Resonances in Physics
and Geometry
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esonances are most readily associated

with musical instruments or with the

Tacoma bridge disaster. The latter is de-

scribed in many physics and ODE books,

and at the Ontario Science Center one
can even find a model allowing one to find the de-
structive resonant frequency. The resonances I
would like to write about are closely related but
have their origins in quantum or electromagnetic
scattering. To introduce them in a rough way, let
us first recall the notion of eigenvalues. Eigenval-
ues of self-adjoint operators describe, among other
things, the energies of bound states, states that
exist forever if unperturbed. These do exist in real
life; for instance, we can tell the composition of
stars from our knowledge of atomic spectra. In
most situations, however, states do not exist for-
ever, and a more accurate model is given by a de-
caying state that oscillates at some rate. The decay
might be caused by damping or by a possibility of
escape to infinity. To describe these more realis-
tic states, we use resonances. They have a very long
tradition in mathematical physics, but they also ap-
pear naturally in pure mathematics. The last ten
years brought many new ideas and new results into
the subject. Old problems concerning the proximity
of resonances to the real axis, their relation to
quasi-modes, and their distribution for scattering
by convex bodies have been solved. Upper bounds
for counting functions of resonances have become
well understood, and the new area of lower bounds
has become active. New directions were opened by
considering resonances in geometry, where in fact
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they make a very natural appearance. The pur-
pose of this article is to motivate the study of res-
onances and to survey the recent advances.

The focus of the presentation is very personal,
and many aspects of the enormous subject of res-
onances are bound to be neglected. Allusion to
some other aspects of the subject is made at var-
ious places in the text, and some references, or
pointers to lists of references, are included.

Eigenvalues

To introduce resonances we first need to talk about
eigenvalues. Perhaps the simplest case in which
they arise is that of an oscillating string. Let
X =10, 1], and let P = —ag be the Laplacian on X
acting on functions satisfying the Dirichlet bound-
ary condition u(0) = u(rr) = 0. The position at time
t of the string fixed at the end points u(t, x) is given
by solutions of the wave equation

(1) (=8 - Pu(t,x)=0, u(t,0) = u(t, ) = 0.

To solve this, the initial values of the position and
velocity of the string are needed— u(0, x), 0;u(0, x).
It is therefore advantageous to consider a system
where instead of u(t, x) we take

u(t, x) )

uit,x) = (—iatu(t, X)

The wave equation (1) becomes
1, _( u0,x
iatU—’PU, U(0,x) = <7iaru(0,x)>’

(2)
0 1 0
(2 0). veo-vem-(2)
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Figure 1. (a) The spectrum of 7 corresponding to —BE. (b) The spectrum (=) of 7 corresponding to —a,% +V(x)
(points o show the spectrum in the unperturbed case V = 0). (c) The spectrum of P, corresponding to the damped
wave equation obtained by adding a term —ad;, a > 0, constant, hence the constant imaginary part corresponding

At least formally the solution is simply given by
putting U(t, x) = exp(itP)U(0, -)(x). To actually
write down the solution, we use the eigenvalues and
the eigenfunctions of 2:

(3) PW =AW, Wlax = 0.

We say that A is an eigenvalue of P or that
A € o(P), where o(P) is the spectrum of P. The
solutions of (2) are known to be given by super-
positions of exp(iAt)W(x) where A and W are as
in (3). In the case of the string, we have
A=ne€ 7\ {0}, and o(P) is shown in Figure 1a.
Nothing much changes when we consider a
more general operator on X:P = 5,% +V(x),
V(x) =0, V e C®(X) (positivity and smoothness
are assumed to avoid technical difficulties). The
spectrum shifts due to the presence of V, and it
is shown in Figure 1b. The eigenvalues stay real be-
cause P with the Dirichlet boundary condition is
an unbounded self-adjoint operator on a suitable
space. So is P when we take #{ to be the closure
of CZ(X) x C¥(X) with respect to the inner prod-
uct

(U, V)3 = (Pug, vo) +{u1, v1),

() ()

Checking the Hermitian property (PW,V)yr =
(W, PV) 4ris straightforward. Then we argue as we
do in the case of matrices, and consequently A € R.
In these examples eigenvalues can also be char-
acterized by saying that

Aeo(P) <> Aisapoleof (P—2)"' 1 H — H.

