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CHAPTER 2

'COORDINATE SYSTEMS

In Chapter | we restricted ourselves almost completely to cartesian coordinate
systems. A cartesian coordinate system offers the unique advantage that all three
unit vectors, i, j, and k, are constant. We did introduce the radial distance r but
even this was treated as a function of x, y, and z, Unfortunately, not all physical
problems are well adapted to solution in cartesian coordinates. For instance, if
we have a central force problem, F = r, F(r), such as gravitational or electrostatic
force, cartesian coordinates may be unusually inappropriate. Such a problem
literally screams for the use of a coordinate system in which the radial distance is

taken to be one of the coordinates, that is, spherical polar coordinates.

The point is that the coordinate system should be chosen to fit the problem, to
exploit any constraint or symmetry present in it. Then, hopefully, it wilt be more
readily soluble than if we had forced it into a cartesian framework. Quite often
“more readily soluble” will mean that we have a partial differential equation that
can be split into separate ordinary differential equations, often in “standard form™
in the new coordinate system. This technique, the separation of variables, is
discussed in Section 2.5,

We are primarily interested in coordinates in which the equation

Vi 4+ iy =0 ' (2.1)
is separable. Equation 2.1 i$ much more general than it may appear. If

k=0 Eq. 2.1 — Laplace’s equation,

? = (+) constant Helmholtz equation,

? = (—) constant _ Diffusion equation (space part),
k? = constant x kinelic energy Schrodinger wave equation.

It has been shown (L. P. Eisenhart, Phys. Rev. 45, 427 (1934)) that there are eleven

coordinate systems in which Eq. 2.1 s separable, all of which can be considered
particular cases of the confocal ellipsoidal system. In addition, we shall touch
briefly on three other systems that are useful in solving Laplace’s equation.
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Naturally there is a price that must be p+id for the use of a noncartesian co-
ordinate system. We have not yet written expressions for gradient, divergence, or
curl in any of the noncartesian coordinate systems. Such expressions are developed
in very general form in Section 2.2, First we must develop a system of curvilihear
coordinates, a general system that may be specialized to any of the fourteen
pasticular sy: stems of interest,

21 Curvilinear Coordinates

In cartesian coordinates we deal with three mutually perpendicular families of
planes: x = constant, y = constant, and z = constant. Imagine that we super-
impose on this system three other families of surfaces. The surfaces of any one
family need not be parallel to each other and they need not be planes. The three new
families of surfaces need not be mutually perpendicular, but for simplicity we shall
quickly impose this condition (Eq. 2.7). We may describe any pomnt (x; v, z) as the
intersection of three planes in cartesian coordinates or as the intersection of the
three surfaces which form our new, curvilinear coordinates. Describing the curvi-
linear coordinate surfaces by ¢, = constant, g, = constant, g; = constant, we may-
identify our point by (q;, 9., ¢5) as well as by {x, y, z). This means that in principle
we may write '

x=x(q,, 93, 43),
Y= ¥a 420 02), . e
=gy, 2, 4;),
specifying x, », z in terms of the ¢’s and the inverse relations,
g: = q4(x, y, ),
42 = ga{X, ¥, 2), (2.3)
43 = g3(x, ¥, 2). '

Mﬂl = gonstant dncl in the direcllon of lncreasmg q;

The square of the distance between two neighboring points is given by
ds* =dx*+ dy* +dz® =73 hi; dq, dg,. ' (2.4)
if

The coefficients /7%, which we now proceed to investigate, may be viewed as speci-
fying the nature of the coordinate system (g, ¢, , g4). Collectively, these cocflicients
are referred to as the metric. .
The first step in the determination of A7; is the partial differentiation of Eq. 2.2
which yields
dx

C 9% ox :
Ix = ——d —d d 2.5
ax 3, q -+ 6q 42'1‘ g3, {2.5)
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and similarly for dy and dz. Squaring and substituting into Eq. 2.4, we have
fﬂ dx Ox. 6y ay dz &z
i = ——
P 8,09, " 0q:8q;  0q:0q;

At this point we limit ourselves to orthogonal (mutua}ly perpendicular surfaces)
coordinate systems which means (cf. Exercise 2.1.1)

(2.6)

hij =0, i#J 2.7)
- MNow, to simplify the notation, we write /1; = A; so that
P =y dg, Y+ (R dga)® + (hy da,)”. (2.8)

Our specific coordinate systems are described in subsequent sections by specifying
these scale factors iy, 7, , and 4, . Conversely, the scale factors may be conveniently
identified by the relation

ds; = h; dg, (2.9)

f01 any given dg;, holding the other ¢'s constant. Note that the three curvilinear
coordinates g, g2, 45 need-not be lengths. The scale factors f; may depend on the
i]"; atxlld they may have dimensions. The product h; dy; must have dimensions of
length

“From Eq. 2.9 we may immediately develop the area and volume elements

day; = ds; ds; = hh; dg, dq; (2.10)

and
dt = ds, ds, dsy = hihyhs dg, dg, dg,. (2.11)

The expressions in Eqs. 2,10 and 2.11 agree, of course, with the results of using the
transformation equations, Eq. 2.2, and Jacobians.

EXERCISES

‘241 Show that limiting our attention to orthogonal coordinate systems implies that Ay =19
for i # j (Eg. 2.7). :

242 In the spherical polar coordinate system gy ==r,q, =8,4; =¢. The transformation
equations correspending to Eq. 2.2 are

x=rsinf cos g
y=rsinfsin g
z—rcosB,

(a) Calculate the spherical polar coordinate scale factors: k., Ay, and A, .
(b) Check your calculated scale factors by the relation ds,,= . dg. .
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21.3 The u-, v-, z-coordinate system frequently used In electrostatics and in hydrodynamics is
deﬁncd by

Xy

+ This u-, p-, z-system is orthogonal.
(a) In words, describe briefly the nature of each of the three families of coordinate surlaces,
(b) Sketch the system in the xy-plane showing the intersections of surfaces of canstant
and surfaces of constant v with the xy-plane.
(¢ Indicate the directions of the unit vecior e and vg in all four quadrants.
{(d) Finally. is this -, s-, z-system right-handed or left-handed?

2.1.4 A rwo dimensional system is described by the coordinates g, and g,. Show that the

Jacobian
J(E2) = an,
71,42

2.2 Differential Vector Operations

in agreement with Fq, 2,10,

The starting peint for developing the gradient, divergence, and curl operators in
curvilinear coordinates is our interpretation of the gradient as the vector having the
magnitude and direction of the maximum space rate_of_change (cf. Section 1.6).
From this interpretation the component of Vi(q,, 4, , ¢5) in the direction normal to
the family of surfaces g, = constant is given by’

V‘!’ [y = ““a'#—/: al,// f
ds, hy g
since this is the rate of change of ¢ for varying ¢,, holding ¢, and ¢, fixed. The
quantity s, is a differential length in the direction of increasing ¢, {¢f. Eq. 2.9). In
Section 2.1 we introduced a unit vector a, to indicate this direction. By repeating
Eq. 2.12 far ¢, and again for ¢, and adding vectorially the gradient becomes

a0y By
Vir(gy, 42, qa) =.31 —65—, + 325;“2 +a, —0‘:9—3

(2:12)

o oy g
=a +2 +a . {2.13)

th éqq zhz 04 3-’13 943 '

The divergence operator may be obtained from the second definition (Eg, 1.91)

of Chapter 1 or equivalently from Gauss’s theorem, Section 1.11. Let us use
Eq. 1.91:

. Y-da
V-V{q,.49:,q5) = lim I
Jae—ro _fdr

with a differential volume kA, h,h, dy, dg, dgy . Note that the positive directions have
been chosen so that (g, q,, g3) or {a,, a,, a;) form a right-handed set,

1 Here the use of @ to label a function is avoided because it Is conventional .to use this symbol
to denote an azimuthal coordinate. :

(2.14)
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(4’.5‘3 = l_l3 dQ3 4

dsy = hy degy

dsp == Ttz dgq

FiG. 2.1 Cuivilinear volume element

The area integral for the two faces g, = constant is given by

. ) d
: [Vlhzha .+15&“- (Vyhyhs) d%]délz dgs— Vihyhy dg, dg;
_ qi
s (2.15)
25“ (Vihzh3) dg, dg., dgs
q1

exactly as in Sections 1.7 and 1.10.1 Adding in the similar results for the other two
pairs of surfaces, we obtain

fv(ql »q2, QS) " d“

8 .
= [’é—é— (Vﬁlzhs) + (Vzh3h1} + (V;;hi 2)] dq, dqz dq_—, ’ (2.16)
1
Division by our differential volume (Eq. 2.14) yielm

’ ! 2
YV V(g:, 420 5) = (Fihahs) + 5 mh 1>+.—(V3h1h2)]. 2.17)

o
i hyhy | 8q,
In Eq. 2.17 ¥, is the component of ¥ in the a-direction, increasing g;, that is,
Vi=a;*V.

