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(b) Using (14.6.22), in what region are there two and zero characteristics?
Show that your answer depends on the sign of F"/(&,).

14.6.6. Consider d“ =g ) = , where ((z,t) is a slowly varying coefficient. We
assume the dispersion relation is w = B(z, t)k3.

(a) If B(z,t) is constant, determine k and the characteristics.
(b) If B(z,t) is constant, determine the phase # along characteristics.

(c) If B(z,t) is not constant, what differential equations determine k and
the characteristics?

(d) If B(z,t) is not constant, what differential equations determine 6 along
characteristics?

(e) If B(t) only, determine the characteristics and 6.

14.7 Wave Envelope Equations
(Concentrated Wave Number)

For linear dispersive partial differential equations, plane traveling waves of the form
u(z,t) = Aetkz—w(k)t) exist with constant wave number k. The most general situ-
ations are somewhat difficult to analyze since they involve the superposition of all
wave numbers using a Fourier transform. A greater understanding can be achieved
by considering some important special situations.

In Sec. 14.6 we assume that the wave number is slowly varying. Here, instead
we assume most of the energy is concentrated in one wave number k3. We assume
the solution of the original partial differential equation is in the form

u(z, t) = A(z, t)etkoz—w(ko)t) (14.7.1)

We assume the amplitude A(z,t) is not constant but varies slowly in space and time.
The amplitude A(z,t) acts as an wave envelope of the traveling wave, and our
goal is to determine a partial differential equation that describes the propagation
of that wave envelope A(z,t). Some ways in which energy can be concentrated into
one wave number are as follows:

1. The initial conditions can be chosen with one wave number but with the
amplitude slowly varying as in (14.7.1). :

2. It is known that arbitrary initial conditions with all wave numbers disperse
(spread out). The wave number is known to move with the group velocity. If one
is investigating the solution in some special region of space and time, then in that
region most of the energy may be concentrated in one wave number.

3. Rays along which the wave number is constant may focus and form a caustic.
In a caustic energy is focused in one wave number.

We will determine partial differential equations that the wave envelope Az, t)
will always satisfy for any dispersive wave equation. We first note that since u(z, t)
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has the exact solution u(z,t) = e!*=—«®%) for all k, it follows that the partial
differential equation for A(z,t) must have the very special but simple exact solution

Az, 1) = eilE-Ro)e—i(o—wn)t
where w = w(k) and wo = w(ko). We note that 22 = i(k — ko)A and &2 =

—i(w —wp)A. In this way we have shown that first- and higher-derivative operators
acting on the amplitude correspond to elementary multiplications:

7]

—?,—é; <= (k- ko) (14.7.2)
Z% <— (w—wp). ; ‘(14.7.3_)

The partial differential equation for the wave amplitude follows from the dis-
persion relation w = w(k). Since we assume energy is focused in the wave number
ko, we can use a Taylor series for the dispersion relation around the special wave
number k{]

ow” (ko) aw" (ko)
21 3!

Moving w(ko) to the left-hand side, using the operator relations, and dividing by ¢
yields the wave envelope equation in all cases:

+ (k — ko) +.... (147.4)

= w(ko) + (k — ko)w'(ko) + (k — ko)

a;q A W'(ko) BPA  W(ko) A et
g Fe e S e Ty g HAAED)

This shows the importance of the group velocity ¢, = w'(ko). These results can also
be obtained by perturbation methods.

