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ticular, if fe C on a domain D of the ({,z;, . . . , x,) space, and P is a
point of D, there exists a solution ¢ e C" of (E,) on some { interval and
passing through P. If, in addition, fe Lip in D, that is, if

|f(t,$1, TR rxﬂ) _f('e;:sl; oo ,fn” =k z i.\":,' — .ﬁ,l

i=1
for some constant & > 0, then the solution through P is unique.

7. Dependence of Solutions on Initial Conditions and Parameters

A solution of a differential equation on an interval I can be considered
as a function, not only of ¢ ¢ I, but of the coordinates of a point through
which the solution passes. For example, the first-order equation in one
dimension ¢’ = z has the solution ¢(f) = & through the point (r,£).
This determines a function of (#;r,£), which is also calledt ¢, given by
e(t,,§) = get". In the general situation, it is important to know how ¢
behaves as a function of (f,7,£) together, and, in particular, under what
circumstances ¢ is continuous in (¢,,£). In the following the behavior
of the solutions as functions of the initial conditions will be investigated
for the general case of a system.

Let D be a domain in the (n 4+ 1)-dimensional real (¢,z) space and sup-
pose fe (C,Lip) in D. Let ¢ be a solution of the equation

(E) 2’ = f(t,z)

on some interval I. Thus ({y(f)) e D for teI. It follows from the
existence theorem that (E) has a unique solution through any point (r,)
close enough to the given solution. However, the existence theorem
assures the existence of the solution only over some short ¢ interval con-
taining =. Actually, it can be shown that the solution exists over the
whole interval I, and is a continuous function of (¢,7,£). The following
theorem will be proved.

Theorem 7.1. Lel f e (C,Lip) in a domain D of the (n + 1)-dimensional
(t,x) space, and suppose y is a solution of (E) on an interval I:a <t < b.
There exists a 6 > 0 such that for any (r,£) ¢ U, where

U: a<t<b € - ¢(r)| < &

there exists a unique solution ¢ of (E) on I with o(r,r,£) = & Moreover,
peC on the (n + 2)-dimensional sel

V: a<t<b (e eU

T There will be little chance of confusing these two functions. If ¢ is thought of
as a function of (f,r,£), then ¢’ will always mean d¢/dt.

[CraP. 1 r
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ReMARKS: In many applications = is fixed, and in this case U can be
considered as the set of all ¢ satisfying |§ — ¥(7)| < 8, and V the domain
a <t<b, £eU. The proof for this case is contained in the proof of
Theorem 7.1. An important consequence of the proof in this case is that
the mapping T'; which associates with each point (r,£), £¢ U, the point
(t,0(t,7,£)) for some fixed ¢, a <t < b, is a topological mapping.f The
uniqueness of the solutions guarantees that T’ is one-to-one, and the con-
tinuity of ¢ in £ implies T is continuous. Since £ can be considered as the
point § = o(r,t,€), where £ = o(tt,£) = o(t,7,£), the continuity of ¢ again
implies T7' is continuous. Actually, the uniqueness of the solutions
passing through (r,£), £e U, is sufficient for the continuity of ¢ in £; see
Theorem 4.3, Chap. 2.

Often ¢ can be continued outside of 7, in which case U, ¥V would include
the end points a and b of I.

Fic. 2

Proof of Theorem 7.1. Choose 8; > 0 so that the (f,x) region U,
given by
Uy tel |z — ()] < &

is in D. Then let 6§ be chosen so that & < e *®%§;, where k is the
Lipschitz constant. With this 8, define U as in the statement of the
theorem; see Fig. 2 for the casen = 1. If (7,£) ¢ U, there exists a solution
¢ through (7,£) locally, and this satisfies

o(trt) = £+ [ flse(sm,9) ds @.1)
as far as it exists. Moreover, for te I,

v = v + [ fs9() ds (7.2)

f A topological mapping T of a set S onto a set T'(S) is a one-to-one mapping such
that T and 7~ are continuous.



