} IX: THE FOURIER TRANSFORM

ding, the statement of Theorem IX.41 and the general idea of its proof should be under-
od, but the gory details should be omitted, - )
Section 10 is intended as an introduction to wave [ront sets and oscillatory integrals,

> important tools for the study of partial differential equatiops with nonconstant coefficients. ..

is theory can be used to give conditions on two distributions so that their product is well
ined. The material in Section 10 is not used again in Volumes Il and IIL

X: Self-Adjointness and the
Existence of Dynamics

People used to think that when a thing changes, it must be-in a state of change and that when
a thing moves, it is in a state of motion. This is now known to be a mistake, B. Russell

X.1 Extensions of symmetric operators

We begin this chapter by studying symmetric operators and their exten-
sions. Primarily, we wish to answer two questions: When do symmetric
operators have self-adjoint extensions and, if they do, how can the extensions

- be characterized ? These questions are answered by von Neumann’s theory

of deficiency indices which we will develop using many of the techniques
we have already used in proving the basic criterion for self-adjointness
(Theorem VIIL3) in Chapter VIIL

It is useful to begin by explaining why symmetric, non-self-adjoint
operators are of interest in the first place. Typically, in quantum mechanics
or quantum field theory, physical reasoning gives a formal expression for
the Hamiltonian of the system; it is usually a partial differential operator
on an appropriate I? space. We say “formal” when the domain of the
Hamiltonian is not specified. It is usually easy to find a dense domain
on which the formal Hamiltonian is a well-defined and symmetric operator H.
The quantum dynamics should be given by a unitary group, and we know
from Stone’s theorem (Theorem VIIL8) that the infinitesimal generator of
such a group must be self-adjoint. If H, the closure of H, is self-adjoint,
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136 X: SELF-ADJOINTNESS

then we can use H. But if H is not self-adjoint, then we must ask: Does H
have self-adjoint extensions ? And if it has several, which one shall we chpqse
to generate the dynamics? In the case where there are several se]f_—adjo_mt
extensions, they are usually distinguished by the physics of the system !Jemg
described. The problem of choosing the “right” self-adjoint extension is not
just a mathematical “technicality” but is intimately related to the physics.
For further discussion, see Examples 1 and 2 in this section.

We remark that throughout this section we discuss the extensions of
closed symmetric operators. There is no loss of generality since every
symmetric operator has a closure, and the operator and its closure have
“the same closed extensions. -

Theorem X.1 Let A4 be a closed symmetric operator on a Hilbert
space 5. Then

(la) dim[Ker(AI — A*)]is constant throughout the open upper half-plane.
{lb) dim[Ker{Al — A*}]is constant throughout the open lower half-plane.

(2) The spectrum of A is one of the following:

{(a) The closed upper half-plane . -

or (b) the closed lower half-plane
or (¢) the entire plane
or (d} a subset of the real axis

(3) A is self-adjoint if and only if case (2d) holds.
{4) A s self-adjoint if and only if the dimensions in both (1a) and (1b)
are Zero.- ’ )

Proof Let A=wv++ iy, p+# 0. Since A4 is symmetric,

[ — Aol = w2l (X.1)

for all @ & D(4). From this inequality and the fact that 4 is closed, it
follows immediately that Ran( — 4}is a closed subspace of #. Furthermore,

Ker(2 — 4*) = Ran(] — 4)* (X.2)

The proof of these statements are the same as the case A =i which is
given in the proof of Theorem VIIL3.

We will show that if neC is small enough, Ker(i— A*). ar!d
Ker((A + #) — A*) have the same dimension. Let u in D(4*) Lie in
Ker((A + n) — A*) with ||u|| = 1. Suppose (1, v) = 0 for all v e Ker(i — A*),
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Then by (X.2) ue Ran( — 4), so there is a p e D(A) with (I — A)p = u.
Thus,
0=(((A+n) — 4w ¢) = (u (T~ A)p) + 7i(u, p)
= [lul® + fi(w, o)
This is a contradiction if || < |u| since by (X.1) o] < [[ul/13¢]. Thus for
1] < |u], there is no u e Ker((4 + 1) — A*) which is in Ker(d — A*)'. A
short argument with projections (Problem 4) now shows that

dim[Ker((4 + 1) — 4%)] < dim[Ker (1 — A¥)]

The same argument shows that if || < |u|/2, then dim[Ker(4 ~ 4*)] <
dim[Ker((A + 7} — 4*)), so we conclude that

dim{Ker(A — 4*)] = dim[Ker((1 + 7) — 4%)]  if }11] < [u|/2

Since dim[Ker(i — A*)] is locally constant, it equals a constant in the upper
half-plane and equals a (possibly different) constant in the lower half-plane.
This proves {1). ‘ '