We may obtain the Laplactan by combining Eqs 2.13 and 2. 17, using V =
VYy(q,,.4;, g1)- This leads to

Vo V(g s 4as 4a)

1 73 (h Jhy 'OV'/) +:9m(h3hlﬁifi> N (h hs oq‘;)} (2.18a)
Bgi\ by Ogy dqa\ hy Og, dqa\ hy 9q;

" hyhghy
Finally, to develop V' x 'V, let us apply Stokes’s theorem (Section (.12} and, as

1 Since we take the limit dgu, dga , dgs —+ 0, the second and higher order derivatives will drop out.
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drg = fy dgs

. £
{42 Ga)
dsa = hg dga

FIG. 2.2 Curvilinear surface element

with the divergence, take the limit as the surface area becomes vanishingly small.
Working on one component at a time, we consider 2 differential surface element in
the curvilinear surface ¢, = constant. From

foV-cic=VxV|lI12I13 gy das (2.185)

Stokes’s theorem yields

V X V|, hhsdgs dgy = j{iv - dh, (2.19)

with the line integral lying in the surface ¢, = constant, Following the loop
(I, 2,3,4) of Fig. 2.2,

' d
$Vae, 420 a5) " db= Vihy dgs + [ Vshy + = - (Fshs) dﬁh] das
. A 2

a ) .
- [Vzhz -+ EYN {Vyhy) df—h}_dflz = Vyhy dy,
4 1

d
= [—— (h3V3) — = } dg, dygy. (2.20)
dg, ‘ .
We pick up a positive sign when going in the positive direction on parls ! and 2 and
a negative sign on parts 3 and 4 because here we are going in the negative direction,
From Egq. 2.19 o
17T % ‘ ‘ ’
VXV = l (hyV3) — = (hzvz)]. (2.21)
hyhs| O dq; _
The remaining two components of V x ¥V may be picked up by cyclic permutation
of the indices, Asin Chapter [, itis often convenient'to write the curt in determinant
form: :
ath, azh; a3k,
S i g 9 S :
VX V= | e ot e | (2.22)
hohahs| 0q,  8q,  8qs )

hV, hiVy RV
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This completes the determination of V_, V-, ¥ x, and the Laplacian ¥? in

*curvilinear cogrdinates: Armed with these general expressions, we proceed to study

the eleven systems in which Eq. 2.1 is separable (cf. Section 2.5) for &2 # O and three
special coordinate systems (bipolar, toroidal, and bispherical coordinates).

EXERCISES

* 224 With a; a unit vector in the direction of increasing g, show that

- 1 2(hehs) -
V. e
@ V= e o
‘ 17 e oy
b) Vx mm[ I “W_ﬁ]
O ¥ty o= o e e ™ ks o

» 222 Show that the orthogonal unit vectors a; may be defined by

I &r (@)
A = — — a
hi 21 .
In particular show that a; - a; = | leads to an expression for Ay in agreement with Ea. 2.6.
Eq. (a) above may be taken as a starting point for deriving
G eh; oy
—_— Ay —, i
oq; ' aqi !
and
Eia; ah!
g d AT
B iFe hy gy

- « 2.3 Develop arguments (o show that ordinary dot and cross products (not involving V) in

~orthogonal curvilinear cocrdinates proceed as in cartesian coordinates with mo fnvolvemeny
of scale factors.

= 224 Derive

I I

+a g
Iudgq 2 by g, * s gy
by direct applicaticn of Bq, 1.90, ’

Hint. Bvaluation of the éur_faé:e integral will lead to terms like (fi/ip Aa)~2(8/8g, )(a, kg Fis).
The results listed in Ex. 2.2.2 will be helpful.

23 Spécia] Coordinate Systems—Rectangular Cartesian Coordinates

It has been emphasized that the choice of coordinate system may depend on
constraints or symmetry conditions in the problem to be solved. It is perhaps
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convenient to list our fourteen systems, classifying them according to whether or
not they have an axis of translation (perpendicular to a family of parallel plane
surfaces) or an axis of rotational symmetry. '

TABLE 2.1

Axis of Translation Axis of Rotation Neither

Cartesian {3 axes) Confocal ellipseidal

Circular cylindrical Circular cylindrical

Spherical polar (3 axes)l
E_lllibtic cylindrical Prolate spheroidal
Oblate spheroidal

Parabolic cylindrical Parabolic

Bipolar, Toroidal

Bispherical
: Conical

Confeeal paraboloidal

Table 2.1 contains fifteen entries—circular cylindrical coordinates with an axis
of transiation which is also an axis of rotational symmetry. The spacing in the table
has been chosen to indicate relations b'etwccn various coordinate systems. If we
consider the two-dimensional version (z = 0) of 2 systcm with an axis of translation

“(left column) and rotate it about an axis of reflection symmetry, we generate the

~ corresponding coordinate systems listed to the right in the center column. For

instance, rotating the {z = 0)-plane of the elliptic cylindrical system abcut the major
axis generates the profate spheroidal system; rotating about the minor akis yields
the oblate spheroidal system,

We do consider three systems with neither an axis ol translation nor an axis of
rotation. 1t might be noted that in this asymmetric group the confocal ellipsoidal
system is sometimes taken as the most general system and almost all the others'

- are derived {rom ii,

Rectangular cartesian coordinates. These are the cartesian coordinates on
which Chapter | is based. In this simplest of all systems

By=h,=1,
hy=h,=1, (2.23)
hy=h, =1. '

The families of coordinate surfaces are three sets of paralle] planes: x = constant,
y = constant, and z = constant. The cartesian coordindte system is unigue in that
allits ks are constant. This will be a significant advantage in treating tensers in

! Excluding the bipolar system and its two rotational forms, toreidal and bispherical,
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* Chapter 3. Note also that the unit vectors, a,, a,, a, ori, j, k, have fixed directions.
“From Eqs. 2.13, 2,17, 2.18, and 2,22 we reproduce the results of Chapter 1,

Vl,';~;?fj’~+jaw+k5"b (2.24)
dy oz
av, av, 8V,
V'Y=3% "5" P (225
‘ a ¢ &My
VeV = + % 2 =5 (2.26)
i ] .k
8
VaV=|— — —|. (2.27)
x ¥ I/z

24" Spherical Polar Coardinates (r, 6, 1)

‘Relabeling (7,, ¢, , q3) 25 (r, 6, @), the spherical polar coordinate system consists
of the following: ‘
1. Concentric spheres centered at the origin,

r=(x*+ y* + z%)"? = constant.
2. Right circular cones centered on the z-(polar) axis, vertices at the origin,

z

g 22 CONISEANt.
(xz 4 yz +22)If2

f# = arc cos

3. Half planes through the z-(polar) axis,

¢ = arc tan 4 = constant.
X

_ By our arbitrary choice of definitions of 0, the polar angle, and ¢, the azimuth angle,
“the z-axis is singled out for special treatment. The transformation equations
corresponding to Eq. 2.2 are

x = rsin  cos ¢,

vy =rsin 8 sin ¢, _ (2.28)

= rcos @,

measurmg @ from the posmve z-axis and ¢ in the xp-plane from the positive x-axis.

Therangesofvaluesare{)<r<oo O0<t¢=mnand0 < ¢ < 2z From Eq. 2.6

' hy=h =1,
kz = hﬂ =‘?’ (229)
fiy=h,=rsinf. :

2.4 SPHERICAL POLAR COORDINATE (, 8, ¢) g1

N

o ~

|
I
|
!
i
{
[ {
!
]
f
|
|
\
\

(x, v, 0)

o

FIG. 2.3 Spherical polar coordinates

It must be emphasized that the unit vectors ry, 8, , and @, vary in direction as the
angles Band g vary. Intermsof the fixed direction cartesian unit vectors i, j, andk,

rp=isinf@cosg+jsinfsing+kceosd,
0y =i cos 0 cos ¢ + jcos O sin ¢ —ksin 8,
¢y = —isin ¢ +jcos ¢,

‘From Section 2.2, relabeling the curvilinear coordinate unit vectors a;, a,, a; as
Yo, 0p, and g,

£ 1 &y 1o

=y, — - . 2.30
V=Ko gt O T o s e 230)
' T g . .- av,]
V.V:rz sinGvsmaﬁ (r V) r——(smO.V,,)-{-r_.—E(—P'—‘“], _ (2.3!)
Lo , A 3y 1 azw] ;
. = — e 0 —_— 2.32
VoW agng ind r(’" ) + aa(““ 00) Tanoaer 4
rp My rsinOgy
I g 0 7
VXV = — = -_— . 2.33
X rising |ar 08 do (2.33)
V. ¥, rsin 0V,

: ‘Occasionally the vector Laplacian V*V is needed in spherical polar coordinates.
1t'is best obtained by using the vector Wdentity (Eq. 1.80) of Chapter I. For future
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- 328 @ _cos 0 9 1 g I
V= —— - e o e e e e .
VeVl ( LR P Y * r¥sin 0 00 + ¥ a0* o sin® 0 thz)V
+( 20 2COSU)V+( 2 O)V
rRED rtsingy) C rtsin 0 dp) 7
2 2 aVy, 2cosl 2 gy -
e VZ V.~ vy — e 2,34
: TR0 2sin0d Y +sin 0 de (2.34) :
2oV 2cos{l OV,
V| = VA, = e Vy e e L 25057 O 2.35
-V Vs TS0 "0 T et 0 de (2.35)
‘ 29V 2cos ) 2V,
VIV, = V2V, — e - — L. 2.36
lo L T * r*sin 0 de * P sin 0 e (2.36)

These expressions for the cofnponents of V*V are undeniably messy, but sometimes
they are needed. There is no guarantee that nature will always be simple.

ExXAMPLE _2.4‘1

Usiﬁg Eqgs. 2.30-2.33, we can reproduce by inspection some of the results derived
An Chapter 1 by laborious application of cartesian coordinates.
From Eg. 2.30 :

1
Vi) =1, _c_f, .37
dr
Vi = rgnrt L
From Eq. 2.31
2 d
Vero ) = f + 57, |
(2.38)
Voergr" = {(n+ 23" "
From Eq. 2.32 ‘
: 2d dzf
VE(r) = f -5,
a‘f (2.39)
Vi = n(n + 1" 2 (2.40)
Finally, from Eq. 2.33 ‘
YXr, f(n=0. (2.41)

~EXaMPLE 2.4.2

The computatlon of the magnetic vector potentml of a single current loop in the
xp plane involves the evaluatlon of

¢ V=V x [V x @gd,(r, )1 (2.41a)

In spherical pelar coordinates this reduces as follows:

EXERCISES C83

o iy rsin Ogg
V=Vx 3 1 j_ i i
rsing| dr 00 dg
0 0 rsin04,r, 0)
SV 04,) — 10 (r sin 04 ] 2414
= x;—m[raag(rsm o= 7 o5, rsin 0A4,)]. (2.415)

Taking the curl a second time,

_ Iy 1l s .O(po
1 P o
2 sin 0 ] ar a6 S ag (241c)
1 1 ¢
e L (rsin 04
25in 8 80 (r sin 04,) sin 0 &r (rsin 04,) 0

By expanding the determinant

2.441

42

W Loy
Ve _‘p"{ FrEAE ULmQOO( 0 04 )”
£ —(po[V Ar, ) — 1 A o7 0)]

- In Chapler 12 we shall sée that V leads to the asscciated Legendre equation and
* that 4, may be given by a series of associated Legendie polynomials.

