Ch. 1, #5.

Set $\mathcal{M} = \mathcal{M}(\mathcal{E})$, the σ -algebra generated by \mathcal{E} , and set

$$\mathcal{N} = \cup \left\{ \mathcal{M}(\mathcal{F}) : \mathcal{F} \subset \mathcal{E}, \ |\mathcal{F}| \le |\mathbb{N}| \right\}.$$

For $\mathcal{F} \subset \mathcal{E}$, $\mathcal{M}(\mathcal{F}) \subset \mathcal{M}(\mathcal{E}) = \mathcal{M}$, and thus $\mathcal{N} \subset \mathcal{M}$. \mathcal{N} is closed under complements because for all $A \in \mathcal{N}$, there is a countable subset \mathcal{F} of \mathcal{E} such that $A \in \mathcal{M}(\mathcal{F}) \subset \mathcal{N}$ and thus $A^c \in \mathcal{M}(\mathcal{F}) \subset \mathcal{N}$ also. To show that \mathcal{N} is closed under countable unions, let \mathcal{H} be a countable subset of \mathcal{N} . For each $H \in \mathcal{H}$, there is a countable subset \mathcal{F}_H of \mathcal{E} such that $H \in \mathcal{M}(\mathcal{F}_H)$. Since $\mathcal{M}(\mathcal{F}_H) \subset \mathcal{M}(\cup_{H \in \mathcal{H}} \mathcal{F}_H)$, we have $\mathcal{H} \subset \mathcal{M}(\cup_{H \in \mathcal{H}} \mathcal{F}_H)$. Since $\cup_{H \in \mathcal{H}} \mathcal{F}_H$ is countable, $\mathcal{M}(\cup_{H \in \mathcal{H}} \mathcal{F}_H)$ is included in \mathcal{N} and one therefore has $\cup_{H \in \mathcal{H}} H \subset \mathcal{M}(\cup_{H \in \mathcal{H}} \mathcal{F}_H) \subset \mathcal{N}$.

Ch. 1, #8.

For the first inequality,

$$\mu (\liminf E_j) = \mu (\bigcup_{j \ge 1} \bigcap_{i \ge j} E_i) = \lim_{j \to \infty} \mu (\bigcap_{i \ge j} E_i)$$

$$\leq \lim_{j \to \infty} \inf_{i \ge j} \mu(E_i) = \liminf_{j \to \infty} \mu(E_j).$$
(0.1)

The first equality is by definition and the second by lower continuity of measures. The inequality holds because $\bigcap_{i\geq j} E_i \subset \mu(E_j)$ for all j and the monotonicity of measures. For the second inequality,

$$\mu\left(\limsup E_{j}\right) = \mu\left(\bigcap_{j\geq 1} \bigcup_{i\geq j} E_{i}\right) = \lim_{j\to\infty} \mu\left(\bigcup_{i\geq j} E_{i}\right)$$
$$\geq \lim_{j\to\infty} \sup_{i\geq j} \mu(E_{i}) = \limsup_{j\to\infty} \mu(E_{j}).$$
(0.2)

The justifications are analogous to the previous case, except that one needs to invoke the finiteness of $\bigcup_{i>j} E_i$ for some j for the second equality.

Ch. 1, #12.

(a) For $E, F \in \mathcal{M}$, suppose that $\mu(E \triangle F) = 0$, so that

$$\mu(E) = \mu(E \cap F) + \mu(E \cap F^c) \le \mu(E \cap F) + \mu(E \triangle F) = \mu(E \cap F).$$

$$(0.3)$$

The first equality is due to disjoint additivity of measures, and the second comes from $E \cap F^c \subset E \triangle F$ and the monotonicity of measures. By a symmetric argument, one has $\mu(F) = \mu(E \cap F)$, so that $\mu(E) = \mu(F)$.

(b) Reflexivity: $\mu(E \triangle E) = \mu(\emptyset) = 0$, so $E \sim E$. Symmetry stems from the symmetry of the symmetric difference: $E \triangle F = F \triangle E$. Transitivity: Suppose $E \sim F$ and $F \sim G$, so $\mu(E \triangle F) = \mu(F \triangle G) = 0$. We have $E \triangle G = (E \cap G^c) \stackrel{\circ}{\cup} (G \cap E^c)$ and

$$E \cap G^c = (E \cap (F \cap G^c)) \stackrel{\circ}{\cup} ((E \cap F^c) \cap G^c), \tag{0.4}$$

and thus

$$\mu(E \cap G^c) \le \mu(F \cap G^c) + \mu(E \cap F^c) \le \mu(F \triangle G) + \mu(E \triangle F) = 0.$$
(0.5)

By a symmetric argument, one obtains $\mu(G \cap E^c) = 0$, and thus $\mu(E \triangle G) = 0$.

