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CHAPTER 4

Burgers’ Equation

The simplest equation combining both nonlinear propagation effects
and diffusive effects is Burgers’ equation

c,tec,=ve,,. (4.1)
In (2.28) we saw that this is an exact equation for waves described by

q=Q(p) —vp,, (4.2)

in the case that Q(p) is a quadratic function of p. In general, if the two
effects are important in a problem, there is usually some way of extracting
(4.1) either as a precise approximation or as a useful basis for rough
estimates. '

For a general Q(p) in (4.2), for example, the equation may be written

pf+qx=0!

CI+CCx=prx—yC”(p)p,3: (4.3)

where c(p)= Q’(p) as usual. The ratio of vc” (0)p? to vc,, is of the order of
the amplitude of the disturbance, and we therefore expect that (4.1) is a
good approximation for small amplitude. We are then assuming that
omission of this particular small amplitude term does not produce ac-
cumulating errors (as —o0, say) which eventually lead to nonuniform
validity. We know, in contrast, that to linearize the left hand side by
¢, + €oCy, Where ¢, is some constant unperturbed value, would be disastrous
in this respect. But as a check, we may verify that in the shock structure
solution (see Section 2.4), where the diffusion terms are greatest, the term
ve”(p)p? remains of smaller order than ve,, in the strength of the shock.
This kind of argument can be made the basis of formal perturbation
expansions in terms of appropriate precisely defined small parameters. On
the other hand, the fact that the terms retained in (4.1) represent identifi-
able and important phenomena, whereas the term »rc "(p)p? appears more as
a mathematical nuisance, leads one to suggest (4.1) as a useful overall
description even beyond the range of strict validity.
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In a similar fashion, Burgers’ equation is relevant in higher orc'ler
systems such as (3.2)~(3.3), when nonlinear propagation is combined with
diffusion. Of course it is limited to the stable range and to parts of the
solution where the lower order waves are dominant. The appropriate form
is easily recognized and again can usually be substantiated by more formal
procedures. In the case of (3.2)~(3.3), we know from (3.6) tha}t the fcffectwe
diffusivity is »*=»—(vo—co)’r and we would use (4.1) with this value.
Indeed, (3.6) is the fully linearized Burgers’ equation for thl_s system. ’

Our general purpose now is to show that the exact solution of Burger}s
equation endorses the ideas regarding shocks that were. developed‘ in
Chapter 2. That is, we want to confirm that as v—)Q (in appropriate
dimensionless form) the solutions of (4.1) reduce to solutions of

¢, +ecc,=0, (4.4)
with discontinuous shocks which satisfy

U'=-]§(c1+cz), > e, (4.5)

and the shocks are located at the positions determined in Section 2.8.

4.1 The Cole-Hopf Transformation

Independently, Cole (1951) and Hopf (1950) noted the _remarkabie
result that (4.1) may be reduced to the linear heat equation by the
nonlinear transformation

g —g s, (4.6)
¢

This is similar to Thomas’ earlier transformation of the exchange equ'fttior}s
described in Section 3.4. It is again convenient to do the transformation in
two steps. First introduce

c=1,,
so that (4.1) may be integrated to
bt U=
! 2 X xx
Then introduce

Y= —2rlogy
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to obtain

Q=Y Py (4.7)

The nonlinear transformation just eliminates the nonlinear term. The
general solution of the heat equation (4.7) is well known and can be

handled by a variety of methods.
The basic problem considered in Chapter 2 is the initial value prob-

lem:
c=F(x) at 1=0.

This transforms through (4.6) into the initial value problem

} X
g=0(x)=exp {5 [F(nydn},  t=0, (48)
for the heat equation. The solution for g is
w0 ( )z
1 X—n
¢= @(n)exp{——]dn. (49)
Vdagpt _I:w 4nt
Therefore, from (4.6), the solution for ¢ is
foo x:"?e_g/z,'dn
C(x’t)=__£°_gé—'_’ (4.10)
f e—G/‘Zrd,q
where
" (x—n)"
G(mix,0)= [ F(u')dn'+~— . (4.11)
0

4.2 Behavior as r—0

The behavior of the exact solution (4.10) is now considered as »—0
while x,¢ and F(x) are held fixed. [Strictly speaking this means we consider
a family of solutions with »=ev, and take the limit as €—0, holding
vg, %, 1, F(x) fixed.] As »—0, the dominant contributions to the integrals in
(4.10) come from the neighborhood of the stationary points of G. A
stationary point is where

L,

: (4.12)
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Let n=§(x,¢) be such a point; that is, £(x,) is defined as a solution of

(x=8) _

F®)--=

0. (4.13)

:T'he contribution from the neighborhood of a stationary point, =4, in an
integral

[ g(mye oz,

- o0

4w _G@)r2.
g(£) V '@ ¢ -

this is the standard formula of the method of steepest descents.