24 ORDINARY DIFFERENTIAL EQUATIONS [CraP. 1

Thus, using the fundamental inequality (2.2) with e = 0, there results
lo(tm,8) — W] < [& — @l < 8y

This proves ¢ cannot leave U,, and can therefore, by Theorem 4.1, be
continued to the whole interval I.

The continuity of ¢ on V will be proved by showing that ¢ is the uni-
form limit of continuous functions on V. Note that ¢ satisfies (7.1) on
I. Define the successive approximations {¢;} for (7.1) by

gOo(t,T,f) 3= l,t’(t) + E = “l"(f)

¢ 7.3
bt B b S Um0 L G

Then for (r,£) e U
isoo(tﬂ',f) . "Ab(*")l = |'E Vi \b(T)l < a1

which shows that (¢,po(t,r,£)) € Uy for te I. Clearly goe ConV. From
(7.3) for j = 0, and (7.2), it follows that

o) — enltn,®)] = | [ (feon(aimd) — Fo(e)) ds]
< | [ lootam) — v(o)l ds| = klg =y e — ]

and hence
lestm,8) — ¥(@)] = (1 + K|t — 7))|§ — ¥(@)|
< | — y(n)| < 8

provided that te I, (r,£) e U. Thus (t,e1(t,,E) e Uy and ¢1¢C on V.
An induction shows that if go,¢1, - . . , ¢ are all in U and continuous
on V, then

ki)t — 7|t

l‘pﬂ—l(tﬂ}&) -k ipf(t)'rjs)l =

if te I and (r,£) ¢ U. This implies that
losa(tr,t) — $@)| < el — ¥(r)| < &

proving that ({,¢i+1(t,7,£)) ¢ Us. Also, from (7.3), ¢j+1eC on V. Thus
by induction (t,¢;(t,7,£)) e Us and ¢; ¢ C on V for all j.

Using (7.4), it follows that the ¢; converge uniformly on V to ¢, which
proves the continuity of ¢ on V. (Note that the uniform convergence of
the ¢; also proves the existence of ¢ on I.)

Having established the existence and continuity of ¢ as a function of
(i,7,£), it is natural, and for purposes of application also important, to
give reasonable sufficient conditions for the existence and continuity of
the partial derivatives d¢/dr, 3¢/0L (1 =1, . . ., n), where the £; are

r
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the components of ¢ Such a sufficient condition is the existence and
continuity of the partial derivatives df/dz; on D.

Let f. denote the matrix (if it exists) with element 8f;/dz; in the ith
row and jth column (7,7 = 1, . . . , n). Alsolet ¢; be the matrix (if it
exists) with element d¢;/d%; in the ith row and jth column (7,j = 1,

., n). A matrix is said to be continuous if all its elements are. If
A = (ay) is annn-by-n matrix, its determinant will be denoted by det A4,
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and its trace, E a;, by tr A. The symbol exp u denotes e
i=1
Theorem 7.2. Let the hypothesis of Theorem 7.1 be satisfied, and suppose
fz exists and foe C on D. Then ¢ ¢ C' on V, and moreover

det oe(tir,d) = exp [ tr £, 0(5m,8) ds (7.5)

Remarks: The fact that f.e €' on D actually makes the explicit Lip-
schitz hypothesis for f superfluous.

1\'Totlce 'tha,t det ¢:(¢,7,£) is just the Jacobian of the transformation,
taking ¢ into ¢(f,7,£), which was considered in the remarks following
Theorem 7.1.

Fc!r the case where f is an analytic function, Theorem 7.2 is easily
obt'alned from Theorem 7.1, as is shown in Sec. 8. The reader interested
mainly in this important case can therefore omit Theorem 7.2.

. Proof of Theorem 7.2. In order to prove the existence of ¢, it is suffi-
cient to consider the case of d¢/d%;, where £ = (&1, . . ., £.). Let
{‘1 = (hy,0,...,0), £E= ¢+ h, and let (7,£) and (7,€) be in U. If x
is the function defined by

x(t}T:E}h) =

("(gl?';é) = ﬁo(tﬂ'; E)
h

1

for (t,r,£) ¢ V, then what has to be proved is that
lim x(¢,r,£h) (7.6)
h—0

exists. It will be shown that the limit in (7.6) exists uniformly on V and
that .the limit function is continuous on V. This will prove d¢/d¢; exists
and is continuous on V.

