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7.5, Show (by completing square of quadratics) that the minimum of

ff[é{VU}ﬁ - flz.y)U]dA,
R

where U satisfies (6.7.3), occurs when KU =

i.7.6.  Consider a somewhat arbitrary triangle (as illustrated in Figure 6.7,5) with
=(0,0), Py = (L,0); Py = (D, H) and interior angles 8;. The solution on
the triangle will be linear U = a + bx + ¢y.

0.0) = (1.0)

Figure 6.7.5 Triangular finite element.

(a) Show that [[(VU)*dA = (b* + ¢*)5LH.
R

(b) The coefficients a, b, ¢ are determined by the cunditio;)s g.t. the three
vertices U(P;) = U;. Demonstrate that a = Uy b = 27% and ¢ =
Uy = Z(UVa—U1)
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(d) Using Exercise 6.7.4 and parts (a), (b), (¢) of this exelmse show that
for the contribution from this one triangle, K2 = m-— The other

entries of the stiffness matrix follow in this way.

5.7.7. Continue with part {d) of Exercise 6.7.6 to obtain
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Chapter 7

Higher Dimensional
Partial Differential Equations

7.1 Introduction

In our discussion of partial differential equations, we have solved many problems
by the method of separation of variables, but all involved only two independent
variables:

32({_1_82
da?
@ _ k?-@ 9u B 3“
o g 2 a_;
Hu o u &u 9
Por T a("%) ror = Toggm:

In this chapter we show how to extend the method of separation of variables to
problems with more than two independent variables.

In particular, we discuss techniques to analyze the heat equation (with constant
thermal properties) in two and three dimensions,

52 52
(&)}: ke (3’02 + ST;:) (two dimensions) (7.1.1)

62' r)'_) 2
% s (%ﬁ + E’)yg + 27?;) (three dimensions) (7.1.2)

for various physical regions with various boundary conditions. Also of interest will
be the steady-state heat equation, Laplace’s equation, in three dimensions.
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In all these problems, the partial differential equation has at least three indepen-
dent variables. Other physical problems, not related to the flow of thermal energy,
may also involve more than two independent variables. For example, the vertical
disi:;lacenwnt 1 of a vibrating membrane satisfies the two-dimensional wave equation

Pu o (0%u 6211)
e (b?*ayz '

It should also be mentioned that in acoustics, the perturbed pressure u satisfies the
three-dimensional wave equation

2
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We will discuss and analyze some of these problems.

7.2 Separation of the Time Variable

We will show that similar methods can be applied to a variety of problems. We will
hegin by discussing the vibrations of a membrane of any shape, and follow that with
some analysis for the conduction of heat in any two- or three-dimensional region.

7.2.1 Vibrating Membrane: Any Shape

Let us consider the digplacement u of a vibrating membrane of any shape. Later
(Secs. 7.3 and 7.7) we will specialize our result to rectangular and circular mem-
branes. The displacement u(x, y,t) satisfies the two-dimensional wave equation:

2, o2 :
98 _o(ln gy (7.2.1)
at? dr?  Oy?
The initial conditions will be
u(z,y,0) = az,y) (72.2)
%(w}y-..ﬂ) = Blz,y), (7.2.3)

but as usual they will be ignored at first when separating variables. A homoge-
neous boundary condition will be given along the entire boundary; u = 0 on the
boundary is the most common condition. However, it is possible, for example, for
the dispia.cement to be zero on only part of the boundary and for the rest of the
boundary to be “free.” There are many other possible boundary conditions.

Let us now apply the method of separation of variables. We begin by showing
that the time variable can be separated out from the problem for a membrane of
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any shape by seeking product solutions of the following form:

wlz,y, ) = h(t)o{z, y). ‘ (7.2.4)

Here ¢(x,y) is an as yet unknown function of the two variables = and y. We do
not (at this time) specify further ¢(z,y) since we might expect different results
in different geometries or with different boundary conditions. Later, we will show
that for rectangular membranes é(x, y) = F(x)G(y), while for circular membranes
oz, y) = F(r)G(0); that is, the formn of further separation depends on the geometry.
It is for this reason that we begin by analyzing the general form (7.2.4). In fact,
for most regions that are nof geometrically as simple as rectangles and circles,
o(z,y) cannot be separated further. If {7.2.4) is substituted into the equation for a
vibrating membrane, (7.2.1), then the result is

2 o2

N &Fo o _
oz, y)w = ¢h(t) (6'1,‘2 + Ey—i) 2 (7.2.5)

We will attempt to proceed as we did when there were only two independent vari-
ables. Time can be separated from (7.2.5) by dividing by h{t)é(z,y) (and an addi-
tional division by the constant ¢? is convenient):

Lidgih (a% 8%'9)

s\am2 T B —A. (7.2.6)

Ehdi?2 ¢
The left-hand side of the first equation is only a function of time, while the right-
hand side is only a function of space (x and y). Thus, the two (as before) must equal
a separation constant. Again, we must decide what notation is convenient for the
separation constant, A or —A. A quick glance at the resulting ordinary differential
equation for h(t) shows that —) is more convenient {as will be explained). We thus
obtain two equations, but unlike the case of two independent variables, one of the
equations is itself still a partial differential equation:

(1.2.7)

¢ ¢

R —Ad. (7.2.8)

The notation — A for the separation constant was chosen because the time-dependent
differential equation (7.2.7) has oscillatory solutions if A = 0. If A > 0, then
h is a linear combination of sinev'At and cosev/At: it oscillates with frequency
ev/A. The values of A determine the natural frequencies of oscillation of a vibrating
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7.5, Show (by completing square of quadratics) that the minimum of
1 -
[0 - r@wvia,
R
where I satisfies (6.7.3), occurs when KU = F.

i.7.6.  Consider a somewhat arbitrary triangle (as illustrated in Figure 6.7.5) with
Py = (0,0). P; = (L,0); Py = (D, H) and interior angles 8;. The solution on
the triangle will be linear U = a + bz + ¢cp.

Py (D.H)

(0,0 ' (L,0)

Figure 6.7.5 Triangular finite element.

(a) Show that [[(VU)2dA = (b* +c*)3LH.
i

(b) The coefficients a. b, ¢ are determined by the conditions at the three
vertices U(P;} = U;. Demonstrate that a = U b = Qﬂz—l’i, and ¢ =
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(d) Using Exercise 6.7.4 and parts (a), (b), (c) of this exercise, show that
for the contribution from this one triangle, Ky = —m. The other

entries of the stiffness matrix follow in this way.

5.7.7. Continue with part (d) of Exercise 6.7.6 to obtain
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Chapter 7

Higher Dimensional
Partial Differential Equations

7.1 Introduction

In our diseussion of partial differential equations, we have solved many problemns
by the method of separation of variables, but all involved only two independent

variables:
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In this chapter we show how to extend the method of separation of variables to
problems with more than two independent variables.

In particular, we discuss techniques to analyze the heat equation (with constant
thermal properties) in two and three dimensions, :

du ( 8w u

Bt 0 52T W) {two dimensions) (7.1.1)

=T T

du Pu Pu Pu

o = F ( ) {three dimensions) (7.1.2)
for various physical regions with various boundary conditions. Also of interest will
be the steady-state heat equation, Laplace’s equation, in three dimensions,
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In all these problems, the partial differential equation has at least three indepen-
dent variables. Other physical problems, not related to the flow of thermal energy,
may also involve more than two independent variables. For example, the vertical
displacement u of a vibrating membrane satisfies the two-dimensional wave equation

Fu_sidm 0
o2~ \oe? B2/

1t should also be mentioned that in acoustics, the perturbed pressure u satisfies the
three-dimensional wave equation
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We will discuss and analyze some of these problems.

7.2 Separation of the Time Variable

We will show that similar methods can be applied to a variety of problems. We will
begin by discussing the vibrations of a membrane of any shape, and follow that with

some analysis for the conduction of heat in any two- or three-dimensional region. E

7.2.1 Vibrating Membrane: Any Shape

Let us consider the displacement u of a vibrating membrane of any shape. Later
(Secs. 7.3 and 7.7) we will specialize our result to rectangular and circular mem-

branes. The displacement u(z, y,t) satisfies the two-dimensional wave eguation: ;‘ 1
T — 1 -
Pu &u  Ou ) '
| 2 dw ay

The initial conditions will be

Ii

alz,y) (7.2.2)

Blz,y), (7.2.3)

u(x,y,0)

It

du
a {‘T ’ y:.(])

but as usual they will be ignored at first when separating variables. A homoge-
neous boundary condition will be given along the entire boundary; « = 0 on the
boundary is the most common condition. However, it is possible, for example, for
the displacement to be zero on only part of the boundary and for the rest of the
boundary to be “free.” There are many other possible boundary conditions.

Let us now apply the method of separation of variables. We begin by showing
that the time variable can be separated out from the problem for a membrane of
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any shape by seeking product solutions of the following form:

u(z,y,t) = h(t)olz, y). | (7.2.4)

Here ¢(x,y) is an as vet unknown function of the two variables o and y. We do
not (at this time) specify further ¢(z,y) since we might expect different results
in different geometries or with different boundary conditions. Later, we will show
L_hal for rectangular membranes ¢(x, y) = F{z)G(y), while for circular membranes
oz, y) = F(r)G(0); that is, the form of further separation depends on the geometry.
It is for this reason that we begin by analyzing the general form (7.2.4). In fact,
fgr most regions that are mot geometrically as simple as rectangles and circlesi
o{x,y) cannot be separated further. If (7.2.4) is substituted into the equation for a
vibrating membrane, (7.2.1), then the result is

_ d?h 9 & o

(D(CC, y)d—tz- = h.(t) (5&3 T 5‘!;5) i (725}
We will ‘a.l-Lempt to proceed as we did when there were only two independent vari-
a.bles;" Time can be separated from (7.2.5) by dividing by h{t)¢(z,y) (and an addi-
tional division by the constant ¢? is convenient):

] 2 oy
l]cf!z_](8¢:4_6@):_/\_

P 92 | E (7.2.6)

Ahdi2 ¢
The left-hand side of the first equation is only a function of time, while the right-
hand side is only a function of space (x and y}. Thus, the two (as before) nust equal
a separation constant. Again, we must decide what notation is convenient for the
separation constant, A or —A. A quick glance at the resulting ordinary differential
equation for h(t) shows that —X is more convenient (as will be explained). We thus
obtain two equations, but unlike the case of two independent variables, one of the
equations is itself still a partial differential equation: .

(7.2.7)
| 8% 8%
| 52 T vl —Ag. (7.2.8)
l

The notation —A for the separation constant was chosen because the time-dependent
differential equation (7.2.7) has oscillatory solutions il A > 0. If A > 0, then
h is a linear combination of sinev/At and cosev/At; it oscillates with frc(iuency
ev/'A. The values of A determine the natural frequencics of oscillation of a vibrating
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membrane. However, we are not guaranteed that A > 0. To sho\_v _th?}tb)_‘ >t ?._
we must analyze the resulting eigenvalue pmbleu}, (7.2.8), where ¢ is jn(} jec thz
a homogeneous boundary condition along thehentlrc boqndaliyi (e.g.. o = ) ozrtial
boundary). Here the eigenvalue problem itself involves a llne;?,r wmogeneouR [1 o
differential equation. Shortly., we will show that A > 0 by mFroflum'ngl aJL :1. " i '
quotient applicable to (7.2.8). Before analyzing (7.2.8), we will show that it arl

in other contexts.

7 9.2 Heat Conduction: Any Region

We will analyze the flow of thermal energy in any two-dimensional region. We begin
by seeking product solutions of the form

] —
| w(z,y,t) = h(t)o(z,v) || (7.2.9)
L J

tor the two-dimensional heat equation, assuming constant thermal pro;).eftifes arl;d
no sources, (7.1.1). By substituting (7.2.9) into (7.1.1) and after dividing by
kh(t)é(z,y), we obtain

11dh 1 (8% 0% (7.2.10)
Fhdl e \oa? )

A separation constant in the form —A is introduced so that the time-dependent
part of the product solution exponentially decays (if A > 0) as expected, rather
than exponentially grows. Then, the two equations are

[

|| L

| & (7.2.11)
9o 0% .

‘ az2 Oy s

The eigenvalue A relates to the decay rate of the time—rle‘peudm}t pfnt The eige.n-l
{ralue \is determined by the boundary value problem, again consm.tlbng of the par tm
differential equation (7.2.11) with a corresponding boundary condition on the entire
boundary of the region. ‘ _ . ‘ ‘

For heat flow in any three-dimensional region, (7.1.2) is valid. A product solu-
tion,

_—

u(z, v, 2,t) = h{t)o(z, ¥, 2); (7.2.12)

may still be sought, and after separating variables, we obtain equations similar to

et 3 PO 5k ¢ '} = Jocka =

4 e bl
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(7.2.11),
dh
= = —Mkh "
82(‘3 32@ 820 (1213)
I' W o 8_1)‘2 + w = —)\0.
|

The ecigenvalue A is determined by finding those values of A for which nontrivial
solutions of (7.2.13) exist, subject to a homogeneous boundary condition on the

entire boundary.
7.2.3 Summary
In situations described in this section the spatial part ¢(z, y) or ¢z, y. z) of the so-

lution of the partial differential equation satisfies the eigenvalue problem consisting
of the partial differential equation,

V26 = — o, | (7.2.14)

with ¢ satisfying appropriate homogeneous boundary conditions, which may be of
the form [see (1.5.2) and (4.5.5)] '

a+ GV - fi =0, (7.2.15)

where & and 3 can depend on z,y, and z. If 3 =0, (7.2.15) is the fixed boundary
condition. If & = 0, (7.2.15) is the insulated or free boundary condition. If both
a # 0 and § # 0, then (7.2.15) is the higher-dimensional version of Newton’s law
of cooling or the elastic boundary condition. In Sec. 7.4 we will describe general
results for thig two- or three-dimensional eigenvalue problem, similar to our theo-
rems concerning the general one-dimensional Sturm-Liouville eigenvalue problem.
However, first we will describe the solution of a simple two-dimensional eigenvalue
problem in a situation in which é(x,y) may be further separated, producing two
one-dimensional eigenvalue problems.

EXERCISES 7.2

7.2.1. For a vibrating membrane of any shape that satisfies (7.2.1), show that
(7.2.14) results after separating time.

7.2.2. Tor heat conduction in any two-dimensional region that satisfies (7.1.1),
show that (7.2.14) results after separating time.
7.2.3. (a) Obtain product solutions, ¢ = f(x)g(y). of (7.2.14} that satisly ¢ =0

on the four sides of a rectangle. (Hint: If necessary, see Sec. 7.3.)
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(b) Using part (a), solve the initial value problem for a vibrating rectan-
gular membrane (fixed on all sides).

{¢) Using part (a), solve the initial value pr oblem for the two-dimensional
heat equation with zero temperature on all sides.

7.3  Vibrating Rectangular Membrane

i this section we analyze the vibrations of a rectangular membrane, as sketched
in Fig. 7.3.1. The vertical displacement u(z,y, t) of the mwembrane satisfies the
two-dimensional wave equation,

]
Hu 4 &y u | 731
W“’(a‘ﬁ*a—w\ sl
] H
y=H
y=0
z=0 r=5L

Figure 7.3.1 Rectangular membrane.

We suppose that the boundary is given such that all four sides are fixed with zero
displacement:
uf0,y,t) =0 u(z,0,¢) =0 (7.3.2)
u(L,y, t) =10 ufz, H,t) = 0. (7.3.3)

We ask what is the displacement of the membrane at time ¢ if the initial position
and velocity are given:

uw(z,y,0), = ofz,y) (7.3.4)
%ﬁf(m‘ﬂ) = Plz,y). (7.3.5)

As we indicated in See. 7.2.1, since the partial differential equation and the
boundary conditions are linear and homogeneous, we apply the method of separation
of variables. First, we separate only the time variable by seeking product solutions
in the form

u(@,y,t) = h(t)o(z, ). (7.3.6)

cari At

1
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According to our earlier caleulation, we are able to introduce a separation coustant
—A, and the following two equations result:

a2t

—7 = —Ach (7.3.7)
Po o
922 + a_y? = —Ao. (7.3.8)

We will show that A > 0, in which case h{t) is a linear combination of sin ev/At
and coscv/At. The homogencous boundary conditions imply that the cigenvalue
problem is

&Po  Fo _
972 T e = —A¢ (7.3.9)

@(Os y) =0 (D{.,B 0) =0

Lo(Liy)=0  olz.H)=0 (7.3.10)

that is, ¢ = 0 along the entire boundary. We call (7.3.9)-(7.3.10) a two-dimensional
eigenvalue problem.

The eigenvalue problem itsell is a linear homogeneous PDE in two independent
variables with homogeneous boundary conditions. As such (since the boundaries
are simple), we can expect that (7.3.9)-(7.3.10) can be solved by separation of
variables in Cartesian coordinates. In other words, we look for product solutions of
(7.3.9)-(7.3.10) in the form

elz,y) = flz)g(y). (7.3.11)

Before beginning our ca.lculatlons, let us note that it follows from (7.3.6) that our
assumnption (7.3.11) is equivalent to

u(z,y,t) = f(2)g(w)h(t) (7.3.12)

a product of functions of each independent variable. We claim, as we show in
an appendix to this section, that we could obtain the same result by substituting
(7.3.12) into the wave equation (7.3.1} as we now obtain by substituting (7.3.11)
into the two-dimensional eigenvalue problem (7.3.9):

d*g

(y} + f(z v i =Af(z)g(y). (7.3.13)

d.'J
The 2 and y parts may be separated by dividing (7.3.13) by f{z)g(y) and rearrang-
ing ferms:

1d*f 1d%

——= e e - = gy, 3.