The multiplicity is defined as the rank of the
residue.

We conclude this brief discussion by quoting
perhaps the most famous general result about
eigenvalues of operators on compact manifolds, the
Weyl asymptotics:

vol(B")

(2mm)n

where B" is the unit n-ball and in our case n = 1.
The improvement of Weyl asymptotics and deeper
understanding of the distribution of eigenvalues
at high energies remain fascinating subjects closely

“4) #{Aeo@P):|Al<sr}~2

vol(X)r™,
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to the constant rate of damping.

related to such issues as “quantum chaos”. In the
last thirty years great breakthroughs were achieved
by Lars Hormander, J. J. Duistermaat, Victor
Guillemin, and Victor Ivrii.

All this said, we remember that no string oscil-
lates forever! This failure is of course due to some
form of damping. Mathematically it can be intro-
duced by adding a term g(x)odx to the operator P,
as is done in standard ODE courses, or by adding
a dissipative term a(x)o; in the wave equation. In
each case the self-adjointness of P is destroyed.
For the purposes of this discussion let us keep
P=-02+V(x),V(x) = 0, X = [0, ], and the Dirich-
let boundary conditions. Let us change the wave
equation to:

(—at2 +a(x)or — P)u(t, x),
t>0,

5) ul,0)xox = 0,

where a(x) > 0. We can again conveniently rewrite
this as a system

1 0 1
(6) 76[U=?GU, ?a: (P ia(X))‘
Now, however, P, is not self-adjoint on J{ unless
a(x) = 0. Nevertheless, the general picture remains
the same: the eigenvalues and eigenfunctions of 2,
are defined by:

PaW =AW, Wisx =0,

and the solutions of (6) are given by superpositions
of solutions of the form U(t, x) = exp(itA)W(x). The
rate of oscillations of U is given by the real part
of A, and the rate of decay by the imaginary part.
In the simplest case a(x) =a > 0

A€ a(Py) < A —ia) € (0(P))>.

The qualitative picture is very close to this one also
in the variable a(x) case (see Figure 1c), and in par-
ticular the Weyl asymptotics remain valid.

These types of non-self-adjoint perturbations
corresponding to some dissipative effects have
been successfully studied, most recently in spec-
tacular work of Gilles Lebeau. To learn more, the
reader may consult [6] and references given there.
The damped wave equation is mentioned here to
illustrate the following important point:
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Solutions are described as su-
perpositions of states corre-
sponding to complex numbers,
where the real part describes
the rate of oscillations and the
imaginary part the rate of ex-

ponential decay. They are
eigenvalues of the non-self-ad-
joint operator P, or, equiva-

lently, poles of (P, —z)7!
H - H.

The notion of resonance mentioned in the
opening of this article is closely related to this. Sup-
pose we solve (P; — ReA)u = f where A is an eigen-
value of P, with ImA small. This can be done, since
ReA is not an eigenvalue. However, with the right
choice of the forcing term f, (P4 — ReA)~1f can be
enormous, as (P; —z)~! has a pole nearby. So,
with the resonant frequency ReA we hit a resonance
which decays at a rate given by ImA.

Resonances

A more dramatic change of the situation occurs
when, instead of damping, some escape to infin-
ity is allowed. Mathematically that means that in-
stead of considering P = —65 +V(x)on X =[0, 7],
we will consider it on X = R. We will take V(x) = 0
and assume that V € CZ(R). See Figure 2 for a
meaningful example. When we consider the cor-
responding wave equations, we cannot describe the
solutions as sums of solutions coming from prop-
agating eigenfunctions of P. In fact, we can easily
see that P cannot have any square integrable eigen-
functions: if Pu = Eu, then we have

E J lu(x)|?dx = J(—a,% + V) ux)u(x) dx
- J(\axuo«nz V)2 dx > 0,

and hence E > 0. But then, outside of the support
of V(x), u(x) has to be a combination of
exp(+i+/Ex). Itis square integrable only when it is
identically zero, and hence, by the uniqueness the-
orem for ODEs, u(x) is itself identically zero.