The motivation behind the proof is very simple: The solution ¢ satisfies
(E), and so

‘P’(tsfyg) o5 f(txﬂa(trfaf))
Thus, if ¢ and f are sufficiently differentiable,

P '
('a%) (t:T;E) = ft(tsi"(t!"‘jg)) g_; (t,T,E)
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where the latter product is an ordinary matrix product. Therefore
dp/d%, is a solution of a linear differential equation. All the following
proof does is to justify this procedure.

Let

a(t,f,f,k) T ‘P(t;rrg) = ?’(tﬁks)
Using the inequality (2.2), there results
l6Ct,r,ER)| < |0Grm,ER)le ! < [k (7.7)

Thus as hy — 0, § — 0 uniformly for ({,r,£) e V.
Since ¢ is a solution of (E)

0'(t,m,6h) = f(te(tr,8) — f(te(tr,8) (7.8)

Using the theorem of the mean on the right side of (7.8), and recalling
that f, ¢ C on D, there exists a matrix I' = (T';) such that

0'(t7,6h) = (f(to(t7,6)) + D)O(r,5R) (7.9)

where, given any ¢, > 0, there exists a 8, which depends on €, such that

It = Y [Tul <eif |6 <& for Gr,@)eV.t By (7.7), then, |1|—0
Hi=1
as h; — 0 uniformly for ({;r,8) e V.
Since x = 0/hy, (7.9) yields

x'(tﬂ’,«f,h) v fz(t,'P(t;T,E))X(t,T,E,h) + 7 (7.10)
where ¥ = T'8/h; so that by (7.7)
vl £ [Tl

Thus vy — 0 as k; — 0 uniformly on V. In particular, given any ¢ > 0,
there exists a 8 > 0 such that |y| < €if |hi| < 8. Thus (7.10) states that
x as a function of ¢ is an eapproximate solution of the linear equation

Y = falto(t,7,£))y (7.11)
provided that |hi| < 8. The initial value x(r,7,£,h) is e, where e, is the
vector with components (1,0, . . . , 0).

Consider now for fixed (r,£) ¢ U the solution 8 of (7.11) which assumes
the initial value e; at ¢ = . That this solution exists on I:a S ¢t = b
follows from Theorem 5.1. The fact that x is an e-approximate solution
of (7.11) for |hi| < 8 implies by Theorem 2.1 that

|X(tﬂ"£’1h) i ,3(5,1',2)! é % (e"a'—ﬂ) = e 1)

% Here use is made of the fact that for (t,7,£) ¢ V the points (,¢(t,r,£) e Uy, & closed
bounded set. Thus f- is uniformly continuous on U,
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for (i,r,£) on V. Clearly this implies that
11_]:.% X(tr‘r!f;h) = ﬂ(tJT:E)

uniformly on V. This proves the existence of d¢/8£, and also proves that
it is the solution of (7.11) which assumes the initial value e; at £ = 7.
The uniformity of the convergence of x as h— 0, and the continuity of
x on V, imply the continuity of d¢/d%; on V.

An entirely similar argument proves the existence and continuity of
de/0E, 7 =2, ..., mn, on V. Also if ¢ is the vector with all com-
ponents zero except the jth, which is 1,

% ) =6 (G=1,...,n (7.12)
dE;

and 3¢/0%; is a solution of (7.11). The columns of the matrix ¢; are pre-
cisely the vectors d¢/df;, Therefore the following matrix equation is
valid:

ga;(t,‘l‘,f) o fz(tsio(fsf:ﬁ))soe(t:"‘;f) (7.13)
where ¢; = dpg/dt. The relation (7.12) may be written as
ee(rr,k) = E (7.14)
where E is the n-by-n unit matrix,
1 0 ~ETE 0
a 1-
4l L r
. . . 0
0 ] 0 1

The relation (7.5) is a consequence of a general fact concerning matrix
solutions of linear systems. Since this relation is of importance initself,
it will be proved in the next theorem. One obtains (7.5) from (7.18)
below using (7.13) and (7.14) and the fact that det E = 1.