Fas oy 7 1! (7.53.14)
Since the first expression is only a function of a, while the second is only a function
of y we introduce a second separation constant. We choose it to be —p so that the
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casily solved equation, d?f/dx® = —pf has oscillatory solutions (as expected) if
o> 0. Two ordinary differential equations result from separation of variables of a
partial differential equation with two independent variables:

\

d*f
| a2 = H

(7.3.15)

(7.3.16)

Equations (7.3.15) and (7.3.16) contain two separation constants A and Ly hOtl"l of
which must be determined. In addition. h(f) solves an ordinary differential equation:

| - W ‘ (7.3.17)

bodez |
When we separate variables for a partial differential equation in three variables,
uw(w,y,t) = fla)g(y)h(t), we obtain three ordinary differential equations, one a
function of each independent coordinate. However, there will be only two separation

constants. .
To determine the separation constants, we need to use the homogeneous bound-

ary conditions (7.3.10). The product form (7.3.11) then implies that

f(O) = 0 and f(L) = 0 S
9(0) 0 and g(H) = O.

OF owr three ordinary differential equations, only two will be eigenvalue problems.
There are homogeneous boundary conditions in z and y. Thus,

f;;{ =—puf with  f(0}=0 and f(L)=0 (7.3.19)

is a Sturm-Liouville eigenvalue problem in the z-variable, where p is the eigenvalue
and f(z) is the eigenfunction. Similarly, the y-dependent problem is a regular
Sturm-Liouville eigenvalue problem:

d*g

= —(A— g with '_q(U) =0 and g(H)=0. (7.3.20)
dy?

Here ) is the eigenvalue and g(y) the corresponding eigenfunct?on.

Not only are both (7.3.19) and (7.3.20) Sturm-Liouville eigenvalue problems,
but they are both ones we should be quite familiar with. Without going through
the well-known details, the eigenvalues are

— (%)2 =123 s (7.3.21)

e s st 7 M AL S o o 1y i AN
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and the corresponding eigenfunctions are

Timr

L

falz) =sin (7.3.22)

This determines the allowable values of the separation constant pu,,.

For each value of y1,,, (7.3.20) is still an eigenvalue problem, There is infinite
number of eigenvalues A for each n. Thus, A should be double subscripted, A,,. In
fact, from (7.3.20) the eigenvalues are

mm 2
Anm — ftn = (%) I (7.3.23)

where we must use a different index to represent, the various y-eigenvalues (for each
value of n). The corresponding y-eigenfunction is

.M
gﬂm(y} = 81 "“F}—J (?324)

The separation constant X, now can be determined from (7.3.23):

may 2 nwy 2 mmy2 | "
)\nm = fn -+ ( H ) = (T) + (F) . ‘ (7520}
where n =1,2,3,. .. and mn = 1,2,3,.... The two-dimensional eigenvalue problem

(7.3.9) has eigenvalues A, given by (7.3.25) and eigenfunctions given by the prod-
uct of the two one-dimensional eigenfunctions. Using the notation d,, (2, ) for the
two-dimensional eigenfunction corresponding to the eigenvalue A,,,,,. we have

| . ) . mMET ., mmy Fr= L B
i ‘;’mn(g'sy) = sl i S H ] :: o= 1r2’3 ‘‘‘‘‘

(7.3.26)

Note how easily the homogeneous boundary conditions are satisfied.

From (7.3.25) we have explicitly shown that all the eigenvalues are positive (for
this problem). Thus, the time-dependent part of the product solutions are (as pre-
viously guessed) sincy/Aumt and cos cy/Aymt, oscillations with natural frequencies
VAm = coy/(na /L2 + (ma/H)E,n =1,2,3,... and m = 1,2,3,.... In consider
ing the displacement u, we have obtained two doubly infinite families of product so-
lutions: sinnwae/L sinmry/H sincy/X,,.t and sinnwez/L sinmry/H cos ey oot
As with the vibrating string, each of these special produet solutions is known as a
mode of vibration. We sketch in Fig, 7.3.2 a representation of some of these modes.
In each we sketch level contours of displacement in dotted lines at a fixed £. As time
varics the shape stays the same, only the amplitude varies periodically, Each mode
is a standing wave. Curves along which the displacement is always zero in a mode
arc called nodal curves and are sketched in solid lines, Cells are apparent with
neighboring cells always being out of phase; that is, when one cell has a positive
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1 : 1 - 1
0.5 05 {5 0.5 o 05
uH 0 /L ulH 0o xfL 7 0o /L

Figure 7.3.2 Nodal curves for modes of a vibrating rectangular membrane.

displacement the neighbor has negative displacement (as represented by the + and
— signs).

The principle of superposition implies that we should consider a linear com-
bination of all pessible product solutions. Thus, we must include both families,
summing over both n and m,

nmw T
ooyt = Z ZA”,,, sin 2% in ; cos ey Ayt \

m= ln_ \'\_ (7327)
—e—z ZB g Iam Y sito ot
1 ] nme H nm
m=1ln=

The two families of coefficients A,,, and B, hopefully will be determined from

%
&
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&
i
|
<
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o

the two initial conditions. For example, u(z, y. 0} = a(z,y) implies that

==3 oc
a(zy) =Y (Z Avioes 81 ”E“’) sin ”;’}y. (7.3.28)

m=1 \n=1

The series in (7.3.28) is an example of what is called a double Fourier series.
Instead of discussing the theory, we show one method to calculate A,,, from
(7.3.28). (In Sec. 7.4 we will discuss a simpler way.) For fired =, we note that
F‘n_l Ay sinnaz/L depends only on m: furthermore, it must be the coefficients
of the Fourier sine series in y of a(x,y) over 0 < y < H. From our theory of Fourier
sine series, we therefore know that we may easily determine the coefficients:

EAnm sin 22 H/ alzr,y) sin J dy. (7.3.29)

for each m. Equation (7.3.29) is valid for all z; the right-hand side is a function of
x (not y, because y is integrated from 0 to H). For each m, the left-hand side is a
Fourier sine series in @; in fact, it is the Fourier sine series of the right-hand side,
Q/Hjn afz,y)sinmry/H dy. The coefficients of this Fourier sine series in @ are
easily deterrnmerl.

|

|

|

g g P . m z 2
A""‘:E_U E/u afx, y)sin H dt — dz. (7.3.30)

This may be simplified to one double integral over the entire rectangular region,
rather than two iterated one-dimensional integrals. In this manner we have deter-
mined one set of coefficients from one of the initial conditions.

The other coefficients B,,, can be determined in a similar way. In particular,
from (7.3.27), Ou/0t(z,y,0) = B(x.y), which implies that

20 oo ;
Ba,y) = 3 3 v/ A Bun sin ”“E“’ sin ”g"’ : (7.3.31)

n=\1 m=

Thus, again using a Fourier sine series in y and a Fourier sine series in 2, we obtain

(7.3.32)

L pH
eV AnmBrm = % /0 ]u A(x,y)sin fr;;ry sin =

e ——

The solution of our initial value problem is the doubly infinite series given by
(7.3.27), where the coefficients are determined by (7.3.30) and (7.3.32).

We have shown that when all three independent variables separate for a partial
differential equation, there results three ordinary differential equations, two of which
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are eigenvalue problems. In general, for a partial differential equation in N variables
that completely separates. there will be N ordinary differential equations, N —1 of
which are one-dimensional eigenvalue problems (to determine the N — 1 separation
constants). We have already shown this for N = 3 (this section) and N = 2.

EXERCISES 7.3

7.3.1.

7.3.2.

Consider the heat equation in a two-dimensional rectangular region 0 < 2 <
LO<y<H,

u _ &u i 0%u

gt~ T\ 9z ' o2
subject to the initial condition

u(z,y,0) = f(z,y).

Solve the initial value problem and analyze the temperature as t — oc if
the boundary conditions are

*(a) u(0,y,8)=0, wu(l,y,t)=0, u(0,¢)=0  ulz,Ht)=0
(b) 50.y,6)=0, Z(L,y,t)=0. Fu(,0,t)=0, Gz, H,)=0

*{e) %E(O, y,t) =0, Q&(L_._ ¥, 1) =0, u(z,0,t)=0, u(z, H,t) =0
(d) u(0,y,8)=0, 5E(L,y,8)=0, F(,0,t)=0, Gi(z,Ht)=0
(e) uw(0y,t)=0 w(l,yt)=0 u{z0,i)=0,

Gu(w, H,t) + hu(z, H,t) = 0, (h>0)

Consider the heat equation in a three-dimensional box-shaped region,
O<az<L, O<y<H 0<z<W,

du_, (Pu Pu_ o
ot \ a2 oy 022

subject to the initial condition Y
u(z,y,2,0) = f(2,y,2).

Solve the initial value problem and analyze the temperature as t — oc if
the boundary conditions are

(E") U.(O, U, Z,t) =0,

g_;(TsOAZt}:O: %%(x-%{) L):'O

u(L.y.z,t) = 0. Ge(w, H,2,1) =0,

* (b) %(01 Y.z, t} = 0! g—:(f‘“- 23 t} — U’ g%(‘r s 0’ t) - 0’
e (L,y,2,t) =0, Bu(x, H,2,t) =0, 3@y, W) =0

ulz,y, W,t) =0

e
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7.3.3

7.3.4.

7.3.5.

7.3.6.

Solve
du &u 8%y
=kt hk—
at dx? dy?
on a rectangle (0 <o < L.0 < y < H) subject to

u0,,8) = 0 5%(x,0.¢)
wl,y.t) = 0 $(a. H.1)

I
o

|
=

Consider the wave equation {or a vibrating rectangular membrane (O<z <
L 0<y<H)
Pu L, (Pu P
=

a2~ \oz Vo2
subject to the initial conditions

Ju

u{z,y,0} =0 and i (T yto) = f(s"y)

Solve the initial value problem if

(@) u(0.9.8)=0, u(l,yt)=0, Fo(z,0,t)=0,. 3z, H.t)=0

*(b) FOyt)=0, SL.y,1)=0, §(2,0)=0, L(z,H t)=0

Consider

3 with & > 0.

(a) Give a brief physical interpretation of this equation.

(b) Suppose that u(z,y,t) = f(z)g(y)h(t). What ordinary differential
equations are satisfied by f, g. and h?

Fu_ g (P, Pu)y _ ou
a2z " \ a2 9y? ot

Consider Laplace’s equation

Pu Pu

V= i S 1 R
8 a2 o dy? i dz2

=0
in a right eylinder whose base is arbitrarily shaped (see Fig, 7.3.3). The top
is z = H and the bottom is z = 0. Assume that
%u(u@y?(}) = 0
ulz,y, H) = f(y)
and 1 = 0 on the “lateral” sides.
(a) Separate the z-variable in general.

*{b) Solve for u(z,y, z) if the region is a rectangular box, 0 < = < L,0 <
y<Wo<z< H,
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Figure 7.3.3

7.3.7.  If possible, solve Laplace’s equation

Pu  Pu Pu
Vz-u.:——i——,{—i——2 =0,
Hpt——dyt——de
in a rectangular-shaped region, 0 < & < L,0 <y < W.0 < z < H, subject
to the boundary conditions

(8) 22(0.4,2) =0, u(z,0,2) =0, u(,3,0) = f(@.y)
u(L,y,2) =0, u(z, W,z) =0, ulz,y, H) =0
(b) w(0,y.2)=0, u(z,0,2z) =0, u(z,y,0) =0,
u(L,y,2) =0, u(z, W, 2) = f(z, 2), u(z,y, H) =0
*(c) 9%(0,y.2) =0, g-—';(a;to._z] =0, g—':(:::,g{,r 0)=0
ULy, 2) = fly.2), Bele,W,2) =0, 94 (2,5 M) = 0
*(d) 22(0,4.2) =0, %}(:c, 0,2) =0, %(w, y,0) =0
u(L,y,z) = g(y, 2), Su(z. W,2) =0, Se(z,y, H)=0

Appendix to 7.3: Outline of Alternative Method to Separate
Variables

An alternative (and equivalent) method to separate variables for

Ju e u
5 =¢? (W*Wj (7.3.33)

is to assume product solutions of the form
u(w, ,t) = (@) ()h(t). (7.3.34)
By substituting (7.3.34) into (7.3.33) and dividing by ¢*f(2)g{y)h(t). we obtain

1 1d?!;_1d2f+1d29_

2hd?  fdz?  gdy®

- (7.3.35)
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after introducing a separation constant —A. This shows that

(7.3.36)
Equation (7.3.35) can be separated further,
enabling a second separation constant —p to be introduced:
(7.3.38)
|
E jyg S Y, (7.3.39)
|

In this way we have derived the same three ordinary differential equations (with
two separation constants).

7.4 Statements and Illustrations of Theorems
for the Eigenvalue Problem V?¢ + \¢ = 0

In solving the heat equation and the wave equation in any two- or three-dimensional
region R (with constant physical properties, such as density), we have shown that
the spatial part ¢(a,y,z) of product form solutions w(x,y,z,t) = &z, y. z)h(t)
satisfies the following multidimensional eigenvalue problem:

V26 + Ap =0, (7.4.1)

with
ap+ N -u =10 (7.4.2)

on the entire boundary. Here a and b can depend on x, y, and z. Equation (7.4.1)
is known as the Helmholtz equation.
Equation (7.4.1) can be generalized to

V- (pV) + o + Ao =0, (7.4.3)
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where p, g and ¢ are functions of z, y, and z. This eigenvalue problem [with
boundary condition (7.4.2)] is directly analogous to the one-dimensional regular
Sturm-Liouville eigenvalue problem. We prefer to deal with a somewhat simpler
case, (7.4.1). corresponding to p = ¢ = 1 and g = 0. We will state and prove results
for (7.4.1). We leave the discussion of (7.4.3) to some exercises (in Sec. 7.5).

Only for very simple geometries (for example, rectangles, see Sec. 7.3, or circles,
see Sec. 7.7) can (7.4.1) be solved explicitly. In other situations, we may have to
rely on numerical treatments. However, certain general properties of (7.4.1) are
quite nseful, all analogous to results we understand for the one-dimensional Sturm-
Liouville problem. The reasons for the analogy will be discussed in the next section.
We begin by simply stating the theorems for the two-dimensional case of (7.4.1) and
(7.4.2):

1. All the eigenvalues are real.

2. There exists an infinite number of eigenvalues. There is a smallest eigen-
value, but no largest one.

3. Corresponding to an eigenvalue, there may be many eigenfunctions (unlike
regular Sturm-Liouville eigenvalue problems).

4. The eigenfunctions ¢(z,y) form a “complete” set, meaning that any piece-
wise smooth function f(x,) can be represented by a generalized-Fourier
series of the eigenfunctions:

f{ma y} i Z aA.é)l(I’ y) E (744)
A ;

Here 3 5 @@y means a linear combination of all the eigenfunctions. The
series converges in the mean if the coeflicients a are chosen correctly.

5. Eigenfunctions belonging to different eigenvalues (A; and Ay) are orthog-
onal relative to the weight o(o = 1) over the entire region K. Mathemat-
ically,

[ igiling 0] X Ny (7.4.5)
R
where ﬂﬂ dr dy represents an integral over the entire region . Fur-
thermore, different eigenfunctions belonging to the same eigenvalue can
be made orthogonal by the Gram-Schmidt process (see Sec. 7.5). Thus,
we may assume that (7.4.5) is valid even if Ay = Ao as long as ¢y, is
independent of ¢, .

6. An eigenvalue A can be related to the eigenfunction by the Rayleigh quo-
tient: )

- —f@qu-ﬁd:c+ﬂR|V¢)I? dx dy

A= T (7.4.6)

The boundary conditions often simplify the boundary integral.
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Here 74 is a unit outward normal and § ds is a closed line integral over the entire
boundary of the plane two-dimensional region, where ds is the differential arc length.
The three-dimensional result is nearly identical; [[ must be replaced by [[[ and the
boundary line integral ¢ ds must be replaced by the boundary surface integral ¢f d.S,
where dS is the differential surface area.

Example. We will prove sowe of these statements in Sec. 7.5. To understand
their meaning, we will show how the example of Sec. 7.3 illustrates most of these
theorems. For the vibrations of a rectangular (0 < = < L, 0 < y < H) membrane
with fixed zero boundary conditions, we have shown that the relevant eigenvalue
problem is

Vigp+Ap=0
¢(0.y) =0 ¢(x,0)=0 (7.4.7)
#(L,y)=0 o(z,H)=0.

We have determined that the eigenvalues and corresponding eigenfunctions are

nwy? T 2!?;:1,2;3,.,. . ; _ o hmE | may
/\nm = (T) (F) | m=123,... with (:’nm(flfs‘y} = 8ln I s1in —H i
(7.4.8)

1. Real eigenvalues. In our calculation of the eigenvalues for (7.4.7) we as-
sumed that the eigenfunctions existed in a product form. Under that assump-
tion, (7.4.8) showed the eigenvalues to be real. Our theorem guarantees that
the eigenvalues will always be real.

2. Ordering of eigenvalues. There is a doubly infinite set of eigenvalues for
(7.4.7), namely A\ = (nw/L)? + (ma/H)? for n = 1,2,3,... and m =
1,2,3,.... There is a smallest eigenvalue, Ayy = (7/L)* + (w/H)?, but no
largest eigenvalue.