It follows from (X.1) that if Im 10, A — 4 always has a bounded
left inverse and from (X.2) that the inverse is everywhere defined if and
only if dim{Ker(Z — A*)] = 0. Thus it follows from part (1) that each of the
open upper and lower half-planes is either entirely in the spectrum of A4
or entirely in the resolvent set. This, plus the fact that o(4) is closed
proves (2). (3) and (4) are restatements of Theorem VIIL3. §

Corollary  If 4 is a closed symmetric operator that is semibounded,
ie. (A, 9} = —M|lo||?, then dim[Ker(A — 4*)] is constant for

ie C\[—M, o)

Proof This corollary follows from the proof of Theorem X.1. The same
argument about the invariance of dimension can be carried out for real 2
in (—co, — M), thus connecting the upper and lower half-planes.

Corollary  If a closed symmetric operator has at least one real number
in its resolvent set, then it is self-adjoint.

Proof Since the resolvent set is open and contains a point on the real axis,

~ it must contain points in both the upper and lower haif-planes. The corollary
now follows from part (3) of Theorem X.1.

Since the dimensions of the kernels of | — A* and i + 4* play an important
role, it is convenient to give them names.
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Definition  Suppose that 4 is a symmetric operator. Let
+ = Ker{i — A*} = Ran(i + 4A)*
A _ = Ker(i -+ 4*) = Ran{—i + 4)*

A, and o _ are called the deficiency subspaces of 4. The pair of numbers
ny, n_, given by n,(4)=dim[s¢",], n_(4) = dim[%# .] are called the
deficiency indices of A. S

We remark that it is possible for the deficiency indices to be any pair of
nonnegative integers; and further it is possible for n, or n_ (or both) to
equal infinity. The reader is asked to construct examples in Problem 1.

We now set about the task of constructing the. closed symmetric
extensions of A. Let B be such an extension. Then for ¢ € D(B*), we have
(W, B*@)=(By, ¢)=(Ay, @) for all e D(4). Thus ¢e D(A*) and
B*¢p = A*p so '

A< Bs Bt 4% (X.3)

We introduce two new sesquilinear forms on D{4*):

(@, ¥). = (@, ) + (A0, 4MY)
[QD, ‘/’]A = (A*QD, ltb) " ((Pa A*l/’) :

A subspace of D(4*) such that [, ], = 0 for all ¢ and ¢ in the subspace
will be called A-symmetric. When we refer to subspaces of D{4*) as A-closed
or A-orthogonal we mean in the inner product given by the graph inner
product (-, +),.

Lemma Let A be a closed symmetric operator. Then

{a) The closed symmetric extensions of 4 are the restrictions of A* to
A-closed, A-symmetric subspaces of D(4*).
{b) D(A), 4 ., and F _ are A-closed, mutually A-orthogonal subspaces
of D(A*} and
D(A*) = D(A) @, X . @, 4 -

{c} There is a one-to-one correspondence between A-closed, 4-symmetric
subspaces S of D(A*) which contain D(4)and the A-closed, A-symmetric
subspaces S; of o, @, _ given by § = D(4)®,S,.

Proof To prove (a), notice that (X.3) implies that every symmetric exten-
sion of A is contained in 4*. Further, the extension is closed if and only
if its domain is A-closed and the extension is symmetric if and only if its
domain is A-symmetric. :

X.% Extensions of symmetric operators 138

To prove (b), notice that D(A4) is A-closed since 4 is closed, and %",
and 2 _ are 4-closed since they are already closed in the weaker topology
given by the usual inner product. The fact that the three subspaces are
orthogonal is a straightforward calculation which we omit. Suppose
ljfeD(A*) and v L, D{AY®,H . ®,4 _. For ¢ eD(A) we have (o, ¥)

(A*‘Pr A*l,[l) - ((P’ )A = 0 S0

(o, ¥) = — (4o, A*l!f)
Thus A*lj; € D(A*) and A*A*) = —. Since
(A* 4 i) (A* — inp = (A*¥A* + I =0,

‘we conclude that (A* —i)ye .. Butif et _, then

{e, (A% — W) = (o, ) + (A*@, AMY)
= ((P! lj’)d =0
since ¥ L , 2 _. Thus, we must have (4* — i)y = 0, which implies that
We X, . Since ¢ L, ., we conclude that ¢ = 0 which completes the
proof of (b).