(c) First, we show that ρ is well defined on equivalence classes of measurable sets. Suppose $E_1 \sim E_2$ and $F_1 \sim F_2$. We must show that $\mu(E_1 \triangle F_1) = \mu(E_2 \triangle F_2)$. One has

$$E_1 \triangle F_1 = (E_1 \cap F_1^c) \stackrel{\circ}{\cup} (F_1 \cap E_1^c) \\ = (E_1 \cap F_1^c \cap F_2) \stackrel{\circ}{\cup} (E_1 \cap F_1^c \cap F_2^c) \stackrel{\circ}{\cup} (F_2 \cap F_1 \cap E_1^c) \stackrel{\circ}{\cup} (F_2^c \cap F_1 \cap E_1^c)$$

and therefore

$$\mu(E_1 \triangle F_1) \le \mu(E_1 \cap F_1^c \cap F_2^c) + \mu(E_1^c \cap F_1 \cap F_2) + \mu(E_1 \cup (F_1 \triangle F_2)) + \mu(E_1^c \cap (F_2^c \triangle F_1)) \\ = \mu(E_1 \cap F_1^c \cap F_2^c) + \mu(E_1^c \cap F_1 \cap F_2).$$

By replacing F_1 by F_2 , the latter expression is also equal to $\mu(E_1 \triangle F_2)$ so that $\mu(E_1 \triangle F_1) = \mu(E_1 \triangle F_2)$. By an analogous argument, one obtains $\mu(E_1 \triangle F_2) = \mu(E_2 \triangle F_2)$.

Now we show that $\rho(E, F) = \mu(E \triangle F)$ is a metric on \mathcal{M} . $\rho(E, E) = \mu(E \triangle E) = \mu(\emptyset) = 0$; and if $\rho(E, F) = 0$, then $\mu(E \triangle F) = 0$, so $E \sim F$, that is, the equivalence classes of E and Fare the same. Symmetry is a result of the symmetry of the symmetric difference. To show the triangle inequality, observe that

$$E \cap G^c = (E \cap G^c \cap F) \cup (E \cap G^c \cap F^c) \subset (G^c \cap F) \cup (E \cap F^c), \tag{0.6}$$

and, similarly, that $E^c \cap G \subset (E^c \cap F) \cup (G \cap F^c)$. thus $E \triangle G \subset G \triangle F \cup E \triangle F$, which implies $\rho(E,G) = \mu(E \triangle G) \leq \mu(E \triangle F) + \mu(F \triangle G) = \rho(E,F) + \rho(F,G)$.

Ch. 1, #18.

(a) By definition,

$$\mu^{*}(E) = \inf \Big\{ \sum_{i=0}^{\infty} \mu_{0}(A_{i}) : A_{i} \in \mathcal{A}, E \subset \bigcup_{i=1}^{\infty} A_{i} \Big\},$$
(0.7)

and thus, for any $\epsilon > 0$, there is a collection of sets $A_i \in \mathcal{A}$ covering E such that

$$\sum_{i=0}^{\infty} \mu_0(A_i) \le \mu^*(E) + \epsilon.$$
(0.8)

Set $A = \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}_{\sigma}$ so that $E \in A$ and

$$\mu^*(A) \le \sum_{i=0}^{\infty} \mu_0(A_i) \le \mu^*(E) + \epsilon.$$
(0.9)

(b) Suppose that E is μ^* -measurable with $\mu^*(E) < \infty$. From part (a), there are sets $A_i \in \mathcal{A}_{\sigma}$ such that $E \subset A_i$ and $\mu^*(A_i) \leq \mu^*(E) + i^{-1}$. Set $A := \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}_{\sigma\delta}$. Since the A_i are measurable (Theorem 1.14) and $\mu^*(A_1) \leq \mu^*(E) + 1 < \infty$, upper continuity holds:

$$\mu^*(A) = \mu^*(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu^*(\bigcap_{i=1}^n A_i) \le \lim_{n \to \infty} \mu^*(A_n) = \mu^*(E).$$
(0.10)

Since $E \subset A$, this inequality yields $\mu^*(E) = \mu^*(A)$. By disjoint additivity of measures (μ^* restricted to the μ^* -measurable sets) $\mu^*(A \setminus E) = \mu^*(A) - \mu^*(E) = 0$.

Suppose now that $\mu^*(A \setminus E) = 0$ with $A \in \mathcal{A}_{\sigma\delta}$. First we show that $A \setminus E$ is measurable. In fact, for any $B \subset X$, if $\mu^*(B) = 0$, then B is measurable. To wit: For each $F \subset X$,

$$\mu^*(F \cap B) + \mu^*(F \cap B^c) \le \mu^*(B) + \mu^*(F) = \mu^*(F).$$
(0.11)

The inequality comes from the monotonicity of outer measures, and the equality comes from $\mu^*(B) = 0$. Since $A \in \mathcal{A}_{\sigma\delta} \subset \mathcal{M}$, A is measurable and therefore $E = A \setminus (A \setminus E)$ is measurable.