14.7.1 Schrodinger Equation

To truncate the Taylor expansion (14.7.4) in a useful and accurate way, we must
assume that k — kg is small. From (14.7.2) it follows that the spatial derivatives of
the wave envelope must be small. This corresponds to the assumptions of a slowly
varying wave amplitude alluded to earlier. The wave amplitude must not change
much over one wave length 7 27 for the wave envelope equation (14.7.5) to be valid.
Each spatial derivative of the a.mphtude in (14.7.5) is smaller. Thus, if w” (ko) # 0,
we are justified in using the Schrddinger equation,

9A  , OA  w"(ko)0PA ik,
o TR T G REA

the approximation that results from ignoring the third and higher derivatives. Any-
time energy is focused in one wave number (the so-called nearly monochromatic
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approximation), u(z,t) ~ A(z,t)e!For—w(k0)t)  the wave amplitude or wave enve-
lope satisfies the Schrédinger equation (14.7.6). The Schrédinger equation is a
linear partial differential equation with plane wave solutlons A= giler—0a)t) gq
that its dispersion relation is quadratic: Q(a) = '(ko)a + % (ko) a?. The solution
of the Schrodinger equation corresponding to an infinite domam can be obtained
by Fourler transforms:

A(z,t) / G(a)eileta— (o)~ =52 a?d g, (14.7.7)

In this nearly monochromatic approximation the dispersive term is small. How-
ever, the dispersion cannot be ignored if we wish to understand the behavior for
relatively long times. Perhaps the relations between space and time are better un-
derstood, making a change of variables to a coordinate system moving with the
group velocity:

Xi=mg=w'lko)t (14.7.8)
Ty | (14.7.9)

In this moving coordinate system the Schrédinger equation has the following simpler

— 94 94 DA OA  w'(ky) %A
v afEaYn By e O g R0 _
a7 g TR = = ox

In this way small spatial derivatives are balanced by small time derivatives (in the

moving coordinate system).

Caustics. Away from caustics, slowly varying linear dispersive waves can be
analyzed approximately by the method of characteristics. However, this approxima-
tion fails near the caustic, where characteristics focus the energy. Near a caustic the
solution is more complicated. In the region near this caustic (z near z. and ¢ near
t.) , the wave energy is focused in one wave number [the critical value k. = k(&, 0)]
so that u(z,t) = A(z, t)e(ke(z=2ze)—w(ke)(t—tc))  and the wave amplitude A(z,t) ap-
proximately solves the linear Schrédinger equation whose solutions are given by
(14.7.7). We may replace z by z — z. and ¢ by ¢t — ¢, in (14.7.7), though this corre-
sponds to a different arbitrary function G(e). We wish to determine the complex
function G(a) = R(a)e®(®), which agrees with the known caustic behavior:

Al 1) = /00 R(a)eéq’(“)eéla(m_mm_“!(k")(t”tcn_ﬂz#&“;}(t“t“” da. (14.7.10)

This exact solution can be approximated by evaluating the phase at the value of «
at which the phase is stationary:

z — To — W (k) (t —to) — w(ke)a(t — t:) + D' (a) = 0. A

By comparing (14.7.11) with the fundamental cubic equation (14.6.20), first we see
that o = ke(¢ — &), since from (14.6.13), F/ = w”ke. It follows that &'(a) =
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3 aff! 7 Hr
—%b—kg’?‘—)tc, so that ®(a) = —%%&th. In this way we derive an integral
’ £
representation of the solution in the neighborhood of a cusped caustic:

2T 4 ke ’kc —le __w“‘(.'k . _C_G4F’”( )c
A(:r,t):/ Jaa—e—u! (k) (i) e o (s-te)— r SE ”da, (14.7.19)

-0

where for simplicity we have taken R(a) = 1. Equation (14.7.12) is known as
the Pearcey integral though Brillouin seems to have been the first to study it.
Stationary points for (14.7.12) satisfy the cubic (14.7.11), so that asymptotically
the number of oscillatory phases varies from one outside the cusped caustic to three
inside.