3. Multiple eigenvalues. For VZ¢ 4 A¢ = 0, our theorem states that, in gen-
eral, it is possible for there to be more than one eigenfunction corresponding
to the same eigenvalue. To illustrate this, consider (7.4.7) in the case in which

L =2H. Then 5
- 2 2
’\nvn. = m ('ﬂ: 4+ dm ) (749)
with P nwT  mmy (7.4.10
Gran = 510 7 8IN —7= -4.10}

We note that it iz possible to have different eigenfunctions corresponding to
the same eigenvalue. For example, n =4, m =1 and n = 2, m = 2, yield the

same eigenvalue:
41 = Aga = 0
A X\ )
1 22 LH2
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H ‘ H — 1
!
n=2 n=4
m= E m=1
!
|
|
L=2H L=2H

Figure 7.4.1 Nodal curves for eigenfunctions with the same
cigenvalue (symmetric),

For n = 4, m = 1, the eigenfunction is ¢4 = sindnz/2H sinwy/H, while
for n = 2, m = 2, ¢po = sin2xx/2H sin2xy/H. The nodal curves rorQ;hcse

el"f‘l‘lful'iLLlOllb are sketched in Flg 7.4.1. They are different cigenfunctions

with the same eigenvalue, A = (7?/4H?)20. It is not surprising that the
eigenvalue is the same, since a membrane vibrating in these modes has cells
of the same dimensions: one H x H/2 and the other H/2 x H. By symmetry
they will have the same natural frequency (and hence the same eigenvalue
since the natural frequency is ¢v/A). In fact, in general by symmetry [as well
as by formula (7.4.9)] Aiznym = Afzmin

Hyomme——— Hl it !

n= n=7
m=4d m=72

L=2H L=2H

Figure 7.4.2 Nodal curves for eigenfunction with the same
eigenvalue (asymmetric).

However, it is also possible for more than one eigenfunetion to oceur for rea-
sons having nothing to do with :.symmetr}', For example, n = 1, m = 4
and n = 7, m = 2 yield the same eigenvalue: Ay = App = (w2/4H?)65.
The corresponding eigenfunctions are ¢4 = sinwx/2H sindzy/H and ¢7e =
sin Tra/2H sin 2%y H , which are sketched in Fig. 7.4.2. Tt is only coincidental
that both of these shapes vibrate with the same [requency. In these situations,
it is possible for two eigenfunctions to correspond to the same eigenvalue. We
can find sitnations with even more multiplicities (or degeneracies). Since
/\1.-| — )\72 == {?TQ/‘le}ﬁﬁ, it is also true that Agg = )\[}_4}4 = (ﬁ2/4H2)QGU

7.4.
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However, by symmetry Asg = A16)1 and Agyqyq = Agz. Thus,

i
Azs = Mgy = Aqwapa = Asr = (4H2) 260.

Here there are four eigenfunctions corresponding to the same eigenvalue,

da. Series of eigenfunctions. According to this theorem, (7.4.4). the cigenfune-

44

tions of V2@ + Ad = 0 can always be used to represent any piecewise smooth
function f{z,%). In owr illustrative example, (7.4.7). 3, becomes a double

SUIL,
o0 2a o- 9 ‘JT
Flz,y) ~ Z Z sin ”}I"" (7.4.11)

. Orthogonality of eigenfunctions. We will show that the multidimensional

orthogonality of the eigenfunctions. as expressed by (7.4.5) for any two dif-
ferent eigenfunctions, can be used to determine the generalized Fourier coeffi-
clents in (7.4.4).) We will do this in exactly the way we did for one-dimensional
Sturm-Liouville eigenfunction expansions. We simply multiply (7.4.4) by ¢,
and integrate over the entire region R:

]/ for, dudy=""ay [/ o0y, da dy. (7.4.12)
i L

Since the eigenfunctions are all orthogonal to each other (with weight 1 be-
cause V2¢ + A¢ = 0), it follows that

[[ fon, de dy = ay, /f o3, der dy. (7.4.13)
R

Y fp R dedy

or, equivalently,

(7.4.14)

There is uo difficulty in forming (7.4.14) from (7.4.13) since the denominator
of (7.4.14} is necessarily positive.

For the special case that occurs for a rectangle with fixed zero bound-
ary conditions, (7.4.7), the generalized Fourier coefficients a,,,, are given by
(7.4.14):

. fuL Fla. y) sin 225 sin 228 dr dy
ST sin? 222 gin? mAY o gy

The integral in the denominator may be easily shown to equal (L/2)(H/2) by
calculating two one-dimensional integrals; in this way we rederive (7.3.30). In

npm =

(7.4.15)

If there is more than one eigenfunction corresponding to the same eigenvalue, then we assume
that the eigenfunctions have been made orthogonal (if necessary by Lhe Gram-Schmidt process).
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this case, (7.4.11), the generalized Fourier coefficient ap,, can be evaluated in
two equivalent ways:

(a) Using one two-dimensional orthogonality formula for the eigenfunctions
of V26 + Ao =0
(b) Using two one-dimensional orthogonality formulas
4b. Convergence. As with any Sturm-Liouville eigenvalue problem (see Sec.

5.10). a finite series of the eigenfunctions of V% 4+ Aé = 0 may be used
to approximate a function f{z,y). In particular, we could show that if we

measure error in the mean-square sense, T

2
E;f!(f—;a,@,\) dz dy, (7.4.16)

with weight function 1, then this mean-square error is minimized by the co-
efficients ay being chosen by (7.4.14), the generalized Fourier coefficients. It
is known that the approximation improves as the number of terms increases.
Furthermore, F — 0 as all the eigenfunctions are included. We say that the
series Y, a0, converges in the mean to Fi

EXERCISES 7.4

7.4.1.  Consider the eigenvalue problem

Vip+Ap=0
20y = 0 @0 =0
%(Ly) = 0 ¢zH) = 0.

*#(a) Show that there is a doubly infinite set of eigenvalues.

(b) If L = H, show that most eigenvalues have more than one eigenfunc-
tion.

(¢} Derive that the eigenfunctions are orthogonal in a two-dimensional
sense using two one-dimensional orthogonality relations,

7.4.2. Without using the explicit solution of (7.4.7), show that A > 0 from the
Rayleigh quotient, (7.4.6).

7.4.3. 1If necessary, see Sec. 7.5:

(a) Derive that [[(uV?v — vV?u)dz dy = §(uVv — vVu) - # ds.
(b) From part (a), derive (7.4.5).

7.4.4. Derive (7.4.6). If necessary, see Sec. 7.6. [Hint: Multiply (7.4.1) by ¢ and
integrate. |

AL A et e i S

i B s 1

st dac s o

e AL . i I s

7.5. Multidimensional Self-Adjoint Operators 205
7.5 Green’s Formula, Self-Adjoint Operators and
Multidimensional Eigenvalue Problems

Introduction. In this section we prove some of the properties of the multidi-
mensional eigenvalue problem:

V2 + Ao =0 | (7.5.1)

]

with

Bio+ BVe A =0 (7.5.2)

on the entive boundary. Here 37 and 3, are real functions of the location in space.
As with Sturm-Liouville eigenvalue problems, we will simply assume that there is
an infinite number of eigenvalues for (7.5.1) with (7.5.2) and that the resulting set of
eigenfunctions is complete. Proofs of these statements are difficult and beyond the
intent of this text. The proofs for various other properties of the multidimensional
eigenvalue problem are quite similar to corresponding proofs for the one-dimensional
Sturm-Liouville eigenvalue problem. We let

L=V2 (7.5.3)
in which case the notation for the multidimensional eigenvalue problem becomes
L{g) + A¢ = 0. (7.5.4)

By comparing (7.5.4) to (7.4.3), we notice that the weight function for this multi-
dimensional problem is expected 1o be 1.

Multidimensional Green’s formula. The proofs for the one-dimen-
sional Sturm-Liouville eigenvalue problem depended on wl{v)—vL(w) being an exact
differential (known as Lagrange’s identity). The corresponding integrated form
(known as Green's formula) was also needed. Similar identities will be derived for
the Laplacian operator, I = V2, a multidimensional analog of the Sturm-Liouville
differential operator. We will caleulate ul(v) — vL{u) = uV?v — vV%u. We recall
that V?u = V - (Vu) and V- (aB) = aV - B + Va- B (where a is a scalar and B a
vector). Thus,

V- {uVy) = uVir+ Vu-Vu (15.5)

V- -(vVu) = vViu+ Ve Vi L
By subtracting these,

uVi — vV =V - (uVe — vVu). (7.5.6)
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The differential form, (7.5.6), is the multidimensional version of Lagrange's identity,
{5.5.7). Instead of integrating from a to b as we did in one-dimensional problems,

we integrate over the entire two-dimensional region \

ﬂh (uV? —vV?u) dz dy = ﬁ V- (uVv —vVu) dv dy.
R R

The right-hand side is in the correct form to apply the divergence theorem (recall
that JfR V-Adxdy= SEA -7 ds). Thus,

lll_ = ==
‘ [[ (uV:’t; — Vi) da dy = j{ (uVv — vVu) - 7 ds. I‘ (7.5.7)
" |
L 1

Equation (7.5.7) is analogous to Green’s formula, (5.5.8). It is known as Green’s
second identity,? but we will just refer to it as Green’s formula.

We have shown that [ = V2 is a multidimensional self-adjoint operator in the
following sense:

If u and v are any two functions, such that

. fj [uV?v — vV?u] da dy = 0. (7.5.9)

|I
{(uv-v — vVu)-f ds =0, (7.5.8) \
|
|
s |

I
‘< then
|I
l

where L = V2. l
=55

In many problems, prescribed homogeneous boundary conditions will cause the
boundary term to vanish. For example, (7.5.8) and thus (7.5.9) is valid if v and v
both vanish on the boundary. Again for three-dimensional problems, JI must be
replaced by [[f and § must be replaced by 4.

Orthogonality of the eigenfunctions . As with the one-dimensional
Sturm-Liouville eigenvalue problem, we can prove a munber of theorems directly
from Green’s formula (7.5.7). To show eigenfunctions corresponding to different
eigenvalues are orthogonal, we consider two eigenfunctions ¢ and ¢y corresponding
to the eigenvalues Ay and Ag:

Vi, +Mér = 0 or L) +Mér = 0
; (7.5.10)
V2h + Aads = 0 or L(da)+ e = 0
2 Green’s fivst identily arises from integrating (7.5.5) [vather than (7.5.6)! with v = u and

applying the divergence theoren.
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%f both ¢ and ¢ satisfy the same homogeneous boundary conditions, then (7.5.8)
is satisfied, in which case (7.5.9) follows. Thus

R

f {(—1A202 + @2 @) dr dy = (A — o) ff@"ﬁéz da dy = 0.
R

If Ay # Ag, then
/701@2 dx dy =0, (7.5.11)
R

which means that eigenfunctions corresponding to different eigenvalues are orthog-
onal (in a multidimensional sense with weight 1). If two or more eigenfunctions
correspond to the same eigenvalue, they can be made orthogonal to each other (as
well as all other eigenfunctions) by a procedure shown in the appendix of this section
known as the Gram-Schmidt method.

Wje can now prove that the eigenvalues will be real. The proof is left for an
exercise since the proof is identical to that used for the one-dirmensional Sturm-
Liouville problem (see Sec. 5.5).

EXERCISES 7.5

7.5.1.  The vertical displacement of a nonuniform membrane satisfies
Pu 2 8*u 1 )
at? 8z 92 )’

where ¢ depends on @ and y. Suppose that @ = 0 on the boundary of an
irregularly shaped membrane.

(a) Show that the time variable can be separated by assuming that
u(z, y,t) = ¢(z, y)h(t).
Show that ¢(z,y) satisfies the eigenvalue problem
V¢ + Ao(z,y)é = 0 with ¢ =0 on the boundary. (7.5.12)
What is oz, y)?

(b) If the eigenvalues are known (and A > 0), determine the frequencies of
vibration.

7.5.2.  See Exercise 7.5.1. Consider the two-dimensional eigenvalue problem given
in (7.5.12).

(a) Prove that the eigenfunctions belonging to different eigenvalues are
orthogonal (with what weight?).

(b) Prove that all the eigenvalues are real.

(¢) Do Exercise 7.6.1.
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Redo Exercise 7.5.2 if the boundary condition is instead

{(a) V¢ A =0 on the boundary

(b} V¢ - A+ hiz,y)¢ = 0 on the boundary

(¢} = 0 on part of the boundary and Vé -7 = 0 on the rest of the

boundary

Consider the heat equation in three dimensions with no sources but with
nonconstant thermal properties

Ju
Cpa

where ¢p and Ky are functions of 2, y, and z. Assume that v = 0 on the
houndary. Show that the time variable can be separated by assuming that

=V- {KOV-u,),

u(z,y, 2, t) = é(x,y, 2)h(t).
Show that ¢(z,y, z) satisfies the eigenvalue problem
V- (pVe) + Ao(x,y,z)¢ =0 with ¢ =0 on the boundary. (7.5.13)
What are o(x,y, z) and p(z,y,2)?

See Fxercise 7.5.4. Consider the three-dimensional eigenvalue problem given
n (7.5.13).

(a) Prove that the eigenfunctions belonging to different eigenvalues are
orthogonal (with what weight?).

(b) Prove that all the eigenvalues are real.
(¢} Do Exercise 7.6.3.

Derive an expression for
j [uL(v) —vL(u)]dx dy

over a two-dimensional region R, where

L=V?%+q(zy) fie. Llu)=Vu+q(x yul.

Consider Laplace’s equation V?u = 0 in a three-dimensional region I
(where u is the temperature). Suppose that the heat flux is given on the
boundary (not. necessarily a constant).

(a) Explain physically why f Vu-# dS = 0.

(b) Show this mathematically.

b ] e

e

1l A

e

Shnrh

7.5. Multidimensional Self-Adjoint Operators 299

7.5.8. Suppose that in a three-dimensional region R
V20 = f(z,9,2)
with f given and Vé - #i = 0 on the boundary.

(a) Show mathematically that (if there is a solution)

ff f dz dy dz = 0.

b) Briefly explain physically (using the heat flow model} why condition
¥
{(a) must hold for a solution. What happens in a heat flow problem if

f] [ dz dy dz > 07
i

7.5.9. Show that the boundary term (7.5.8} vanishes if both u and v satisfy (7.5.2):

(a) Assume that fy # 0.
(b) Assume J; = 0 for part of the boundary.

Appendix to 7.5: Gram-Schmidt Method

We wish to show in general that eigenfunctions corresponding to the same eigen-
value can be made orthogonal. The process is known as Gram-Schmidt orthog-
onalization. Let us suppose that ¢, s, ..., ¢y are independent eigenfunctions
corresponding to the same eigenvalue. We will form a set of n-independent eigen-
functions denoted v, %, ..., 1, which are mutually orthogonal, even if ¢1,...,¢,
are not. Let ¢ = ¢ be any one eigenfunction. Any linear combination of the eigen-
functions is also an eigenfunction (since they satisfy the seme linear homogeneous
differential equation and boundary conditions). Thus, ¥ = ¢2 + ¥ is also an
eigenfunction (automatically independent of 41}, where ¢ is an arbitrary constant.
We choose ¢ so that ws = @5+ et is orthogonal to 14: ﬂ R Y 1e do dy = 0 becomes

/ (@2 + i)y dz dy = 0.
R

¢ is uniquely determined:

— [f5 ¢2vn dx dy
W97 de dy
Since there may be more than two eigenfunctions corresponding to the same eigen-

value, we continue this process.
A third eigenfunction is 1 = g3 + c1; + covie, where we choose ¢ and ¢2 so

c= (7.5.14)

that b3 is orthogonal to the previous two: H r¥s ( :1] ) da dy = 0. Thus,
b

/[ (@3 + c1thy + cat) ( Y e dy = 0.
Ve i
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However, 19 is already orthogonal to iy, and hence

1l
o

[[p o3ty de dy+ e1 [[vf dz dy

ffR O3 de dy + ez [[ vE dx dy

Il
=

easily determining the two constants. This process can be used to determine n -

orthogonal eigenfunctions. In general,

S (Daosb de dyy
Vi Z (W) b

i=1

We have shown that even in the case of a multiple eigenvalue. we are always able
to restrict our attention to orthogonal eigenfunctions, if necessary by this Gram-
Schinidt construction.

7.6 Rayleigh Quotient and Laplace’s Equation

7.6.1 Rayleigh Quotient

In Sec. 5.6 we obtained the Rayleigh quotient, for the one-dimensional Sturm-
Liouville eigenvalue problem. The result was obtained by multiplying the differen-
tial equation by ¢, integrating over the entire region, solving for A, and simplifying
using iutegration by parts. We will derive a similar result for

V2p+ A¢ = 0. (7.6.1)

We proceed as before by multiplying (7.6.1) by ¢. Integrating over the entire two-
dimensional region and solving for A yields

= .ﬂn GV do dy
o a0t dedy (7.6.2)

Next, we want to generalize integration by parts to multidimensional functions.
Integration by parts is based on the product rule for the derivative, d/dz(fg) =
[ dg/da + g df /dz. Instead of using the derivative, we use a product rule for the
divergence, V- (fg) = fV-g+g-Vf. Letting f = ¢ and g = V¢, it follows that
V- (¢V@) = oV - (Vo) + V¢ - V. Since V- (Vo) = V26 and Vo - Vo = |Vo|?,

¢ Vo=V -(¢ Vo) - Vo[> (7.6.3)

Using (7.6.3) in (7.6.2) yields an alternative expression for the eigenvaluc,

[ [a V- (6V9) dx dy+ [ [ |V de dy

A
J Jr¢® dz dy

(7.6.4)
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Now we use (again] the divergence theorem to evaluate the first integral in the
numerator of (7.6.4). Since [, V- A de dy = § A- A ds, it follows that

—f@V@ -fi ds —:—/ [Vé!? du dy
.5 i

//02 dr dy '
I- M

el

known as the Rayleigh quotient. This is quite similar to the Rayleigh quotient for
Sturm-Liouville eigenvalue problems. Note that there is a boundary contribution
for each: —po d(_f),fd;l:li for (5.6.3) and — § oV o - 7 ds for (7.6.5).