(c) Since μ_0 is sigma-finite, one can write X as a disjoint union of sets $X_k \in \mathcal{A}$ with $\mu_0(X_k) < \infty$,

$$X = \bigcup_{k \in \mathbb{N}} X_k. \tag{0.12}$$

Since $E \subset X$ is measurable, $E_k := E \cap X_k$ is also measurable, and one has

$$E = \bigcup_{k \in \mathbb{N}} E_k. \tag{0.13}$$

According to part (b), there are sets $A_k \in A_{\sigma\delta}$ such that $E_k \subset A_k$ and $\mu^*(A_k \setminus E_k) = 0$. Let

$$A_k = \bigcap_{j \in \mathbb{N}} \bigcup_{i \in \mathbb{N}} A_{ijk}, \tag{0.14}$$

in which the sets A_{ijk} are in \mathcal{A} . Since $E_k \subset X_k$, one may assume that $A_{ijk} \subset X_k$ by replacing A_{ijk} by $A_{ijk} \cap X_k \in \mathcal{A}$. Set

$$A := \bigcup_{k \in \mathbb{N}} A_k. \tag{0.15}$$

One has $E \subset A$ with $\mu^*(A \setminus E) \leq \sum_{k \in \mathbb{N}} \mu^*(A_k \setminus E_k) = 0$. Since $A_{i_1j_1k_1} \cup A_{i_2j_2k_2} = \emptyset$ for $k_1 \neq k_2$, one has

$$A = \mathring{\cup}_{k \in \mathbb{N}} A_k = \bigcup_{k \in \mathbb{N}} \bigcap_{j \in \mathbb{N}} \bigcup_{i \in \mathbb{N}} A_{ijk} = \bigcap_{j \in \mathbb{N}} \bigcup_{i,k \in \mathbb{N}} A_{ijk}.$$
 (0.16)

Since $\cup_{i,k\in\mathbb{N}}A_{ijk}\in\mathcal{A}$ for each $j\in\mathbb{N}$, one has $A\in\mathcal{A}_{\sigma\delta}$.

Ch. 1, #28.

Ch. 1, #30.

Ch. 1, #31.

Given $\alpha : 1/2 < \alpha < 1$, there is, by problem ..., an open interval I such that $m(E \cap I) \ge \alpha m(I)$. Let $I = (x_1, x_2)$. Let d : 0 < d < m(I) be given, and set $I_1 = (x_1, x_2 - d)$. Suppose that $d \notin E - E$. Then for each $x \in I_1 \cap E$, one has $x + d \notin E$, that is, $((I_1 \cap E) + d) \cap ((I_1 + d) \cap E) = \emptyset$. Thus we have a disjoint union

$$((I_1 \cap E) + d) \stackrel{\circ}{\cup} ((I_1 + d) \cap E) \subset I_1 + d, \qquad (0.17)$$

whence

$$\mu((I_1 \cap E) + d) + \mu((I_1 + d) \cap E) \le \mu(I_1 + d).$$
(0.18)

Since $(E \cap I) \subset (I_1 \cap E) \overset{\circ}{\cup} (x_2 - d, x_2)$, one has $\mu(I \cap E) \leq \mu(I_1 \cap E) + d$ and thus

$$\mu(I_1 \cap E) \ge \mu(E \cap I) - d \ge \alpha m(I) - d, \qquad (0.19)$$

and, likewise,

$$\mu((I_1 + d) \cap E) \ge \mu(E \cap I) - d \ge \alpha m(I) - d.$$
(0.20)

Therefore, by (0.18-0.20) and translation invariance of Lebesgue measure

$$\mu(I) - d = \mu(I_1 + d) \ge \mu((I_1 \cap E) + d) + \mu((I_1 + d) \cap E)$$

= $\mu(I_1 \cap E) + \mu((I_1 + d) \cap E)$
 $\ge 2(\alpha \, \mu(I) - d),$ (0.21)

and this implies

 $(2\alpha - 1)\mu(I) \leq d \quad \text{if } d \notin E - E. \tag{0.22}$

By contraposition, if $d < (2\alpha - 1)\mu(I)$, then $d \in E - E$, that is there are x and y in E such that x - y = d; therefore also, $-d = y - x \in E - E$. It follows that E - E contains the open interval

$$(-(2\alpha - 1)\mu(I), (2\alpha - 1)\mu(I)).$$
 (0.23)

Ch. 1, #33.