14.7.2 - Linearized Korteweg-de Vries Equation

Usually the wave envelope satisfies the Schrédinger equation (14.7.6). However, if
wave energy is focused in one wave number and that wave number corresponds to a
maximum or minimum of the group velocity w’(k), then w” (ko) = 0. Usually when
the group velocity is at an extrema, then the wave envelope is approximated by the
linearized Korteweg-de Vries equation:

! 3
64 0A _ w"(ko) °A (14.7.13)
oz 3! 0z

E + u)f(kg)

which follows directly from (14.7.5). The dispersive term is small, but over large
times its effects must be keep. [The transformation (14.7.8) and (14.7.9) corre-
sponding to moving with the group velocity could be used. | '

Long waves. Partial differential equations arising from physical problems
usually have odd dispersion relations w(—k) = —w(k) so that the phase velocities
corresponding to k and —k are the same. For that reason, here we assume the
dispersion relation is odd. Long waves are waves with wave lengths much longer
than any other length scale in the problem. For long waves, the wave number £ will
be small. The approximate dispersion relation for long waves can be obtained from
the Taylor series of the dispersion relation:

I n 0 I 0
w(k) = w(0)+w’(0)k+w2(lo) K2+ 35 )k3+--- = w'(0)k+ w—3E—1k3+---, (14.7.14)
since for odd dispersion relations w(0) = 0 and w”(0) = 0. Thus, because of the
usual operator assumptions (14.2.7) and (14.2.8) (k = ~iZ and w = iZ), long
waves should satisfy the linearized Korteweg-de Vries (linearized KdV) equation:

ou  ,, Ou  w"(0)u
il AT




658 Chapter 14. Dispersive Waves

This can be understood in another way. If energy is focused in one wave (long wave)
ko = 0, then the wave amplitude equation follows from (14.7.5):

8A  , BA w"(0)83A
& Ve =g

Here the solution and the wave envelope are the same, satisfying the same partial
differential equation because for nearly monochromatic waves

u(z,t) = Az, t)etFoz—wkolt) — A(z ¢)

since kg = 0 and w(0) = 0. The group velocity for long waves (with an odd disper-
sion relation) is obtained by differentiating (14.7.14), o'(k) = w'(0) + @k@ +--e
Thus, the group velocity has a minimum or maximum for long waves (k = 0). Thus,
the first or last waves often observed will be long waves. To understand how long
waves propagate, we just study the linearized Korteweg-de Vries equation. Since
it is dispersive, the amplitudes observed should be very small (as shown by the
method of stationary phase). Large amplitude long dispersive waves must have an
alternate explanation (see the next section).

Maximum group velocity and rainbow caustic. We briefly in-
vestigate the solution that occurs (from the method of stationary phase) when the
group velocity w’(k) has a maximum. Thus w”(k;) = 0, in which case the linearized
KdV (14.7.13) governs. Specifically, following from (14.5.8) in Exercise 14.5.4, the
wave envelope satisfies:

20 . (k=k)2  n
Ar 1y / il (2= (k1)) = =B (ke

From this it can be seen that A(z,t) satisfies the linearized KdV (14.7.13) as should
follow theoretically from (14.7.14). This is perhaps easier to see using a coordinate
system moving with the group velocity in which case roughly

Ar =—-Axxx
[since w”’(k1) < 0]. Further analysis in Exercise 14.5.4 shows that

1 .. z—uw(k)t

Az, 1) = 17 A=),

where Ai is an Airy function. Thus, A(z,t) should be a similarity solution of the
linearized KdV. It will be instructive to show the form taken by similarity solutions

of the linearized KdV:

X 1
A, = 58 () = 77516,

where the similarity variable £ is given by

X
L=am
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Derivatives with respect to X are straightforward (% = %—3’% - 511,3 B@EJ’ but we
must be more careful with ¢-derivatives. The linearized KdV (Ar = —Axxx)

becomes
11 1 1¢ BT

—_——— e i 'F___ e e S
3t4/3f+t1/3f( 3t) /3 ¢7 7

which after multiplying by t*/3 becomes a third-order ordinary differential equation
(—3/ — 3f'€ = —f"")that canbe integrated to —1f& = —f” + c. The constant
¢ =0 (since want f — 0 as £ — 4o0), and hence the similarity solution of the
linearized KdV is related to Airy’s equation:

o 19
£ -3f6=0.

