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TRANSLATOR’S PREFACE

The present volume comprises the first five chapters of the Russian text
of seven chapters and two appendices. It is hoped that it will be a worth-
while addition to the few books on linear operators in English. Present
plans call for bringing out the balance of the work in a second volume.

A few words should be said regarding the translation. It was the
translator’s desire to produce a faithful translation and to convey the intent
of the authors in clear English. When conflicts arose, they were resolved in
favor of the latter objective. Therefore, a fair degree of freedom was exer-
cised in the translation. Substantial alterations are accompanied by trans-
lator’s notes.

The translator owes much to Dr. Philip M. Anselone, of the United
States Army Mathematics Research Center, University of Wisconsin, who
critically read the text, contributed the translator’s notes, and did much to
polish both the mathematics and style of the text. Thanks go also to
Dr. Hans Bueckner of the United States Army Mathematics Research
Center, University of Wisconsin, and to Professor Phillip Hartman of The
John Hopkins University, for reading critically the entire text. However,
for any errors in translation the translator assumes full responsibility.

M.K.N.







AUTHOR’S PREFACE

The present book stems from lectures and papers which were presented
by the authors at the Kharkov Mathematics Institute. Itisnot exhaustive
and perhaps should be called “An Introduction to Linear Operators in
Hilbert Space.” However, the geometry of Hilbert space and the spectral
theory of unitary and self-adjoint operators is presented in detail. The book
contains some results obtained by Soviet mathematicians.

According to the original plan, we had hoped also to present as appli-
cations the theory of Jacobi matrices in connection with the exponential
moment problem on the whole axis and the theory of integral equations
with Carleman kernel. In any case, the size of the book without these
forced us to abandon this intention. It was with special regret that we
decided against the presentation of the moment problem since, on one
hand, it plays a big role in the development of the theory of operators and,
on the other, is a beautiful application for illustrating the theory.

We recommend to the reader that, after the study of this book, he
become acquainted with both the moment problem and the theory of the
Carleman integral operator.!

The book consists of seven chapters of basic text and two appendices.
The first appendix is devoted to generalized extensions of symmetric
operators. Here results obtained by M. A. Naimark (Moscow) and M. A.
Krein (Odessa) have a classical character; these results were placed in an
appendix only so that the basic text could be kept comparatively elementary.
The second supplement is devoted to the theory of differential operators,
which are here an application of the general theory. We do not give a
complete list of literature on the theory of operators, but cite only basic
papers and recent or little known books. We list a few titles from a general
course.?

The attentive reader will notice that we occasionally repeat some
formulas or proofs. We do this to keep the reader from being exhausted
by too much reference to preceding material.

Further, we might have reduced the size of the book somewhat by
omitting chapter five, which contains the spectral analysis of completely
continuous self-adjoint operators; however, we decided to keep this
material as a very natural introduction to the general spectral theory.

1Cf. for cxam;;lc, N. L. Akhiezer (2], [3], M. G. Krein and M. A. Krasnoselski [1].
* M. H. Stone [3], A. I. Plesner (1], A. I. Plesner and V. H. Rokhlin {1], V. I. Smirnov {1 ].
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viii AUTHOR’S PREFACE

The first three chapters, chapter five and chapter six (with the exception
of sections 69-73) were written by N. I. Akhiezer and the remainder by
I. M. Glazman. However, the final editing of all the material was done
jointly. Hence each of us bears responsibility for the whole book.

We consider it our duty to express deep thanks to M. G. Krein for a
number of valuable remarks. We are also very grateful to G. L. Drinfeld,
M. A. Krasnoselski, V. A. Martchenko and A. la. Povzner for remarks and
corrections to improve individual parts of the book.
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Chapter 1
HILBERT SPACE

1. Linear Spaces

A set R of elements f, g, h, . .., (also called points or vectors)
finms a linear space if
(n) there is an operation, called addition and denoted by the symbol
1, with respect to which R is an abelian group (the zero element of this
group s denoted by 0);
(h) multiplication of elements of R by (real or complex) numbers
@, /l. -, .. .18 defined such that

off+8)=of + og,

(a +B)f =of + B,
a(Bf) = (aB) f,

l-f=f 0-f=0.

