
Ch. 1, #5.

Set M =M(E), the σ-algebra generated by E , and set

N = ∪{M(F) : F ⊂ E , |F| ≤ |N|} .

For F ⊂ E , M(F) ⊂ M(E) = M, and thus N ⊂ M. N is closed under complements
because for all A ∈ N , there is a countable subset F of E such that A ∈M(F) ⊂ N and thus
Ac ∈M(F) ⊂ N also. To show thatN is closed under countable unions, letH be a countable
subset of N . For each H ∈ H, there is a countable subset FH of E such that H ∈ M(FH).
Since M(FH) ⊂ M (∪H∈HFH), we have H ⊂ M (∪H∈HFH). Since ∪H∈HFH is countable,
M(∪H∈HFH) is included in N and one therefore has ∪H∈HH ⊂M(∪H∈HFH) ⊂ N .

Ch. 1, #8.

For the first inequality,

µ (lim inf Ej) = µ (∪j≥1 ∩i≥j Ei) = lim
j→∞

µ (∩i≥jEi)

≤ lim
j→∞

inf
i≥j

µ(Ei) = lim inf
j→∞

µ(Ej).
(0.1)

The first equality is by definition and the second by lower continuity of measures. The
inequality holds because ∩i≥jEi ⊂ µ(Ej) for all j and the monotonicity of measures. For the
second inequality,

µ (lim supEj) = µ (∩j≥1 ∪i≥j Ei) = lim
j→∞

µ (∪i≥jEi)

≥ lim
j→∞

sup
i≥j

µ(Ei) = lim sup
j→∞

µ(Ej).
(0.2)

The justifications are analogous to the previous case, except that one needs to invoke the
finiteness of ∪i≥jEi for some j for the second equality.

Ch. 1, #12.

(a) For E,F ∈M, suppose that µ(E4F ) = 0, so that

µ(E) = µ(E ∩ F ) + µ(E ∩ F c) ≤ µ(E ∩ F ) + µ(E4F ) = µ(E ∩ F ). (0.3)

The first equality is due to disjoint additivity of measures, and the second comes from
E ∩ F c ⊂ E4F and the monotonicity of measures. By a symmetric argument, one has
µ(F ) = µ(E ∩ F ), so that µ(E) = µ(F ).

(b) Reflexivity: µ(E4E) = µ(∅) = 0, so E ∼ E. Symmetry stems from the symmetry
of the symmetric difference: E4F = F4E. Transitivity: Suppose E ∼ F and F ∼ G, so
µ(E4F ) = µ(F4G) = 0. We have E4G = (E ∩Gc) ∪̊ (G ∩ Ec) and

E ∩Gc = (E ∩ (F ∩Gc)) ∪̊ ((E ∩ F c) ∩Gc), (0.4)

and thus
µ(E ∩Gc) ≤ µ(F ∩Gc) + µ(E ∩ F c) ≤ µ(F4G) + µ(E4F ) = 0. (0.5)

By a symmetric argument, one obtains µ(G ∩ Ec) = 0, and thus µ(E4G) = 0.
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(c) First, we show that ρ is well defined on equivalence classes of measurable sets. Suppose
E1 ∼ E2 and F1 ∼ F2. We must show that µ(E14F1) = µ(E24F2). One has

E14F1 = (E1 ∩ F c
1 ) ∪̊ (F1 ∩ Ec

1)

= (E1 ∩ F c
1 ∩ F2) ∪̊ (E1 ∩ F c

1 ∩ F c
2 ) ∪̊ (F2 ∩ F1 ∩ Ec

1) ∪̊ (F c
2 ∩ F1 ∩ Ec

1)

and therefore

µ(E14F1) ≤ µ(E1 ∩ F c
1 ∩ F c

2 ) + µ(Ec
1 ∩ F1 ∩ F2) + µ(E1 ∪ (F14F2)) + µ(Ec

1 ∩ (F c
24F1))

= µ(E1 ∩ F c
1 ∩ F c

2 ) + µ(Ec
1 ∩ F1 ∩ F2).

By replacing F1 by F2, the latter expression is also equal to µ(E14F2) so that µ(E14F1) =
µ(E14F2). By an analogous argument, one obtains µ(E14F2) = µ(E24F2).

Now we show that ρ(E,F ) = µ(E4F ) is a metric onM. ρ(E,E) = µ(E4E) = µ(∅) = 0;
and if ρ(E,F ) = 0, then µ(E4F ) = 0, so E ∼ F , that is, the equivalence classes of E and F
are the same. Symmetry is a result of the symmetry of the symmetric difference. To show
the triangle inequality, observe that

E ∩Gc = (E ∩Gc ∩ F ) ∪ (E ∩Gc ∩ F c) ⊂ (Gc ∩ F ) ∪ (E ∩ F c), (0.6)

and, similarly, that Ec ∩ G ⊂ (Ec ∩ F ) ∪ (G ∩ F c). thus E4G ⊂ G4F ∪ E4F , which
implies ρ(E,G) = µ(E4G) ≤ µ(E4F ) + µ(F4G) = ρ(E,F ) + ρ(F,G).

Ch. 1, #18.