Example. We consider any region in which the boundary condition is ¢ = 0
on the entire boundary. Then ¢ V¢ - # ds = 0, and hence from (7.6.5), A > 0. If
A =0, then (7.6.5) implies that

0= [/ |Vo|® da dy. (7.6.6)
R
Thus.
. O¢s Do
Vo = o ayj =0 (7.6.7)

everywhere. From (7.6.7) it follows that d¢/dx = 0 and d¢/dy = 0 everywhere.
Thus, ¢ is a constant everywhere, but since ¢ = 0 on the boundary, ¢ = 0 every-
where. ¢ = 0 everywhere is not an eigenfunction, and thus we have shown that
A =0 is not an eigenvalue. In conclusion, A = 0.

7.6.2 Time-Dependent Heat Equation and Laplace’s
Equation

Equilibrium solutions of the time-dependent heat equation satisfy Laplace’s equa-
tion. Solving Laplace’s equation V3¢ = 0 subject to homogencous boundary con-
ditions corresponds to investigating whether X = 0 is an eigenvalue for (7.6.1).

Zero temperature boundary condition. Consider V2¢ = 0 sub-

ject to @ = 0 along the entire boundary. It can be concluded from (7.6.6)

that ¢ = 0 everywhere inside the region (since A = 0 is not an eigenvalue).
For an object of any shape subject to the zero temperature boundary condition on
the entire boundary, the steady-state (equilibrium) temperature distribution is zero
lemperature, which is somewhat obvious physically. For the time-dependent heat
equation %—‘; = kV?u, (7.6.1) arises by separation of variables, and A > 0 (from
the Rayleigh quotient) proves that u(x,y.t) — O0as t — oc, the time dependent
temperature approaches the equilibrium temperature distribution for large time.
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Insulated boundary condition. Consider V2¢ = 0 subject to
V¢ -7 = 0 along the entire boundary. It can be concluded from (7.6.6)
that ¢ = ¢ —arbitrary constant everywhere inside the region (since A =0
is an eigenvalue and ¢ = ¢ is the eigenfunction). The constant equilibrium solution
can be determined from the initial value problem for the time-dependent diffusion
{heat) equation %—'; = kV?u. The fundamental integral conservation law (see
Section 1.5) using the entire region is & [[udzdy = k§ Vu - fuds = 0, where
we have used the insulated boundary condition. Thus, the total thermal energy
[ [ wdzdy is constant in time, and its equilibrium value (t — o0), [ [ edx dy = cA,
equals its initial value (¢ = 0), [[ f(z.y)dedy. Inthisway, c= & [ [ f(a,y) dv dy,
so that the constant equilibrium temperature with insulated boundaries must be
the average of the initial temperature distribution. Here A is the area of the two-
dimensional region. For the time-dependent heat equation with insulated boundary
conditions, it can be shown that u(z,y,t) — ¢ = % [ [ f(z,y) dedyas t — oo since
A = 0 (with ¢ = 1 corresponding to A = 0 from the Rayleigh quotient) (i.e., the
time-dependent temperature approaches the equilibrium temperature distribution
for large time).

Similar results hold in three dimensions.

EXERCISES 7.6

7.6.1. See Exercise 7.5.1. Consider the two-dimensional eigenvalue problem with
a =0
V3¢ Aoz, y)¢ = 0 with ¢ = 0 on the boundary.

(a) Prove that A = 0.
(b) Is A = 0 an eigenvalue, and if so, what is the eigenfunction?
7.6.2. Redo Exercise 7.6.1 if the boundary condition is instead

(a) V¢ -7 =0 on the boundary
(b) Vg -f+ h(z.y)é = 0 on the boundary

(¢) ¢ = 0 on part of the boundary and V¢ - fi = 0 on the rest of the
boundary

7.6.3. Redo Exercise 7.6.1 if the differential equation is
V- (pVe) + Aolz,y,2)9 =0
with boundary condition

(a) ¢ =0 on the boundary
(b) V¢ - #a =0 on the boundary

7.6.4.  (a) If V¢ = 0 with ¢ = 0 on the boundary. prove that ¢ = 0 everywhere.
(Hint: Use the fact that A = 0 is not an eigenvalue for VZ¢ = —Ag.)
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(b) Prove that there cannot be two different solutions of the problem
Viu = f(z,y,2)

subject to the given boundary condition u = g{z,y. z) on the boundary.
[Hint: Consider uy — up and use part (a).]

7.7 Vibrating Circular Membrane
and Bessel Functions

7.7.1 Introduction

An interesting application of both one-dimensional (Sturm-Liouville) and multidi-
mensional eigenvalue problems occurs when considering the vibrations of a circular
membrane. The vertical displacement u satisfies the two-dimensional wave equa-
tion,

PDE: | — = ¢?V?u. (7.7.1)

The geometry suggests that we use polar coordinates, in which case u = u(r, 8,1).
We assume that the membrane has zero displacement at the circular boundary,

r=a
BC: | u(a.8,t) =0. i (7.7.2)

ey P .

The initial position and velocity are given:

I ou(r,8,0) = afr0)

10:F & (7.7.3)
) ]
| 50,0) = B(,0).

7.7.2 Separation of Variables

We first separate out the time variable by secking product solutions,

ulr,,t) = o(r, O)N(t). (7.7.4)
Then, as shown carlicr, h(f) satisfies
12} 2
i . (7.7.5)

dt?
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where )\ is a separation constant. From (7.7.5). the natural frequencies of vibration
are ev/A (if A > 0). In addition, ¢(r,d) satisfies the two-dimensional eigenvalue
problem

V26 + Ao =0, (7.7.6)

with ¢ = 0 on the entire boundary, r = a:
o(a,6) =0 T.7.7)

We will attempt to obtain solutions of (7.7.6) in the product form appropriate
for polar coordinates,

o(r,0) = F(r)g(6), (7.7.8)
since for the circular membrane 0 < r < @, —7 < ¢ < «. This is equivalent
to originally seeking solutions to the wave equation in the form of a product of
functions of each independent variable, u(r,6,t) = f{(r)g(@)h(t). We substitute
(7.7.8) into (7.7.6); in polar coordinates V¢ = 1/r 8/dr(r 8¢ /0r) +1/r* 820 /06,
and thus V2¢ + Ad = 0 becomes

0.4 (,4) () &g

st o A REE =0, (7.7.9)

r and 0 may be separated by multiplying by 72 and dividing by f(r)g(8):

1d’¢ »d [ df 9
e = —— == |+ A = 7.7.10
gdez ~ Jar ( dr B {1y
We introduce a second separation constant in the form p because our experience
with circular regions (see Secs. 2.4.2 and 2.5.2) suggests that g(#) must oscillate in
order to satisfy the periodic conditions in #. Our three differential equations, with
two separation constants, are thus

d*h
e S0 G
e Acth ( )

2
g@g = —itg (7.7.12)

L4 ( df 2 =
[ o (f.- d-r) + (M2 —p) f=0. (7.7.13)
|

Two of these equations must be eigenvalue problems. However, ignoring the initial
conditions, the only given boundary condition is f(a) = 0, which follows from
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u(a,,t) = 0 or ¢{a,8) = 0. We must remember that —7 <f <7 and 0 <r < a.
Thus, both § and 7 are defined over finite intervals. As such there should be
boundary conditions at both ends. The periodic nature of the solution in  implies

that
g(—m} = g(m) (7.7.14)
dy d .
d—;{—?r) = a%(ﬁ)‘ (7.7.15)

We already have a condition at » = a. Polar coordinates are singular at r = 0;
a singularity condition must be introduced there. Since the displacement must be
finite, we conclude that

IF(0)] < oc.

7.7.3 Eigenvalue Problems (One Dimensional)

After separating variables, we have obtained fwo eigenvalue problems. We are
quite familiar with the f-eigenvalue problem, (7.7.12) with (7.7.14) and (7.7.15).
Although it is not a regular Sturm-Liouville problem due to the periodic boundary
conditions, we know that the eigenvalues are

m =m%, m=0,1,2,.... (7.7.16)

The corresponding eigenfunctions are both
g(0) = sinmf# and g(0) = cosmb, (7T
although for m = 0 this reduces to one eigenfunction (not two as for m # 0). This
eigenvalue problem generates a full Fourier series in #, as we already know. m is

the number of crests in the #-direction.
For each integral value of m, (7.7.13) helps to define an eigenvalue problem for A:

[

| ?,% (T;i{) P =0 (7.7.18)

[

fla)=0 | (7.7.19)

|F(O)} < oc. I (7.7.20)
L

Since {7.7.18) has nonconstant coefficients, it is not surprising that (7.7.18) is some-
what difficult to analyze. Equation (7.7.18) can be put in the Sturm-Liouville form
by dividing it by r:

_‘ | % (r%) + (/\?‘ = m;) f=0, (7.7.21)
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or Lf + Arf =0, where L = d/dr (r d/dr) — m?/r. By comparison to the general
Sturm-Liouville differential equation,

dx

d d
T [P(T)—Q] + g0+ Ao =10,

with independent variable r, we have that = = r, p(r) = r, o(r) = r, and g(r) =
—m?/r. Our problem is not a regular Sturm-Liouville problem due to the behavior
at the origin (r = 0):

1. The boundary condition at r = 0, {7.7.20), is not of the correct form.

2. p{r) =0 and o{r) =0 at r = 0 (and hence is not positive everywhere).

3. q(r) approaches oo as v — 0 [and hence g(r) is not continuous] for m # 0.

However, we claim that all the statements concerning regular Sturm-Liouville prob-
lems are still valid for this important singular Sturm-Liouville problem. To begin
with there are an infinite number of eigenvalues (for each m). We designate the
eipenvalues as A, where m=0,1,2, ... and n =1,2,..., and the eigenfunctions
Sfom (7). For each fized m, these eigenfunctions are orthogonal with weight r [see
(7.7.21)], since it can be shown that the boundary terms vanish in Green’s formula
(see Exercise 5.5.1). Thus,

('3
f Finny frang? dr =0 for ng # ng. (7.7.22)
0

Shortly, we will state more explicit facts about these eigenfunctions.

7.7.4 Bessel’s Differential Equation

The r-dependent separation of variables solution satisfies a “singular” Sturm-Liou-
ville differential equation, (7.7.21). An alternative form is obtained by using the
product rule of differentiation and by multiplying by »r:

re d*f + ,Q + (M2 —m2) f=0. (7.7.23)

There is some additional analysis of (7.7.23) that can be performed. Equation
(7.7.23) contains two parameters, m and A. We already know that m is an integer,
but the allowable values of A are as vet unknown. It would be quite tedious to
solve numerically (7.7.23) for various values of A (for different integral values of m).
Instead, we might notice that the simple scaling transformation,

| z =0, (7.7.24)

il
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removes the dependence of the differential equation on A:

| 2255 + i +(2-m2) f=0. ' (7.7.25)
!
L

We note that the change of variables (7.7.24) may be performed® since we showed
in Sec. 7.6 from the multidimensional Rayleigh quotient that A > 0 (for V2¢ +
A@ = 0) anytime ¢ = 0 on the entire boundary, as it is here. We can also show
that A > 0 for this problem using the one-dimensional Rayleigh quotient based
on (7.7.18)-(7.7.20) (see¢ Exercise 7.7.13). Equation (7.7.25) has the advantage
of not depending on A; less work is necessary to compute solutions of (7.7.25)
than of (7.7.23). However, we have gained more than that since (7.7.25) has been
investigated for over 150 vears. It is now known as Bessel’s differential equation
of order m.

7.7.5 Singular Points and Bessel’s Differential Equation

In this subsection we briefly develop some of the properties of Bessel's differential
equation. Equation {7.7.25) is a second-order linear differential equation with vari-
able coefficients. We will not be able to obtain an exact closed-form solution of
(7.7.25) snvolving elementary functions. To analyze a differential equation, one of
the first things we should do is search for any special values of z that might cange
some difficulties. z = 0 is a singular point of (7.7.25).

Perhaps we should define a singular point of a differential equation. We refer to

the standard form: 5

% + a{z)%z +b(z)f =0.
If @(z} and b(z) and all their derivatives are finite at z = zp, then z = z; is called
an ordinary point. Otherwise, z = zg s a singular point. For Bessel's differential
equation, a(z) = 1/z and b(z) = 1 —m?/2z%. All finite! z except z = 0 are ordinary
points. z = 0 is a singular point [sinece, for example, a(0} does not exist].

In the neighborhood of any ordinary point, it is known from the theory of differ-
ential equations that all solutions of the differential equation are well behaved e,
F{z) and all its derivatives exist at any ordinary point]. We thus are guaranteed
that all solutions of Bessel's differential equation are well behaved at every finite
point except possibly at z = 0. The only diffieulty can ocenr in the neighborhood of
z = 0. We will investigate the expected behavior of solutions of Bessel’s differential
equation in the neighborhood of z = 0. We will describe a erude (but important)
approximation. If z is very close to 0, then we should expect that z%f in Bessel's

31n other problems, if A = 0, then the transformation (7.7.24) is invalid. However, (7.7.24) is
unnecessary for A = 0 since in this case (7.7.23) becomes an equidimensional equation and can be
solved (as in Sec. 2.5.2).

AWith an appropriate definition, it can be shown that z = oc is not an ordinary point for
Bessel’s differential equation.
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differential equation can be ignored, since it is much smaller than m?f.% We do

not ignore z% d?f/dz? or z df /dz because although z is small, it is possible that

derivatives of f are large enough so that z df/dz is as large as —m?f. Dropping
If

22 f yields 2

2 d°f ‘
a valid approximation near z = 0. The advantage of this approrimation is that
(7.7.26) is exactly solvable, since it is an equidimensional {also known as a Cauchy
or Euler) equation (see Sec. 2.5.2). Equation (7.7.26) can be solved by seeking
solutions in the form

—-m?f =0, (7.7.26)

f= 25 (7.7.27)

By substituting (7.7.27) into (7.7.26) we obtain a quadratic equation for s,
s{s—1)+s—m? =0, (7.7.28)
known as the indicial equation. Thus, 5> = m?, and the two roots (indices)

are s = =m. If m s 0 (in which case we assume m > 0), then we obtain two
independent approximate solutions.

Faz™ and Faz™ dms0), (7.7.29)

However, if m = 0, we only obtain one independent solution f = z¥ = 1. A second
solution is easily derived from (7.7.26). If m = 0,
A d [ df

Z @ T ZE =] or ZE )

Thus, z df /dz is constant and, in addition to f = 1, it is also possible for f == Inz.

In summary, for m = 0, two independent solutions have the expected behavior near

il

f=1 and f=Ilnz (m=0). (7.7.30)

The general solution of Bessel's differential equation will be a linear combination

of two independent solutions, satisfying (7.7.29) if m # 0 and (7.7.30) if m = 0.

We have only obtained the expected approximate behavior near z = 0. More will

be disenssed in the next subsection. Because of the singular point at z = 0, it is

possible for solutions not to be well behaved at z = 0. We see from (7.7.29) and

(7.7.30) that independent solutions of Bessel's differential equation can be chosen

such that one is well behaved at z = 0 and one solution is not well behaved at z =0
mote that for one solution lim._.g f(z) = $oc].

7.7.6 Bessel Functions and Their Asymptotic Properties
(near z = 0) '

We continue to discuss Bessel's differential equation of order m
q b

JAB2f  df
2 2 2
2= =t 2 =m =10. 7.7.31
a4 (&-m?) f (7.7.31)
SEven if tn = 0, we still claim that 2% f ean be neglected near z = 0 and the result will give a
reasonable approximation.

2| P | e s o b e ) B v,
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As motivated by the previous discussion, we claim there are two types of solutions.
solutions that are well behaved near z = 0 and solutions that are singular at z =
0. Different values of m yield a different differential equation. Its corresponding
solution will depend on m. We introduce the standard notation for a well-behaved
solution of (7.7.31), Jy,(z}, called the Bessel function of the first kind of order
m. In a similar vein, we introduce the notation for a singular solution of Bessel's
differential equation, ¥;,(z), called the Bessel function of the second kind of
order m. You can solve a lot of problems using Bessel’s differential equation by
just remembering that Y, (z) approaches =oc as z — 0.

The general solution of any linear homogeneous second-order differential equa-
tion is a linear combination of two independent solutions, Thus, the general solution
of Bessel’s differential equation (7.7.31}) is

f = c1dm(2) + c2¥im(2). | (7.7.32)

Precise definitions of J,,(z) and Y,,(z) are given in Sec. 7.8. However, for our
immediate purposes, we simply note that they satisfy the following asymptotic
properties for small z (z — 0):

1 m=20
J’Fn(z} ~ 1 m } 0
YF?‘, _z 'fn
RE (7.7.33)
Zlnz m =10
Yin(z) ~
e i m > 0.

It should be seen that (7.7.33) is consistent with our approximate behavior, (7.7.29)
and (7.7.30). We see that J,,(z) is bounded as z — 0 whereas Y,,,(2) is not.