1 lements £y, f3, . . ., fa in R are linearly independent if the relation

(1) afitafet...+anfa=0
holily only in the trivial case with a; = a, =. . . = as = 0; otherwise f}, f3,
. fw are linearly dependent. The left member of equation (1) is called a
{inear combination of the elements f3, f5, . .., fa. Thus, linear indepen-
wenee of fi, f2, ..., fo means that every nontrivial linear combination of
these clements is different from zero. If one of the elements £, f3, . . ., fa
i cqual to zero, then these elements are evidently linearly dependent.
i1 1o example, f; = 0, then we obtain the nontrivial relation (1) by taking

a1=l,a2=a3=... =an = 0.

A linear space R is finite dimensional and, moreover, n-dimensional if

i «ontains n linearly independent elements and if any n + 1 elements of

i wie linearly dependent. Finite dimensional linear spaces are studied in

linear algebra. If a linear space has arbitrarily many linearly independent
+ bonents, then it is infinite dimensional.
1



2 1. HILBERT SPACE

2. The Scalar Product

A linear space R is metrizable if for each pair of elements /, g €R there
is a (real or complex) number (f, g) which satisfies the conditions:?

@ (&N=02),
®)  (afi+ asfs8) = a1(f1,8) + a2 (/2. 8),
(©) (f,.f) 20, with equality only for f=0.

The number (f, g) is called the scalar product® of f and g.

Property (b) expresses the linearity of the scalar product with respect
to its first argument. The analogous property with respect to the second
argument is

(® (/.81 + Bagd) = Br(f,81) + B/, 89)-

Property (b) is derived as follows:

(18181 + Bags) = (Brg1 + Bags.f) = Bi(81.f) + Bu(gs /) =
=B1(f.81) + B /.89
The positive square root 4/(f, ) is called the norm of the element
(vector) f and is denoted by the symbol || f]. The norm is analogous to
the length of a line segment. As with line segments, the norm of a vector
is zero if and only if it is the zero vector. In addition, it follows that

1° Iafll=]|al-Ifl.
This is shown by using properties (b) and (b) of the scalar product:
(of,of) = a(f, of) = aa(f,f) = | ]*(/,]),

from which 1° follows.
We shall prove that for any two vectors fand g,

2° A2 S M- lgh,

with equality if and only if f and g are linearly dependent. We call 2° the
Cauchy-Bunyakovski inequality?, because in the two most important
particular cases, about which we shall speak below, it was first used by
Cauchy and Bunyakovski.

In the proof of 2°, we may assume that (f,g) 0. Letting

9 /8
(Lo’

we find that for any real A,
0s(Qf+2,0f+2g) =2g,8) +2X|(f,8)| + (£, /)

! A bar over a complex number denotes complex conjugation.

! Translator's Note: The phrase inner product is also used. Henceforth, we shall call R an
inner product space.

* Translator’s Note: This is often called the Schwarz or the Cauchy-Schwarz inequality.



mwwwumwmnm_

2. THE SCALAR PRODUCT 3

On the right we have a quadratic in A. For real A this polynomial is non-
negative, which implies that
[(£,8) * = (£.S)(2.8)
and this proves 2°. The equality sign will hold only in case the polynomial
under consideration has a double root, in other words, only if
8f+2=0
forsomerealA. Butthisequation implies that the vectors fand g are linearly

dependent.
We shall derive one more property of the norm, the inequality,

3° if+glh=ifll+1lgl.
There is equality if f=0or g =Af, A 2 0. This property is called the rri-
angle inequality, by analogy with the inequality for the sides of a triangle in

elementary geometry.
In order to prove the triangle inequality, we use the relation

If+glf=(f+gf+8 =0 1)+ (/8 +(&S)+ (&8
Hence, by the Cauchy-Bunyakovski inequality
If+gl2s IA1E+ 2000 11gl + gl = {ifll + g}

which implies that
Wf+gl sl +lgl

For equality, it is necessary that

&) =ifl-lgl.
If £ 7 0, then, by 2°, it is necessary that
g=AXf
for some A, From this it is evident that
ML) =LA IS,

whence it also follows that A 2 0.