It is but a repetition of the previous arguments to show that d¢/ér also
satisfies the linear equation (7.11), once it is observed that it has the
initial value given by

a
o2 (@md) = —f(rd) (7.15)
This is shown by a direct calculation as follows:

‘1"(7:?)‘5) = @(T}T;E) o 'P(‘-"J‘:E) — £
- @(Ta?zf) &g ‘io{?}?;s)

= [ fs.0(s.7,8) ds
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Thus

?’(TJ?:E) =y 50(717;’:") =
T =2

- F 1 T [tf(s)io(sﬁss)) ds

Since the integrand is continuous for (s,7,£) ¢ V, it follows that the limit
as ¥ — 7 exists for (r,£) ¢ U and gives (7.15).

Theorem 7.3. Let A be an n-by-n matriz with continuous elements on an
tnlerval I:a < t = b, and suppose ® is a matriz of functions on I satisfying

d(t) = A@D)2() (te ) (7.16)
Then det ® satisfies on I the first-order equation
(det ®)" = (tr A)(det @) (7.17)
and thus forr, te I
det @(t) = det &(r) exp [ tr A(s) ds (7.18)

Proof. Let ¢y, ai; be the elements in the sth row and jth column of &
and A, respectively. Then (7.16) says

L

GO = Y w@en® Gi=1...,n (7.19)
E=1
The derivative of det ® is a sum of n determinants
I ! !
11 Y12 T "7 Qia ‘P:l 'P}z ‘An Soi,u
(det q,).- — [Pn P2 " T P + Pa1 P2 T Pag
$Pnl  Pn2 TN @an ©nl  ©n2 Y @an
Y11 @12 " Y @Pia
£ - e TG e
r I r
Pn1 Yn2 " " " Crn

Using (7.19) in the first determinant on the right, one gets

E B 1xPk1 z Q1P 2 A1k Pkn
k k k

P21 Pa2 . Pan
©n1 ©n2 T Pnn

and this determinant is unchanged if one subtracts from the first row a;,
times the second row plus a,; times the third row up to a,, times the nth
row. This gives

[CHaP. 1 I
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aupnn  Auen 11910
P21 Pa2 e Pan
©Pn1 ©n2 Tk Pnn

which is just ai; det ®. Carrying out a similar procedure with the
remaining determinants, one obtains finally (7.17). The equation (7.17)
is of the form ' — a(f)u = 0 from which follows

% exp [— fa(s) ds] = constant

which gives (7.18).

The case where the right member f of (E) contains a parameter vector
u can be readily dealt with. Suppose u space has k real dimensions, and
let 7, be the domain of u space, [u — uo| < ¢, where uo is fixed and ¢ > 0.
As above, D is a domain of (t,z) space. Let D, be the domain of (¢,z,u)

space
D,: (tx)e D

and let fe C on D, and satisfy a Lipschitz condition in z uniformly on D,.
The differential equation

(E,) z' = f(t,z,u)

will be considered here. For a fixed given u = pu,, let ¢ be a solution of
(E,) on an interval @ ¢ <b. Then the following theorem, which
includes Theorem 7.1 as a special case, will be proved:

Theorem 7.4. Let y be the solution of (E,) described above.
a & > 0 such that for any (1,%,1) e U,, where

&€ — @) + | — po < 8
there exists a unique solution ¢ of (E,) ona < t < b satisfying

pel,

There exists

(G a<r<b

‘ID(TJT!E!F) - E
Moreover, ¢ ¢ C on the (n + k + 2)-dimensional domain
Ve a<¢<b (r,E,1) e U,

REMARK: An alternative proof of this theorem under slightly more
restrictive hypotheses is given in the course of proving Theorem 7.5 below.