Why should we expect any similarity with the
picture involving eigenvalues? To answer this in a
somewhat fuzzy way, we have to enter the fuzzy
world of quantum mechanics. Classical mechanics
describes a particle by specifying its position x and
its momentum &. The motion is then governed by
the classical equations of motions, such as con-
servation of energy:

(7) Classical: £%+V(x)=E,

as we see in the rolling ball of Figure 2. Quantum
mechanics describes a particle in a stationary state
by a wave function, u(x), and lu(x)|2dx gives the
probability density of finding the particle in a
given region. In particular, u(x) should be square
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Figure 2. (a) A potential well on a finite interval. (b) A potential on R: same
classical picture, but a very different quantum picture.

integrable. The wave function should satisfy the
quantized version of (7):

2
(8) Quantum: ((? 8x> + V(x)) u(x) = Eu(x),

obtained by replacing & with (h/i)0x. Here his the
Planck constant. When h is very small compared
to everything else (so to speak!), we expect the
quantum picture to be close to the classical pic-
ture: that is, we take the semiclassical view of the
world. Previously, in P, the Planck constant was 1,
but that of course means that everything else had
to be appropriately large to justify the semiclas-
sical approximation. When confined to X = [0, 7],
the set of E’s corresponding to eigenvalues of P
is discrete: the energy levels are quantized. As h
gets smaller, the levels get denser, and the classi-
cal situation of having every energy level allowed
is approached.

When we are on X =R and the energy is at the
level shown in Figure 2b, the classical picture re-
mains unchanged from the case X =0, r]. The
rolling ball does not know about the world behind
the “mountains”. Thinking semiclassically, we ex-
pect a corresponding quantum state to exist. How-
ever, we have seen that the quantized equation (8)
does not have any square integrable solutions.
Hence, that state cannot be a usual wave function.
The trouble is due to “tunneling” through the bar-
rier created by the mountains. The particle bounces
back and forth at some frequency, but it decays at
some rate due to tunneling and the consequent es-
cape to infinity. Here tunneling means interaction
between the well and infinity and is measured by
the rate of decay.! Any understanding of this has
to be in a fundamental way dynamical: that is, it
has to involve evolution in time. We moved from
a spectral problem to a “scattering problem”, with
the potential as the “scatterer”.

Although the situation discussed above might
sound frighteningly fuzzy, it has a very elegant

LThe mathematical theory of tunneling is rather well un-
derstood, especially in the context of symmetry breaking
for low-lying states. The article of Barry Simon [8] and the
references in [3] describe this theory. There tunneling
refers to interactions between different potential wells
and to the way the exponentially small effects of those in-
teractions are measured.
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z-plane
z=X,ImA<0

(b)

Figure 3. (a) Meromorphic continuation of the resolvents
RA)=(P —A)Land R(A) = (P — A%2)~!; the poles in the lower
half-plane correspond to negative eigenvalues of P.(b) The
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spectrum of P: the z-plane, z = A2,

mathematical description valid in many interest-
ing cases. Let us leave quantum mechanics for the
moment and, rather than study the Schrodinger
equation, go back to the wave equation. Thus we
consider the operator 2 given by (2), now on X = R.
Since the eigenvalues appeared as poles of the re-
solvent, then to seek analogous objects it is nat-
ural to consider the resolvent of P, R(z) =
(P — z)~1. As an operator on A it is bounded at
each z € C\ R and makes no sense on R, which
is the continuous spectrum of 2. If the source
space is made smaller and the target space bigger,
much more than boundedness on R can be
achieved:

As an operator R(z) = (P — z)~! from
He to Hipe, R(z) continues meromor-
phically from Im z < 0 to C.

Here by 7. we mean the elements of 7 that are
zero outside some compact set, and by Hjoc, func-
tions that are locally in H. The meromorphic con-
tinuation has poles, and by the analogy with the
characterization of eigenvalues, we would like to
consider those poles as the replacement of discrete
spectral data for problems on noncompact do-
mains (in this discussion R). We denote the set of
poles of R(z) by Res(P), where P is the original op-
erator from which P was constructed (here it is
P=-02+V(x), VeC® V =0).See Figure 3.