Here, regions with two and zero characteristics are caused by a maximum group
velocity. Regions with two and zero characteristics are separated by a straight line
characteristic (caustic) ¢ = w’'(kq)t with w”(k;) = 0. This is the same situation
that occurs for the characteristics for a rainbow (see Fig. 14.6.8) where there is a
maximum group velocity.

14.7.3 Nonlinear Dispersive Waves:
Korteweg-deVries Equation

These amplitude equations, the Schrodinger equation (14.7.6) or the linearized
Korteweg-de Vries equation (14.7.13), balance small spatial and temporal changes
(especially when viewed from moving coordinate systems). Often in physical prob-
lems small nonlinear terms have been neglected, and they are often just as important
as the small dispersive terms. The specific nonlinear terms can be derived for each
specific application using multiple-scale singular perturbation methods (which are
beyond the scope of this text). In different physical problems, the nonlinear terms
frequently have similar forms (since they are derived as small but finite amplitude -
expansions much like Taylor series approximations for the amplitude).

For long waves, the usual nonlinearity that occurs yields the Korteweg-de
Vries (KdV) equation:

ou

Ou w"(0) &u (14.7.15)
ot

31 9z3

+[/(0) + B oo =

If for the moment we ignore the dispersive term %, then (14.7.15) is a quasi--
linear partial differential equation solvable by the method of characteristics. The
characteristic velocity, w'(0) + Bu, can be thought of as the linearization around
“u = 0 (small amplitude approximation) of some unknown characteristic velocity
f(u). Taller waves move faster or slower (depending on ) and smooth initial con-
ditions steepened (and eventually break). Some significant effort (usually using
perturbation methods corresponding to long waves) is required to derive the coef-
ficient  from the equations of motion for a specific physical problem. Korteweg
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and de Vries first derived (14.7.15) in 1895 when trying to understand unusually
persistent surface water waves observed in canals.

The KdV equation is an interesting model nonlinear partial differential equation
because two different physical effects are present. There is an expectation that
solutions of the KdV equation decay due to the dispersive term. However, the
nonlinear term causes waves to steepen. By moving with the linearized group
velocity and scaling = and u , we obtain the standard form of the KdV equation:

ou ou  B%u
'\l i B e - 25 14.7.16
ot 0 ( )

We limit our discussion here to elementary traveling wave solutions of the KdV
equation:

)

u(z,t) = f(£), where £ =z — ct. ' (14.7.17)

When (14.7.17) is substituted into (14.7.16), a third-order ordinary differential equa-
tion arises:

frkr_cff_i_sfff -

This can be integrated to yield a nonlinear second-order ordinary differential equa-
tion (of the type corresponding to F' = ma in mechanics, where a = f”):

" +38f2—cf—-A=0, (14.7.18)

where A is a constant. Multiplying by f’ and integrating with respect to &, yields
an equation corresponding to conservation of energy [if (14.7.18) were Newton’s

law]:

GV + PP~ gef'~ Af=E, (147.19)

where F is the constant total energy [and %( f')? represents kinetic energy and
f% — 3cf? — Af potential energy]. In Fig. 14.7.1 we graph the potential energy
as a function of f. Critical points for the potential occur if 3f2 —cf — A = 0, corre- -
sponding to equilibrium solutions of (14.7.18). The discriminant of this quadratic
(b2 — 4ac) is % + 12A. If 2 + 124 < 0, then the potential energy is monotonically
increasing, and it can be shown that the traveling waves are not bounded. Thus,
we assume ¢ + 124 > 0, in which case two equilibria exist. Constant energy lines
(in the potential energy sketch) enable us to draw the phase portrait in Fig. 14.7.1.
We note that one equilibria is a saddle point (fi,i,) and the other is a center.