Proof of Theorem 7.4. The proof is like that of Theorem 7.1. As
remarked there, the successive-approximations procedure can be used to
prove the whole theorem. Choose 8; > 0 so that the (¢,z,u) region Uy,
given by

U‘l..u: a=<t=sbH lx—\f’(t)l+1#‘—#u!§51

isin D,. Define the approximations {¢;} by
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‘Pn(tg‘f:f,ﬂ) = ‘p(t) b o E = ‘&(7)
it i) = &+ [ 5,0, bu),0) ds

Clearly
|¢n(t,1’,f,p) = 'I(’(tn = lE 2 'Ib('r”

and

]lp;(t,r,&',,u) = f,Do(t,T,E,}-l)l = \ _;:_‘ {f(s;w{&‘f,é;#);#) il f(sa‘;'(s),#ﬂ)} ds (720)

The uniform continuity of f in Uy, implies that, given any e > 0, there
exists a 8. > 0 such that

If(s}‘po(s!T}E!bu’)!!u) S f(s,l}f(.?),pn){ <e
provided that @ < s £ b, (r,£,) € Uy, and

|8 — ¥(0)| + b — no| < 8 (7.21)
Thus (7.20) implies

lo1(t,m,Em) — eoltyr,bm)| < et — 7]
provided (7.21) is valid. Proceeding as before, there now results

o H—lk:‘
!¢f+!(f‘)7}£}p') ) l‘.Dj(t;T,E:uN = E]‘ﬂ--':_i]-)_i_

where k is the Lipschitz constant. Let e be chosen so that

‘_;_(em—a) ) <%

andlet § = 8, < 8,/2 be chosen as above for thise. Then it follows easily
by induction that, for all j, (¢,¢;(t,7,£n)) is in the region Uy, for all
(r,£,u) e U,. The continuity and the uniform convergence of the ¢; on V,
lead to the result of the theorem.

The generalization of Theorem 7.2 to (E,) is valid. In fact, it follows
directly from Theorem 7.2 itself.

Theorem 7.5. Let the hypothesis of Theorem 7.4 be satisfied and suppose
that f-c C, fuc C, on Du. Then the solution ¢ defined in Theorem 7.4 is of
class C' on V.

Proof. Consider the (n + k)-dimensional u space consisting of points
with coordinates

w=r5 (@=1...,n
Upn = (@E=1,...,k)

and define the vector function F = (Fy, . . . , Fayx) on D, by
Fi(t,u) = fi(t,x,u) G=Y . ;57
Fon(tw) = 0 fomi Ly i 5 B)

Sec. 7] EXISTENCE AND UNIQUENESS OF SOLUTIONS 31

Then, by Theorem 7.1, the system of equations

u = F(t,u) (7.22)
has for a solution the vector x = (x1, . . . , Xnst) given by
X|‘(t) = ‘Pi(tsf)gaﬂ) ('3' == 13 EECEE ] ﬂ’)
Xitn(t) = i E =1y oo o8

since x has the initial value given by

xi(r) = & (E & 1,00 a )
Xirn(T) = (=11 e o oh)
Thus p1, - - - , & may be thought of as forming part of the components

of an initial-value vector for the system (7.22), and the F in (7.22) satisfies
the conditions in Theorem 7.2. Therefore the first partial derivatives
of x with respect to r, &, and y; exist and are continuous on V), and from
the definition of x this implies the theorem.

From

ot p) = £+ ff(s,rp(smi,u),u) ds
it follows that

] ! d 8
=L (. 8m) = f [fz(s,so(s,f,f,#),u) 2 (s,mm) + —f (s,sa(s,f,é,ﬂ),n)] ds
O v O A,
This shows that d¢/8y; is the solution of the initial-value problem
)
v = Llbplmtmmy + 2L Gelntww ) =0
¢

Hypotheses under which the existence of higher derivatives of ¢ with
respect to 7, &, or u; can be shown to exist are readily ascertained from the
fact that the first-order derivatives are solutions of a linear equation.
For example, d¢/ad%; is the solution 8; of

y’ T fz(t;‘p(t.!r:&‘;#)rp)y (723)

with the initial value e;. Clearly 8%p/d%,0¢; is 08:/0%;, if it exists. But
£ enters (7.23) as a parameter. If r and p are held fixed in (7.23), then &
in (7.23) plays the role of u in Theorem 7.5. Thus, if fo(t,o(t,r, 1) ,1) has
a continuous derivative with respect to &, then 08:/9%; exists. If f has
continuous partial derivatives of the second order with respect to the
components of z, then f.(f,0(t,7,£p),u) will have continuous first-order
partial derivatives with respect to &

In much the same way, if f has continuous partial derivatives of the
second order with respect to the components of (z,u), then 9%p/0u0u;
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exists as do the mixed derivatives 8%p/dp;8%. The case where the partial
derivatives of ¢ are taken with respect to the components of (r,,u) is left
to the reader as an exercise.