That the elements of Res(P) are what we are
looking for is shown by their appearance in the so-
lutions of the wave equation: if

(=0} —Pu=0, ul=o, Oil=o € CZ,

then for any fixed compact set K C X,

ut,x) ~ > eltA

9) A€Res(P)
X €K,

wa(x),

t — oo.
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Hence, in a fuzzy way we have a similarity with the
case of eigenvalues, in which the solutions are
given by superpositions of propagated eigenfunc-
tions. We see that in (9)

ReA corresponds to the rate of oscillations,
ImA corresponds to the rate of decay.

The assumption that V(x) > 0 can be eliminated
quite easily.The only complication comes from the
possible presence of (honest) negative eigenvalues
of P which then produce imaginary eigenvalues of
P (the definition of # has to be modified, and P
is no longer self-adjoint). The meromorphic con-
tinuation can also be described purely in terms of
the resolvent of P. We consider

RN =@ -A*)"1 12— 18,

so that it coincides with the resolvent bounded on
L2 for ImA < 0 (except at poles corresponding to
A2 € o(P)). It then continues meromorphically to
C as shown on Figure 3a. In Figure 3b we exhibit
also tzhe “honest” spectrum of P in the z-plane,
zZ=A".

The definition of resonances as poles of the
meromorphically continued resolvent remains
valid, with various modifications, in many situa-
tions. It is valid in the exact same way as described
above for compactly supported perturbations of
the Laplacian in R", n odd. It is valid also for n
even, but then we have to continue R(z) to the Rie-
mann surface for log z rather than C. Perhaps the
most interesting class of compactly supported
perturbations comes from considering scattering
by compact obstacles. In that case the wave-equa-
tion point of view towards resonances was intro-
duced in the seminal work of Peter Lax and Ralph
Phillips [5] in the 1960s. Many general results can
now be formulated in an abstract notion of “black
box scattering”, in which one does not have to
consider specific aspects of the perturbation. That
formalism was introduced by Johannes Sjostrand
and the author and has now been extended to in-
clude classes of long-range perturbations. Refer-
ences and a review of results are provided in [9]
and [11].

As in the case of eigenvalues, it is natural to
study large-energy asymptotics, that is, to look for
analogues of the Weyl law (4). Since the resonances
are distributed in the complex plane, it is not clear
what is the most appropriate way of counting
them; the issues involved in that will hopefully be-
come clearer below. The study of global upper
bounds on the number of resonances—that is, of
counting themin discs {z € C : |z| < r}—was ini-
tiated by Richard Melrose, who proved the sharp
polynomial bound @(r") in the case of obstacle
scattering in R", n odd. In the last ten years, that
work inspired many results on global and local,
upper and lower bounds on the number of reso-
nances. The main results were obtained by Jo-
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hannes Sjostrand, Georgi Vodev,
Laurent Guillopé, and the author.
See [7], [2], [9], and [11] for dis-
cussion and references.

Despite significant advances,

the state of knowledge is hardly
satisfactory. In standard Euclid-
ean scattering, asymptotics for the
counting function of resonances

.’I,'Y() ow ZTo

z(h.)
} ~ exp(—=2So/h)

are known only in dimension one
and in some specific radial cases
such as scattering by the sphere

Xo pu(h) |

(a) (b)

(see Figure 8).

Figure 4. (a) A potential well and a resonance generated by the eigenvalue of a

Two Examples

reference Dirichlet boundary problem. (b) A reference problem and its

So far we have discussed in some eigenvalue close to the ground state of the well.

detail the simplest but already

nontrivial example of potential scattering on the
line. Let us now give two more involved examples
that have long traditions in mathematical physics
and in geometric analysis.