Periodic traveling waves (cnoidal waves). Most of the bounded
traveling waves are periodic. Some analysis is performed in the Exercises.
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V=73-05/2- Af
(P +124 > 0) Potential /

Figure 14.7.1 Potential and phase portrait for traveling
wave for the KdV equation.

Solitary traveling waves. If the constant energy E is just right, then the
traveling wave has an infinite period. The cubic potential energy has two coincident
r00ts at fmin and a larger single root at fmax > fmin, SO that

%(Jﬂ)2 T _(f R fmax)(f o fmin)Q' (14'7'20)

The phase portrait shows that solution has a single maximum at f = fpax and
tails off exponentially to f = fyin. It is graphed in Fig. 14.7.2 and is called a
solitary wave. This permanent traveling wave exists when the steepening effects
of the nonlinearity balance the dispersive term. An expression for the wave speed
can be obtained by comparing the quadratic terms in (14.7.19) and (14.7.20): ic=
Foze + 2 fma = 3 fmin + (fma.x - fmin)- The simplest example is when frnin = 0,
requiring frmax > 0, in which case

%c = fmax- (14.7.21)

These solitary waves only occur for frmax > 0, as sketched in Fig. 14.7.2. Thus,

taller waves move faster (to the right). There is an analytic formula for these °

solitary waves. If fuin = 0, it can be shown that

) = %csech2 E\/Z(m — ct)] ; (14.7.92)

where ¢ > 0 is given by (14.7.21). This shows that the taller waves (which move
faster) are more sharply peaked.
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fmax> fmin
c= 6fm'm + z(fmax i fmin)

fmin

§;£—ct

Figure 14.7.2 Solitary wave for the KdV equation.

14.7.4 Solitons and Inverse Scattering

For many other nonlinear partial differential equations, solitary waves exist. For
most nonlinear dispersive wave equations, no additional analytic results are known
since the equations are nonlinear. Modern numerical experiments usually show that
solitary waves of different velocities interact in a somewhat complex way. However,
for the KAV equation (14.7.16) Zabusky and Kruskal [1965] showed that different
solitary waves interact like particles (preserving their amplitude exactly after inter-
action) and hence are called solitons. These solitons have become quite important
because it has been shown that solutions of this form develop even if the initial
conditions are not in this shape and that this property also holds for many other
nonlinear partial differential equations that describe other physically interesting
nonlinear dispersive waves. In attempting to understand these numerical experi-
ments, Gardner, Greene, Kruskal, and Miura [1967] showed that the nonlinear KdV
equation could be related to a scattering problem associated with the Schrodinger
eigenvalue problem (see Sec. 10.7) and the time evolution of the scattering problem.
Lax [1968] generalized this to two linear nonconstant differential operators L and
M that depend on an unknown function u(z, t):

Lo = Ao (14.7.23)
8
5 = M¢. (14.7.24)

The operator L describes the spectral (scattering) problem with ¢ the usual eigen-
function, and M describes how the eigenfunctions evolve in time. The consistency
of these equations [solving both for La—‘f by taking the time derivative of (14.7.23)]
yields L9 = LM¢ = —8L¢+ A3 + D¢ = —%Lo+ ML + L, where (14.7.23)
and (14.7.24) have been used. The spectral parameter is constant (%’} =) )if
and only if an equation known as Lax’s equation holds:
L

?9_t + LM - ML =0, (14.7.25)
which in practice will be a nonlinear partial differential equation for u(z,t) since
the commutator LM — M L of two nonconstant operators is usually nonzero.
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In an exercise, it is shown that for the specific operators

82
§om ~5a (14.7.26)
Au 0 o3
B o (N Ve 14.7.27
M=7"9; 105 o ( )-

where < is a constant, Lax’s equation is a version of the Korteweg-de Vries equation

3
ot gon T o (14.7.28)

Inverse scattering transform. The initial value problem for the KAV
equation on the infinite interval —co < 2z < oo is solved by utilizing the difficult
relationships between the nonlinear KdV equation and the linear scattering problem
for —oo < z < 0o. The eigenfunction ¢ satisfies the Schrodinger eigenvalue problem