8. Complex Systems

So far it has been assumed in the equation (E) that ¢,z,f were all real.
If f is a continuous complex-valued function on an open connected set D
in the (t,w) space, where ¢ is real and w is complex n-dimensional (real
2n-dimensional), then the equation

(EI} '!.D’ = f(t,‘HJ)

is defined to be the problem of finding an interval I on the real ¢ line and
a (complex) differentiable function ¢ on I such that

0 (e@)eD (e
@) o) = fee®) (11, = 3)

It is an easy task to see that all the existence, uniqueness, continuation,
and dependence theorems proved in Secs. 1 to 7 are valid for (E1) as well,
if one defines the norm |w| of a complex vector w = (wy, . . . , Wa)

formally as before, namely,

ol = )

=]

Here, of course, [wi] = ((Rw)? + (Sw:)?)?, where Rw, and Jw; are the real
and imaginary parts of w;. Moreover, the Theorems 7.4 and 7.5 con-
cerning the equation

(E.u) ' = f(t;x:-u')

can be extended in an obvious way to the case where u is a complex
parameter vector, if f is defined for complex x and p. Linear systems are
an important case where the above remarks apply.

Usually a function defined on a set of complex numbers that occurs in a
differential equation is analytic. Let F be a vector function defined on
a domain (open connected set) D of the complex n-dimensional w space.
Then F is said to be analytic at a point we D if in some neighborhood
lw — w| < p, p > 0, each component F; of F is continuous in

w= (wy, ...,w)

and is analytic in each w; when all other w;, I # k, are held fixed. An
equivalent definition is that each F; is representable by a convergent
mower series
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F}(wl, ER ,wﬂ) = Am...m,‘('wl—wl)'"‘ e (w“-—wn)’““
my=0 mn=0

in some neighborhood [w — w| < p, p > 0. The A,,...n, are complex
constants. A function F is said to be analytic in a domain D if it is
analytic at each point of D.

It will be recalled that an analytic function in a domain D possesses
derivatives of all orders on D. A basic property of analytic functions is
that, if a sequence of analytic functions converges uniformly on a domain
D, then the limit function is analytic in D.

It is evident that since an analytic function F in D is represented
locally by a power series it is locally single-valued, that is, for every point
we D thereisa p > 0 such that F is single-valued on |w — w| < p. How-
ever, in the large, it need not be single-valued. For example, the function
F given by F(w) = w?, where w has one complex dimension, is analytic in
the ring 1 < |w| < 2 but is double-valued there. If w! is taken as posi-
tive and real on the interval 1 < Rw < 2 and w is followed around a
closed path (lw| = £, for example), then w! assumes negative real values
when w again reaches the positive real axis. The function F'(w) = w®, «
real and irrational, assumes infinitely many values in the ring.

An important extension of the problem (E) is to the case where { may
be complex. Suppose that f is an analytic complex-valued vector func-
tion defined on a domain D in the complex (z,w) space, where the z space
has one complex dimension, and the w space is complex n-dimensional.
Then the equation

(Es) w = f(z,w)

is defined to be the problem of finding a domain H in the complex z plane
and a (complex) differentiable locally single-valued function ¢ [a solution
of (E;)] on H such that

(i) (20() e D (z2¢ H)
(i) /® =feo@n  (eem=2)
The existence and uniqueness of solutions of (E.) can be inferred from the

method of successive approximations. Indeed, suppose f has components
f ... ,fs,andw = (wy, . . . , ), and f is analytic on the domain

R,: |z — 2] <@ |w— 1w <b (a,b > 0)

which will be called a rectangle, although it isn + 1 complex dimensional.
Note that w, is & vector here and not a component.