7.7.7 Eigenvalue Problem Involving Bessel Functions

In this section we determine the eigenvalues of the singular Sturm-Liouville problem

(mn fixed):
L8 +(,\._ﬁ Feal (7.7.34)
ar \" ar R B eyl
(7.7.35)
(7.7.36)
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By the change of variables z = v/Ar, (7.7.34) becomes Bessel's differential equation,

SHAf df

etz (2 -—m?)f=0

deQ_zdz_(z Jf .
The general solution is a linear combination of Bessel functions, f = e¢;J,,(z) +
c2Y7,(2). The scale change implies that in terms of the radial coordinate r.

[ f= ey I (V) + ea Y (V). (7.7.37)

Applying the homogeneoué boundary conditions (7.7.35) and (7.7.36) will determine
the eigenvalues. f(0) must be finite. However, ¥;,(0) is infinite. Thus, ¢; = 0,
implying that

A
[ =cdn(VAr). [ (7.7.38)

Thus, the condition f(a) = 0 determines the eigenvalues:

Jn(VAa) = 0. (7.7.39)

We see that v/Aa must be a zero of the Bessel function J,,(2). Later in Sec. 7.8.1,
we show that a Bessel function is a decaying oscillation. There is an infinite number
of zeros of each Bessel function J,,(z). Let z,,, designate the nth zero of J,,(z).
Then

VAa=zmn OF Amn = (%)2. (7.7.40)

For each m, there is an infinite number of eigenvalues, and (7.7.40) is analogous to
X = (nw/L)?, where n are the zeros of sin a.

Example. Consider Jy(z), sketched in detail in Fig. 7.7.1. From accurate ta-
bles, it is known that the first zero of Jy(z) is z = 2.4048255577. ... Other zeros
are recorded in Fig. 7.7.1. The eigenvalues are Agn, = (zon/a)?. Separate tables of
the zeros are available. The Handbook of Mathematical Functions (Abramowitz and
Stegun [1974]) is one source. Alternatively, over 700 pages are devoted to Bessel
functions in A Treatise on the Theory of Bessel Functions by Watson [1995].

FEigenfunctions. The eigenfunctions are thus
-
Jln ('v' /\Hlﬂ-r) = Jm (zlﬂ‘ﬂ a) s (7<7.41)

form =0,1,2,...,n = 1,2,.... For each m, these are an infinite set of eigenfunc-
tions for the singular Sturm-Liouville problem, (7.7.34)-(7.7.36G). For fired m they
are orthogonal with weight r [as already discussed, see (7.7.22)]:

f " (\/mr) T (\/ﬁr) rdr=0, p#aq. (7.7.42)
0 L
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Figure 7.7.1 Sketch of Jo(z) and its zeros.

It is known that this infinite set of eigenfunctions (m fixed) is complete. Thus, any
piecewise smooth function of r can be represented by a generalized Fourier series of
the eigenfunctions:

afr) = i T (mr) ; (7.7.43)
n=1

where m is fixed. This is sometimes known as a Fourier-Bessel series. The
coefficients can be determined by the orthogonality of the Bessel functions (with
weight 7):
" Jo o} m (v Amnr) r dr (7.7.44)
Iy I8 (VAmnr) v dr o
This illustrates the one-dimensional orthogonality of the Bessel functions. We

omit the evaluation of the normalization integrals [\ J2 (v Apnr) 7 dr (e.g., see
Churchill [1972] and Berg and McGregor [1966]).

7.7.8 Initial Value Problem for a Vibrating Circular
Membrane

The vibrations u(r, 9, t) of a circular membrane are described by the two-dimensional
wave equation, (7.7.1), with u being fixed on the boundary, (7.7.2), subject to the
initial conditions (7.7.3). When we apply the method of separation of variables, we
obtain four families of product solutions, u(r.6,t) = f(r)g(8)h(t):

cosmb cos e/ Amnt -
Jm (\a‘ /\mnr) { } { SillC\/mt } . I.7,45)

sinmf
To simplify the algebra, we will assume that the membrane is initially at rest,
O
a(r, 6,0) = B(r,0) = 0.

Thus, the sincyAp,t terms in (7.7.45) will not be necessary. Then according to
the principle of superposition, we attempt to satisfy the initial value problem by
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considering the infinite linear combination of the remaining product solutions:

u(r,8,t) = Z Zﬂmn.}m (\/ /\m"r) cosmb cos ey Apnt

i (7.7.46)
+ Z ZB""‘J’" (v Amnr) sinmé cos cv/ At
m=1n=1

The initial position u{r, 8, 0) = a(r,d) implies that

alr,0) = i (“ Anndm (\/ n-r)) cosmé

n=1

I Z (Z BT ( mﬂ?)) sinmé. (7.7.47)

By properly arranging the terms in (7.7.47), we see that this is an ordinary Fourier
series in @. Their Fourier coefficients are Fourier-Bessel series (note that m is fixed).
Thus, the coeflicients may be determined by the orthogonality of J,, (\,«U\mnr) with
weight » [as in (7.7.44)]. As such we can determine the coeflicients by repeated
application of one-dimensional orthogonality. Two families of coeflicients A,,,, and
Bn (including m = 0) can be determined from one initial condition since the
periodicity in € yielded two eigenfunctions corresponding to each eigenvalue.
However, it is somewhat easier to determine all the coeflicients using two-
dimensional orthogonality. Recall that for the two-dimensional eigenvalue problem,

Vi + Agp =0

with ¢ = 0 on the circle of radius a, the two-dimensional eigenfunctions are the
doubly infinite families

dalr, 0) = J(\/)\—,) { cos mo }

sinmé

Thus,
0) =" Axga(r,0), (7.7.48)
A

where 3, stands for a summation over all eigenfunctions [actually two double sums,
including both sinm@ and cosmf as in (7.7.47)]. These eigenfunctions ¢y (r, )
are orthogonal (in a two-dimensional sense) with weight 1. We then immediately
caleulate Ay (representing both A,,, and B,

J [ alr, 0)a(r,8) dA
JJé3(r.0)dA

Here dA = v dr dfl. In two dimensions the weighting function is constant. However,
for geometric reasons dA = r dr dff. Thus. the weight r that appears in
the one-dimensional orthogonality of Bessel functions is just a geometric
factor.

Ay = (7.7.49)

e M e
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7.7.9 Circularly Symmetric Case

In this subsection, as an example, we consider the vibrations of a circular membrane,
with @ = 0 on the circular boundary, in the case in which the initial conditions are
cirenlarly symmetric (meaning independent of ). We could consider this as a
special case of the general problem, analyzed in Sec. 7.7.8. An alternative method,
which vields the same result, is to reformulate the problem. The symmetry of the
problem, including the initial conditions suggests that the entire solution should be
circularly symmetric; there should be no dependence on the angle 6. Thus,

18 ( du . Ju
u=ulr,t) and Vu= 5 (T‘E) since o5 = 0.

The mathematical formulation is thus

9w 20 u
(7.7.51)
| u(r0) = a(r) !
IC: | | (7.7.52)
du
S0 = a0)

We note that the partial differential equation has two independent variables. We
need not study this problem in this chapter, which is reserved for more than two
independent variables. We could have analyzed this problem earlier. However, as
we will see, Bessel functions are the radially dependent functions, and thus it is
more natural to discuss this problem in the present part of this text.

We will apply the method of separation of variables to (7.7.50)-(7.7.52). Looking
for product solutions,

ul{r, £} = @(r)h(t), (7.7.53)
yields
1 1d%h 1 d dep
e % 7.7.54
Ehdi2  rédr ( dr ) (Feriot)

where — A is introduced because we suspect that the displacement oscillates in time.
The time-dependent equation,
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has solutions sinev/At and cosev/At if A > 0. The cigenvalue problem for the
geparation constant is

% ( j") FAré=0 (7.7.55)
(a) = 0 (7.7.56)
|&(0)] < . (7.7.57)

Since (7.7.55) is in the form of a Stuwrm-Liouville problem, we immediately know that
eigenfunctions corresponding to distinet eigenvalues are orthogonal with weight ».

From the Rayleigh quotient we could show that A > 0. Thus, we may use the
transformation

2=V, (7.7.58)
in which case (7.7.55) becomes
d ( do T ; 2‘52‘5 dg =
= (ZE) +zHp=0 or g Tagt2 @ =0. (7.7.59)

We may recall that Bessel's differential equation of order m is

d*
2 i
otz d—+(z —m?) ¢ =0, (7.7.60)

with solutions being Bessel functions of order m, J,,,(2) and Y, (2z). A comparison
with (7.7.60) shows that (7.7.59) is Bessel's differential equation of order 0. The
general solution of (7.7.59) is thus a linear combination of the zeroth-order Bessel
funetions:

&= Ju(z) + Cng(Z) = CIJU (V/Xf') + CzYQ ('\/X?”) 3 (7761)
in terms of the radial variable. The singularity condition at the origin (7.7.57) shows
that ez = 0, since Y; (\/Xr) has a logarithmic singularity at r = 0:

6= 1y (ﬁr) : (7.7.62)

Finally, the eigenvalues are determined by the condition at r = a, (7.7.56), in which
case

& (ﬁa) 3 (7.7.63)

Thus, vAe must be a zero of the zeroth Bessel function. We thus obtain an infinite
number of eigenvalues, which we label Ay, Ag, .. ..

SRINPIWL. L MG TN i
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We have obtained two infinite families of product solutions

Ju( /\"r) siney/ Apt and Jg( )\,Lr) cosc\/xt.

According to the principle of superposition, we seek solutions to our original prob-
lem, (7.7.50)—(7.7.52} in the form

[

=0
Z Anr) cos e/ At LLbuJU (Vs ?)SIICﬂf (7.7.64)

n=1

As before, we determine the coefficients a, and b, from the initial conditions.
u(r,0) = a(r) implies that

alr) = iaﬂ.fu (\/K»r) ; (7.7.65)
n=]

The coefficients a,, are thus the Fourier-Bessel coefficients (of order 0) of a(r). Since
Jo (\b\nr) forms an orthogonal set with weight , we can casily determine a,,

f a(r)Jo (VAnr) r dr ’
fJﬂ “1 rdr

In a similar manner, the initial condition 8/8t u(r,0) = 8(r) determines b,,.

EXERCISES 7.7

(7.7.66)

iy =

*¥7.7.1. Solve as simply as possible:

with u(a,0,t) = 0, u(r,6,0) = 0, and $%(r,6,0) = a(r)sin 36.

7.7.2. Solve as simply as possible:
ou
o2

with initial conditions

o
= 2V2%u subject to a—:(a., 8,t)=0

(a) wu(r,0,0) =0, }%(r 0,0) = B(r) cos 50
(b) wufr, 6,0} =0, e(r,8,0) = B(r)

(¢} u(r,®,0)=a(rd), g—‘;(r, 8,0)=0

*(d) u(r,8,0) =0, Z2(r,0,0) = B(r,9)




iy by

7.7.6.

Tedit
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Consider a vibrating quarter-circular membrane, 0 < r < 0.0 < § < 7/2,
with u = 0 on the entire boundary.
#(a) Determine an expression for the frequencies of vibration,

(b) Solve the initial value problem if

u(r,0,0) = g(r,0),  S4(.0.0) =0

Consider the displacement w(r, 0,1) of a “pie-shaped” membrane of radius
a (and angle 7/3 = 60°) that satisfies

2
ot?

Assume that A > 0. Determine the natural frequencies of oscillation if the
boundary conditions are

(a) u(r,0,t) =0, u{r,x/3,t)= %“;(a, 0,t)=0
(b) u(r,0,t) =0, u{r,7/3,t) =0, u(a,8,t)=0

= 2V

Consider the displacement u(r,#,t) of a membrane whose shape is a 90°
sector of an anmulus, a <+ < 0,0 < § < 7/2, with the conditions that u = 0
on the entire boundary. Determine the natural frequencies of vibration.
Consider the circular membrane satisfying

ST

= 2%

subject to the boundary condition
17,
wla,0,t) = —6—?((L,9,t).

(a) Show that this membrane only oscillates.
(b) Obtain an expression that determines the natural frequencies.

(c¢) Solve the initial value problem if

a
w(r,0,0) = 0, a—?(r,@,[}) = a(r) sin 3.
Solve the heat equation '
du 2
'(;j; = AV L

inside a circle of radius a with zero temperature avound the entire boundary,
it initially

u(r,8,0) = f(r,6).
Briefly analyze lim, . u(r, 0, ). Compare this to what you expect to occur
using physical reasoning as { — oc.

R ——

i i 1l

wid

7.7. Vibrating Circular Membrane and Bessel Functions 317

*7.7.8.

7.7.9.

*7.T0.

Taflls

T2

T3

Reconsider Exercise 7.7.7, but with the entire boundary insulated.

Solve the heat equation
ou
at
inside a semicircle of radius a and briefly analyze the lim;_, . if the initial
conditions are

EVu

u(r, 8,0} = f(r,8)

and the boundary conditions are

(a) u(r,0,) =0, u(r,w,t) =0, 24(a,0,t) =0
*#(b) 2%(r,0.1) =0, % (r,m,t) =0, S(a,0,t) =0
(c) 5¥(r,0,t)=0, Sh(r,m,t) =0, u(a,0,t) =0
(d) w(r,0,t) =0, ufr,w,t) =0, u(a, 8.t) =0

Solve for u{r,t) if it satisfies the circularly symmetric heat equation

Ou_,10 ( du
ot Trar\ or

subject to the conditions

u(a,t) = 0
u(r,0) = f(r).

Briefly analyze the limy .
Reconsider Exercise 7.7.10 with the boundary condition

e
a{a, £ =0.

For the following differential equations, what is the expected approximate
behavior of all solutions near z = 07

*(a) 2254 4 (z — 6)y =0 (b) 22%% 4 (2?4 B)y=0

(d) x2%§ +(r+a?)g —dy =0

2

6) PGHr(@+iy=0

*(c) J;Qﬁ—_:’é + (x —I—mg)% +dy =10

*(e) 2254 — du G + (6 +2%)y =0

Using the one-dimensional Rayleigh quotient, show that A > 0 as defined
by (7.7.18)(7.7.20).
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7.8 More on Bessel Functions

7.8.1 Qualitative Properties of Bessel Functions

It is helpful to have some understanding of the sketch of Bessel functions. Let us
rewrite Bessel's differential equation as

f (1 B -mz) _14 (78.1)

dz? z2 zidz

in order to compare it with the equation describing the motion of a spring-mass
system (unit mass, spring “constant” k and frictional coefficient c):

d?y L dy
EE = —ky — L—d—t“.
The equilibrium is y = 0. Thus, we might think of Bessel's differential equation as
representing a time-varying frictional force (¢ = 1/t) and a time-varying “restoring”
force (k = 1-m?/t?). The latter force is a variable restoring force only for ¢ > m(z >
m). We might expect the solutions of Bessel's differential equation to be similar to
a damped oscillator (at least for z > m). The larger z pets, the closer the variable
spring constant k approaches 1 and the more the frictional force tends to vanish.
The solution should oscillate with frequency approximately 1, but should slowly
decay. This is similar to an underdamped spring-mass system, but the solutions
to Bessel's differential equation should decay more slowly than any exponential
since the frictional force is approaching zero. Detailed numerical solutions of Bessel
funetions are sketched in Fig. 7.8.1, verifying these points. Note that for small z,

r

2
Jo(z) = 1 Y.;,(g) =S = Inz

2
N(z)= 3z Yi(2)= —;z"] (7.8.2)
-7 ~ L2y - _é -2
2(2) b2 Yala) a2
These sketches vividly show a property worth memorizing: Bessel functions
of the first and second kind look like decaying oscillations. In fact, it is

known that J,, (z) and Y, (z) may be accurately approximated for large z by simple
algebraically decaying oscillations for large z

jr_ 1} l
Jinlz) ~ x/%coﬁ (z— g ¥mg) as z — 00 |

; ' (7.8.3)
Yiu(z) ~ \/ = sin (z - g = m%) as z — 0o,

These are known as asymptotic formulas, meaning that the approximations improve
as z — oo. In Sec. 5.9 we claimed that approximation formulas similar to (7.8.3)
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Figure 7.8.1 Sketch of various Bessel functions.

always exist for any Sturm-Liouville problem for the large eigenvalues A 3 1. Here
A > 1 implies that 2 » 1 since z = VArand 0 < r < a (as long as r is not too
small).

A derivation of (7.8.3) requires facts beyond the scope of this text. However,
information such as (7.8.3) is readily available from many sources.® We notice
from (7.8.3) that the only difference in the approximate behavior for large z of all
these Bessel functions is the precise phase shift. We also note that the frequency
is approximately 1 (and period 2m) for large z, consistent with the comparison
with a spring-mass system with vanishing friction and & — 1. Furthermore, the
amplitude of oscillation, 1/2/7z, decays more slowly as z — oc than the exponential
rate of decay associated with an underdamped oscillator, as previously discussed
qualitatively.

7.8.2  Asymptotic Formulas for the Eigenvalues

Approximate values of the zeros of the eigenfunctions J,,(z) may be obtained using
these asymptotic formulas, (7.8.3). For example, for m = 0, for large z

Jo(z) ~ V%(:()s (z — -Z—) ;

The zeros approximately occur when z — 7/4 = —x /2 + s7, but s must be large (in
order for z to be large}. Thus, the large zeros are given approximately by

1
Zeeq (s — I) : 7.8.4)

for large integral s. We claim that formula (7.8.4) becomes more and more accurate
as i inereases. In fact, since the formula is reasonably accurate alveady forn = 2 or 3

O A personal favorite, highly recommended to students with a serious interest in the applications
of mathematics to science and engineering, is Handbook of Mathernatical Functions, edited by
M. Abramowitz and 1. A. Stegun, originally published inerpensively by the National Burean of
Standards in 1964 and in 1974 veprinted by Dover in paperback.
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Table 7.8.1: Zeros of Ju(z)

Large z formula Percentage
n Zon Fxact (7.8.4) Error error 20n = Zo(n~1)
1z, 2.40483 ... 2.35610 0.04864 2.0 =
2 oz 552008 ... 5.49779 0.02229 0.4 3.11525
3 =z B.6937T3 ... 8.63938 0.01435 0.2 3.13365
4 oz 11.79153 ... 11.78097 0.01156 0.1 3.13780

(sce Table 7.8.1), it may be unnecessary to compute the zero to a greater accuracy
than is given by (7.8.4). A further indication of the accuracy of the asymptotic
formula is that we see that the differences of the first few eigenvalues are already
nearly 7 (as predicted for the large eigenvalues).