62
ﬁf + (A —u(z,t))p = 0. (14.7.29)

Here time is an unusual parameter. In the brief Sec. 10.7 on inverse scattering, we
claimed that the potential u(z,t) for fixed ¢ can be reconstructed from the scattering
data at that fixed t:

(e, ) = —2%K(m,m,t}, (14.7.30)

- using the unique solution of the Gelfand-Levitan-Marchenko integral equation:

: .o}
K(z,y,t) + F(z + y,t) + f K(z,z,t)F(y +2,t)dz=0, fory > z. | (14.7.31)
T

Here the nonhomogeneous term and the kernel are related to the inverse Fourier
transform of the reflection coefficient R(k,t) (defined in Sec. 10.7), including a

contribution from the bound states (discrete eigenvalues A = —&2):
N 1 e :
Flatl =) e ,t)e*edk. 14.7.32
(50 =3 A0 + 5 [ Rk0e (14.7.32)




664 ' Chapter 14. Dispersive Waves

Here the scattering data depend on a parameter, time. Unfortunately, we do not
know the time-dependent scattering data since only u(z,0) is given as the initial
condition for the KdV equation. Thus, at least the initial scattering data can be
determined, and we assume those data are known. If the initial condition has
discrete eigenvalues, then these discrete eigenvalues for the time evolution u(z, t)
of the KAV equation miraculously do not change in time because we have shown
that % = 0 for the KdV equation. However, for the KdV equation it has also been
shown that the time-dependent scattering data can be determined easily from the
initial scattering data only using (14.7.29) with (14.7.26) and (14.7.27):

R(k,t) = R(k,0)e¥*"t ' (14.7.33)
ealt) = ca(0)etnt. (14.7.34)

This method is called the inverse scattering transform. The initial condition
is transformed to the scattering data and the scattering data, satisfy simple time-
dependent linear ordinary differential equation whose solution appears in (14.7.33)
and (14.7.34). The time-dependent solution is then obtained by an inverse scattering
procedure.

It can be shown that the solution of the inverse scattering transform corre-
sponding to a initial condition that is a reflectionless potential with one discrete
eigenvalue yields the solitary wave solution discussed earlier. However, solutions
can be obtained corresponding to initial conditions that are reflectionless poten-
tials with two or more discrete eigenvalues. The corresponding solutions to the
KdV equation are interacting strongly nonlinear solitary waves with exact interac-
tion properties first observed numerically by Zabusky and Kruskal [1965]. We have
been very brief. Ablowitz, Kaup, Newell, and Segur developed a somewhat simpler
procedure, equivalent to (14.7.23) and (14.7.24), which is described (among many
other things) in the books by Ablowitz and Segur [1981] and Ablowitz and Clarkson
[1991].

14.7.5 Nonlinear Schrodinger Equation

When wave energy is focused in one wave number, u(z,t) = A(z, t)e!(koz—w(ko)t) the
wave amplitude of a linear dispersive wave can be approximated by (14.7.6). Small
temporal changes are balanced by small spatial changes. If the underlying physical
equations are nonlinear, small but finite amplitude effects can be developed using
perturbations methods. In many situations, the nonlinearity and spatial dispersion
balance in the following way. The amplitude is said to solve the (cublc) nonlinear
Schrédinger equation (NLS):

A 0A w O2A .
%‘t (ko)-,;-- o é! )—6——1- ,B]A1 A. (14.7.35)

To understand the nonlinear aspects of this equation, first note that there is a
solution with the wave amplitude constant in space: u(z,t) = A(t)e*Foz—w(ko)t) if
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_8? = i8|A|”> A. To solve this differential equation, We let A = re® in which case

by equating the real and imaginary parts, we obtam = fBr? and d’" =0T,
A(t) = roe®®r8t | which corresponds to u(z,t) = 'rue*ﬁ"'v i “’(kﬂ)t). Here the
frequency w(ko, |A|) = w(ko) — B A|*> depends on the amplitude 7o = |A|. It is fairly
typical that the frequency depends on the amplitude of the wave in this way as an
approximation for small wave amplitudes. When spatial dependence is included the
nonlinear dispersive wave equation, (14.7.35) results.