EXERCISES

Resolve the spherical polar unit vectors into their cartesian components.
ro=isinfcos @ + jsin 8sin g 4 keos b,
By = icosfcosp + jcosfsing — ksinf,
o= —ising + icose.

(a) From the results of Exercise 2.4.1 calculate the partial derivatives of ro, o, and o
with respect to r, 0, and . : :

(b) With V given by .
a ' 8 l-# i R

Fo b Op— == e e

o pan rsind 8

{greatest space rate of change), use the results of part (a) to calculale V « Vq’f."}—lcre is

an alternate derivation of the Laplacian.
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. 243 Resolve the dartesian unit vectors into their spherical polar components.
i=rosinfcosg + Bocosfcos g — posing,
j=rosinfsing + Bocos fsing - ocos g,

'k =rocosf — Bysinf.

24.4 The direction of one vector is given by the angles &; and @i For a second vector the
corresponding angles are 2 and. g, . Show that the cosine of the included angle y is given ~
by : .

cos'y == cos ; cos 8, 4 sin 6, sin 8, cos (g, — @2).

- Cf. Fig. 1213 .
24.5 A vector Vs tangential to the surface of a sphere. The curl of V is radial. What does this
imply about the radial dependence of the spherical polar components of ¥?

2.4.6 Modern physics lays great stress on the properly of parity—whether a quantity remains
invariant or changes sign utider an inversion of the coordinate systen.
(a) Show that the inversion (reflection through the origin) of a point (r, 0, @) relative 1o
Sfixed x-, y-, z-axes consisis of the transformation

Frry
G- 7 —8,
@b .

(b) Show that rp and g have odd parity (reversal of direction) and that 6y has even parity.
247 Eq. 1.72 was a demonstration that
w* Vr=uw,

Iusing cartesian coordinates. Verify this result vsing spherical polar coordinates. In the
language of dyadics (Section 3.5), Vr is the indemfactor, a unit dyadic.

2,48 A particle is moving thfough space. Find the spherical coordinate components of it
velocity and acceleration: :
v, =7,
vy =70,
5y =r sin 0,
ap = it — r{% — r sin® a2,
ag =l + 208 — ¢ sin @ cos G¢2,
"y =rsin 8¢ 4 27 sin O 4 2r cos 68p,
Hint. ) .
£t} = ro(t)r(t) -
== (i sin 8(t) cos (r) -+ § sin O(¢) sin (2} -k cos HIr(2),
Note. Using the Lagrangian technigues of Section 17.3 thesc results may be obtained

somewhat more elegantly. The dot in 7 means time derivative, 7 = dr/dr. The notdtion was
originated by Newton.

2.4.9 A particle m moves in response to a central force according to Newton's second law
mr =ro f(r).
Show that rxT = ¢, a constant and that the geometric interpretation of this-leads to
- Kepler’s second law.,

2,440 Express 8/8x, /2y, 8/3z in spherica} polar coordinates.

2411

2.4.12

EXERCISES &3

. 8 1 & sing @&
— = sinfcos g — + cos feos p - — — —n b ©
ox Br Vi Tl g
& ... @ 18 cosg @
e 510 0510 g e+ GO8 D8I g - — - ol
2y P P % e 2’

12 ‘

—sinf- =,
r 88 2

&
B
Hint, Equate V,,; and V.,

¢
amcosﬂ

From Exercise 2.4,10 show mat
L, 8 2 L2
g,(xafy E;) = —z—a; ..
This is the quantum mechanical operator corresponding to the z—component of angular
momentum,.

With the quantum mechanical angular mementum operator defined as L= —i(r X ¥)
show that ) ,

a4 £
(@) L+ 7Ly = f"q(f"i‘ icot G—:").
ef ép,

These are the raising and lowering operators of Sections 1.3.() and 7.

Yerify that L X L =/L 1 spherical polar coordinates, L — —i{r X V), the guantum
mechenical angular momentum operator.

dx’:_::i." Use spuerical polar coordinates tor L. but cartesian componfnts for the cross
produet. . '

With L = —ir X ¥ verify the operator identilies

2 XL
(a) V:roa—r":ir_z,

a
(b) rV2 mV(l + r'é;) =iVx L.
This latter identity is useful in relating angular momentum and Legendre’s differential

eguation, Ex.8.2.3.

Show that the touowing three forms (spherical ‘eoordinates) of V2 yi(r) are equivalent.

0 24

I 42
By - e
()rdrz

=
drt v dr

The s_econd form is particularly convenient in establishing a correspondence between
spherical polar and cartesian descriptions of a problem, '

@ L0, 280

One model of the solar corona assumes that the stead.y—state equation of heat flow I
Velk V=0
is satisfied. Here, k, the thermal conductivity, is proportional to 7972, Assuming that the




86 ' 2 __COORDINATE .S‘I’STEMS

temperature T is propomonal to r?, show that the heat flow equation is satisfied
by T= = Tulrofry?7.
2447 A certain foree field is given by
: F=rg

2Pcosd
3

P
- o sind, r P72,
) r re
{in spherical polar coordinates). @
(a) Examine ¥ x F to see if a potential exisls.
(b) Calculate ji F « A for a unit circle in the plane & = 7/2.
What does this indicate aboiet the force bring congervative or. nonconscwalwe ?
(c) If you believe that F may be described by F= — Vi, find ¢ Olherwise smlp]y
state that no acceptable potential exists.
2.448 (a) Show that A = —po (cot8/r) is a solution of V X A = rufr?.
' {b} Show that this spheri¢al polar coordinate solution agrees with the solution given for
Exercise 1.13.5:

Awi yz -4
=1 —
RSO ERENO,
Note that the solution diverges for 8 = 0, 7 corresponding Lo x, y = 0.
(c) Finally, show that A = —8yg(sin 84r} is a solution. Noté that although this solution

does not diverge (r # 0) it is no longer single-valued for all possible azimuth angles.

2,419 A magnetic vector potential is given by

Mo m X
A ¥3 T
Show that this leads to the magnetic induction B of a point maguetic dipole, dlpo!e

rnomcnt m,
Ans, For m—km,

2mcos 8 msind
3 + o 3
¥ [

VXA=1g
_ Cf. Bqs. 12.146 and 12,147,

2.4.20 At large distances from its source, electric dipole radiation has fieids
i(kr— we) el(kr—wt)

B =gzsinf 8o, B=agsind

Po.
Show that Maxwell's equations
. iB B
VxE.=—a— and VXB=80|LLQ"5"
are satxsﬁed if we take .
aglag = wik = ¢ = (g0 pro) "2

Hing. Since r is large, terms of order =2 may be dropped.

25 Separation of Variables _
In cartesiah coordinates the Helmholtz equation (Eq. 2.1) becomes

02*."/ i A 2

e Rl v =0, (2.42)

2.5 SEPARATION OF VARIABLES g7

using Eq. 2.26 for the Laplacian. For the present let £° be a constant. Perhaps the
simplest way of treating a partial differential equation such as 2,42 is to split it
up into a set of ordinary differential equations. This may be done as follows: Let

Wix, y, 2) = X(x) Y{y) Z(z) (2.43)

and substitute back into Eq. 2.42. How do we know Eq. 2.43 is valid ? The answer
is very simple. We do not know it is valid! Rather we are proceeding in the spirit
of let’s try it and see if it works. If our atiempt succeeds, then Eq. 2.43 will be
justified. if it does not succeed, we shall find out soon enough and then we shail
have to try anocther attack such as Green’s functions, integral transforms, or brute
force numerical analysis. With  assumed given by Eq. 2.43, Eq. 2.42 becomes
d*x dy 4z '
YZ—S + XZ—5 + XY 5 +PXYZ=0. 2.44
wE a7 + R (2.44)
Dividing by ¢ = X ¥Z and rearranging terms, we obtain
| d*X , 1d*Y 1d*Z

=k e — e 2.45
X dx* 4( Y dy? Zdz2? : (2.43)

Equaticn 2.45 exhibits one separation of variables. The left-hand side is a function
of x alone, whereas the right-hand side depends only on y and z,'So Eq. 2.45is a-
sort of paradox. A function of x is equated to a function of y and z, but x, y, and z

" are all independent coordinates. This independence means that the behavior of x as

an independent variable is not determined by y and z. The paradox is resolved by
setting each side equal to a constant, a constant of separation. We choose'

[ d*X% .
el ®#, {2.46)
’ 2 2
k- Ld7y —1 d—zz —1* (2.47)

Ydyr o d?

: Now, turmng our aitention to Eqg. 2. 47

1 d’Y 1 d*Z
==k e e, 2,48
Y dy2 Z dz* ( )
and a second separation has been achieved. Here we have a function of y equated
to a function of z and the same paradox appears. We resolve it as before by equating
each side to another constant of sepe -ation, —m?

»

1 d*Y ) '

e ey 2.