An inner product space R becomes a metric space, if the distance
between two points f, g € R is defined as

Dif.gl=Iif— gl.

It follows from the properties of the norm that the distance function satis-
fies the usual conditions.?

The scalar product yields a definition for the angle between two
vectors. However, for what follows, this concept will not be needed. We
confine ourselves to the more limited concept of orthogonality. Two vec-

tors fand g are orthogonal if
(f,8) =0.
¢ These conditions are

(@) Dif,g}=Dlg,f1>0 (forf # g),
(b) D[f,f1=0, . . .
() DIf,g) £ DIf k] + Dlh,g) (triangle inequality).
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3. Some Topological Concepts

In the present section we consider some general concepts which are
introduced in the study of point sets in an arbitrary metric space. We denote
ametricspace by E, and speak of the distance D [ £, g] between two elements
of E. Let us bear in mind that in what will follow we shall consider only the
case with E = R and D [f, g] = | f — g, i.e., the case with the metric
generated by a scalar product.

If f, is a fixed element of E, and p is a positive number, then the set of
all points f for which

D[f.fil<e

l is called the sphere in E with center f, and radius p. Such a sphere is a
neighborhood, more precisely a p-neighborhood of the point f.
f We say that a sequence of points fa e E(n =1,2,3,...) has the limit
point feE, and we write

4y Jo—>forlim fu=f
when

® lim D[ fu,f]=0.
It is not difficult to see that (1) implies

3 lim D[f,.f.]=0

where m and » tend to infinity independently. In fact, by the triangle

inequality,
“ DLfinfi] € DUfwf1+ DUnsS )

But the converse is not always correct, i.e., if for the sequence f» € E
(n=1,2,3,...) relation (3) holds, then there may not exist an element
f € E to which the sequence converges. If (3) is satisfied, then the sequence
is called fundamental. Thus, a fundamental sequence may or may not con-
verge to an element of the space.

A metric space E is called complete if every fundamental sequence in E
converges to some element of the space. If a metric space is not complete,
then it is possible to complete it by introducing certain new elements. This
operation is similar to the introduction of irrational numbers by Cantor’s
method.

If each neighborhood of feE contains infinitely many points of a
set M in E, then fis called a limit point of M. If a set contains all its limit
points, then it is said to be closed. The set consisting of M and its limit
points is called the closure of M and is denoted by M.
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If the metric space E is the closure of some countable subset of E, then
E is said to be separable. Thus, in a separable space there exists a countable
set N such that, for each point f€E and each ¢ > 0, there exists a point
g € N such that
D[f,g] <=

4. Hilbert Space

A Hilbert space H is an infinite dimensional inner product space which
is a complete metric space with respect to the metric generated by the inner
product. This definition, similar to those in preceding sections, has an
axiomatic character. Various concrete linear spaces satisfy the conditions
in the definition. Therefore, H is often called an abstract Hilbert space,
and the concrete spaces mentioned are called examples of this abstract
space.