7.8.3 Zeros of Bessel Functions and Nodal Curves

We have shown that the eigenfunctions are Jo, (vVAnnr) where Ann = (Zmn/a)’,
Zmn being the nth zero of J,,(z). Thus, the cigenfunctions are

T
Jru (zmn_“) .
(¢4
¢

For example, for m = 0, the eigenfunctions are Jo(zp,r/a), where the sketch of
Jo(z) is reproduced in Fig. 7.8.2 (and the zeros are marked). As r ranges from 0
to @, the argument. of the eigenfunction Jy{2g,r/a) ranges from 0 to the nth zero,
Zome Ab T = a, z = zop, the nth zero. Thus, the nth eigenfunction has n — 1 zeros
in the interior. Although originally stated for regular Sturm-Liouville problems, it
is also valid for singular problems (if eigenfunctions exist).

L/ B

T Z{]‘Z ~O}\ zﬂ 7 z:'tz rla
\ / /‘ (h

j:8

i .7 I——
0 2 4 6 8 10 12 14

Figure 7.8.2 Sketch of Jo{z) and its zeros.

The separation of variables solution of the wave equation is

U(T:S| t) e f(f')g(ﬂ)h(f),

s

o by

by i 8
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Figure 7.8.3 Normal nodes and nodal curves for a vibrating circular membrane.

where

) " Lom sinmf sin ey Ayt
u(r,ﬁ', t) =Jm (Am-n ;) { cos il } { cos me } ! (78‘5)

known as a normal mode of oscillation and is graphed for fixed ¢ in Fig. 7.8.3. For
each m 7 0 there are four families of solutions (for m = 0 there are two families).
Each mode oscillates with a characteristic natural frequency, cv/A,. At certain
positions along the membrane, known as nodal curves, the membrane will be
unperturbed for all time (for vibrating strings we called these positions nodes).
The nodal curve for the sinmf mode is determined by

r
T (znm ) sinmf = 0. (7.8.6)
(43
The nodal curve consists of all points where sinmf = 0 or J,, (201 /a) = 0: sinmé

is zero along 2m distinct rays, # = sw/m.s = 1,2,...,2m. In order for there to
be a zero of J,(zmar/a) for 0 < 1 < a, zy,r/a must equal an earlier zero of
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In(z), Zmarfe = zmp.p = 1,2,...,n— 1. There are thus n — 1 circles along which
Jm(zZmnr/a) = 0 besides r = a. We illustrate this for yn = 3, n = 2 in Fig. 7.8.3,
where the nodal circles are determined from a table.

7.8.4 Series Representation of Bessel Functions

The usual method of discussing Bessel functions relies on series solution methods
for differential equations. We will obtain little useful information by pursuing this
topic. However, some may find it helpful to refer to the formulas that follow.

First we review some additional results concerning series solutions around z = 0
for second-order linear differential equations:

“!2 (z) - b(z)f = 0. (7.8.7)

Recall that z = 0 is an ordinary point if both a(z) and b{z) have Taylor series
around z = 0. In this case we are gnaranteed that all solutions may be represented
by a convergent Taylor series,

= Z an2" = ag+ a1z + agz® + - --
=0

at least in some neighborhood of z = 0.

If z = 0 is not an ordinary point, then we call it a singular point (e.g., z =0
is a singular point of Bessel’s differential equation). If z = 0 is a singular point,
we cannot state that all solutions have Taylor series around z = 0. However, if
a(z) = R(z)/z and b(z) = S(z)/z* with R(z) and S(z) having Taylor series, then
we can say more aboul solutions of the differential equation near z = 0. For this case
known as a regular singular point, the coefficients a(z) and b(z) can have at worst
asimple pole and double pole, respectively. 1t is possible for the coefficients a(z) and
b(z) not to be that singular. For example, if a(z)} = 1 + z and b(z) = (1 — 23)/22,
then z = 0 is a regular singular point. Bessel's differential equation in the form
(7.8.7) is

a2
s SR SR S e
‘ zdz e z2 vk
Here R(z) = 1 and §(2) = z%—m?; both have Taylor series around z = 0. Therefore,
= () is a regular singular point for Bessel's differential equation.

For a regular singular point at z = 0: it is known by the method of Frobenius

that at least one solution of the differential equation is in the form

f =g Z st (7.8.8)
n=0

that is, z! times a Taylor series, where p is one of the solutions of the quadratic
indicial equation. One method to obtain the indicial equation is to substitute f = 27

b o i L il AT
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into the corresponding equidimensional equation that results by replacing R(z) by
R(0) and S(z) by S{0). Thus

plp—1)+-R(0)p+S(0)=0

is the indicial equation. If the two values of p (the roots of the indicial equation)
differ by a noninteger, then two independent solutions exist in the form (7.8.8).
If the two roots of the indicial equation are identical, then only one solution is in
the form (7.8.8) and the other solution is more complicated but always involves
logarithms. If the roots differ by an integer, then sometimes both solutions exist
in the form (7.8.8). while other times form (7.8.8) only exists corresponding to the
larger root p and a series beginning with the smaller root p must be modified by
the introduction of logarithms. Details of the method of Frobenius are presented in
most elementary differential equations texts.
For Bessel's differential equation, we have shown that the indicial equation is

plp—1)+p—m? =0,

since R(0) = 1 and S(0) = —m*. Its roots are +m. If m = 0, the roots are
identical. Form (7.8.8) is valid for one solution, while logarithms must enter the
second solution. For m # 0 the roots of the indicial equation differ by an integer,
Detailed calculations also show that logarithms must enter. The following infinite
series can be verified by substitution and are often considered as definitions of J,, (z)
and Y, (2):

i z;z}ﬂn—m

Q)
T t,‘ G (7.8.9)
2 1% (m— k— 1)!(z/2)%—m
}/m(z) = b= (IOI:, 2 =1 "}‘) Jm,( ) = 'é' Z ]
i k=0 ; (7.8.10)

pIEES
(—1)%+1 [o(k) + @k + m)] '.E:%.i}_ Wl

+
B2 =
1

where
(i) wk) =1+3+44+ -+ 1/k ¢(0)=0
(i) v = limg_c[pw(k) —Ink] = 0.5772157. .., known as Euler's constant.
(iii) Fm =0, S0 =0.

We have obtained these from the previously mentioned handbook edited by Abra-
mowitz and Stegun.

EXERCISES 7.8

7.8.1.  The bhoundary value problem for a vibrating annular membrane 1 < ¢ < 2
(fixed at the inner and outer radii) is

df m? -
Pl

with f(1) =0 and f(2) =0, where mn =0,1.2,....
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Tisid:

7.8.3.

7.8.4.

7.8.5.

Chapter 7. Higher Dimensional PDEs

{a) Show that X > 0.

#*(b) Obtain an expression that determines the eigenvalues.

¢) Using a trial function, obtain an upper bound for the lowest eigenvalue.

)
)
() For what value of m does the smallest eigenvalue occur?
) Obtain an upper and lower bound for the smallest eigenvalue.
)
)

(
(f) Compute approximately the lowest eigenvalue from part (b) using ta-
bles of Bessel functions. Compare to parts (d) and (e).

Consider the temperature u(r, #.¢) in & quarter-circle of radius o satisfying

i S o o
T EV u
subject to the conditions
u{r,0,t) = 0 wufa,@,t) = 0
u(r,w/2,t) = 0 u(r6,00 = G(r8).

(2) Show that the boundary value problem is

d ( df L _
E(ra;)J.-(z\a SFE
with f(a} =0 and f(0) bounded.

(b) Show that A = 0 if jp = 0.

(¢) Show that for each p, the eigenfunction corresponding to the smallest
eigenvalue has no zeros for 0 < v < a.

*(d) Solve the initial value problem.
Reconsider Exercise 7.8.2 with the boundary conditions

du Qu s =
_(T!Uit)_ol “3_6(’353

- t) =0, ula,d,t)=0.

Consider the boundary value problem

d df m?
| e L -
dr (?dr)-F( £ r)‘f o
with f(a) = 0 and f(0) bound(-;d, For eacly integral m, show that the nth

eigenfunction has n — 1 zeros for 0 < » < a.

Using the known asymptotic behavior as z — 0 and as z — oc, roughly
sketch for all =z > 0

z) (b) Yi(z) (c) Yo(z)
z (e) Ys(z2) (F) Jaf2)

A e i
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7.8.6.

*7.8.8.

T80,

7.8.10.

7.8.11.

7.8.12.

7.8.13.

Determine approximately the large frequencies of vibration of a circular
membrane.

Consider Bessel's differential equation

Let f = y/z'/2. Derive that

d? 1
i +y (1 + Zz_z - ??122:_2) =1.

dz?

Using Exercise 7.8.7, determine exact expressions for J, /2(z) and Y7 5(z).
Use and verify (7.8.3) and (7.7.33) in this case.

In this exercise use the result of Exercise 7.8.7. If 2 is large, verify as much
as possible concerning (7.8.3).

In this exercise use the result of Exercise 7.8.7 in order to improve on (7.8.3):
(a) Substitute y = ¢*w(z) and show that

Pw  _dw oy |
= F 21'—& + j—w =0, where v = 1 —m?,

422 dz 22

(b) Substitute w = Y7, fnz7".
surning that 8y = 1).

Determine the first few terms g, (as-

(¢) Use part (b) to obtain an improved asymptotic solution of Bessel's
differential equation. For real solutions, take real and imaginary parts.

(d} Find a recurrence formula for #,. Show that the series diverges,
(Nonetheless, a finite series is very useful.)

In order to “understand” the behavior of Bessel's differential equation as
z — oo, let z = 1/z. Show that z = 0 is a singular point, but an irregular
singular point. The asymptotic solution of a differential equation in the
neighborhood of an irregular singular point is analyzed in an unmotivated
way in Exercise 7.8.10. For a more systematic presentation, see advanced
texts on asymptotic or perturbation methods (such as Bender and Orszag
[1999].)] :

The lowest eigenvalue for (7.7.34)(7.7.36) for m = 0 is A = (24 /a)?. De-
termine a reasonably accurate upper bound by using the Rayleigh quotient

with a trial function. Compare to the exact answer.

Explain why the nodal civeles in Fig. 7.8.3 are nearly equally spaced.




326 Chapter 7. Higher Dimensional PDEs

7.9 Laplace’s Equation in a Circular Cylinder

7.9.1 Introduction

Laplace’s equation.
Vi =0, (7.9.1)

represents the steady-state heat equation (without sources). We have solved La-
place’s equation in a rectangle (Sec. 2.5.1) and Laplace’s equation in a circle (Sec.
2.5.2). In both cases, when variables were separated, oscillations occur in one
direction, but not in the other. Laplace’s equation in a rectangular box can also
he solved by the method of separation of variables. As shown in some exercises in
Chapter 7, the three independent variables yield two eigenvalue problems that have
oscillatory solutions and solutions in one direction that are not oscillatory.

A more interesting problem is to consider Laplace’s equation in a circular cylin-
der of radius a and height H. Using circular cylindrical coordinates,

& =rcosd
y=rsinf
=

Laplace’s equation is

‘ 2, 02,
ld(au) 10% & _ o

vor Var) T ReE T aE T

We prescribe w (perhaps temperature) on the entire boundary of the cylinder:

top: u(r,0,H) = p(r,60)
bottom: u(r,8,0) = a(r,f)
lateral side:  u(a,0,2) = (0, 2).

There are three nonhomogeneous houndary conditions. One approach is to break
the problem up into the sum of three simpler problems, each solving Laplace’s
equation,

Vi, =0, =123,

where u = u, + 2 + 3. This is illustrated in Fig. 7.9.1. In this way each problem
satisfies two homogencous boundary conditions, but the sum satisfies the desired
nonhomogeneous conditions. We separate variables once, for all three cases, and
then proceed to solve each problem individually.

7.9.2 Separation of Variables

We begin by looking for product solutions,

u(r,8,2) = f(r)g(O)h(2), (7.9.3)
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uw= 3(r, 0) u; = 3(r. 8) o= () uy=0

e - - S

Vi =0 — V2, =0 + Vi, =0 + Viuy=0
u=~(#,z) wy =0 =10 wy={p, z)
S - M S ®
uw=alr, 0} u; =0 s = af{r, 8) uy =0

Figure 7.9.1 Laplace’s equation in a circular cylinder.

for Laplace’s equation. Substituting (7.9.3) into (7.9.2) and dividing by f(r)g(#)(z)

yields
1 d df 11d% 1d°h
s fged g moes g B, 9.4
rfdr (rd'r‘) r2 g df? i hdz? ¢ (ne4)
We immediately can separate the z-dependence and hence
1d*h
—— = A 9.5
b dz? (7.9:5)

Do we expect oscillations in z7 From Fig. 7.9.1 we see that oscillations in z should be
expected for the ug-problem but not necessarily for the w,- or ug-problem. Perhaps
A < 0 for the ws-problem but not for the uy- and us-problems. Thus, we do not
specify A at this time. The r and § parts also can be separated if (7.9.4) is multiplied
by r? [and (7.9.5) is utilized]:

rd [ df 2 1d%g _
?E (ra) + Arc = __f) a2 = I (7.9.6)

A second separation constant p s introduced, witl the anticipation that p > 0
because of the expected oscillations in # for all three problems. In [act, the inplied
periodic boundary conditions in @ dictate that

p=m> (7.9.7)

and that g(#) can be either sinm# or cosind, where m is a nonnegative integer,
m=10.1,2,.... A Fourier series in ¢ will be appropriate for all these problems.
In summary, the #-dependence is ginmf and cosmf, and the remaining two
differential equations are 5
o s (7.9.8)
dz

d { 3 :
vt (?%) + (02 = m?) f=0. (7.9.9)
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These two differential equations contain only one unspecified parameter A. Only
one will become an eigenvalue problem. The eigenvalue problem needs two homoge-
neous boundary conditions. Different results occur for the various problems, uy, ua,
and us. For the us-problem. there are two homogeneous boundary conditions in z,
and thus (7.9.8) will become an eigenvalue problem [and (7.9.9) will have nonoscil-
latory solutions]. However, for the u;- and up-problems there do not exist two
homogeneous boundary conditions in z. Instead, there should be two homogeneous
conditions in r. One of these is at v = a. The other must be a singularity condition
at r = 0, which occurs due to the singular nature of polar {or circular cylindrical)
coordinates at r = 0 and the singular nature of (7.9.9) at » = 0

[£(0)] < cc. (7.9.10)

Thus, we will find- that for the w;- and us-problems, {7.9.9) will be the eigenvalue
problem. The solution of (7.9.9) will oscillate, whereas the solution of (7.9.8) will
not oscillate, We next describe the details of all three problems.

7.9.3 Zero Temperature on the Lateral Sides
and on the Bottom or Top

The mathematical problem for u; is

Vi, =0 (7.9.11)

l
u1(r,0,0) =0 J (7.9.12)

wi(r, 0, H) = B(r.6) (7.9.13)

wia,.0,z) =0. (7.9.14)

The temperature is zero on the bottom. By separation of variables in which
the nonhomogeneous condition (7.9.13) is momentarily ignored, uy = f{r)g(0)h(z).
The f-part is known to equal sinmf and cosmé (for integral m > 0). The z-
dependent equation. (7.9.8), satisfies only one homogenecous condition, h{0) = 0.
The r-dependent equation will become a boundary value problem determining the
separation constant A. The two homogeneous boundary conditions are

fla) = 0 (7.9.15)
F0)] < . (7.9.16)

The eigenvalue problem, (7.9.9) with (7.9.15) and (7.9.16}, is one that was analyzed
in Sec. 7.8. There we showed that A = 0 {by directly using the Rayleigh quotient).
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Furthermore, we showed that the general solution of (7.9.9) is a linear combination
of Bessel functions of order m with argument v/Ar:

F) =l (v%) ool (\/X?") s I(\/X ) : (7.9.17)

which has been simplified using the singularity condition. (7.9.16).Then the homo-
geneous condition, (7.9.15), determines A:

T (\/Xa,) = (7.9.18)

Again VvAa must be a zero of the mth Bessel function, and the notation M, is
used to indicate the infinite number of eigenvalues for each m. The eigenfunction
T (\HAmnr) oscillates in r.

Since A > 0, the solution of {7.9.8) that satisfies h(0) = 0 is proportional to

h(z) =sinh vV Az. (7.9.19)

No oseillations oceur in the z-direction. There are thus two doubly infinite families
of product solutions:

sinh 3/ Az Jn (\//\m,,;,--) { el } (7.9.20)

cos

oscillatory in v and #, but nonoscillatory in z. The principle of superposition implies
that we should consider

o0 o
u(r,8,z) = Z ZA”“‘ sinh A nz Jin (\KA,,M?’) cos il

nz;i] n:-;'(—:l [ (7"]2])
+ Z ZBmu sinh WV A'mn*?: '}'m. ( v )tﬁ’l‘l'l?‘) sinmd.
m=1 n=1 l

The nonhomogeneous boundary condition, (7.9.13), wy(r, 0, H) = 3(r,8), will de-
termine the coefficients 4,,, and B,,,,. It will involve a Fourier series in & and a
Fourier-Bessel series in r. Thus we can solve A, and B, using the two one-
dimensional orthogonality formulas. Alternatively, the coefficients are more eas-
ily calculated using the two-dimensional orthogonality of .J,, ( A,,mr] cosmf and
o (v /\.,m,\r') sinmf (see Sec. 7.8). We omit the details.