Y dy? m {2.49)
2
Z

“Zl—j_zT =~k P+ mP= -t {2.50)

Ziri'troducing a constant #* by k* ={* + m* + n’ to produce a symmetric set of

,"equatlons Now we have three ordinary differential equations (2 46. 2.49, and

. ' The choice of sign, completely arbitrary here, will be ﬁxcd in specific problcmS by the need
o satisfy specific boundary conditions.
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2,501 to replace Eq. 2.42. Our assumption (Eq. 2.43) has succeeded and is thereby
justified. '
" Our solution should Be labeled according to the choice of our constants-/, m, and
n, that is,
. l."/lmn(x! Vs Z) = Xi(x) Ym(y) Z,,(Z). (2500)

‘Subject to the conditions of the problem being solved and to the condition k% =
I* 4+ m? .+ n*, we may choose /, m, and n as we like, and Eq. 2.50a will still be a
sotution of Eq. 2.1, provided X{x) is a solution of Eq. 2.46, etc. We may develop
the most general solution of Eq. 2.1 by taking a linear combination of solutions

l{’lmu ]
= Z almnllﬁllmn . (250b)

[

The constant coefficients imn are finaily chosen to permit ¥ to satisly the boundary .

conditicns of the problem.

How is this possible? What is the justification for writing Eq. 2.5067 The
justification is found in noting that V2 + &% is a linear (differential) operator. A
linear operator & is defined as an operator with the following two properties:

: Flay) = aly,
where a is a constant and

Ll H )y =L+ Fofra

As a consequence of these properties, any linear combination of solutions of a
linear differential equation is also a solution. From its explicit form V2 + &% is
seen to have these two properties (and is therefore a linear operator). Equation 2.506
" then follows as a direct application of these two defining properties!
A further generalization may be noted. The separation process just described
wauld go through just.as well for

P f) 4+ gly) + Bz) + k7 (2.50¢)
with k2 a new constant, '
We would simply have _ _
1 d*Xx
i x) = — 2 2.50d
Y i + f{x) ( )

replacing Eq. 2.46. The solutions X, Y, and Z would be different, but the technique
of splitting the partial differential equation and of taking a linear combination of
solutions would be the same, :

In case the reader wonders what is going on here, this technique of separation
of variables of a partial differential equation has been introduced to illustrate the
usefulness of these coordinate systerns. The solutions of the resultant ordinary
differential equations are developed in Chapters 8 through 13.

Let us try to separate Eq. 2.1, again with £* constant, in spherical polar co-
ordinates. Using Eq. 2.32, we obtain

1 We are ospecially interested in limear operators because in quentum mechanics physical

quantities are represemcd by linesr operators operating in a complex, infinite dinnensional Hilbert
space. .

B

2.5 SEPARAT;ON OF VARIABLES 89
1 . 5 OV i 1 1}1] 2
— 8 + 6 — 4-—-——— = — k. 2,51
R a[sm ar(’ ar ) aa( a()) i3 v @3
a0 Now, in analogy with Eq. 243 we try
T W(r, 6, @) = R0) OO) ®lg). (2.52)
o By substituting back into Eq. 2.51 and dividing by RO®, we have _
' i df,dR 1 d ¢ tod'd
[P =] 4 -t =k (2.53) -
Ri? dr(' dr) + Ortsin g d()( n o dﬂ) @r?sin? 0 a’(p ¢ (2.33)
Note that all derivatives are now ordinary derivatives rather than partials, By
multiplying by +? sin® § we can isotate {1/d){*®/dp”) 1o obtain
Lde ., 1 d{f ,dR L df. dO
— —— = risin? 9| -k~ 2 e ——(' 09— )] 2.54
o dp? [ r7R dr(r m-)_ e @@ )| G

Equation 2.54 refates a function of ¢ alone to a function of » and 8 alone. Since.
r, 8, and ¢ are independent variables, we equate each side of Eq. 2.54 to a constant.
Here a little consideration can simplify the later analysis. In almost all physicat
_problems ¢ will appear as an azimuth angle This suggestsaperlodlc solution rather
than an exponential. With this in mind, let us use —m”* as the separation constant.

Any constant will do, but this one will make life a little easier. Then

1 d*@ ‘
o) (2.55)
<IJ dq)
and 1 iR 1 d de m?
2 0 . : mo 2
e PP ) b {sin 6 ) — e = —k. 2.56
7R dr(r dr) 7% sin 00 dG(Sm de) Feanrg " (2.56)
Multiplying Eq. 2.56 by +* and rearranging terms, we obtain
1 d{,dR,  ,, 1 d ( 40y m? '
e | PR = g 2,
Rdr(' dr)+rk T Sin 66 76 Sln6d8)+sin29 . @D

~-Apain the variables are separated. We equate each side to a constant @ and ﬁnally
“obtain

tody. de\ m* _
m@(“‘“%) T g2 tee=o e
Ld(.dR 2p QR
r_za?(" ?f?)“ R—"7=0 @59

Onee more we have replaced a partial differential equation of three variables by
three ordinary differential equations. The solutions of these ordinary differentiai
equations are discussed in Chapters 1 and (2. In Chapter 12, for example, Eq.
"2.58 is identified as the associated Legendre equation in which the constant Q
becomes /(/ + 1}; {is an integer.

Again, our most general solution may be written

V'}Qm(rs 0, (P) Z RQ(") ®Qm(g q)m((P) (2600)

Q.m
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The restriction that k* be a constant is unnecessarily severe. The separduon process

will Sllll be possible for &% as general as
= f0) + = 2 9(8) + g M) + k' (2.60b)

In the hydregen atom problem, one of the most impertant examples of the Schro-

dinger wave equation with a closed form solution,we have k* = f(r). Equation

2.59 for the hydrogef atem becomes the associated Laguerre equation. Separation

of variables and an investigation of the resulting ordinary differential equations are

taken up again in Section 8.2. Wow we return to an investigation of the remaining
special coordinate systems.

EXERCISES

2.5.1 By letting the operator V2 4 &2 act on the gencral form ayin(x, y, 2) -~ aaiba(x, p, ), show

that it is linear, that is, that (V2.4 k“)(algln_—kagz,f;g) = a (V2 + kg)t,ffu + aa(V* 4 k2)da .

Verify that . o
. . 1

Valir 8, o) + [ka AT ;Eg(e) Epe n,gh(qa)] W, 8, @) =

is separable (in spherical polar coordinates). The functions f, ¢, and # are functions only
of the variables indicated; k2 is a constant.

An atomic (quantum mechanical) particle is confined inside a rectangular box of sides
“a, b, and ¢. The particle is described by a wave function i which satisfies the Schrodmger
wave equation

5; Vg = B,

The wave function is required to vanish at each surface of the box (but not Lo be identically
zero). This condition imposes constraints on the separation constants and therefore on
the energy E. What is-the smallest value of £ for which such a solution can be obtained ?

P Ei‘.\‘rﬂﬁg‘(l L
ETTm\e TR @)

2.6 ‘ Circu!ar.Cy[indrica! ‘Coordinates (o, @, )

From Fig. 2.4 we obtain the transformation relations

X = p COSs @,
y= psin @, (2.61)
z =z,

|
i
3

" * ordinates

2.6 CIRCULAR CYLINDRICAL COORDINATES (p, @, 2)- 91

using p for the perpendicular distance from the z-axis and saving r for the distance

from the origin. According to these equations or flom the iength elements the
scale factors are

hy=h,=
ha=hy=p, (2.62)
hy=h, =1

The families of coordinate surfaces shown in
Fig. 2.4 are

L. Right circular cylinders having the z-axis
as & COmmon axis,

p = (x* + yH)'"? = constant,

2. Half planes through the z-axis,

FIG. 24 . Circular  cylinder . co-.

= tan“‘(z) = constant,

\

3. Planes parallel to the xp-plane, as in the cartesian system,

Z =s Constant,

“The limits on p, ¢ and z are

0<p <o, OLe<2n, and —w <z < w.
From Egs. 2.13, 2,17, 2.18, and 2.22,
ol 151!/ o
Viip, @, 2) = pg — + k- .
¥(p, @, 7) = po 5 + g - ¥ 5, (2.63)
12 18v, av,
VeV=o— (pV) 4 =t g o F :
pap(p ,,)+p 5t . (2.64)
Va/ 18 92
Vi = ( 1!/) + "'i‘“"fz Al’z, (2.65)
p(?p dp P e Oz
Po P@o Kk I
1ye @ 8
VX Ve=sl— — =1 .
pldp dp Oz ' (2.66)
V., pV, V,

: F_i"nally, for problems such as circular wave guides or cylindricat cavily resonators
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the vector Laplacian V2V resolved in circular cylindrical coordinates is

r -1 24,
VAV = ViV — —
b TR Py
1 2V,
VIV, =V, - = ¥, 2.67) =
lo s +p e (2.67)
ViV, = V2¥,.

The basic reason for the form of the z-component is that the z-axis is a cartesian
axis, that is,

VHpoV, + 0oV, + k¥ = VApoV, + @oV,) + k V7V,
= paf(Vr V) + @0g(V,, V) + k V2V,

'The operator V2 operating on the pg, g unit vectors stays in the p, @g-plane. This
behavior holds in all such cylindrical systems.

Exampre 2.6.1 CYLINDRICAL RESONANT CAVITY

Consider a circular cylindrical cavity (r adius @) with perfectly conductmg walls.
Electromagnetic waves will oscillate in such a cavity. If we assume our electric and
magnetic fields have a time dependence e~ then Maxweli’s equations lead to

TV x VxEBE=on’guE  (Cf Example 1.9.2) (2.68)
With V + E = 0 (vacuum, no charges),
V2E + «°E = 0,

whete V2 is the vector Laplacian and o = w?&o pp. In cylindrical coordinates E,
splits off, and we have the scalar Helmholtz equation

. V2E, +a’E, =0, (2.69)
and the boundary condition E,(p=a)=
. Using Eq. 2.65, Eg. 2.69 becomes

2 2
1&( aEz) L T 210

- -+
p dp p.@p o a(pz 8z*

Wety . Efp, 0,2 =P(p)0@)Z(E)

= 1 d{ dpP 1 d* 14d%z2

i Y P el UL 2.71

to Obtal.].'l P dp (p dp) T2 dg? -i-Z = + o ( .)

