 43t = O(1), we have x — 4}t ~ 4(x3 — x3)t > 1, and

u(x, t) ~ —2icksech? {rax — 4i3t) + 6},

where ¢ is a constant (see exercise 12.5). This is just the single soliton
solution corresponding to the bound state eigenvalue x;, translated by
an O(1) distance in the x-direction. Similarly, when x — 4x}t = O(1) we
obtain the solution for a single soliton with eigenvalue k; at leading
order. Analogous results hold for ¢ large and negative. The solution
corresponding to the reflectionless potential u(x,0) = —6 sech®x is shown
in figure 8.19. The solution for x; = 1.25, ky = 1.75, ¢; = /6 and ¢; =
2+/3, with reflectionless potential u(x,0), which is plotted in figure 12.1,
is shown as a grey scale plot in figure 12.2. In each case, there are two
solitary waves, widely spaced for ¢ large and negative. The larger, faster
wave catches the shorter, slower wave, there is a nonlinear interaction,
and the waves separate as t — oo, whilst retaining their identities and
emerging unchanged by the interaction. It is this particle-like behaviour
that characterises these solitary waves as solitons. Figure 12.2 shows
that there is a phase change due to the interaction, by which we mean
that the faster wave emerges from the interaction displaced further to
the right than it would have been in the absence of the slower wave,
whilst the slower wave 1s displaced to the left. This phase change is a
consequence of the nonlinearity of the interaction, and always occurs
when solitons collide. When two linear waves interact, for example two
counter-propagating solutions of the one-dimensional wave equation,
f(x — ct) + g(x + ct), although the waves emerge unchanged by the
interaction, there is no phase change.

Example 7: General Reflectionless Potentials — the Interaction of N Soli-
tons. The general reflectionless potential with N distinct bound state
eigenvalues is given by (12.35) and (12.36). From the discussion in the
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Fig. 12.2. The solution of the KdV equation corresponding to two bound states
with x; = 1.25, 1o = 1.75, ¢,(0) = \/3 and ¢;(0) = Zﬁ. The larger —u, the darker
the plot. The profile u(x,0) is shown in figure 12.1.

previous subsection, it is clear that to obtain u(x,t) for t = 0 we simply
need to make the substitution

KX > Kop(x — di2E). (12.46)

For t large and negative the solution consists of N solitons, which interact
nonlinearly as ¢ increases, eventually separating as t — co. The reflection-
less potential u(x,0) = —N(N + 1)sech’x is a special case where all of
the solitons combine at ¢ = 0 into a profile with a single local minimum,
before emerging again, all with phase shifts. A more typical interaction
between three solitons is plotted in figure 12.3 for the arbitrarily chosen
values x; = 1.25, ko = 1.75, 13 = 2.25, ¢; = \/g, ¢y = Zﬂ and ¢3 = 1.
We have used (12.35) and (12.36) to determine u(x,t), with the aid of a
computer algebra package. Note that, since the KdV equation, (12.1), is
unchanged by the transformation x — —Xx, t — —t, the solution must
satisfy u(x,t) = u(—x,—t). This symmetry is evident in figures 8.19, 12.2
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Fig. 12.3. The solution of the KdV equation corresponding to three bound states
with ) = 1.25, 1y = 1.75, k3 = 2.25, ¢1(0) = /6, ¢2(0) = 2./3 and ¢3(0) = 1. The
larger —u, the darker the plot. '

and 12.3. The curious reader can consult the book by Shen (1993), where
the first seven N soliton solutions are written out in all their glory. The
N =7 solution occupies nine printed pages!

Example 8: The Delta Function Potential, u(x,0) = —Uyd(x) — the Gen-
eration of Cnoidal Waves. We have seen in example 1 that, provided
Up > 0, the initial scattering data for u(x,0) = —Uyd(x) is a single bound
state eigenvalue, Kk = %Uo, with normalisation constant ¢(0) = /i and
reflection coefficient
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The evolving scattering data retains its single bound state eigenvalue,
whilst

_ 4t b(f,t}__ Uy 8i&3t
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(12.47)
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We must now try to solve the inverse scattering problem to find the
solution u(x,t). The function B(X,t), which is given by (12.30) and
appears in the GLM equation, (12.31), is
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Now, since the GLM equation is linear, we can identify the first term in

this expression, associated with the bound state eigenvalue, with a single
soliton. Specifically, if we write

B(X,t) = ke®*'t=xX _ (12.48)

u(x, £) = —2ictsech? {x (x — xo — 4k7t) } + ue(x, 1), (12.49)

then uc(x,1) is determined in the usual way from the GLM equation with
Uo [® LSSt HiEX
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Moreover, if Uy < 0, the solution is given by u = u.(x, t) alone. We would
now like to know how u, behaves for t > 1. If we consider B, evaluated
at X = vt, then

B(X,t) = Bo(X,1) = —
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and the integral can be approximated using the method of stationary
phase. We find that for v > 0, and hence x > 0, the integral is expo-
nentially small as ¢t — oc, since there are no real points of stationary
phase, whilst for v < 0 the integral is of O(t~!/2), with two real points
of stationary phase at £ = +./—v/24. This means that B, is uniformly
small, and we can neglect the integral involving the product of K. and
B. in the GLM equation, and find that
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We can use the method of stationary phase to analyse this integral, and
find that u is exponentially small for x > 0, and
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Uo(x,t) ~ 2%33(2)@ f)=— df ast — oo, (12.51)
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—2&0 cos (;ﬁ'uur e E)} fort> 1, (12.52)
when x = vt <0, with & = /—v/12. We conclude that the component
of the solution due to the reflection coeficient, b(¢,t)/a(&, ¢), represents
a cnoidal wave, whose amplitude is of O(t7'/2) for ¢ > 1, when it decays