Let S, be an A—closed A-symmemc subspace of A"_ @, # _. Suppose
that @ = @5 + @y, ¥ = Yo + ¥, With @q, Yo e D(A); @1, Yy €Sy Th@n
[¢6,W¥o] 4 = Osince Ais symmetricand [, ¥,], = O since §, is A-symmetric.
Further,

[P0, ¥ila= (A*@o, 1)} — (o, A*Yy)
= (Ago, V) — (‘P.o , A¥y)
=0

since @, € D{A4) and ¢, & D(A4*). A similar proof shows that [¢,, y,], = 0.
Thus, : '

[0, ¥] 4= [9o, ¥ola + [@1, 'ﬁo]a + [0, ¥ila+ (@1 1] =0

50 S = D(4)®D , 8, is an A-symmetric subspace. § is A-closed since D(A)
and S, are A-closed and A-orthogonal.

Conversely, let $ be an A-closed, A-symmetric subspace of D(A*) contain-
ing D(A). Let S, =S n (o, @, _) Then §; is clearly A-closed and
A-symmetric. Now suppose that ¢ € 5. Then ¢ can be uniquely expressed
@ = @¢ + @, where @oe D{A) and ¢, e A", @, A _. Since D(A) = S, we
have ¢g e § which implies ¢, € § also. Thus cp; €8, s0 §=D(4)®,5,.
This proves (c) |

We are now ready to prove the main theorem of this section.
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Theorem X.2 Let 4 be a closed symmetric operator. The closed
symmetric extensions of 4 are in one-to-one correspondence with the set of
partial isometries (in the usual inner product) of 2, into # _. If U is
such an isometry with initial space I(U) < 2, , then the corresponding
closed symmetric extension A4; has domain

Dldy)={p +¢. + Ugp, |(PED(A)’ @. e I(U)}
and

Ayl + ¢, + Up,) = Ao + ip, — iUp,

If dim I{U) < oo, the deficiency indices of 4, are
ny{dy) =ny(4) ~ dim[I(U}]

Proaf Let 4, be a closed symmetric exfension of 4. From the lemma we
know that D(A,) = D(A) @, S, where §, is an A-closed A-symmetric sub-
space of ", @ A _ . If p € §,, it can be written uniquely as ¢ = ¢, + @_.
Since §, is A-symmetric

0= (4%, @) — (@, A*p)
=2, 9 ) —2i(p., 9.)

which implies that

Aesl2 =t (x4)

Since §, is a subspace of A", @, _, (X.4) shows that @, +—q@_ is a
well-defined isometry from a subspace of # ", into 2 _ . Call the correspond-
ing partial isometry U. Then

Did)={p + ¢, + Up,lpeD(4), p, € I{U) (X.5)

and

Ao+ o+ Up)= Ao + @, + Up,) = Ag + ip, — iUp, (X.6)

Conversely, let U be an isometry from a subspace of % + into 2 _ and
define D(4,) and A, by (X.5) and (X.6). Then D(d4,) is an A-closed,
A-symmetric subspace of D{4*), so by the lemma, A, is a closed symmetric
extension of 4.

The statement about deficiency indices follows by looking at the ranges
ofi+ A; and i — 4, on D{A,). |
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Corollary  Let A be a closed symmetric operator with deficiency indices
iy and n_ . Then, :

(a) A is self-adjoint if and only if n, =0 =n_.

(b) 4 has self-adjoint extensions if and only if n, = n_ . There is a one-one
correspondence between self-adjoint extensiorsof 4 and unitary maps
from ", onto o .

(c) If either n, =0%n_ or n.=0#n,, then 4 has no nontrivial

' . symmetric extensions (such operators are called maximal symmetric).

Example 1  We will consider the example introduced in Section VIIL2
from several points of view. Let T be the operator i d/dx on I3(0, 1) with the
domain I(T) = {p | ¢ € AC[0, 1], p{0) = 0 = @(1)}. We showed in Section
VIIL2 that T* is the operator i d/dx with domain D(T*) = AC[0, 1].
Since the operator T is so simple and since we know the domain of
its adjoint explicitly, we can determine the self-adjoint extensions of T
without using the machinery developed in this section. It is instructive to
do that first. Suppose § is a symmetric extension of T: Since D{S*) = D(T*),

~ we know that the functions in D(S*¥) are absolutely continuous and

S*@ = idp/dx. Thus for pe D(S\) and i € D(S*), integration by parts
shows that :