One of the important examples of H is the space /2. The construction
of the general theory, to which the present book is devoted, was begun for
this particular space by Hilbert in connection with his theory of linear
integral equations. The elements of the space /? are sequences (of real or
complex numbers)

=}, g={mr ..

such that
o0 o0
Do lxnlP< oo, < oo, ...
n=1 ne=1
The numbers x,, X;, X;, ..., are called components of the vector f or

coordinates of the point f. The zero vector is the vector with all components
zero. The addition of vectors is defined by the formula

S+ g={xn+yn}i".
The relation

O

2 Xn 4 yalt< o0

n=1
follows from the inequality
x+p* < 2]xP+2]p[
The multiplication of a vector f by a number A is defined by
Af = {Axa}y.
The scalar product in the space /2 has the form

(f,8)= Xxapn.
The series on the right converges absolutely because
xpl s dlxp2+ 4y
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The inequality
[ < If1-ligl

now has the form

l’glxn}_’nl s "Zlfxnlz' "Zl,ynlz
and is due to Cauchy.

The space /2 is separable. A particular countable dense subset of /2
consists of all vectors with only finitely many nonzero components and
with these components rational, i.e., the components are of the form
¢ + ip where ¢ and 7 are rational numbers.

~ In addition, the space /2is complete. In fact, if the sequence of vectors
f(k)z{xsak)}:;l (k=15293’ o ')
is fundamental, then each of the sequences of numbers
EYe (m=1,23,..)
is fundamental and, hence, converges to some limit x» (n = 1,2, 3, ...).
Now, for each e > 0 there exists an integer N such that forr > N, s> N

S —x) <e.
n=1

Consequently, for every m,
Sxp —x<e.
Let s tend to infinity to obtain

m
,\/leg)—xnlz Ze
n=1

But, because this is true for every m,

=
DxP —xalt S e

n=l
Hence, it follows that
f = {x”}lm el 2’
and, since > O is arbitrary,
fO=f.
Thus, the completeness of the space /2 is established.

As we demonstrated, the space /2 is separable. Originally, the require-
ment of separability was included in the definition of an abstract Hilbert
space. However, as time passed it appeared that this requirement was not
necessary for a great deal of the theory, and therefore, it is not included
in our definition of the space H.
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But the requirement of completeness is essential for almost all of our
considerations. Therefore, it is included in the definition of H. The appro-
priate reservation is made in the cases for which this requirement is super-
fluous.

The space /2 is infinite dimensional because the unit vectors

e, = {1, 0, 0, .. .},
€y = {0, 1, 0, .. .},
ey = {0,0, 1, . .},

s

are linearly independent. The space /2 is the infinite dimensional aralogue
of E,,, the (complex) m-dimensional Euclidean space, the elements of which
are finite sequences

S={xa}7,
and most of the theory which we present consists of generalizations to H
of well-known facts concerning E,,.

5. Linear Manifolds and Subspaces

One often considers particular subsets of R (and, in particular, of H).
Such a subset L is called a linear manifold if the hypothesis f, g€ L implies
that o f + BgeL for arbitrary numbers a and 8. One of the most common
methods of obtaining a linear manifold is the construction of a linear
envelope. The point of departure is a finite or infinite set M of elements of
R. Consider the set L of all finite linear combinations

afitasfy+...+ anfn

of elements f3, /3, . . . , f» of M. This set L is the smallest linear manifold
which contains M. It is called the linear envelope of M or the linear mani-
fold spanned by M. If R is a metric space, then the closure of the linear
envelope of a set M is called the closed linear envelope of M.

In what follows, closed linear manifolds in H will have a particularly
important significance. Each such manifold G is a linear space, metrizable
with respect to the scalar product defined in H. Furthermore, G is complete.
In fact, every fundamental sequence of elements of G has a limit in H
because H is complete, and this limit must belong to G because G is closed.
From what has been said, it follows that G itself is a Hilbert space if it
contains an infinite number of linearly independent elements; otherwise
G is a Euclidean space. Therefore, G is called a subspace of the space H.
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6. The Distance from a Point to a Subspace
onsider a linear manifold L which is a proper subset of H. Choose a
heH and let

8 =inf|l h —f|.

felL
uestion arises as to whether there exists a point g eL for which
lh—gl=2.