The first example is a semiclassical potential well
in R™. Let V(x) be an analytic potential which looks
like the potential shown in Figure 4; we skip here
a detailed description of the technical assump-
tions on V. Roughly speaking, it is supposed to
have a nondegenerate local minimum at xg, and
that point should be the only place where a parti-
cle moving according to the classical equation,
|E12 + V(x) = E, could be trapped. We are then in-
terested in resonances of the semiclassical
Schrodinger operator

n
P(h)=-h*A+V(x), A=) 02,
i=1

near Ao with A2 = V(xg), that is, near the energy
corresponding to the bottom of the well. Under fur-
ther assumptions a typical resonance is given by

z(h) = p(h) + O(1)exp(—2So/ h),
Im z(h) = r(h)exp(—2So/h), r(h) ~ h€1,

where u(h) — Ag is an eigenvalue of the operator
P(h) restricted to W, shown in Figure 4b, with
zero boundary conditions at oW and Sg is the
“Agmon width” of the barrier. The latter measures
the rate of tunneling through a potential barrier
and is closely related to weights appearing in “Car-
leman estimates” that are used to show unique con-
tinuation of solutions to PDEs. In fact, unique con-
tinuation is due to tunneling, or depending on
one’s perspective, tunneling is a quantitative form
of unique continuation: a solution cannot be com-
pletely localized to a compact set.

In this example the resonances can be defined
through meromorphic continuation of the resol-
vent. Typically, however, we can continue only to
aneighborhood of the real axis. That is done using
the method of “complex scaling” introduced by
Jacques Aguilar, Jean-Michel Combes, and Eric Bal-
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slev in the early 1970s: through a deformation of
the operator, the resonances become eigenvalues
of a non-self-adjoint problem.2 This method was
developed by many authors, and it was raised to
the level of high art through the use of analytic mi-
crolocal analysis by Bernard Helffer and Johannes
Sjostrand [3]. The example described above has
been extensively studied, and [3], [4] can be con-
sulted for the history and results.

The second example is pure “pure mathemat-
ics”. Let X be the modular surface obtained as
the quotient of the hyperbolic upper half-plane
by the modular group: X =SL(2,Z)\H2, where
H2 = SL(2,R)/SO(2). The famous fundamental do-
main of SL(2,7Z) is shown in Figure 5. The quotient,
X, is anoncompact surface with a cusp at infinity
and two conic singularities. It inherits the hyper-
bolic metric from HZ?, and consequently we have
a natural Laplace operator, Ax. The resolvent
(-Ax — C)‘l turns out to be bounded on
C\ ({0} U[1/4, »)), and we then consider

1
P--Ax-,

—(P — 21
RQA)=(P -A9)"", 1

ImA <0, A4 —%.

As before, R(A) continues meromorphically to C,
and its poles, which are eigenvalues and reso-
nances, have a classical interpretation; most of
the poles lie exactly on R and are honest L? eigen-
values embedded in the continuous spectrum. See
Figure 5. They correspond to “cusp forms” of an-
alytic number theory. The remaining poles are
honest resonances (that is, they have nonzero
imaginary parts), and they are given by the solu-
tions of

2The operator-theoretical approach to complex scaling is
comprehensively reviewed by Peter Hislop and 1. Michael
Sigal, themselves important contributors to the subject,
in [4]. For a brief exposition of the geometrical approach
in the spirit of Helffer-Sjostrand, the reader may consult
Sec. 5b of [11].
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CA+2i0) =0, A¢IiR,

where ( is the Riemann zeta function, {(s)= >, n=5.
The reason for this comes from another characterization
of resonances: they are the poles of the meromorphic con-
tinuation of the “scattering matrix”. In the case of mod-
ular surface, the scattering matrix can be expressed ex-
plicitly in terms of the zeta function.

The scattering-theoretical interpretation of the theory
of automorphic forms was initiated by Ludvig Faddeev
and continued by Peter Lax and Ralph Phillips. Their in-
sight has been useful in more complicated situations, as
shown by the work of Werner Miiller and then of Lizhen
Ji on the trace class conjecture. It also inspired Yves
Colin de Verdiére to show that a generic CZ perturba-
tion of the metric on X will destroy all embedded eigen-
values and turn them into resonances. That motivated
the work of Ralph Phillips and Peter Sarnak on dissolv-
ing embedding eigenvalues when an arithmetic surface
is deformed to another surface of constant curvature
(which cannot be done for our X, butis possible in other
situations). It is now believed that most of the eigenval-
ues become resonances under such deformations.