In a gimilar manner, one can obtain ws. We leave as an exercise the solution of
this problem.
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7.9.4 Zero Temperature on the Top and Bottom

A somewhat different mathematical problem arises if we consider the situation in
which the top and bottom are held at zero temperature. The problem for ug is

Vuz =0 (7.9.22)
|
| ua(r,6,0)=0 (7.9.23)
|
wg(ry 0 =0 (7.9.24)
us(a,, z) = (0, 2). (7.9.25)

We may again use the results of the method of separation of variables. The
periodicity again implies that the f-part will relate to a Fourier series (i.e., sinmd
and cosmf}. However, unlike what occurred in Sec. 7.9.3, the z-equation has two
homogeneous boundary conditions:

d*h
e Ah (7.9.26)
h(0) =0 (7.9.27)

h(H)=0. | (7.9.28)

This is the simplest Sturm-Liouville eigenvalue problem (in a somewhat different
form). In order for h{z) to oscillate and satisty (7.9.27) and (7.9.28), the separation
constant A must be negative. In fact, wé should recognize that

nwy 2

% = _(F) n=1,2,... (7.9.29)
. Mz

h(Z) = Sll]?. (7939)

The boundary conditions at top and bottom imply that we will be using an ordinary

Fourier sine series in z.

7.9. Laplace’s Equation in a Circular Cylinder 331

We have oscillations in z and 6. The r-dependent solution should not be oscil-
latory; they satisfy (7.9.9), which using (7.9.29) becomes

dr( 3{) * ( (%)Qrz—mg) f~0-i (7.9.31)

A homogeneous condition, in the form of a singularity condition, exists at + = 0,

[f(0)] < oo, (7.9.32)

but there is no homogeneous condition at r = a.

Equation (7.9.31) looks similar to Bessel's differential equation but has the wrong
sign in front of the r? term. It cannot be changed into Bessel’s differential equation
using a real transformation. If we let

s=1i ( ) . (7.9.33)

where i = /=1, then (7.9.31) becomes

. 42
;g(sd—f)-i-(sz—m)f 0 or &° f—i— ﬁ—}—( mz)f:(]_

We recognize this as exactly Bessel’s differential equation, and thus
R R
f=cdn(s)+ Y (s} or f=c1Jn (zfr) + ¥ (1 i r) y (7.9.34)

Therefore, the solution of (7.9.31) can be represented in terms of Bessel functions
of an imaginary argument. This is not very useful since Bessel functions are not
usually tabulated in this form.

Instead, we introduce a real transformation that eliminates the dependence on
nm/H of the differential equation:

e i
W=t
Then (7.9.31) becomes
d?f df 2 _ 2
—w? = 2 7.9.35
ﬂ‘du2+ d“}-(w m?) f = 0. | ( )

Again the wrong sign appears for this to be Bessel’s differential equation. Equation
(7.9.35) is a modification of Bessel's differential equation, and its solutions, which
have been well tabulated, are known as modified Bessel functions.

Equation (7.9.35) has the same kind of singularity at w = 0 as Bessel’s differen-
tial equation. As such, the singular behavior could be determined by the method
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of Frobenius.” Thus, we can specify one solution Lo be well defined at w = 0, called
the modified Bessel function of order m of the first kind, denoted T,,(w).
Another independent solution, which is singular at the origin, is called the modi-
fied Bessel function of order m of the second kind, denoted K,,(w). Both
I, (w) and Kp,(w) are well-tabulated functions. We will need very little knowledge
concerning I,,,(w) and K, (w). The general solution of (7.9.31) is thus

Fami (%r) sl (%r) : (7.9.36)

Since I, is singular at r = 0 and f,,, is not, it follows that ¢; = 0 and f(r)} is
proportional to I, (nwr/H). We simply note that both I, (w} and Ky, {w) are non-
oscillatory and are not zero for w > 0. A discussion of this and further properties
are given in Sec. 7.9.5.
There are thus two doubly infinite families of product solutions:
. Mwz nw o\ . nwz .

T (%r) sin }—} cosmf and I (Er) sin —}%— sinmé. . (7.9.37)
These solutions are oscillatory in z and f, but nonoscillatory in 7. The principle
of superposition. equivalent to a Fourier sine series in z and a Fourier series in #,
implies that

13

[= =
| ug(r,6,z) = ZEmnIm (%1) sin % cos mb
1

:
o
2
]

(7.9.38)

TETw

E Iqu I?u (ﬁ I
1 |

The coefficients F,,, and F,,, can be determined [if ,(nwa/H) # 0] from the
nonhomogeneous equation (7.9.25) either by two iterated one-dimensional orthog-
onality results or by one application of two-dimensional orthogonality. In the next
section we will discuss further properties of I, (nwa/I}, including the fact that it
lias no positive zeros.

In this way the solution for Laplace’s equation inside a circular cylinder has been
determined given any temperature distribution along the entire boundary.

P18
L

+ ) L ‘
) sin —— sinmnb.
H

.,
=
i
i

7.9.5 DModified Bessel Functions

The differential equation that defines the modified Bessel functions is

5 d? d
w? g;;é + 'urﬁ + (—w? —m?®) f=0. (7.9.39)
Two independent solutions are denoted Ky, (w) and I,(w). The behavior in the

neighborhood of the singular point w = 0 is determined by the roots of the indicial

THere it is easier to use the complex transformation (7.9.33). Then the infinite series represen-
tation for Bessel functions is valid for complex arguments, avoiding additional calculations,
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equation, -m, corresponding to approximate solutions near w = 0 of the forms w*™
(for m % 0) and w® and w®Inw (for m = 0). We can choose the two independent
solutions such that one is well behaved at w = 0 and the other singular.

A good understanding of these functions comes from also analyzing their behav-
ior as w — oc. Roughly speaking, for large w (7.9.39) can be rewritten as

d*f 1 df -
a“u—z‘?‘i—rza'f'f (7.9.40)
Thinking of this as Newton’s law for a particle with certain forces, the —1/w df /dw
term is a weak damping force tending to vanish as w — oc. We might expect as
w — oc that
df
dwg i f}

which suggests that the solution should be a linear combination of an exponentially
growing e and exponentially decaying e™" term. In fact, the weak damping has its
effects (just as it did for ordinary Bessel functions). We state {(but do not prove) a
more advanced result, namely that the asymptotic behavior for large w of solutions
of (7.9.39) arc approximately e=* /w!'/2. Thus, both I, (w) and K,,(w) are linear
combinations of these two, one exponentially growing and the other decaying.

There is only one independent linear combination that decays as w — oc. There
are many combinations that grow as w — oc. We define IV,,(w) to be a solution
that decays as w — oo. It must be proportional to ¢ % /w/? and it is defined
uniguely by

| Kon(aw) ~ \/ﬁ —;, 73 (7.9.41)

as w — oc. As w — 0 the behavior of K,,(w) will be some linear combination of
the two different behaviors (e.g., w™ and w™™ for m # 0). In general, it will be
composed of both and hence will be singular at w = (1. In more advanced treatments
it is shown that

‘ , 1w m =) ;
Kom(w) ~ { Hm - Fw)™ m#0, iasae)

as w — 0. The most important facts aboul this function is that the K, (w)
exponentially decays as w — oo but is singular at w = 0.

Since K, (w) is singular at w = 0, we would like to define a second solution
1, (w) not singular at w = 0. I, (w) is defined uniguely snch that

Ip(w) ~ il (%11?) ; (7.9.43)

m:
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as w — 0. As w — o¢, the behavior of I,,,(w} will be some linear combination of
the two different asymptotic behaviors (e** /w!/2). In general, it will be composed
of both and hence is expected to exponentially grow as w — oc. In more advanced
works, it is shown that

7.9.2. Solve Laplace's equation inside a semicircular eylinder, subject to the bound-
ary conditions

(a) wu(r.6.0)=0, u(r.6. H) = a(r, 8), u(r.0,z) =0,
1 ulr,m,z) =0, u{a. 8.z} =0
Ion(w) ~ / e® (7.9.44) ) (a.8,2)
‘ *(b) u(r8.0)=0, Qu(r,6,H) =0, u(r,0,2) =0,
as w — oo, The most important facts aboul this function is that I, (w) is well ulr,w,z) =0, u(a, 8, 2) = 3(0, 2)
behaved at w = 0 but grows exponentially as w — oo. " ,
Some modified Bessel functions are sketched in Fig. 7.9.2. Although we have (c) #zu(r,p,0)=0, a—iu(r‘, §.H)=0, F5(r.0.2) =0,
not proved it. note that both I,,,{w) and K, (w) are not zero for w > 0. . .
. Q4 (p, 1, 2) = 0 Pu(a,0,2) = B(0,2)

For (c) only, under what condition does a solution exist?

(d) u(r,8,0)=0, w(r,0,2) =0, w(a, @, z) = 0.
u(r. 0, ) =0, %{r w z) = ofr, z)

7.9.3. Solve the heat equation
g u . _o
| T kV-u
§ inside a guarter-cireular eylinder (0 < @ < #/2 with radius @ and Leight H)
. | subject to the initial condition
Figure 7.9.2 Various modified Bessel functions (from j u(r,@,z,0) = f(r,6, z)
Abramowitz and Stegun [1974]). |
g Briefty explain what temperature distribution you expect to be approached
: as £ — oo, Consider the following boundary conditions
EXERCISES 7.9
7.9.1. Solve Laplace’s equation inside a cireular eylinder subject to the boundary (a) u(r,0,0)=0, ; u(r, 0, H) = 0, u(r,0,2) =0,
conditions u(r,@/2,z) =0, u(a,0.2z) =0
(a) u(r.6,0) = ofr,6), u(r,0,H) =0, u(a,f,z) =0 *(b) §%(r,0,0) =0, o (8, H) =0, Zu(r,0,2) =0,
b)) w(r0.0) = alr)sind,  u(r,6,H) =0, u(a,0,z) =0 Qufr,m/2,2) =0, %4(a,0,2) =0
(e) w(r,0,0)=0, u(r, 6, H) = B(r}cos 36, fu(a,0,2) =0 (c) u(r,0,0) =0, u{r, 8, H) =0, %u(r,0,2) =0,
(d) §%(r,0.0) = a(r)sin30, 2%(r.0,H) =0, %(a,0,2) =0 : u{r,m/2,2) =0, 24(a,0,2) =0
g, o Bu g, _ die —
(e) 55(r.0,0) = afr0), s (10, H) =0, ar(0,0,2) =0 7.9.4.  Solve the heat equation
; du 5
For (e) only, under what condition does a solution exist? 7 T EV u
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inside a cylinder {of radius a and height H) subject to the initial condition,
u(r,8,2,0) = f(r,2).

independent of #. if the boundary conditions are

*(a) u(r,8,0,t)=0, u{r, @, H,t) =0, w(a,f,z,¢) =0

(b) 4(r,0,0,t) =0, %(r,0,H,t)=0, 0.0, 2,8) =0

i

(e) ui{r.0.0,t)=0, u(r, 8, H,t) =0, %(aﬁ,z. )y =0

7.9.5.  Deterine the three ordinary differential equations obtained by separation
of variables for Laplace’s equation in spherical coordinates

U—g 2% + ! L) sin"au +—] @
“or\" r) T snsds \""%80) " snle B

7.10 Spherical Problems and Legendre
Polynomials

7.10.1 Introduction

Problems in a spherical geometry are of great interest in many applications. In
the exercises, we consider the three-dimensional heat equation inside the spherical
carth. Here, we consider the three-dimensional wave eguation which describes the
vibrations of the earth:

Ju

a2
where w is a local displacement. In geophysics, the response of the real earth to
point sources is of particular interest due to earthquakes and nuclear testing, Solid
vibrations of the real earth are more complicated than (7.10.1). Compressional
waves called P for primary are smaller than shear waves called S for secondary,
arriving later because they propagate at a smaller velocity. There are also long (L)
period surface waves, which are the most destructive in severe earthquakes because
their energy is confined to a thin region near the surface. Real seismograms are
more complicated because of scattering of waves due to the interior of the earth
not being uniform. Measuring the vibrations is frequently used to determine the
interior strneture of the earth needed not only in seismology but also in mineral
exploration, such as petrolewin engineering. All displacements solve wave equations.
Simple mathematical models are most valid for the destructive long waves, since
the variations in the ecarth are averaged out for long waves. For more details, see
Aki and Richards [1980], Quantitative Seistnology. We use spherical coordinates (p,
t. ¢). where ¢ is the angle from the pole and ¢ is the usual cylindrical angle. The

=2V, (7.10.1)

&
%
3

B
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boundary condition we assume is u(a, 4, @,t) = 0, and the initial displacement and
velocity distribution is given throughout the entire solid:
u(p,8,0,0) = F(pb,¢) (7.10.2)
du
gt-(p! 9: qb: 0) = G(P! 6! ¢')’ (T.103)

Problems with nonhomogeneous boundary conditions are treated in Chapter 8.

7.10.2 Separation of Variables and One-Dimensional
Eigenvalue Problems

We use the method of separation of variables. As before, we first introduce product
solutions of space and time:

u(p, B, ¢,t) = w(p,d, $)h(t). (7.10.4)
We have already separated space and time, so that we know
d*h
E = —Mc?h (7.10.5)
Viw+dw = 0, (7.10.6)

where the first separation constant A satisfies the multidimensional eigenvalue prob-
lem (7.10.6) subject to being zero on the boundary of the sphere. The frequencies
of vibration of the solid sphere are given by ev/X.
Using the equation for the Laplacian in spherical coordinates (reference from

Chapter 1), we have

I & nbt 1 8,  Ow 1 8w

(P =)+ ——— —) =0. .10.

2 3p(p 3,0) p231n¢6¢(31n¢6¢} e’ 0% +Aw=0 (7.10.7)
We seek product solutions of the form

w(p,b,9) = f(p)g(0)g(¢). (7.10.8)

To save some algebra, since the coefficients in (7.10.7) do not depend on 8, we note
that it is clear that the eigenfunctions in 6 are cosm# and sin m#, corresponding to
the periodic boundary conditions associated with the usual Fourier series in ¢ on
the interval — < @ < 7. In this case.the term %‘-} in (7.10.7) may be replaced
by —m?w. We substitute (7.10.8) into (7.10.7), multiply by p?, divide by f (a)g(9),
and introduce the third (counting —m?as number two) separation constant p:

1d 1 d

__ﬁ__zﬁ;a__ da..  dg m2__
fdp(p d,o) Eagie gsinq&dqb(sm('ﬁﬁ) B sin®¢

The two ordinary differential equations that are the fundamental part of the eigen-
value problems in ¢ and p are

1. (7.10.9)

d
i (png-':;) +(A2-pf =0 (7.10.10)
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d .. dg . m? ',
do (Sm odo) (Ju sin @ e G) g 0 ( )

The homogeneous boundary conditions associated with (7.10.10) and (7.10.11) will
be discussed shortly. We will solve (7.10.11) first because it does not depend on the
eigenvalues A of (7.10.10).

Equation (7.10.11) is a Sturm-Liouville differential equation (for each m) in the
angular coordinate ¢ with eigenvalue p and nonnegative weight sing. Fquation
(7.10.11) is defined from ¢ = 0 (North Pole} to ¢ = 7 (South Pole). However,
(7.10.11) is not a regular Sturm-Liouville problem since p = sin¢ must be > 0
and sing = 0 at both ends. There is no physical boundary condition at the sin-
gular endpoints. Instead we will insist the solution is bounded at each endpoint:
lg{0)} < oc and |g(n)] < oc. We claim that the usual properties of eigenvalues and
eigenfunctions are valid. In particular, there is an infinite set of eigenfunctions (for
each fixed m) corresponding to different eigenvalues p,,, , and these eigenfunctions
will be an orthogonal set with weight sin .

Equation (7.10.10) is a Sturm-Liouville differential equation (for each m and
n) in the radial coordinate p with eigenvalue A and weight p?. One homogeneous
boundary condition is f(a) = 0. Equation (7.10.10) is a singular Sturm-Liouville
problem because of the zero at p = 0 in the coefficient in front of df /dp. Spherical
coordinates are singular at p = 0, and solutions of the Sturm-Liouville differential
equation must be bounded there: [f{0)]| < co. We claim that this singular problem
still has an infinite set of eigenfunctions (for each fixed m and n) corresponding to
different eigenvalues Mg, , and these eigenfunctions will form an orthogonal set
with weight p?.

