Ch. 1, #5.
Set M = M(E), the o-algebra generated by £, and set

N =U{M(F): Fc & |F| <N}

For F ¢ & M(F) € M(£) = M, and thus N € M. N is closed under complements
because for all A € NV, there is a countable subset F of £ such that A € M(F) C N and thus
A° e M(F) C N also. To show that N\ is closed under countable unions, let  be a countable
subset of . For each H € H, there is a countable subset Fy of £ such that H € M(Fy).
Since M(Fy) C M (UgenFg), we have H C M (UgeyFp). Since UgeyFy is countable,
M(UgenFg) is included in N and one therefore has Ugey H C M(UgenFr) CN.

Ch. 1, #8.
For the first inequality,
pr(timinf By) = g (Ujz1 Nizj ) = N (Qiz; )
) 0.1
< lim inf u(E;) = lim inf pu(Ej). .
j—00

J—00 12>]

The first equality is by definition and the second by lower continuity of measures. The
inequality holds because N;>; E; C pu(E;) for all j and the monotonicity of measures. For the
second inequality,

p(limsup Ej) = pu(N21 Vizj Bi) = lim (Ui B7)
0.2
> lim sup p(E;) = limsup p(E;). (0.2)

J=00 i>j j—ro0

The justifications are analogous to the previous case, except that one needs to invoke the
finiteness of U;>;F; for some j for the second equality.

Ch. 1, #12.
(a) For £, F € M, suppose that u(EAF) =0, so that

p(E)=p(ENF)+pu(ENF) <u(ENF)+ pwEAF) = pu(ENF). (0.3)

The first equality is due to disjoint additivity of measures, and the second comes from
E N F¢ C EAF and the monotonicity of measures. By a symmetric argument, one has
w(F) = p(ENF), sothat u(E) = p(F).

(b) Reflexivity: u(EAE) = p(0) =0, so E ~ E. Symmetry stems from the symmetry
of the symmetric difference: FAF = FAFE. Transitivity: Suppose £ ~ F and F ~ G, so
W(EAF) = u(FAG) = 0. We have EAG = (ENG°)U(G N E°) and

ENG = (EN(FNG9))U((ENF°)NG°), (0.4)

and thus
W(ENGY) < (FNG) 4+ u(ENFC) < u(FAG) + u(EAF) = 0. (0.5)

By a symmetric argument, one obtains u(G N E¢) = 0, and thus u(EAG) = 0.
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(c) First, we show that p is well defined on equivalence classes of measurable sets. Suppose
Ey ~ Ey and F; ~ F,. We must show that u(E3AFy) = p(E2AFy). One has

E\AFy = (BN FY) U (Fy N EY)
=(E\NFINEB)U(EINFINE) U (BN FLNEY) U (FsNF N EY)
and therefore

p(E\AFy) < p(Ey N FYNFS) + p(EY O FL0EFy) + p(Ey U (FLIAFR)) + p(ET N (F5AF))
= w(EyNFENEFY) + p(ENFLNE).

By replacing F; by Fs, the latter expression is also equal to u(EyAFy) so that u(EyAF)) =
w(EyAFy). By an analogous argument, one obtains pu(E1AFy) = p(EyAF,).

Now we show that p(E, F) = p(EAF) is a metric on M. p(E, E) = p(EAE) = u(0) = 0;
and if p(E, F') = 0, then u(EAF) =0, so E ~ F, that is, the equivalence classes of £ and F’
are the same. Symmetry is a result of the symmetry of the symmetric difference. To show
the triangle inequality, observe that

ENG'=(ENG'NF) U (ENG°NF°) C(G°NF) U (ENF°), (0.6)

and, similarly, that ENG C (E°NF) U (GNF°). thus EAG C GAF U EAF, which
implies p(E,G) = p(EAG) < W(EAF) + W(FAG) = p(E, F) + p(F,G).