EXERCISES - 93

Splitting off the z-dependence with a separation constant —k?2,,
' 1 d*z

—— ==k

Z dz*

For our cavity problem, sin kz and cos 4z arc the appropriate solutions {in that we
can choose them to match the boundary conditions at the ends of the cavity). The
exponentials e*™ would be appropriate - for a wave guide (traveling waves),
cf. Scctlon 11.3.

Using y* == o® — k?, we isolate the ¢ dependence by muliiplying by p We set

d2(1> 2
= —m
D dp® ’
with ®(p) = eii"‘q’,.sin me, cos mep. Then the remaining p dependence is
d( dP)+( 2 2P~0l (2.72)
d e Pep ; m=) P =0, .

This is Bessels equation. The solutions are developed in Chapter 11. This particular
example, with Bessel funétions, is continued as Example 11.2.2.

EXERCISES

Resolve the circular cylindrical unit vectors into- thezr Lartes:an components.
po=1icosg -+ jsing,
o= —isingp + jcos g,
ko= Xk.
" Resolve the cartesian unit vectors into their circular cylindrical components. )
" i= pocos g —posinp,
j=pos ng +cpocose,
k= ku.

A particle is moving through space. Find the circular cylindrical components of its velocity,
-and acceleration,

Vo = ps dp=p— pp?,
Vo=[P,  ag=p@-+2pp,
v = I, g =
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2.6.4

2.6.5

2.6.6

2.6.7

.2.6.8

2.6.9

A(UpPg(ep) + hlz).

Laplacian equation

2 COORDINATE SYSTEMS 2.7 ELLIPTICAL CYLINDRICAL COORDINATES (u, v, 2) 95

Hint. satisfied with

r(t) = po()p(t) + kz(r)
_ ‘ = [icos @(t) = § sin p()]p(t) + kz(),
Note. p = dpldr, i = d®pldt?, etc.

Bo[’EQ = ]C/CU = o Eo(wfk) = 1}‘(.'.

2.6.10 A calculation of the magnetohydrodynamic pinch effect involves the evaluation of
(B + V)B, If the magnetic induction B is taken- to be B = (g B,(p), show that

B« VB = —p.B,p.

Show that the Helmholtz équation

Vb + k% =0 : '
2.6.41 {a) Explain why ¥? in plane polar coordinates follows [rom V2 in circular cylindrical
coordinates with z = constant. ’ '
(b} Explain why taking V? in spherical polar coordinates and restricting & to =/2 does

is still separabie in circular cylindrical coordinates if k? is generalized to k2 + f(p) +

Solve Laplace's equation.V%,n'J =90, in cylindrical coordinates for yf == f(p). NOT lead to the plane polar form of V2,
. - p 52 12 1 2
Any. f = & tn & Note. V2 T Wt A
ny. npn ote (p, ) o F 5 + el

1n right circular cylindrical coordinates a particular vector function is given by

V(p, ¢) = pa¥alp, )+ pulelp, @) 2.7 Elliptic Cylindrical Coordinates (i, v, z)
Show that V x ¥ has only a z~component. Note that this result will hold for any vector .
confined %0 a surface ga —-constant as tong as the products hi¥1 and f2¥: are each
independent of g3. '

One reasonable way o1 classifying the separable coordinate systems is to start with
-+ the confocal ellipsoidal system (Section 2.15) and derive the other systems as
degenerate cases. Details of this procedure will be found in Morse and Feshbach’s

A conducting wire along the z-axis carries a current /. The resuiting magnetic vector Methods of Mathematical Physics, Chapter 3. Here, to emphasize the application

potential is given by -
. I i
A=kEIn (w)
2 A\p

Show that the magnetic induction B is given by

I
B:\’-P(I J‘;':...

Zwp

A force is described by

Y

F:*1x2+y2'+]x2+y2'

(a) Express F In circular cylindrical coordinates,

Operating entirely in cireular cylindrical vogrdinates for (b) and (c),

(b) calculate the curl of F and

{c) calculate the work done by F in encircling the unit circle onge counterclockiise.
(d) How do you reconcile the results of {b) and (¢)?

A transverse electromagnetic wave (TEM) in a coaxial wave guide has an electric field
E = E(p, g)ei™ "¢ and a magnetic induction field of B =B(p, ¢le kz—-at)  Since the
wave is transverse neither E nor B has a z component. The two fields satisfy the vector

VAE(p, @) =0
VEBip, @) =0.
{2) Show that E = po Eola/p)e’™ =" and B = @ Bola/p)e'™*~ = are solutions. Here a

is the radius of the inner conductor.
(b} Assuming a vacuum inside the wave guide, verify that Maxwell's equations are

FIG. 2.5 Elliptic cylindrical coordinates
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* rather than a derivation, we take the coordinate systems in order of symmetry
..properties, proceeding with those that have an axis of translation. All of those with
an axis of translation are essentially two-dimensional systems with a third dimen-

sion. (the z-axis) tacked on.
For the elliptic cylindrical system we have

X =g cosh ucos v,
y=asinh u sin v,

zZ =7z
The families of coordinate surfaces are the following:

1. Elliptic cylinders, u = constant, 0 < u < co.
2. Hyperbolic cylinders, v : constant, 0 < v < 2.

3. Planes parallel fo the xynplane, z = constant, — o0 < 2z <00,
This may be s;:.en by inverting Eq. 2,73, Squaring each side,
7 . x? = g% cosh?® u cos? v,
p? = a® sinh® u sin® o,

from which .
T ‘L2 2

X n y
a*cosh”u g?sinh®u 7’
2 E

atcos’y alsinte

(2.73)

(2.74)
(2.75)

(2.76)

(277

Holding u (;onstant, Eq. 2.76 yields a family of ellipses with the x-axis the major one.

For v = constant, Eq. 2.77 gives hyperbolas with focal points on the x-axls.

The scale factors are
hy = h,= a(sich 2u + sin 2v) /3
By = h, = a(siah® u + sin? n)*3,

hy=h, = L.

(2.78)

We shall meet this system again as a two-dimensional system in Chapter 6 when

we take up conformal mapping.

EXERCISES

27 Letcosh u == gy, co8 v = g2, 2 = qy. Find the new scale factors Ay, and /g, .

i
BN
e
:

2.9 BIPOLAR COORDINATES (£, 7, 2)

2 L1
gy = a q»lz EH] i
g, — | )

o250
g = 1 5
1 — ,

2.7.2 Show that the Helmhoitz equation in elliptic cylindrical coordinates separates into

(a) the linear oscillator equation for the z dependence, ‘ :
(b) Mathieu’s equation

d?g 4 (b—2 }
R —~2qcos 2y g =0,
and
(c) Mathien’s modified equation
’ dzf .
et A/ A =
) (b — Zg cosh 2u) f= Q.

28 Parabolic Cylindrical Cdordinates (&0, 2)

The transformation equations,

x=2<n,
=340t —&h,
z =z,

1. Parabolic cylinders, & = constant,! — o < £ <.
2. Parabolic cylinders, # = constant, 0<y < o,
3. Planes parallel to the xp-plane, - = constant,

T 00 D 00,
From Eq. 2.6 the scaie factors are .

By s g == (B2 4 p?)H2,

hy=h,= (& 4 g%,

hy=h, =1.

;. .2.9 Bipolar C.oordinafes (&, n, o)

to cover negative values of x.

97

(2.79)

. generate tWQ sets’ of orthogonal parabolic cylinders (Fig. 2.6). By solving Eq. 2.70
for £ and » we obtain the following:

(2.80)

This is an oddball coordinate system. it is not a degenerate case of the confocal
+ cllipseidal coordinates. Equation 2.1 is not completely separable’in this system
weven for &% =0 (of. Exercise 2.9.2). It is included here as an example of how an
- untisual coordinate system may be chosen (o fit a problem.

' The paraboli€ cylinder £ = constant is invariant o the sign of £, Wemustlet £ (or ) go negative -
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£ = constant

9 = constant

z = constant

FIG. 2.6 Parabolic cylindrical coordinates. {Top) Cross section

2.9 BIPOLAR COORDINATES (£, », z) 99

g
¢
N
s
i
i

The transformation equations are

a sinh n

g e (2.81a)
asin &
= coshy ~cos B’ (2.815)
z=z o (2.81¢)
" Dividing Eq. 2.8la by 2,815, we obtain

3 S;E?; (2.82)

Using Eq. 2.82 to eliminate £ from Eq. 2.81g, we have
(x —acothn)’ + y* = a*csch®y, (2;83)

Using Eg. 2.82 to eliminate y from Eq. 2.815, we have
) X2+ (y — a cot &) = a? cse? &, {2.84)

From Egs. 283 and 2.84 we may identify the coordinate surfaces as follows:
1. Circular cylinders, center at y = a cot &,

¢ = constant, 0 &< 2nm.

2. Circular cylinders, center at x = a coth #,
| n = constant, — 0 <y < w0,
3. Planes paratlel to xy—p[ane';
z = constant, — 0 < Z <0,

When y — ¢, coth n > 1 and esch 7 — 0. Equation 2.83 has a solution x = a,
» = 0. Similarly, when n —+ —c0, a solution is x = —a, y = 0, the circle degeneraling
to a point, the cylinder to a line. The family of circles (in the xy-plane) described by
. Eq. 2.84 passes through both of these points. This follows from notmg thatx = +a,
"y =0 are solutions of Eq, 2.84 for any value of ¢!
The scale factors for the bipolar system are

a
B L S
By by cosh n — cos &’
a
2= coshy — cos &’ (2.85)
=h, = 1.

“To sec how the bipolar system may be useful let us start with the three points
‘0), (—a, 0), and {x, ) and the two distance vectors p; and p, at angles of 8,
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b
n=0
= f:% %o
Mo
= 27
£ 2w 5= — £ a
— 3
€= 2

FIG. 2.7 Bipolar coordinates

e

pl=(x —a)* + ¥,

. ) B s 5
[ ) .‘)%:(x"'a) + ¥
/ 1 and
-4 tan 0, = N
x—da
Y
: tan 0, = .
FIG. 2.8 x+a

We define!