7.10.3 Associated Legendre Functions and Legendre
Polynomials

A (not obvious) change of variables has turned out to simplify the analysis of the
differential equation that defines the orthogonal eigenfunciions in the angle ¢:

T = cosg. (7.10.12)

As ¢ goes from 0 to m, this is a one-to.one transformation in which = goes from
1 to —1. We will show that both endpoints remain singular points. Derivatives

are transformed by the chain rule, % = %% = 7sin<_z'3%, In this way (7.10.11)

becomes after dividing by sin ¢ and recognizing that sin? ¢ = 1 — cos® ¢ = 1 — 2%

]
i ;—l, [(1 St %} 4 (;u = lr_n—;) g=0. % (7.10.13)

D ol L s i oot 1o Bl L
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This is also a Sturm-Liouville equation, and eigenfunctions will be orthogonal in
o with weight 1. This corresponds to the weight sing with respect to ¢ since
dz = —sinodg. Equation (7.10.13) has singular points at @ = 41, which we will
show are regular singular points (see Sec. 7.8.4). It is helpful to understand the local
behavior near each singular point using a corresponding elementary equidimensional
(Euler) equation. We analyze (7.10.13) near = 1 (and claim due to symmetry
that the local behavior near # = —1 can be the same). The troublesome coefficients
1—22 = (1-2)(1+2) can be approximated by —2(z— 1) near = 1 Thus (7.10.13)
may be approximated near @ = 1 by

dg. — m?

d
—2gle-n2l 2z~ 1)

g =0 (7.10.14)
since only the singular term that multiplies g is significant. Equation (7.10.14) is an
equidimensional (Euler) differential equation whose exact solutions is easy to obtain
by substituting g = (x — 1)? , from which we obtain p? = m?/4 or p = +m/2. If
m # 0, we conclude that one independent solution is bounded near @ = 1 fand
approximated by (z — 1)"%/?] and the second independent solution is unbounded
[and approximated by {z — 1)~"/2].

Since we want our solution to be bounded at o = 1, we can only use the one
solution that is bounded at # = 1. When we compute this solution (perhaps nu-

merically) at a = —1, its behavior must be a linear combination of the two local
behaviors near @ = —1. Usually the solution that is bounded at z = 1 will be
unbounded at x = —1. Ouly for certain very special values of i, (which we have

called the eigenvalues) will the solution of (7.10.13) be bounded at both & = 1.
To simplify significantly the presentation, we will not explain the mysterious but
elegant result that the only values of p for which the solution is bounded at & = 41

p=mn{n+1), (7.10.15)

where 1 is an integer with some restrictions we will mention. It is quite remark-
able that the eigenvalues do not depend ou the important parameter m. Equation
(7.10.13) is a linear differential equation whose two independent solutions are called
associated Legendre functions (spherical harmonics) of the first P (2) and
second kind Q)7 (x}). The first kind is bounded at both # = £1 for integer n, so that
the eigenfunctions are given by g(z) = P*(x).

If m = 0: Legendre polynomials. m = 0 corresponds to solutions of
the partial differential equation with no dependence on the cylindrical angle #. In
this case the differential equation (7.10.13) becomes

]
d

1
o (1= g] +n(n+1)g =0, (7.10.16)

given that it can be shown that the eigenvalues satisfy (7.10.15). By series methods
it can be shown that there are elementary Taylor series solutions around = = 0
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that terminate (are finite series) only when g = n(n + 1), and hence are bounded
at # = +1 when g = n(n + 1). It can be shown (not easy) that if g # n(n + 1),
then the solution to the differential equation is not bounded at either +1. These
important bounded solutions are called Legendre polynomials and are not difficult
to compute:

i
n = 0: Rlz)=1 i
n = 1l: Bz)= 11 = o5 , ! (7.10.17)
n 2: Pyle) = 5 (32 = 1) = ; (Beos2¢ +1). !

These have been chosen such that they equal 1 at 2 = 1 (¢ = 0, North Pole). It
can be shown that the Legendre polynomials satisfy Rodrigues’ formula:

[ Polz) = — —n (=2 —1)". (7.10.18)

Since Legendre polynomials are orthogonal with weight 1, they can be obtained
using the Gram-Schmidt procedure (see appendix of Section 7.5). We graph (see
Fig. 7.10.1) in @ and ¢ the first few eigenfunctions (Legendre polynomials). It can
be shown that the Legendre polynomials are a complete set of polynomials, and
therefore there are no other eigenvalues besides pn = n{n + 1),

If m > 0: the associated Legendre functions. Remarkably, the
eigenvalues when m > 0 are basically the same as when m = 0 given by (7.10.15).
Even more remarkable is that the eigenfunctions when m > 0 (which we have called
associated Legendre functions) can be related to the eigenfunctions when m = 0
(Legendre polynomials):

0 (7.10.19)

dam "

g{z) = P (z) = (x? - 1)m/'z

We note that P,(x) is the nth-degree Legendre polynomial. The mth derivative
will be zero if n < . Thus, the eigenfunctions exist only for n > m, and the
eigenvalues do depend (weakly on m). The infinite number of eigenvalues are

po=n{n+ 1), (7.10.20)

with the restriction that n > m. These formulas are also valid when m = 0; the
associated Legendre functions when m = 0 are the Legendre polynomials, P2(x) =

P, (z). )

e e i e
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Pyz)=1 P(z)==x Pyz) = é (322 - 1)
-1 1 -1 1 -1 1
Py(eoso) =1 Pi{coso) = coso Pylcosg) = i (3cos2¢ + 1)

N7

Figure 7.10.1 Legendre polynomials,

7.10.4 Radial Eigenvalue Problems

The radial Sturm-Liouville differential equation, (7.10.10), with p = n(n + 1),

d [ ,df ; _
5 (pzd—ﬁ) + (A —nn+1)) f=0, (7.10.21)

hag the restriction n = m for fixed m. The boundary conditions are f(a) = 0, and
the solution should be bounded at p = 0. Equation (7.10.21) is nearly Bessel's differ-
ential equation. The parameter A can be eliminated by instead considering vAp as
the independent variable. However, the result is not quite Bessel's differential equa-
tion. It is easy to show (see the Iixercises) that if Z,(z) solves Bessel's differential
equation (7.7.25) of order p, then f(p) = p‘”"aZnJr%(\/Xp). called spherical Bessel
functions, satisfy (7.10.21). Since the radial eigenfunctions must be bounded at
p =0, we have

Fp) = p7 20,y (VAp), (7.10.22)

for n. = m. [If we recall the behavior of the Bessel functions at the origin (7.7.33)

we can verify that these solutions are bounded at the origin. In fact, they are zero
at the origin except for n = 0. The eigenvalues A are determined by applying the




342 Chapter 7. Higher Dimensional PDEs

homogeneous boundary condition at p = a:

Jor1(Va) =0. (7.10.23)

2

The eigenvalues are determined by the zeroes of the Bessel functions of order n +
3. There is an infinite number of eigenvalues for each n and m. Note that the
frequencies of vibration are the same for all values of m < n.

The spherical Bessel functions can be related to trigonometric functions:

—

} x—U?JRJ__%(:r) = (—li)ﬂ (ﬂ) . (7.10.24)

xdx T

7.10.5 Product Solutions, Modes of Vibration,
and the Initial Value Problem

Product solutions for the wave equation in three dimensions are
ulp, 0, ¢, t) = cos ev/ At sin cv/Atp/? Jnsi (V/Ap) cos mf sin m#P™ (cos ¢),

where the frequencies of vibration are determined from (7.10.23). The angular
parts ¥ = cosmflsinmfP(cos¢) are called surface harmonics of the first
kind. Initial value problems are solved by using superposition of these infinite
modes, summing over m,n, and the infinite radial eigenfunctions characterized by
the zeros of the Bessel functions. The weights of the three one-dimensional or-
thogonality give rise to df,sin ¢ d@, p> dp, which is equivalent to orthogonality in
three dimensions with weight 1, since differential volume in spherical coordinates
is dV = p?sin ¢ dpd¢ df. This can be checked using the Jacobian J of the original
transformation since dz dydz = J dpdf d¢ and

6z fz @ . . A
a_z _z 50 singcosfl pcos¢cosf —psingsinf
J = %ﬁ g% %% =| singsind pcosdsing psingcosd | = p*sing.
z 8z 2z —p8l
5% 55 o8 cos ¢ psing 0

Normalization integrals for associated Legendre functions can be found in reference
books such as Abramowitz and Stegun:

/_11 [PM(z))?dz = (n+ %)_1(71 +m)l/(n—m)! (7.10.25)

Example. For the purely radial mode n = 0 (m = 0 only), using (7.10.24) the
frequencies of vibration satisfy sin(yv/Aa) = 0, so that

e
circular frequency VA= J—,
a
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where a is the radius of the earth, for example. The fundamental mode j = 1 has
circular frequency ¢ hertz (cycles per second) or a frequency of &= per second or
a period of 2 seconds. For the earth we can take a = 6000 km and ¢ = 5 km/s,

giving a period of @ = 2400 seconds or 40 minutes.

7.10.6 Laplace’s Equation Inside a Spherical Cavity

In electrostatics, it is of interest to solve Laplace’s equation inside a sphere with the
potential u specified on the boundary p = a

Viu=0 (7.10.26)

uw(a,8, ) = F(8, $). (7.10.27)

This corresponds to determining the electric potential given the distribution of the
potential along the spherical conductor. We can use the previous computations,
where we solved by separation of variables. The # and ¢ equations and their solu-
tions will be the same, a Fourier series in # involving cosm# and sinm# and a gen-
cralized Fourier series in ¢ involving the associated Legendre functions P (cos ¢).
However, we need to insist that A = 0, so that the radial equation (7.10.21) will be
different and will not be an eigenvalue problem:

d%(pz‘%) il B (7.10.28)

Here (7.10.28) is an equidimensional equation and can be solved exactly by sub-
stituting f = p". By substitution we have r(r + 1) — n(n + 1) = 0, which is a
quadratic equation with two different roots r = n and r = —n — 1 since n is an
integer. Since the potential must be bounded at the center p = (), we reject the
unbounded solution p~™!. Product solutions for Laplace’s equation are

p™ cos mf sin mO Py (cos ¢), (7.10.29)

so that the solution of Laplace’s equation is in the form

u(p, 0, ¢) = Z Z 0" [Amn cos ml + Bpy, sinmf) P (cos ¢). (7.10.30)

m=0n=m

The nonhomogeneous boundary condition implies that

F(0,¢) =Y > a"[Amncosmf + By sinmb] P (cos ). (7.10.31)

m=0n=m
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By orthogomality. for example,

/]F(B_. &) sinmf P (cos @) sin ¢ do df

(7.10.32)

|
|
I
l ﬂ-uan .
| // sin® mé [P (cos 0))” sin ¢ do df

A similar expression exists for A,

Example. In electrostatics, it is of interest to determine the electric potential
inside a conducting sphere if the hemispheres are at different constant potentials.
This can be done experimentally by separating two hemispheres by a negligibly small
insulated ring. For convenience, we assume the upper hemisphere is at potential
+V and the lower hemisphere at potential —V. The boundary condition at p = a
is eylindrically (azimuthally) symmetrie; there is no dependence on the angle 8.
We solve Laplace’s equation under this simplifying circumstance, or we can use the
general solution obtained previously, We follow the later procedure. Since there is
no dependence on @, all terms for the Fourier series in 6 will be zero in (7.10.30)
except for the m = 0 term. Thus, the solution of Laplace’s equation with cylindrical
symmetry can be written as a series involving the Legendre polynomials:

[= =]
wr, @) = z App™ Py (cos @). (7.10.33)
n={}
The boundary condition becomes

Vior0<é<nf2(0<z<]) }

—Virnf2<p<m(-1<z<0) [ Z At (nond). (7:1034)

n=0
Thus, using orthogonality (in o = cos¢) with weight 1,
B fi]] =V P.(z)dx + fol VP, (z)dz
a s,
' S\ [Pu@)? de

0 for n even

1 1
2] VP, (z) d:::/f [Pr(x))? dz for n odd,
0 sy

(7.10.35)

since P,(z} is even for n even and P,{x) is odd for n odd and the potential on
the surface of the sphere is an odd function of x. Using the normalization integral
(7.10.25) for the denominator and Rodrigues formula for Legendre polynomials,
(7.10.18), for the munerator, it can be shown that

: 3 7 11 " "
u(r,¢) = V5 EPi(cos9) - 5B Pucosg) + 5 (B Poleos ) +...1  (7.10.36)

For a more detailed discussion of this, see Jackson [1998], Classical Electrodynamics.
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EXERCISES 7.10

7.10.1. Solve the initial value problem for the wave equation%ig = ¢*V?u inside a
sphere of radius a subject to the boundary condition u{a.f,¢,t) = 0 and
the initial conditions

(a) u(p,0,¢,0) = F(p,0,¢) and 2%(p,0,¢.0) =0
(b) u(p,0,6,0) =0and Z(p.0,0,0) = G(p,0. )
{c) u(p,8,0,0) = Flp, co} and 9%(p,60.¢,0) =0
(d) ufp.0,¢,0) = 0 and 5¢(p,6,9,0) = G(p, 6)
{e) u(p.8,0.0) = Fp, C)}(_IJ‘:SS and £ [p 6,0.0)=0
(f) u(p.8,0,0) = F(p)sin 26 and a“(p #,6,00=0
(8) u(p,0.6,0) = F(p) and $&(p,8,¢.0) =0
(h) u(p.6,6,0) =0 and 9%(p,8,¢,0) = G(p)

7.10.2. Solve the initial value problem for the heat equation%—'; = kV?u inside a
sphere of radius a subject to the boundary condition u(a,f,¢.t) = 0 and
the initial conditions

(a) u(p.0,¢,0) = F(p. 0, &)
() u(p.6,6,0) = F(p. )

(c) u(p.8,¢,0)= F(p, &) cosh
(d) u(p,8,¢,0) = Fip)

7.10.3. Solve the initial value problem for the heat equationg—i‘ = kV?u inside a
sphere of radius a subject to the boundary condition %E-(a.,e, @,t) =0 and
the initial conditions

(a) u(p.0,,0) = F(p.0,6)
(b) u(p,0,¢,0) = F(p, ®)

() u(p,8,¢,0) = F(p.d)sin3f
(d) u(p,0,9.0) = F(p)

7.10.4. Using the one-dimensional Rayleigh quotient, show that x> 0 (if m = 0)
as defined by (7.10.11). Under what conditions does p = 07

7.10.5. Using the one-dimensional Rayleigh quotient, show that g > 0 (if m = 0)
as defined by (7.10.13). Under what conditions does p = 07

7.10.6. Using the one-dimensional Rayleigh quotient, show that A = 0 (if i = 0) as
defined by (7.10.6) with the boundary condition f{a) = 0. Can A = 07

7.10.7. Using the three-dimensional Rayleigh quotient, show that A > 0 as defined
by (7.10.11) with u{a, 8, ¢,t) = 0. Can A = 07
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7.10.8. Differential equations related to Bessel's differential equation. Use this to
show that

d? d
mQEw—i+z(1—2a—2bx)é+{a2—p2+(2a—l)bx+[d2+62)x2]f =0 (7.10.37)

has solutions z%€" Z,(dz), where Z,(z) satisfies Bessel’s differential equa-
tion (7.7.25). By comparing (7.10.21) and (7.10.37), we have @ = —3,b =
0,3 —p? = —n(n+1), and d*> = A. We find that p = (n + .

7.10.9. Solve Laplace’s equation inside a sphere p < a subject to the following
boundary conditions on the sphere:
(a) u(a,0,¢) = F(¢)cosdf
(b) u(a,0,¢) = F(¢)
(c) $4(a,6,9) = F(4)cos4
(d) 5%(a,8,9) = F(¢) with [ F(¢)sinpdd =0
(e) 8(a,0,6) = F(0,¢) with [] [}™ F(0,0)sin¢dfdg =0

7.10.10. Solve Laplace’s equation outside a sphere p > a subject to the potential
given on the sphere:

(a‘) u(a,ﬂ, (f") e F('S.) ¢)
(b) u(a,0,¢) = F(¢), with cylindrical (azimuthal) symmetry

(c) u(a,f,¢) = V in the upper hemisphere, —V in the lower hemisphere
(do not simplify; do not evaluate definite integrals)

7.10.11. Solve Laplace’s equation inside a sector of a sphere p < a with 0 <8 < %
subject to u(p,0,¢) = 0 and u(p, 5, $) = 0 and the potential given on the
sphere: u(a, 8, ¢) = F(0, ). '

7.10.12. Solve Laplace’s equation inside a hemisphere p < a with z > 0 subject
to w = 0 at z = 0 and the potential given on the hemisphere: u(a,f,¢) =
F(6,¢) [Hint: Use symmetry and solve a different problem, a sphere with
the antisymmetric potential on the lower hemisphere.|

7.10.13. Show that Rodrigues’ formula agrees with the given Legendre polynomials
forn=0,n=1,and n = 2.

.

7.10.14. Show that Rodrigues’ formula satisfies the differential equation for Legen-
dre polynomials.

7.10.15. Derive (7.10.36) using (7.10.35), (7.10.18), and (7.10.25).

e

Chapter 8

Nonhomogeneous Problems

8.1 Introduction

In the previous chapters we have developed only one method to solve partial dif-
ferential equations: the method of separation of variables. In order to apply the
method of separation of variables, the partial differential equation (with n indepen-
dent. variables) must be linear and homogeneous. In addition, we must be able to
formulate a problem with linear and homogeneous boundary conditions for n — 1
variables. However, some of the most fundamental physical problems do not have
homogencous conditions.

8.2 Heat Flow with Sources
and Nonhomogeneous Boundary Conditions

Time-independent boundary conditions. As an elementary example of a non-
homogeneous problem, consider the heat flow (without sources) in a uniform rod of
length L with the temperature fixed at the left end at A° and the right at B®. If
the initial condition is prescribed, the mathematical problem for the temperature
u(z,t) is

—
| du 9%u .
o | 08 _ O 8.2.1
PDE: | 5 = F a2 321)
SR
BCI: | u(0,) = A (8.2.2)

BO2: ’ w(L,t) =B (8.2.3)
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