(S, ¥) — (@, $*9) = o(13(1) - @O (0) = 0 (X.7)
In the case S= T we can see why 7 is not self-adjoint. The boundary
conditions on the functions in D(T) are so strong that no boundary
conditions on the functions in D(T*) are necessary in order to ensure that
the right-hand side of (X.7) equals zero. What is necessary is to extend
the set of functions in D(S) by allowing more general boundary conditions
so that the equality (X.7) requires the same boundary conditions on the'
functions in D(5*). We now do this. Let § be a self-adjoint extension - of
T'and suppose that ¢ & D(S\D(T'). Then (X.7) requires that |p(1)* = |p(0)
and since ¢ ¢ D(T), @(0)# 0, so therc is an o with |x| =1 so that
@(1) = ap(0) = 0. If y is any other function in D(S), then (X.7) requires
that (1) = ay(0) with the same . Thus, § = T, where T, = i d/dx on

D(T}={p|o € AC[0, 1], o(1) = ag(0}}

Since T, is symmetric and S is self-adjoint, § = T, for some a.
Next, we determine which T, are self-adjoint. Choose ¢ & D(T,) and
¥ € D(T¥). Then (X.7) requires that

%0} (1) — o(0)y(0) =0
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so that (1) = a(0). Thus ¥ € D(T,), so D(T*) = D(T}), ie. T, is self-adjoint
for each a. Thus, the set of seli-adjoint extensions of T consists of the
collection of operators {T,|a € C, |a| = 1}.

We now show how the machinery of this section leads to the same
result. To determine % ., we must find the solutions of T*y = iy. If
€ D(T*), then y € AC[0, 1], and the equality i dy/dx = i shows that v’
is also absolutely continuous. Repeating this argument shoyvs thart any
solution of T™ = iy is in fact infinitely differentiable and satisfies ' = .
Thus 2", = {ce*|c e C}, and similarly # _ = {ce”*}c & C}. Therefore, the
deficiency indices of T are (1, 13, Let

J2e .
e

= mﬁ_ e* and @ =
b et~ 1 et —1
be normalized vectors from 2", . Then the only partial isometries of ¢,
into 24" _ are the maps ¢, — yp._ where |y} = 1. By Theore‘m X.2, th.e only
symmetric extensions of T are the operators A, = i d/dx with domain
D(A,) ={o + Bo. +vpo_ |0 e D(T), pe T}

By the last statement of Theorem X.2, each A, has zero deficiency indices
and is therefore self-adjoint. To see that these are the same operators we got
before, notice that if ¢ € D(A4,), then

5 y+e
W(l) = f::e W{0) =ay(0)  where |a| = 1 A b

Conversely, if (1) = awr(0), then  can be written ¥ = ¢ + o, + yfop_ for
some f§ where y = (@ — e)/(1 — we). Thus, 4, = T,. _ _ '
We now examine the same problem from a “physical” point of view.
Suppose that we have a smooth wave packet @(x) on [0, I] which is zero
near the end points and which is being translated to the right (Figure X.1).
For small enough y (so that the packet does not get to the end), the
translations are given by the family of operators U(y): ¢(x) — @(x —y). In
quanturn mechanics, translation should be represented by a unitary group
whose generator is the momentum operator. For the wave packet @(x),
this is the case: .
- —y) - d
lim YO0 =@ _ i, @6 =) — 0lx) i
ymo Wy yo Y x
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NN T
0 U '

Ficure X.1 The wave packet p{x).

So, the generator of translation acts like id/dx on the functions with support
away from the end points. In fact, i djdx is symmetric on C}(0, 1), the C!
functions of compact support on (0, 1), and its closure is Jjust our operator T,
But T is not self-adjoint and the reason is clear: We have specified the
translation U(y) only for functions whose support does not contain zero or
one and then only for sufficiently small y (depending on the support).
We must specify what happens when the wave packet gets to the end ! If we
want translation to be represented by a unitary group, then what goes out
at one end must come in at the other (as though the interval [0, 1] were bent
into a circle). That is, unitarity requires

[ ot =P ax = | Jots) ax

where x — y means translation mod 1. However, we still have the freedom
of choosing the phase of the. wave packet as it comes in at zero. By the
superposition principle all functions must change by the same phase when
they come back in. Thus the different “translations” are just given by
specifying a, |a|= 1 and by requiring that ail reasonable wave packets
¥, =o(: + y) satisly ¢,(1) = oaf,(0) for all times y. This motion is just
given by €% where T, is the operator described above. Thus, even in this
physically trivial situation we see that different self-adjoint extensions
correspond to different physics. \ :

A simple and useful criterion for a symmetric operator to have self-adjoint
extensions is given by the following theorem. '

Definition An antilinear map C; # - # (C(quo'+ Py} = aCo + BCir)
is called a conjugation if it is norm-preserving and C? =1, .

Theorem X.3 (von Neumann’s theorem) Let 4 be a symmetric operator
and suppose that there exists a conjugation C with C: D(A4) - D(4) and

AC = CA. Then A has equal deficiency indices and therefore has self-
adjoint extensions. ‘