Classical Dynamical Structure and Distribution
of Resonances

Our quantum mechanical motivation for introducing
resonances rested on the semiclassical assumption that
the existence of classical states should imply the exis-
tence of corresponding quantum states. That classical-
quantum correspondence is very subtle and is one of the
central issues of spectral and scattering theories. In the
crudest form it already manifests itself in the Weyl law
(4). If we are interested in eigenvalues of an operator
P = —A+V(x) thatis the quantization of p = IEI2 +V(x),
then, very roughly speaking,

#{A2eaP): Al <1}
~vol{(x,&) € T*X : p(x,8) < r?},
as we have seen in (4) for Schrddinger operators on com-
pact manifolds.

In the case of resonances a new wealth of phenom-
enais seen. In addition to situations in which resonances

behave as perturbed eigenvalues (see Figure 4),
there are many situations in which there is no
eigenvalue analogue. In particular, the dynamical
structure of the scatterer may manifest itself di-
rectly in the counting function for resonances.
Since resonances are supposed to correspond to
states that eventually escape and since their lifes-
pan (which is the inverse of the rate of decay)
should be related to the inverse of their imaginary
parts, a very heuristic and in fact not quite correct
analogue of the Weyl law is

(10) #{Ae Res(P):r <|A| <2r,0< ImA <

S~

(z,€) € T*X such that r? < p(z,€) < (2r)2

| and a trajectory through (z,&) of the flow of

~ VO
the Hamiltonian p spends time T near the

perturbation

where r and T are supposed to be large and where
T can depend on r. Since this is appallingly vague,
let us mention that a better formulation is ob-
tained in the semiclassical, small h regime with the
use of the “escape function” of Helffer-Sjostrand,
which is also known as the “Lyapunoff function”.
In fact, Johannes Sjostrand obtained related upper
bounds for analytic semiclassical operators in R",
and that discovery was followed by some similar
bounds for hyperbolic surfaces that are illustrated
in Figure 6b. References can be found in [9] and
[2].

From the dynamical interpretation of the imag-
inary parts as the rates of decay of the corre-
sponding states, we see that only resonances near
the real axis are truly meaningful. How “near” is
of course dependent on the problem, but as indi-
cated already in (10), small conic neighborhoods
are really the farthest we should look for detailed
information. Knowing what happens farther away
can, however, be important; in particular, it can be
useful to know that there are not too many reso-
nances far from the axis (so that they do not

|

P
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Figure 5. The fundamental domain of the modular group and the resonances of the modular surface.
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.
#=0(r'*?)

Figure 6. (a) Resonances for a finite volume hyperbolic surface: they are confined to a horizontal strip and

satisfy the usual Weyl law. (b) Resonances for an infinite volume surface with no cusps: they are

scattered all over the upper half-plane; the counting function in a disc of radius r is bounded from above
and below by multiples of r2; when we count only in a strip the number of resonances is bounded by a

multiple of r1*9, where § is a number less than one with a dynamical intepretation.

affect the behavior on the real axis). Also, for low-
energy resonances, a restriction to conic neigh-
borhoods is irrelevant.

In the opposite direction, we can ask how near
the resonances can approach the real axis. In sit-
uations where infinity is “small” (see Figures 5
and 6a) there are no restrictions, and resonances
can mix with embedded eigenvalues. When infin-
ity is “large”, as in Euclidean obstacle problems or
as in Figure 6b, the resonances have to be sepa-
rated from the real axis. A fundamental result ob-
tained very recently by Nicolas Burq [1] says that
for |ReA| > Cp, the resonances have to satisfy
ImA > exp(—Cp|ReA|) for some constants Cy and
C1. The proof is based on “Carleman estimates”,
that is, on quantitative understanding of tunnel-
ing (see the discussion of the example shown in
Figure 4 above). One could say that not only can
states not live forever, but they cannot live for an
arbitrarily long time. Of course, a lifespan that is
exponential in energy is more than any one of us
can hope for!