(a) By definition,

µ∗(E) = inf
{ ∞∑

i=0

µ0(Ai) : Ai ∈ A, E ⊂ ∪∞i=1Ai

}
, (0.7)

and thus, for any ε > 0, there is a collection of sets Ai ∈ A covering E such that

∞∑
i=0

µ0(Ai) ≤ µ∗(E) + ε. (0.8)

Set A = ∪∞i=1Ai ∈ Aσ so that E ∈ A and

µ∗(A) ≤
∞∑
i=0

µ0(Ai) ≤ µ∗(E) + ε. (0.9)

(b) Suppose that E is µ∗-measurable with µ∗(E) < ∞. From part (a), there are sets
Ai ∈ Aσ such that E ⊂ Ai and µ∗(Ai) ≤ µ∗(E) + i−1. Set A := ∩∞i=1Ai ∈ Aσδ. Since the Ai
are measurable (Theorem 1.14) and µ∗(A1) ≤ µ∗(E) + 1 <∞, upper continuity holds:

µ∗(A) = µ∗(∩∞i=1Ai) = lim
n→∞

µ∗(∩ni=1Ai) ≤ lim
n→∞

µ∗(An) = µ∗(E). (0.10)

Since E ⊂ A, this inequality yields µ∗(E) = µ∗(A). By disjoint additivity of measures (µ∗

restricted to the µ∗-measurable sets) µ∗(A \ E) = µ∗(A)− µ∗(E) = 0.
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Suppose now that µ∗(A \E) = 0 with A ∈ Aσδ. First we show that A \E is measurable.
In fact, for any B ⊂ X, if µ∗(B) = 0, then B is measurable. To wit: For each F ⊂ X,

µ∗(F ∩B) + µ∗(F ∩Bc) ≤ µ∗(B) + µ∗(F ) = µ∗(F ). (0.11)

The inequality comes from the monotonicity of outer measures, and the equality comes from
µ∗(B) = 0. Since A ∈ Aσδ ⊂ M, A is measurable and therefore E = A \ (A \ E) is
measurable.

(c) Since µ0 is sigma-finite, one can write X as a disjoint union of sets Xk ∈ A with
µ0(Xk) <∞,

X =
⋃̊

k∈N
Xk. (0.12)

Since E ⊂ X is measurable, Ek := E ∩Xk is also measurable, and one has

E =
⋃̊

k∈N
Ek. (0.13)

According to part (b), there are sets Ak ∈ Aσδ such that Ek ⊂ Ak and µ∗(Ak \Ek) = 0. Let

Ak =
⋂
j∈N

⋃
i∈N

Aijk, (0.14)

in which the sets Aijk are in A. Since Ek ⊂ Xk, one may assume that Aijk ⊂ Xk by replacing
Aijk by Aijk ∩Xk ∈ A. Set

A :=
⋃̊

k∈N
Ak. (0.15)

One has E ⊂ A with µ∗(A \ E) ≤
∑

k∈N µ
∗(Ak \ Ek) = 0. Since Ai1j1k1 ∪ Ai2j2k2 = ∅ for

k1 6= k2, one has

A = ∪̊k∈NAk = ∪k∈N ∩j∈N ∪i∈NAijk = ∩j∈N ∪i,k∈N Aijk. (0.16)

Since ∪i,k∈NAijk ∈ A for each j ∈ N, one has A ∈ Aσδ.

Ch. 1, #28.

Ch. 1, #30.

Ch. 1, #31.

Given α : 1/2 < α < 1, there is, by problem ..., an open interval I such that m(E ∩ I) ≥
αm(I). Let I = (x1, x2). Let d : 0 < d < m(I) be given, and set I1 = (x1, x2 − d). Suppose
that d 6∈ E − E. Then for each x ∈ I1 ∩ E, one has x + d 6∈ E, that is, ((I1 ∩ E) + d) ∩
((I1 + d) ∩ E) = ∅. Thus we have a disjoint union

((I1 ∩ E) + d) ∪̊ ((I1 + d) ∩ E) ⊂ I1 + d, (0.17)

whence
µ((I1 ∩ E) + d) + µ((I1 + d) ∩ E) ≤ µ(I1 + d). (0.18)
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Since (E ∩ I) ⊂ (I1 ∩ E) ∪̊ (x2 − d, x2), one has µ(I ∩ E) ≤ µ(I1 ∩ E) + d and thus

µ(I1 ∩ E) ≥ µ(E ∩ I)− d ≥ αm(I)− d, (0.19)

and, likewise,
µ((I1 + d) ∩ E) ≥ µ(E ∩ I)− d ≥ αm(I)− d. (0.20)

Therefore, by (0.18-0.20) and translation invariance of Lebesgue measure

µ(I)− d = µ(I1 + d) ≥ µ((I1 ∩ E) + d) + µ((I1 + d) ∩ E)

= µ(I1 ∩ E) + µ((I1 + d) ∩ E)

≥ 2(αµ(I)− d),

(0.21)

and this implies
(2α− 1)µ(I) ≤ d if d 6∈ E − E. (0.22)

By contraposition, if d < (2α− 1)µ(I), then d ∈ E −E, that is there are x and y in E such
that x− y = d; therefore also, −d = y−x ∈ E−E. It follows that E−E contains the open
interval (

− (2α− 1)µ(I), (2α− 1)µ(I)
)
. (0.23)

Ch. 1, #33.
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