We will show that the NLS has solutions that correspond to an oscillatory trav-
eling wave with a wave envelope shaped like a solitary wave. We let

Alz,t) = r(z, t)et 0@t = p(g, t)eilor—a1),

where r(z,t) is real and represents the amplitude of an elementary traveling wave
with wave number « and frequency (). The wave number « is arbitrary, but we
will determine the frequency (2 corresponding to this solitary wave envelope. Since
Ay = (rg + ior)ede==%) it follows that Azz = (Tog + 2iary — o2r)ei(@@=2) The
real part of the NLS (14.7.35) yields

re + [w' (ko) + aw” (ko)]rs = 0. (14.7.36)
The method of characteristics can be applied to (14.7.36), and it shows that
vkt =rle—ut)
where the wave speed of the solitary wave envelope satisfies
c = w'(ko) + aw’ (ko). (14.7.37)

This shows the magnitude of the complex amplitude stays constant moving with
the group velocity. Since o represents a small perturbed wave number, this is just
an approximation to the group velocity at the wave number kp + . The imaginary
part of the NLS (14.7.35) yields

—Qr + W' (ko)ar = g%(rm — a’r) + Bre.
We can rewrite this as the nonlinear ordinary differential equation
0 =rzq + 67 + 9772, (14.7.38)
where v = _'“(T) and § = —a® + 2% Multiplying (14.7.38) by r, and
integrating yields the energy equation: '
S+ %1+ It = B0

We have chosen F = 0 in order to Iook f01 a wave envelope with the property that
r — ( as ' — oo, The potentlai + is graphed in Fig. 14.7.3. From the




666 Chapter 14. Dispersive Waves

V= 0.56r2 + 0.25~r*
(6 <0,7>0)
f

, Potential

Figure 14.7.3 Potential and phase
portrait for NLS.

potential, the phase portrait (r; as a function of r) is obtained (Fig. 14.7.3), which
shows that a solitary wave (Fig. 14.7.4) only exists if v > 0 [corresponding to
having the same sign as w”(kg)] and § < 0. Here the nonlinearity prevents the wave
packet from dispersing. :

The maximum value of r, the amplitude of the solitary wave envelope, is given
by 12 = —2% = — %w’ '(ko). This equation can be used to determine the frequency
Q if Tmax is known: :

Q= (ko) + il i (;30) o’ — grfmx (14.7.39)
In addition to the frequency caused by the perturbed wave number, there is an
amplitude dependence of the frequency. It can be shown that this wave envelope
soliton with r — 0 as' z — oo for the NLS (14.7.35) is given by

o -6 - i(az—Qt)
A(z,t) = Tmax Sech [1/—w”(kg)rmu(:§ ct)} e 8,

where ) is given by (14.7.39) and c¢ given by (14.7.37). (Note that & and 7yax are
arbitrary.) The real part of A(z,t) is sketched in Fig. 14.7.4. Note that the phase
velocity of the individual waves is different from the velocity of the wave envelope.
These wave envelope solitary waves are known as wave envelope solitons because
of surprising exact nonlinear interaction properties.

Solitary wave
for NLS
tr'lmax

Envelope soliton

from NLS

Figure 14.7.4 Solitary wave for
the amplitude is used to obtain wave
envelope soliton for the NLS equation.
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EXERCISES 14.7

14.7.1. Curved caustic. Near a curved caustic the wave number is approximately
a constant ky = k. = k(&,0) so that the Schrodinger equation (14.7.6)
applies.