Figure 6 illustrates some of the issues discussed
above in the case of two-dimensional hyperbolic
surfaces, X = [\H2. In Figure 6a we look at the fi-
nite-volume case where the resonances are con-
fined to a strip. Most of them lie very close to the
real axis, and they satisfy the usual Weyl law (4),
with n = 2. This is now classical and was estab-
lished by Atle Selberg in the 1950s. In Figure 6b
we take X to be an infinite volume surface with no
cusps. The resonances are now scattered through
the entire half-plane, and we have global bounds

MARCH 1999

r2/C—C < {A €Res(-Ax —1/4): |A| < r}

11
(11) <Cri+C,

which are a special case of bounds obtained in [2]
for a more general class of surfaces. It is the exis-
tence of the lower bound that makes this particu-
larly interesting, as these are rarely known when
infinity is “large”. In strips parallel to the real axis
the number of resonances is much smaller. The au-
thor has recently shown that in a strip the num-
ber of resonances with |A] < r is bounded by
Cr1+9 where § is the dimension of the “limit set”
of the I. This is related to the dynamical inter-
pretation of § given by Dennis Sullivan and is an
indication of the validity of (a modified version of)
(10). We should also note that in the case of exact
quotients, such as shown in Figure 6b, the reso-
nances have an interesting reinterpretation as
zeros of the meromorphic continuation of the dy-
namical zeta function, and that has been recently
studied by S. J. Patterson and Peter Perry.

We conclude with the description of two im-
portant results in obstacle scattering. In both of
them, resonances behave in ways that do not have
eigenvalue analogues.

If we consider a scatterer consisting of two
strictly convex bodies, then the dynamical struc-
ture is very simple. The only trapped orbit com-
ing from reflections is the hyperbolic trajectory ob-
tained by bouncing along the ray, minimizing the
distance between the two bodies. See Figure 7. It
is hyperbolic, since any small perturbation will re-
sult in fast escape to infinity. Mitsuru Ikawa has
shown that this closed hyperbolic orbit generates
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Figure 7. (a) Resonances associated to two strictly convex bodies: in every fixed strip, the resonances

a string of resonances parallel to the real axis with
no other resonances below them. That was later ex-
tended by Christian Gérard, who described all res-
onances in a strip. The great significance of this
result lies in the fact that it described quantum ob-
jects (a lattice of resonances) associated to a sin-
gle hyperbolic orbit. Later, a simpler and exact
model for this classical-quantum correspondence,
based on the hyperbolic cylinder, was given by
Charles Epstein and Laurent Guillopé (see Figure
7b), while a physically more relevant semiclassical
version was developed by Gérard-Sjostrand. The
point is that the presence of a single hyperbolic pe-
riodic orbit generates a lattice of resonances no
matter what situation we are in.

Another significance of Tkawa’s result lies in
the fact that it disproves the Lax-Phillips conjec-
ture,3 which stated that in case of any classical trap-
ping (such as existence of one closed orbit) there
should exist a sequence of resonances converging
to the real axis. The conjecture was consequently
modified; and, in particular, when one assumed the
existence of an elliptic closed orbit, it was proved
by Plamen Stefanov and Georgi Vodev. A quanti-
tative version was then found by Siu-Hung Tang
and the author, and in 1998 that was improved fur-
ther by Stefanov; see [10] and references given
there. Ideally, we should finally reach a statement
resembling the modified Weyl law (10). At the mo-

3More like a suspicion than a conjecture, to be quite fair
(see the end of Sec. V.3 of [5]). A statement made more
clearly as a conjecture concerned propagation of singu-
larities for boundary value problems (see (A) and (B) in
Sec. V.3 of [5]), and it was proved in the works of Ander-
sson, Melrose, Sjostrand, and Taylor in the late 1970s. It
was also motivated by the study of resonances, as it im-
plied that logarithmic neighborhoods of R are free of res-
onances for nontrapping obstacles.
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become closer to points on the lattice as the real part increases. (b) Resonances for a hyperbolic cylinder:
all resonances lie exactly on a lattice. The underlying dynamical structure, exactly one hyperbolic closed

orbit, is the same in the two examples.

ment, these results are based on the understand-
ing of the relation between resonances and “quasi-
modes”, which are approximate eigenvalues.