er words, is there a point in L nearest to the point 4 7%
e prove first that there exists at most one point geL such that
A —gll. Assume that there exist two such points, g’ and g". Since

+g") €L, we have

L b

e other hand

1V_£%£ﬂggw—yu+ﬂh—fu=&

equently,
o35+
2
therefore
5 t 4 1 1
R .l 4l (NS VPSRN VPR
3 2|| gl 2II gl
t this is the triangle inequality with the sign of equality. Since

h—g' +#0

have
h—g" =xh—g)
some A 2 0. If A = 1, the proof is complete. If A 54 1, then

h =g, —_— Agl
1 -2
) that heL, which contradicts our assumption. Thus, our assertion is

roved.
But, in general, does there exist a point g € L nearest to the point 4?

n the most important case, the answer is yes, and the following theorem

olds.
THEOREM: If G is a subspace of the space H and if

& =inf|lh — f1,
feG

* Translator’s Note. The case with & €L is trivial. Henceforth, the author assumes without
ying so that A¢ L.
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then there exists a vector g € G (its uniqueness was proved above) for which
th —gll = 8.

Proof: According to the definition of the greatest lower bound, there
exists an infinite sequence of vectors {ga};", in G, for which

lim|h—gunll =é.

Now,
__gm+gn <lh_ lh_
Hh Ent 8ol < b —gall + 1k —gall
Therefore
iim \h_g_,d_gl < s,
m,n——»eo’ 2
and since
h_8Ent&il> 5
B
we have
i h_gm + & = §,
o 2

In the easily proved relation,
20f12 + 21f" ="+ + 0 = S5

f'=h—gw S =h—g

let

to obtain
2

180 — gt =211k — gl +211h — g,I* — 4”11—._8'»'2“'" .

Therefore,

lim Hgn _gm“ = 0-

m, n—»0

So the sequence of vectors {g»}{° converges to some vector g€ G. It remains
to prove that

Nh—gl =38
Now
limiig — gall =0, lim ||h — gall =8
and
th —gil S 11h — gall + g — &nll;
consequently

lh—gll =3

But, by the hypothesis of the theorem, ||A — g || = 8. Thus, the theorem
is proved.
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7. Projection of a Vector on a Subspace

Let G be a subspace of H. By the preceding section, to each element
h € H there corresponds a unique element g € G such that

(M Ih— gl =infiih—gll.

Considering & and g as points, we say that g is the point of the subspace
G nearest the point 4. If the elements g and 4 are considered as vectors, then
it is said that g is the particular vector of G which deviates least from A.
Now, using (1), we show that the vector A—g is orthogonal to the subspace
G; i.e., orthogonal to every vector g’ € G,

For the proof, we assume that the vector A—g is not orthogonal to
every vector g'€ G. Let

(h—2,80) =0 #0 (80€G).
We define the vector

ag

(80»80)

g*=g+ & €G

Then
Lh—g*P? = (h —&—

g h—g— ——& )
(8080 (80s80)

2
N h—g,8) — —~—(gnh—g) + 1L~
(goago)( &8 (goago)(go 8 (80:80)
2
= th—gli- 12t
(80, 80)

so that
lh—g*Il <llh—gl,
which contradicts (1).

From the proof it follows that A has a representation of the form?*

h=g+ 7,

where g € G and fis orthogonal to G (in symbols, /' | G). It follows easily
that

Nhl®=1gl®+lifi~

It is natural to call g the component of  in the subspace G or the projection
of hon G.”

¢ Translator’s Note: It is easy to prove that this representation is unique. The author uses
the uniqueness later.