“ M2 =i1’£E’
£

‘flz = 6!1 - Gzi
By taking tan £,, and Eq. 2.87
' tan §; —tan 8, -
1 + tan ¢, tan 0,
i) =yt a)
T 1+ yH(x — a)x + a)

tan &y; =

1 The notation Jris used to indicate log. . .

and 4, from the positive x-axis. From Fig.2.8

1

(2.86)

(2.87)

{2.88a)

(2.885)

(2.89)

FRTIAE ST L I

~ find A, the magnetic vector potential, and B,

29 BIPOLAR COORDINATES (£, %, ) "0l

" From Eq. 2.89, Eq. 2.84 follows directly. This identifies & as £, =0; — 0,. Solving

Eq. 2.88a for p,/p, and combining this with Hg. 2.85, we get
pi_(x+a)f+y°
pi o (x—a) 4y
‘Multiplication by ‘e~ ** and use of the definitions of hyperbolic sine and cosine

produces Eq. 2.83, which identifies 77 as 5, = In (p2/p,). The foliowing example
exploits this identification.

2 .
e’lu=

(2.90)

‘ExampPLE 2.9.1

An infinitely long straight wire carries a
current f in the negative -z-direction. A second
‘wire, parallel to the first, carries a current /in
the positive z-direction. Using

dl

dA = 4n = (2.91)

.the magnetic inductance. : - — —}E,—
From Eq. 2.91 A has only a z-component, ' '
Integrating over each wire from 0 to Pand =~ pgG. 29

Antibaralle] electric cur-
taking the limit as P — ¢o, we obtain rents

' #oI ( ) . .
A =27 fm( 2 -2 (2.92)
Foroo f \/P +z* J- \/P1 + 22
A, = Z‘C— lim 2[1n(z + \/pz +z9|f ~In(z + \/Px + zz)!f,’],
P

P ol PP -
= ff“-(hm o PN AR 33) , (2.93)
dn\prw P /pt 4 PP Py

This reduces to

gl i
A= g2l Bl (2.94)
27r 2n .

So far therzs has been no need for bipolar coordinates. Now, however, let us

calculate the magnetic inductance B from B = V x A. From Eqs. 2.22 and 2.85

he hng - k

B_(coshnwcos o1 o a a .
B a? o oy 9z I’
' — gl
0 0
2

(coshnp —cos §) pol
a 2’

= —Go (2.95)
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- The ;nagnetic field has only a &,-component. The reader is urged to try to compute
_*B in some other coordinate system.

.~ We shall return to bipolar coordinates in Sections 2.13 and 2.14 to derive the
- toroidal and bispherical coordinate systems.

EXERCISES

2.9.1 Show that specifying the radius of each of two parallel cylinders and the center to c?e.n]ter
' distance fixes a parficular bipolar coordinate system in the sense that 7, (first circle),
72 {second circle) and a are uniquely determined.

" 2.9.2 (a) Show that Laplace’s equation, V% yi(¢, 7, z,) = 0 is ot completely separable in bipolar
i coordinates. E o
(b) Show that a complete separation is possible if we require that o = K&, =), that is, if
" we restrict ourselves to a two-dimensionai system.

2.9.3 Find the capacitance per unit length of two conducting cylinders of radii b and ¢ and of
" infinite length, with axes paraliel and a distance o apart.
7 2meo
M- e
‘ 1.9.4 Asa limiting case of Exercise 2.9.3,'ﬁnd the capacitance per ur}it lc.ngth chween a conduct-
ing cylinder and a conducting infinite plane parallel to the axis of the cylinder.

=

C:2W50.

7

2.9.5 A parallel wiré wave guide (transmission 'line)'consisﬁs of two infinitely long conducting
¢ylinders defined by v = 4 9.
(a) Show that

center—center distance

- RL Pl Y
7 == cosh [ cylinder diameter

(b) From Example 2.9.1 and Exercise 2.9.3 we expect a TEM mode with electric and
' magnetic fields of thg form .

E= 1o _1_ Eq el(k:-w')
. B

Hes — EU _1_ _H’ge'(""“"’.
T

Show that Ep = Vo /1y where 2V, is the maximum voltage difference between the cylinders.

() With Iy = (go/p10)" 2 Fo, show that Maxwell’s equations are satisfied,
(d) By integrating the time averaged }’oynting vector

P = LE % H¥)

calculate the rate at which energy is propagated afong this transmission fine.

Ans.  Power = 2m(8o/pta) (V1)

¢
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210 Prolate Spheroidal Coordinates (i, v, ¢)

Let us start with the elliptic coordinates. of
system. We can generate a three-dimensional s
or minor elliptic axes and introducing ¢ as an
first about the major axis giv :
coordinate surfaces: '

Section 2.7 as a two-dimensional
vstem by rotating about the major
azimuth angle (Fig, 2.10). Rotating
€8 us prolate spheroidal coordinates with the following

1. Prolate spheroids,

- # = constant, 0< u < 0.,
2. Hyperboloids of two sheets,
D constaﬁt, UETE
3. Half planes through the z-axis,
@ = consiant, 0 o< 2m,

The transformation equations are

X = ¢ sinh u sin v cos ¢,
¥ = a sinh u sin v sin ¢, _ (2.96)
Z == g cosh u cos v.

‘Note that we have permuted our cartesian axe

_ 5 to.make the axis of rotational
symmetry the z-axis. The scale factors for this sys

tem are
1= h, = alsinh® ¥ + sin? RS

= afcosh® u — cos® 1)!/2,

(2.97)
hy = h, = a(sinh? u + sin? p)!/2,
hy =h,=a sinh u sin ».
. The prolate spheroidal coordinates are

rather important in physies, primarily because
of their usefulness in treating ** two-center ™
probiems. The two centers will correspond to
{z,x) the two focal points, (0.0, @) and {0, 0, —a),

1 of the ellipsoids and hyperboloids of revoju-

rz tion. As shown in Fig, 2.11, we label the

.// : distance from the left focal point to the point
—i a

{2, x}, r,, and the corresponding distaste from
‘the right focal point r, .

Fy + r; = constant, for fixed u.
FIG. 2.11 ' )

The point (z, x) is described in terms of u

~and v by Eqgs. 2.96. The azimuth is irrelevant here. From the pronerties of the
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z eilipse and hyperbola we know
Axis of rotational symmetry _
ry + ry = constant,  for fixed u,
v=0 . ¥, — r, = constant, for fixed v. (2.98)
Using
: re= [(a+2)" +x7]"%,
ry=[(a — z)* + xzj vz (2.99)
and Eq. 2.96, we find
‘j’f r, = a(cosh u + cos u),
C\u =0\ ry = a{cosh u — cos v), (2.100)
1 = ')1-/2 or
: Yo ht -y ry o+ Fy
-~ ~—2‘-6*t-w = ¢cosh u ‘
@101
- T osp
e - 2a .
v : .
. This means 1 is a function of the sum of the distances.trom the two centers, whereas
4 v is a function of the difference of the distances from the two centers.
v To facilitate this appllcatlou of the coordinate system we change the variables by
introducing
Zy=coshu, 1<¢ <o,
L= &2 =cos v, —1g& <, (2.102)
§3=¢'9 0@63-‘{27’[ .
Note carefully that
| | h'fa = hwsh " # hu; . ' (2103) )
New. variables involve new scale factors.
» constant Exampre 2.10.1

The hydrogen molecule jon is a system composed of two protons which we take

to be fixed at the focal points and one electron The Schrddinger wave equation
for this system is

constant - ) N
reonsis ——Vzw—kw—*wju—-ap Ey. (2.104)
Y o .
.‘The variabies r, and r, are defined in Fig. 2.11, and r,,, the proton-proton distance,
is just 2q. The problem is to separate the variables in Eq. 2.104.

In choosing the prolate spheroidal coordinates, &, &,, &;, our first step is to
calculate the scale factors. From Eqs. 2.96 and 2.102

é:z 52 1/2 gz_é;z .1"2
he, = (52_1) , h¢,=a(f_—¢~§) : (2.105)

' . 2 1/2 2,172
FIG, 210 Prolate spheroidal coordinates. (rTcrb) Cross section = a(é — DY - EDE
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Usmg these. spale fagtors and Eq 2.18a, we find

V= “5{(51152)051[(‘52 ’.aﬂ (él—l—cz)a?zi( -]

1 @z_!p} (2.106)
I - &) el
. 2,100
~ From Eq. 2 e ot ab (2.107)
;; ¥y - az(f% T 52)

By substituting Egs. 2.106‘and: 5107 into Eq. 2.104 and using the now standard
procedure,

’rf/(f: » 525 ‘fs) = f1(61) fz(fz) f}(fa)v . (2-108)
we can quickly isolate the azimuthal (£;) dependence to obtain
# 1 Wlﬂ d a’fi
~SE= 7, %, -z }2
1 1 d “_‘f}_ _ Ze f: - F
R T A l-ras "
z

i ! Ld /s (2.109)

= S (B = ) f>de

- | '.Here. we have used £ = o el‘/rlz, a constant. As in Sections 2.5 and 2.6, we set

Lfﬁii = —m?. {2.110}
fr dE3
Equation 2.109 may be éim'pliﬁed to yield
d AMae*E 2Ma E .,
- [(5 dfl] L lu- L]+ o S
f1 a1 fadt,

£ 1 ]
2l LT
_m[é§—1+1wé% -
| The var:ables & and &, sepamte by inspection, and we have one second-order

| for f3{Z)-
differential equation forﬁ(i ) and another N
‘An example of the use of prolate spheroidal I coordinates in electrostatics appears

in Section 12.11.