' Suppose first that there is only one stationary point £(x,f) which
satisfies (4.13). Then

XN 6 x—§ 4y
e o -G() /2
f_w : dn~— V '@ ° A (4.14)

is

oo
e~/ Vg L\ [—XTL__ -G6) 22, 415
L G"(8) ()
and in (4.10) we have
x—§
Frem (4.16)

where £(x,) is defined by (4.13). This asymptotic solution may be rewrit-
ten

e=F(£)
x=§£+F(£) e

It is. exactly the solution of (4.4) which was discussed in (2.5) and (2.6); the
stationary point £(x, ) becomes the characteristic variable.

E'Iowever, we saw that in some cases (4.17) gives a multivalued
solution after a sufficient time, and discontinuities must be introduced. Yet
the §olntion (4.10) for Burgers’ equation is clearly single-valued and
continuous for all . The explanation is that when this stage is reached
there are two stationary points that satisfy (4.13), and the foregoing
analysis of the asymptotic behavior requires modification. If the two

(4.17)

——— D

=

]
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stationary points are denoted by £, and &, with £, >£,, there will be
contributions as shown in (4.14) and (4.15) from both £, and £,. Therefore
the dominant behavior will be included if we take

—¢
4

[G " (EI )] /2, =G /2v * _r EZ{Gr.r(gz)}— 1/2,=Gl&) /20

[G n(gl)}— |/_2'£;:G(E. ))E;+ [G " (51)}— l/2e -G£ ) /2

(4.18)

When G(£,)#G(£,), the accentuation by the small denominator » in the
exponents makes one or the other of the terms overwhelmingly large as
r—0. If G(§,) < G(£,), we have

if G(E)>G(&),

In each case (4.17) applies with either &, or £, for £ But the choice is now
unambiguous. Both £, and §, are functions of (x,t); the criterion G(§,) 2
G (§,) will determine the appropriate choice of &, or §, for given (x,f). The
changeover from £, to &, will occur at those (x, ) for which

G(£)=G(&).
From (4.11), this is when '
fst( r‘)d f+ (x_$2)2=f£'F( .r) .r+ (X‘£|)2
3 nran T 3 n') dn — 3 - (4.19)
Since §; and &, both satisfy (4.13), the condition may be written
3 (F(E)+ F(&) )} (6-6) = [ Fn) di (4.20)

This is exactly the shock determination obtained in (2.45). The changeover
in the choice of terms in (4.18) leads to the discontinuity in c(x,?) in the
limit »—0. All the details of Section 2.8 can be confirmed similarly. We
conclude that solutions of Burgers’ equation approach those described by
(4.4) and (4.5) as »—0.

In reality » is fixed, but it is relatively small and we expect that the
limit solution for »—0 will often be a good approximation. For this
argument, since » is a dimensional quantity, we have to introduce a

R
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nondimensional measure of » by comparing it with some other quantity of
the same dimension. This is not hard to do. In the single hump problem,
for example, where F(x) is as shown in Fig. 2.9, we may introduce the
parameter

A =f { F(x)—co} dx. (4.21)
-0
The dimensions of 4 and v are both L?/ T, so that
-4
R=% (422)

is a dimensionless number, and by “» small” we mean R>1. If the length
of the hump is L, the number R measures the ratio of the nonlinear term
(c— cp)e, to the diffusion term e, ,, in those regions where the x scale for the
derivatives is L. (Inside shocks, for example, the x scale is of smaller order.)
It will be convenient to refer to R as the Reynolds number, following the
practice in viscous flow.

Even with the meaning of “small »” decided, there are distinctions
between the limit solution »—0 and the solution for fixed small ». As we
saw in (2.26), the shock thickness tends to infinity if the strength tends to
zero. Therefore for fixed R, even if it is large, any solution that includes
shock formation or a shock decaying as t—oo will not always be well
approximated by the discontinuity theory in these regions. As regards a
shock formation region, the precise details are not usually important; one
just wants a good estimate of where it forms, without details of the profile,
and this is provided by the discontinuity theory. The effects of diffusion on
decaying shocks as ¢—>co is of more interest. We will explore these
questions through typical examples in the following sections.

4.3 Sheock Structure

The shock structure for (4.1) satisfies

— Ucy + ccy = pCyy, X=x—- UL
Hence

—é—cz— Ue+ C=vrcy.

If c—>c,c; a8 X—>* o0,

Uw %(c,—l—cz), C=