(a) From (14.7.7) [assuming R(a) = 1], using the fundamental quadratic
(14.6.22), derive that

e € da.

— 00

X ifa(m—me—w (ke)(t—te)) - ZofEd a? (t—te) — & T o)
A[:L',t)=/ s

To make the algebra easier for (b)—(d) consider
B(z,7) = f T B3 g
—oo

(b) Show that B satisfies a dimensionless form of the Schrédinger equation
B, =—iB,,.
(¢) Show that the quadratic term in the integrand can be transformed
" away by letting § = v — 7, in which case

B(z,7) = eit-72+37) /m el z=)+7°/3] gy
—co

(d) This describes the intensity of \light inside the caustic. The remaining
integral is an Airy function usually defined as

Ai(z) - f =+ /3 gy,

:E;T-— o

Express B(z,7) in terms of an Airy function. (It can be shown that
this Airy function satisfies w” — zw = 0. The asymptotic expansion
for large arguments of the Airy function can be used to show that the
curved caustic (related to the Airy function) separates a region with
two rays from a region with zero rays.)

(e) Determine A(z,t) in terms of the Airy function.
14.7.2. The dispersion relation for water waves is w? = gktanh kh, where g is the

usual gravitational acceleration and h is the constant depth. Determine
the coefficients of the linearized KdV equation that is valid for long waves.

14.7.3. Sketch a phase portrait that shows that periodic and solitary nonlinear
waves exist:
(a) Modified KdV equation: & + 6u?Z2% + g_ig =0

(b) Klein-Gordon equation: -‘?:T';‘ - %j:‘é +u—u?=0
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14.7.4.

14.7.5.

14.7.6.

14.7.7.

*14.7.8,

14.7.9.

14.7.10.

14.7.11.

14.7.12.

Chapter 14. Dispersive Waves

(¢) Sine-Gordon equation:%%" - g_i% +sinu =0

Determine an integral formula for the period of periodic solutions of the
KdV equation. Determine the wave speed in terms of the three roots of
the cubic equation. Periodic solutions cannot be represented in terms of
sinusoidal functions. Instead it can be shown that the solution is related
to the Jacobian elliptic function cn and hence are called cnoidal waves. If
you wish a project, study Jacobian elliptic functions in Abramowitz and
Stegun [1974] or elsewhere.

Derive (using integral tables) the formula in the text for the solitary wave
for

(a) the KAV equation
(b) the nonlinear Schrodinger equation
(c) Modified KdV (see Exercise 14.7.3a) with formula for solution

Using differentiation formulas and identities for hyperbolic functions, verify
the formula in the text for the solitary wave for

(a) the KdV equation

(b) the nonlinear Schrédinger equation

If the eigenfunction satisfies the Schrc'jdinager equation but the time evolu-
tion of the eigenfunction satisfies %% = Pa—i’ + Q¢, show that the equations
are consistent only if @ = —12F and u(z, t) satisfies the partial differential

Refer to Exercise 14.7.7. If P = A+ BA+ C)\? with C constant, determine
A and B and a nonlinear partial differential equation for u(z, ).

Show that Lax’s equation is the Korteweg-de Vries equation for operators L
and M given by (14.7.26) and (14.7.27). [Hint: Compute the compatibility
of (14.7.23) and (14.7.24) directly using (14.7.26) and (14.7.27).]

Using the definitions of the reflection and transmission coefficients in Sec.
10.7, derive (14.7.33). In doing so, you should also derive that v = 4ik3 in
(14.7.27). The bound states are more complicated.

Assume the initial condition for the KdV equation is a reflectionless poten-
tial R(k,0) = 0 with one discrete eigenvalue. Solve the Gelfand-Levitan-
Marchenko integral equation (it is separable) and show that u(z,t) is the
solitary (soliton) wave described earlier.

Generalize Exercise 14.7.11 to the case of a reflectionless potential with two
discrete eigenvalues. The integral equation is still separable. The solution
represents the interaction of two solitons.