EXERCISES

2.10.1 Uls'mg £=cosh &, p=cost, show that the volume element in prolate spheroidal co-
o ordinates obtained by direct transformation of

-
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i

dr == a® (sinh? & 4 sin? v) sinh w sin ¢ dedy dp

is
dr = — (% — %) dé dy dp.

(The minus sign w1ll be tuken out by reversing the limits of integration over 2 J

2.40.2 Using prolate spheroidal coordinates, set up the volume mtegral representing the volume
of a given prolate ellipsoid using {(a) #, », @ atd (b) £, 7, . Evaluate the integrals and show
that your results are equivalent to the usual resuit given in terms of the semi axes,

4
V= —ma3bo,
. 3 e
where 4o is the semiminor axis and g, the se'mimajor axis.
210.3 in the quanturn mechanical analysis of the hyflroﬁen molecule by the Heitler-London

method we encounter the integral

{ .
T = — J'Cr(rwra)mu dr,
g

in which the volume integral is over all space. Iniroduce prolate spheroidal coordinates

2
and evaluate the integral. Ans. Fir, = (1 + ?*) o—Bafdy,

2,11 Oblate Spheroidal Coordinates (i, v, )

- <When the elliptic coordinates of Section 2.7 (taken as a two-dimensional set)
are rotated about the minor elliptic axis, we generate another three-dimensional
.spheroidal system, the oblate spheroidal coordinate system. Again @ is the azimu-
2 :thal angle. The coordinate surfaces are the following:

1. Oblate spheroids,

u = constanl, 0<u < oo,
3 Hyperbolo:ds of one sheet,
v = constant,’! “Efgwgl
- 2502
B 3 Half planes through the z-axis,
' (.= constant, 0< o< 2n.

The transformation equations relating to cartesian coordinates méy b.p written
= a cosh u cos v cos ¢

y =g cosh u ¢os v sin @

z = a sinh u sin p.

. .‘ote_' that v has a range of only w in contrast to the range of 2 for é]]iptic cyliredrical coordi-
ates (Section 2.7). The negative values of » generate negative values of z.
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z

d | Axis of rolational symmetry

¥ =

(=15 ]

¥
Fi5, 2,12 Oblate spheroidal coordinates. Cross section
The scale factors become
H : 1/2
hy = h, = a (sinh® u + sin® )V/
. /2 .
= a{cosh® u — cos? v)t/*, 2.112)

: 2
"~ hy = h, = a(sinh? u + sin? v)*/2
by = h, = a cosh.u cos v.

Singe holding u constant results in an oblate spheroid which is a g(.md app‘l't())'):.—
mat’igi toa planetéry sui'faoe, this coordinatc system has been u;ef;xl(llng ;!ge)s)crlB Z} tﬁ
itati ' inti, Phys. Rev. Letters 3, )

th’s gravitational field. (J. P. Vinti, - : ). F
:)1:'21;:; andgoblate spheroidal coordinates are used in Section 12.11 to illustrate

dre functions of the second kind. _ )
Leif:tercarefully that if we require ¢ to advance from_ X t_o y gs usual andv;t; _v;'ﬁ
insist on fheorder (i, v, @), this system is left-handed! This \fwll introduce ant:m Ll
1(n»—l) in the expression for the curl, To get back to .a right-handed sys .
necessary to use only (v, u, @),
i Yo X By = + ¢

or let v —»(nf2) — v in the transformation equations.

© 50 that the axis of rotation is the z

Measuring the azimuth from the x-axis in ¢!

T T T AN WAL, )
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EXERCISES

2111 Separate Lz{place's [

quation in oblate sphercidal coordinates. Solve the -
differential equation,

dependent

211.2 A thin conducting metal disk of

radius a carries a total electr
tance of the disk and the distrib

ic charge Q. Find the capaci-
ution of charg,

¢ over the surface of the disk,
€= Baego,
o= -ﬁ—uﬁg_.ﬁ_ (on each side).

braVa® — 2

212 Pardbolic Coordinates &, n,0)

In Section 2.8 two sets of or
that 'We have taken the system shown in the xy-
about the y-axis the axis of symmetry for each s
sets of orthogonal confocal paraboloids.

thogoenal confocal parabolas were described. Imagine

plane (Fig. 2.6) and have rotated
ot of parabolas, This generates two
By permuting the coordinates (cyclically)
-axis we have the following:

1. Paraboloids about the positive z-axis,

¢ = constant, 0<¢ <.

" 2. Paraboloids about the negative z-axis,

# = constant, 0<y < oo,

3. Half planes thr'ough the z.axis,

@ = cdnstant, 0 < 9 < 2.
he x;v-plane, as usual, Wf:'dbtaiﬁ
x = {n cos @,
¥ = &y sin g,

2= 0% — &%),

(2.113)

FromEq 2.113 we find the scale factors

hy = hy = (&% 4 nAHe,

h.’! = hq = (éz + PTZ)UZ.:

(2.114)

-

hy =h, = ¢n.
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Axis of rolational
symmelry

£ =2 constant

7 = censtant

FiG. 2;13 Parabolic coordinates

From Fig. 2,13 it is seen that
Eo XM= —@g,

that is, the parabolic system (&, 5, @) given here is a left-handed system. Equations
2.113 imply that £ and » cach have dimensions of {length)”*. For this.reason some
writers prefer to use ¢ in place of our & and 5% in place of our 5. Others have
interchanged ¢ and #.

“The parabolic coordinates have found an apphcatlon in the analysis of the
Stark effect,! the shift of energy levels which results when an atom is placed in an
electric field. :

. ExampLE 2.12.1 THE STARK EFFECT

The presence of the external electric field £, along the positive z-axis, adds a
potential energy term —eFEyz to the Schradinger wave equation, For hydrogen we
have

h‘Z 2 ez
e — 1 — eE, = Ey. 2.115
M \ p W — eEgzyp = Eyr ( )

LH. A. Bethe and E. S. Salpeter. Quantum Mechanics of One- and Two-Electron Atoms. New '

York: Academic Press (1957).

EXERCISES 111

Q_nce more the problem is to separate the varizbles.

~-Using Eqs. 2.184 and 2.114, we obtain

. L LGy a i 2
v? "___w{ [ é ] _{. ¥ | oy |
o V= En(E? 4 47 of as el e o T Bl dpt (2:116)
f.-"W:e also find
- . ¢:2 + }12 . . i
T (2.117)

Using Eqgs. 2.116, 2.117, and = (&) g(n) ®{e), Eq. 2.115 becomes

: | | [ (£)+ d{ dg
GRS PN dn(”.li—n)]

R N LT 2¢* ek,

e e _ 2 : .
: - MEFGag TEr T W RE=0 2118
. Setting
| 1 & , -. .
S wdgr . M : (2.119)

- -Eq. 2.118 may readily be split into the two equations:

L dfy et o
22 0
_ ZM[Cfda’:({ dg) & J + EES - — tA=0 (2.120)
and
RErL df dgy o eEopt
Zy oD o2 ol
EM[rzg dn( dn) ,;,2] TEC A== B =0, (2.121)

" fThe constants 4 and B are arbitrary except for the constraint 4 + B = 22,

Other applications of parabolic coordinates are included in the problems.

EXERCISES

.11‘_ d Find k2, 2, and k2 if the parabohc coordinates (£, 77, @) are related to the usual cartesjan

coordinates by
s=vEeasp,  r=v/Esing,
2 =4(€ 7). '
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2
2.12.2 Usmg the &, 7, ¢ defined in Ex. 2.12.1, derive the Stark effect equation corresponding
to Eq. 2.120, The resulting equation appears in Ex. 8.4, il(serxes solution) and 13.2.12
. 2 R .
(Laguerre polynonﬂals) Auis of rotational symmetyy
2,123 A concept of parlicular importance in atomic and nuclear physics is that of parity, the A
property of a wave function being either even or odd under inversion of the coordinates. =10
In cartesian coordinates this inversion or parity operator P acting on {x, y, z) gives (=2
_ Pix, y, 2} = {—x, —y, —7). 2
Write out the corresponding operator eguations in the foliowing coocrdinate systems: £=m

(a) Spherical golar (r, 4, @) £ f}q:;
(by Circular cytindrical (p, @, 2) [
{¢) Prolate spheroidal (i, v, P) Mo

{d) Prolate spheroidal (£, 7, @) : ~ —o )
{e} Oblate spheroidal (v, 4, @) ~ =% - »
{l} Parabolic (£, v, p) = 27
- py
24124 (a) The wave equation for the hydrogenlike atom is ¢
fi -
gy Ve Eu, r-
2m . - 3
where V, the potential energy of the electron is x 2
Ze?
Vo o e
¥
and £ is the total energy, a numbﬁ. Show thal variables can be separated by using
parabolic- coordingtes, )
(b} Show that the vgriables also separate 8 prolate spheroidal coordinates with the z
nucleus at one of the foc.
£ = constant
213 Toroidal Coordinates (&, 1, @)
This system is formed by rotating the xy-plane of the bipolar system (Section
2.9y about the y-axis of Fig. 2.7, The circles centered on the y-axis (¢ = constant) = constant
yield spheres, whereas the circles centercd on the x-axis {# = constant) form toroids. ¥
By relabeling the coordinates so that the axis of rotation is again the z-axis, the
transformation equations are
a sinh n cos ¢
coshy — cos &’
.a sinh 4 sin @
T (2.122) x
cosh ' — cos &
asing

cosh 5 — cos &

- FIG. 214 Toroldal coordinates. i
From these equations the scale factors are oroidal coordinates. (Top} Cross section
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a
hy = hy = ——mrrree
PO coshp—cos £
By=h K 2123
2T coshy—cos &7 123)
] asinhy
hy = hy =
cosh i — cos &
. The coordinate surfaces formed by the rotation are the following:
1. Spheres centered at (0, 0, a cot &) with radii, alese &,
= constant, 0gi< 27: _
2az cot & = x* + y? + 22 — a’. (2.124)
2. Toroids, :
' n = constant, 0<n < co.
The cross sections are circles dlsplaced a distance @ coth n from the z-axis and of
radii @ csch o, .
4a%(x% + y?) coth? n = (x* + y* + 2% + a®) (2.125)

3. Half planes through the z-axis,
¢ = constant, 0o 2

Laplace’s, equation is not completely separable in toroidal coordinates. This
coordinate system has some physical applications {(such as describing vortex rings)
but they are rare and the system is seldom used.

