Math 7311, Fall 2015 Problem Set 1

1. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence from \mathbb{R} . Prove that

$$\liminf_{n \to \infty} x_n \le \limsup_{n \to \infty} x_n$$

and that equality holds if and only if $\lim_{n \to \infty} x_n$ exists, in which case all three limits are equal.

2. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence from \mathbb{R} . Prove that

$$\limsup_{n \to \infty} x_n = \sup \limsup_{n \to \infty} (-\infty, x_n].$$

Here, $\limsup_{n\to\infty} (-\infty, x_n]$ is a set, as we have defined it, and the supremum of a set is its least upper bound.

[BTW: Related statements hold: $\liminf_{n \to \infty} x_n = \sup_{n \to \infty} \liminf_{n \to \infty} (-\infty, x_n]$, and things change around if one uses the intervals $[x_n, \infty)$. The intervals may also be open instead of closed.]

3. Let a function $f : X \to Y$ be given. Prove that, for each indexed family $\{X_{\alpha}\}_{\alpha \in A}$ of subsets of X,

$$f\Big(\bigcap_{\alpha\in A}X_{\alpha}\Big)\subset\bigcap_{\alpha\in A}f(X_{\alpha}),$$

and that equality holds for each $\{X_{\alpha}\}_{\alpha \in A}$ if and only if f is injective.

4. Prove that the axiom of choice is equivalent to the following statement: Every surjective function admits a right inverse; that is, if $f : X \to Y$ is surjective, then there exists a function $g: Y \to X$ such that $f \circ g(y) = y$ for each $y \in Y$.

5. Define the following linear ordering on $\mathcal{P}(\mathbb{N})$: If X_1 and X_2 are distinct subsets of \mathbb{N} , set

$$m = \min\left\{n \in \mathbb{N} : n \in X_1 \Delta X_2\right\},\,$$

and then set $X_i \leq X_j$ if $m \in X_i$ (this is a kind of lexicographic ordering). Prove that $\mathcal{P}(\mathbb{N})$ is not well ordered under this ordering.