Ch. 1, #18.
(a) By definition,

1*(E) = inf { iuo(Ai) A €A EC U;’;Ai}, (0.7)
i=0
and thus, for any € > 0, there is a collection of sets A; € A covering E such that
3 A0 < () + 03)
=0
Set A =U2,A; € A, so that £ € A and

A) < Zuo(Az') < p(E) + e (0.9)

(b) Suppose that E is p*-measurable with p*(E) < oco. From part (a), there are sets
A; € A, such that E C A; and p*(A;) < p*(E) +i 1. Set A :=nNX,A; € Ays. Since the A;
are measurable (Theorem 1.14) and p*(A;) < p*(E) + 1 < oo, upper continuity holds:

pr(A) = pr(NZA) = lim p* (i, A) < lim g7 (An) = p*(E). (0.10)
Since £ C A, this inequality yields p*(F) = p*(A). By disjoint additivity of measures (pu*

restricted to the p*-measurable sets) pu*(A\ ) = u*(A) — pu*(F)=0.

[\



Suppose now that p*(A\ E) = 0 with A € A,s. First we show that A\ F is measurable.
In fact, for any B C X, if u*(B) = 0, then B is measurable. To wit: For each F' C X,

p(F0B)+p"(FNBY) < p(B) + p(F) = p(F). (0.11)

The inequality comes from the monotonicity of outer measures, and the equality comes from
p(B) = 0. Since A € A,s C M, A is measurable and therefore £ = A\ (A \ E) is

measurable.

(c) Since pq is sigma-finite, one can write X as a disjoint union of sets X} € A with
:LLO(X/C> < 00,

X = UkeNX’“' (0.12)

Since £ C X is measurable, Fj := E N X}, is also measurable, and one has

E = UkeNE’f' (0.13)

According to part (b), there are sets Ay € A,s such that Ey C Ay and p*(Ax \ Ex) = 0. Let

A= 4, (0.14)

jeNieN

in which the sets A;;;, are in A. Since £}, C X}, one may assume that A;;; C X}, by replacing
Az‘jk by Aijk N Xk S .A Set

A= UkeNA’f' (0.15)

One has B C A with p*(A\ E) < Y7, oy (Ax \ Er) = 0. Since A; ik, U Ajyjor, = 0 for
k1 # ks, one has

A = UgenAy = Ugen Njen UienAijie = Njen Ui ken Aiji- (0.16)
Since U; penAiji € A for each j € N, one has A € Ags.

Ch. 1, #28.
Ch. 1, #30.

Ch. 1, #31.

Given o : 1/2 < a < 1, there is, by problem ..., an open interval I such that m(EN1I) >
am(Il). Let I = (z1,25). Let d: 0 < d < m(I) be given, and set [} = (z1,x9 — d). Suppose
that d ¢ E — E. Then for each x € Iy N E, one has ¢ +d ¢ E, that is, (LN E) +d) N
(I +d) N E) = 0. Thus we have a disjoint union

(LNE)+d)U((L+d)NE) C I, +d, (0.17)

whence
p(LOE)+d)+p((L +d)NE) < u(l; +d). (0.18)



Since (ENT) C (I; N E)U(zy — d, x5), one has u(I N E) < u(I; N E) + d and thus
whNE) > wW(ENI)—d > am(l) —d,

and, likewise,
u((h+d)NE) > pwENI)—d > am(l) —d.

Therefore, by (0.18-0.20) and translation invariance of Lebesgue measure

(LNE)+pu((Lh+d)NE)

p(l) —d=p(h +d) 2 (LN E)+d) +p((l +d) N E)
> 2(ap(l) — d),

and this implies
2a—Du(l) < d if d¢ F—F.

(0.19)

(0.20)

(0.21)

(0.22)

By contraposition, if d < (2a — 1)u(I), then d € E — E,| that is there are z and y in E such
that x — y = d; therefore also, —d = y—x € E — E. It follows that £ — E contains the open

interval

(= 2a = Dp(), 2a—1)u(l)).

Ch. 1, #33.

(0.23)