Let us also mention that the first result on the
existence of resonances associated to two convex
bodies was obtained by Claude Bardos, Jean-Claude
Guillot, and James Ralston in 1982 using their
“Poisson formula” for resonances. That formula,
improved and extended to other settings, has since
become one of the most powerful tools for prov-
ing existence of resonances; further information
may be found in [9] and references given there.

The second result, recently obtained by Jo-
hannes Sjostrand and the author, describes reso-
nances for scattering by strictly convex obstacles.
This is illustrated in Figure 8: the curves are of the
form ImA = K7 |ReA|!/3 + C, and the pinching con-
dition that guarantees the existence of j bands is

maxgpnQ
minge Q
y(j) =1,

where Q is the second fundamental form and
S00 is the unit tangent bundle of 00.

The association of cubic curves with resonances
of convex bodies has a long tradition originating
in diffraction theory. Our result has been preceded
by many related results in applied mathematics and
in microlocal analysis, in particular by Lebeau’s
work on propagation of Gevrey singularities.
Heuristically, the resonances for convex bodies
are created by waves creeping along the geodes-
ics on the boundary and losing energy at a rate de-
pending on the curvature. Consequently, the pre-
cise distribution depends in a subtle way on the
dynamics of the geodesic flow of the surface and
its relation to the curvature. However, those sub-
tle effects are mostly present in the distribution

<y()), y(1)=2.31186"- - -,

J = o,
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of imaginary parts of the reso-
nances. The crude heuristic picture
suggests that as far as the real parts
are concerned, the distribution
should be governed by the same
rules as those for eigenvalues of the
surface. Our result justifies this
claim. The pinching condition for
the curvature needs to be imposed
to eliminate interference between
different bands.

Open Problems

In this article introduction of tech-
nical terminology was rather sys-
tematically avoided, and therefore a
precise formulation of open prob-

(a) (b)

lems is a somewhat difficult task.
The existence of many problems
should, however, already be clear.
Continuing in the same spirit of
vagueness, we can make them a lit-
tle bit more precise. Some of them
are present already in most basic
settings, and their solutions may be
elementary. Other problems involve extending the
existing knowledge to more complicated situa-
tions. We may ask for:

00.

« Global lower bounds of the form (11) on the
number of resonances; at the moment very few
unconditional bounds are known. To put this
in perspective, until the work of Plamen Ste-
fanov in 1998, the sphere was the only obsta-
cle for which the optimal lower bound was
known,; it is still unknown for an arbitrary ob-
stacle.

= Local lower bounds related to finer aspects of
the dynamical structure: a modification of
(10). At present only the “one hyperbolic orbit”
examples and their extensions provide lower
bounds corresponding to finer upper bounds.

= The modified Lax-Phillips conjecture of Ikawa
stating that there should be a strip with infi-
nitely many resonances for the Dirichlet Lapla-
cian on the exterior of several convex bodies.
Ikawa proved this for the Neumann Laplacian.

< Understanding of meromorphic continuation
of the resolvent on manifolds. In addition to
manifolds with simple structure at infinity
(some of which were discussed above), the
best understood general class consists of “con-
formally compact manifolds” studied by Rafe
Mazzeo and Richard Melrose. They generalize
surfaces of the type shown in Figure 6. Even
there, the method of complex scaling is not
properly understood, nor are the upper
bounds. For other natural classes of mani-
folds the situation is even less clear.

MARCH 1999

e Generalization of existing methods and re-
sults (upper bounds, Poisson formulea) to sit-
uations where there are singularities at infin-
ity. The natural directions are provided by
higher-rank symmetric spaces and by the quan-
tum N-body problem.

The Riemann hypothesis could also have been
added, since it can be formulated in terms of res-
onances (see Figure 5). It should, however, be re-
membered that in their book on automorphic scat-
tering, Lax and Phillips had a chapter titled “How
Not to Prove the Riemann Hypothesis”. So it is bet-
ter to leave it out.
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