34 ORDINARY DIFFERENTIAL EQUATIONS [CrAR. 1
Theorem 8.1. Suppose f is analytic and bounded on the open rectangle
Rs, and let
) b
M = sup |f(zw)| a = min (a, ==
(z,w) e R M

Then there exists on |z — zd| < @ a unique analytic function ¢ which is a
solution of (E) satisfying ¢(20) = wo.

Proof. Since the matrix f, = (3f;/dw;) is bounded on any closed
rectangle By C Rs, it follows that f satisfies a Lipschitz condition on R,.
Therefore one can construct the successive approximations

tpn(z) = Wo

o = wo+ [[fGond  (k=012..) @D

where the integrals can be taken along a straight line joining 2o to 2.
Applying the argument in Theorem 3.1, one obtains the existence of a
unique solution ¢ on the circle |2 — 20| < a which satisfies ¢(20) = wo.
Clearly o is analyticin z on |z — 20| < @, and thus the function f, defined
by fo(2) = f(z,00(2)), being an analytic function of an analytic function,
is analytic on [z — 20| < a. From (8.1) it follows that ¢, is analytic on
|2 — 20| < @, and an easy induction proves that all the approximations ¢x
are analytic on [z — zo| < . Since the solution ¢ is the uniform limit of
the sequence {¢;} of analytic functions, it isitself analytic on |z — 2| < .
This completes the proof.

Remark: Unless other restrictive assumptions are made on f, the circle
of analyticity |z — 20| < a cannot be improved. For a = b/M, this is
illustrated by the case where f is independent of w, and has singularities
on the circle |z — zo| = a. For @ > b/M the example

oo -u3(+ 9]

where w is one dimensional, illustrates this. The solution ¢ of this
equation for which ¢(0) = 0 (here zo = wo = 0), is

s[04 2]

_(mzlfm)_b_
b S Nm— 1) M

Clearly fis analytic and bounded in the circle [w| < b, and sup |f w)| =M
there. The solution ¢ has a singular point at z = —cm < —b/M, and

where
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this tends to z = —b/M asm — . Therefore, for any given r > b/ M,
the solution ¢ has a singularity in the region
b

]—[<]zl<r

if m is made large enough.

The analogue of Theorem 7.1 for the equation (E) is the following
result:

Theorem 8.2. Let f be analytic in a domain D of the (z,w) space, and
suppose ¥ is a solution of (Ez) on H, where H is a closed convex domain of the
¢ plane. There exists a & > 0 such that for any (¢,0) e U, where

U: ¢teH |o—y@)| <8

there exists a unique solution ¢ = ¢(2,¢,w) of (E2) on H with ¢({,{,0) = w.
Moreover, ¢ is analytic on the n + 2 complex dimensional domain

V: ze H (tw) e U

Remark: Actually H need not be convex. It is sufficient if H is simply
connected and if there is some constant ¢ > 0 such that any two points
of H may be joined by a polygonal arc of length less than c.

Proof of Theorem 8.2. The proof follows that part of the proof of
Theorem 7.1 that deals with the successive approximations. The path
of integration from { to z in the successive approximations can betaken
as a straight line if H is convex. In any case, the path can be taken asa
polygonal path of length less than ¢. The argument of Theorem 7.1
carries over with the obvious modifications necessary to meet the require-
ments that the variables are complex. The approximations ¢; are all
analytic on V. Thus the limit function, to which the approximations
converge uniformly on ¥, must be analytic on V.

Since ¢ has all derivatives with respect to z,{,w on V, the equation

'P!(zsg"’) o f(zyﬁo(z;f;w))

can be differentiated with respect to wj, giving
de’ _ de
du; (z;;sw) = fw(zai"(z}g;w)) E

Thus d¢/dw; is the solution of the linear equation

y, T fw(31¢(31§;w))y (82)

wit}'x initial condition (d¢/d8w;)({,¢,w) = ;. Thus the analogue of the
main result of Theorem 7.2 is proved. The result analogous to (7.5)
follows in much the same way as (7.5). The result here is
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