Again, as in the two preceding sections, note that (¢, #, ) yields a left-handed

" set, To transform to a right-handed system perhaps the simplest way is to take the
coordinates in the order {n ¢, 0)

EXERCISES

2434

Show that the surface area of a toroid defined by Fig. 2.15 is (Zma) x (2wh)
= 472ab.
2.13.2 As a step in solving Laplace's equatlon in toroidal coordinates, assume the potential

*ﬁ(f. 1, @) to have the form

(g, m, @) = Veosh 5 — cos £ XEWND(p).

Assumc furtber that (a) X(§) =sin né, cos ng, (b) () = sin me, cos megp, with n and m
integers. What is the basis for these forms for X & and ®(p)? Show that Laplace’s

214 BISPHERICAL COORDINATES (£, 7, %) : 115

equation reduces to

1 d aN m? :
LA S S -
sinh 7y dq [ sioh d’r}] sinh? n.N @~ DN . 0.

FIG. 215

::2.14 B_jspher_ical Coordinates (&, n, @)

‘Returning to the bipelar coordinates of Section 2.9, a rotation of the xy-plane
shown in Fig.2.7, about the x-axis generates two families of orthogonal intersecting,

pheres. Adding planes of constant azimuth, this is our bispherical system witn
ransformation equations:

asin ¢ cos @
coshy — cos &’
asin & sin @

' m——',. ‘ o (2126
J cosh # — cos & (2.126)

a sinh
coshn —cos &

ho—hy=—
1778 cosh g — cos &°
4 . .
h = e e nan
AT coshp —cos &7 (2.127)
asin é
hy=h,

: =coshr1—cosf'
The coordmatc surfaces are the following:

‘ 1. A fourth-order surface of revolution about the z-axis,

. " "I H : .
¢ = constant, 0<é= 7 “dimples” on z-axis,

A
e h ,
5 sphere
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L .
3 <é&é<m, cusps on z-axis,
. 2. Spheres of radius ajcsch 7] centered at {0, 0, a coth n,
' n = conaslant, — 00 < ) <L 00, EXEBRCISES
3. Half planes through the z-axis, -

4.1 Show that 'Lai)lac_e’s equation is separable in bispherical coordinates (to 'within a factor

A/cosh 1) — cos E ).

Hint. Let 4if, 7, @) =  +/cosh 5 — cos & XENED D).

® = constant, 0< o< 2n,

La'place’s equation is partly separable in this system, though the general
equation (2.1}, k% # 0, is not separable. The bispherical coordinate systern ha:_; been
found to be useful in specialized electrostatic problems such as the capacitance _
between a conducting sphere'and a nearby conducting plane (cf. Exercise 2.14.1). #1142 Using bispherical coordinates find the eapacitance between a conducting sphere and

. ) (nonintersecting) conducting plane.

A5 Confocal Ellipsoidal Coordinates (¢,, 7, £

i"l_‘his’ very general coordinate system has the following three families of co-
“ordinate surfaces:

: 1. Ellipsoids (no two axes are equal), ¢, = constant,
XZ N yZ N 22 - ’
az”"""‘f1 52—51 Uz“f;m

Hyperboloids of one sheet,

G-

Axis of rotational symmetry’

1. (2.128)

3 = constant,

£ 0 s
(2.129)
no | % -

§o
s .
R A =1, ©(2.130)
) a‘—&; &—b $i—c

> §=7 4.9 _Th’e: constants a, 4, ¢ are parameters which describe the ellipsoids and hyperbo'-

oids subject to the constraints

| N L SN iy
n qéi 2,128, 2.129, and 2.130, the minus signs resulting from these constraints
ere'shown explicitly.
Thé transformation equations are
2 = (@® — ¢a® — &)a® — £3)

(a® b a* - ch)
2 _(BF = ED(B? - E,)(E; - bY)

2 —

NPT @132)
22 (¢* — E 8, — Cz}(fs - c%)

(@ ~ Y7~

FI%E. 2.16 Bispherical cocrdinates
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After an undue amouﬁt of algebra, the scale facters are found to be -

h =h :l' & =GN =& ]”2
e Al - (BT - ) — &)
| L T D (S 2
hzr = hﬁz —EH(QZ _ (,;:2)(!)2 _ éz)(cz _éz)] (2[33) .
ho=h, = _1_‘ (&5 =& — &) :|”2
P @ - ENE - B(E - oD

As with the equations of the coordinate surfaces, the symmetry of this set has been
sacrificed by requiring each factor to be positive,

From the transformation equations (2.132) it will be seen that a given point
P&y, £5. &;) corresponds to eight possible points (+x, +y, Lz}, the cartésian
coordinates appearing as squares. This eightfold multiplicity may be resolved by
introducing an appropriate sign convention for ¢, &, and &5 or by bringing in
elliptic functions or related functions. '

Although this coordinate system has been useful in problems of mathematicat
physics, its very generality makes it cumberscme and awkward to use. Since this
text proports to be an introduction, we shall restrict ourselves to ellipsoids with
axes of rotalional symmetry, ' .

2.16 ‘Conical Coordinates (¢, &,, &5)

This is one of the more unusual (and less useful) degenerate forms of the con-
focal ellipsoidak coordinate system of the preceding section, The coordinate surfaces
are the following:

1. Spheres centered at the origin, radii #,, £, = constant,

X2 4y 4 2% = E2, (2.134)

2, Cones of elliptic cross section with apexes at the origin and axes along the
z~axis, £, = constant, ' :
: £ y? 22

Bta_pTaog

(2.135)

3. Elliptic cones, apexes at the origin, axes along the x-axis, & 3 = constant,

x2 y2 2.2 !
—= =gy S, 2.136
gTr-gtooa @139
As.in Section 2.15, the parameters & and ¢ satisfy constraints
' e? > &> b2 > fR (2.137)

Inverting the set of equations (2.134), (2.135), and (2.136), the transformation
equations : :

»
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= 2
= (§1fzfs)
he ’
2 EE - 00 -
¥ —WbW’ C(2.138)

22— Gi(e? — E3)(e? — ¢y
e*c? — by

“are obtained. Then by Eq; 2.6 the scale factors are

hy=h, =1, _

_ [ 5 - &) }‘”

G- -2 @19

by == [ G = |
ST )

This really oddball coordinate system has been almost completély ignored.

‘Recently, however, it was found useful to describe the angular momentum eigen-
functions of an asymmetric rotor.'

32‘17. Confocal Parabolic Coordinates (€r €z, Eq)

;E_xc‘ept for the bipolar, toroidal, and bispherical cocrdinate systems, all. the
coordinate systems in this chapter are derivable from the confocal ellipsoidal
coordinates (Section 2.15). The last of these degenerate or special systemé is the
confoeal parzboloidal system. Here the coordinate surfaces are the foliowing:

: 3'.1.' Confocal paraboloids of elliptic cross section extending along: tiie'negative
z-axis; £, = constant,

2 2z

aziél +Efl’u:a+zz & =0 (2.140)
2. Hyperbolic paraboloids, {, = constant, o
- .x2 - _ ’
'a—z s - w +2z4+ &, =0, (2.141)

3'._C0nfocal paraboleids of elliptic cross ssction extending along the positive
Z-axis, £, = constant, .
. xZ 2

y e
53_32-4_?‘;:?%22—53:0.

(2.142)

“As.in Sections 2.5 and 2.16

A , there are constraints on the parameters and
Variables ' '

§3>a2 > = b, (2.143)

R. D Spence, Arm. J. Phys. 27, 329 (1959,

e e i g o AR e
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-The transformation equations are

2 _ (az - 51)(32 — &) ~ az) .

2 . bz >
2 PRI k2
yz.;(b “Cz)fizz_zz)(is b (2:144)
z=3at + b2 =& — & — &)
‘with resulting scale factors
' U | (ST f0 (Tt 0]
B (TSN TCEE )
[ = EXE = EDY
fig =hy, = Ehw——__(az N = 3] (2.145)
b p 2 = 8 = 67
e e

" Applications of this system have been developed in electromagnetic theory® but
within the scope of this book the system is of little interest.
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CHAPTER 3

TENSOR ANALYSIS

-

3.1 Introduction Definitions

Tensors are important in many areas of; physncs, mcludmg general relativity and
‘ele_ct_romagneuc theory. One of the more prolific sources of tensor quantities is the
anisotropic sclid. Here the elastic, optical, electrical, and magnetic properties may
vell involve tensors. The elastic properties of the anisotropic solid are considered
in some detail in Section 3.6, As an introductory illustration, let us consider the
flow of electric current. We can write Ohm’s law in the usual form

J = oK, &Ry

jith current density J and electric field E, both vector quantities.! If we have an
sotroplc medium, g, the c:onductwny, is a scalar, and for the x-component, for
=example,

7, = ok,. , (32

-However if our medium is anisotropic, as in many crystals, or a plasma in the
presence of a magnetic field, the current density i n the x-direction may depend on
‘the’electric fields in the 3- and z-directions as well as on the field in the x—duectlon
,ssummg a lincar relationship, we must replace Eq. 3. 2 with

: . ‘Il _O-IE.EI +ﬂ'1.2E2+0'13E3, . (33)
and, in general, . .
Ji= z P O : (3-4)

% .

rdinary three-dimensional space the scalar conductivity ¢ has glven way to
& of nine eiements oy

Axiother _exa.mplc of this type of physical equation appears in Section 4,6,
: 121 '






