Problem Set 1

1. Advection equations with nonconstant advection rates

in the absence of external sources are naturally written as

conservation laws:

\[
\begin{align*}
 u_t + \nabla_x \cdot (\vec{c}(x) u) &= 0 & \forall x \in \mathbb{R}^n \\
 u(x,0) &= f(x) \\
\end{align*}
\]

in which \(f \) is the initial concentration of stuff.
This equation can be rewritten as

\[
 u_t + \vec{c}(x) \cdot \nabla u = - (\nabla \vec{c}(x)) u
\]

Find the explicit solution of the 1D problem

\[
\begin{align*}
 u_t + (x^2 u)_x &= 0 \\
 u(x,0) &= f(x) \\
\end{align*}
\]

Use the method of characteristic curves by finding the curves
\(x(t) \) with \(x(0) = y \) such that the left-hand-side of the PDE in the form (1) is equal to \(\frac{du}{dt} \) along the curve. Then solve for \(u \) as a function of \(y \) and \(t \), and ultimately for \(u \) as a function of \(x \) and \(t \). [It is useful to check your result!]

Discuss the domain of validity of the solution.
2. Find the dispersion relation \(\omega = \omega(k) \) that relates frequency to wavenumber of solutions \(e^{ikx - \omega t} \) to the linearized KdV equation

\[
U_t + cU_x + \varepsilon U_{xxx} = 0
\]

and determine the phase velocity and group velocity of wave packets as a function of the wavenumber \(k \).

3. Prove that the solution of the 1D heat equation

\[
U_t = \Delta u
\]

\[
U(x,0) = f(x)
\]

is even in \(x \) for all \(t \) whenever \(f \) is even and that the solution is odd in \(x \) for all \(t \) whenever \(f \) is odd.

Find the fundamental solution of the heat equation on the half-line \([0, \infty)\) with the stipulation \(u(0,t) = 0 \) \(\forall \ t > 0 \), that is, find the function

\[
\Phi_0(x,y,t), \quad x, y > 0, \ t > 0
\]

such that the solution of the initial-boundary-value problem

\[
U_t = \Delta u \quad x > 0, \ t > 0
\]

\[
U(x,0) = f(x) \quad x > 0
\]

\[
U(0,t) = 0 \quad t > 0
\]

is equal to

\[
U(x,t) = \int_0^\infty \Phi(x,y,t) f(y) \, dy
\]