? This contrasts with the situation in analytic geometry, where a projection is a number and
a component is a vector. Here projection and component are equivalent terms.
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We denote by F the set of all vectors f orthogonal to the subspace G.
We show that F is closed, so that F is a subspace. In fact, let fneF
(n=1,2,3,...) and fo—~f. Then (fs,g) = 0 and

;8 =18

In absolute value, the right member does not exceed

If—fl-ligl,
which converges to zero as n — oo. Hence, (f, g) =0, so that fe F and
the manifold F is closed.
The subspace F is called the orthogonal complement of G and is
expressed by

)] F=HodG.
It is easy to see that
29 G =HOoF.
Both relations (2) and (2") are expressed by the equation
H = GaF,

because H is the so-called direct sum of the subspaces F and G (in the given
case, the orthogonal sum).

In general, a set M < H is called the direct sum of a finite number
of linear manifolds M, =« H(k = 1, 2,3, ..., n) and is expressed by

M =M1®M2® @Mu
if each element ge M is represented uniquely in the form

g=g +8g+ ... +8&n

where g, eM, (k =1,2,3...,n). Itis evident that M is also a linear
manifold.

1t will be necessary for us to consider direct sums of an infinite number
of linear manifolds only in cases for which the manifolds are pairwise
orthogonal subspaces of the given space. This is done as follows.

DEFINITION: Let {H,} be a countable or uncountable class of pairwise
orthogonal subspaces of H. Their orthogonal sum

2 ®H,
is defined as the closed linear envelope of the set of all finite sums of the form
H,®H.®....

Often it is necessary to determine the projection of a vector on a
finite dimensional subspace. We consider this question in some detail. Let
G be an n-dimensional subspace and let
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(3) 81,82 --.,8n
be » linearly independent elements of G. Since any n + 1 elements of G are
linearly dependent, each vector g’ € G can be represented (uniquely) in the
form

g’ = A1g1 + Azgz T Angn.

In other words, G is the linear envelope of the set of vectors (3).

We choose an arbitrary vector A€ H and denote by g its projection
on G. The vector g has a unique representation,

g= a8+ %+ ...+ ongn.
According to the definition of a projection, the difference 2 —g=f must
be orthogonal to the subspace G, i.e., fis orthogonal to each of the vectors
g1, 82, - - - » &n. Therefore,

@ (f,80=(hg) — 1(81,81) — @2(82.81) — . . . — an(gn,8) =0
k=1,2,3,...,n).
This is a system of n linear equations in the unknowns ey, ay, . . ., an. We
have shown that it has a unique solution for each vector h. Therefore,
the determinant of this system is different from zero®. This determinant

(81,81) (8281 - .. (gn,80
(81,82) (8:83) - .. (8n,89)
(g, gs...,80) =
(81,8n) (82,8n) - - . (gn,8n)
is called the Gram determinant of the vectors g,, g», - . . , gu. Itiseasytosee
that if the vectors gy, gs, . . . , g» are linearly dependent, then the Gram
determinant is equal to zero. Hence, for the linear independence of the
vectors it is necessary and sufficient that their Gram determinant be differ-
ent from zero.
We proceed to determine the number

S =minlh —g'll.
2'e€eG

We shall express § by means of the Gram determinant. As above let g be
the projection of hon Gandletf = h —g. Then 8 = {|fI = (A — g {land
8= (f£)=(h),

8 Translator’s Note: In (4), suppose that (h,g;) = 0 f(’)'l‘ k=1,2,3,...,n Inother words,
let 1 G. Then ljgl® = llaygy + ... +angall =k§lEkI(a,gng;) +.o A (angmenl =
=k2'7 ax(h,ge) = 0sothat g = a1y + @s@s + ... + angs = 0. Since gy, ..., ga are lincarly

=1
independent, a,= a;= . .. a,= 0. This proves that the homogeneous system a,(g;, &) + . . .

+ an(gn. &x) =0 (k =1,2,3,...,n) has only the trivial solution a; = ... = ay= 0. Con-
sequently, the determinant of the system is not zero.
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since (f,€) =0. Letg =a;8; + asg, + ... + angn, wWhere the g, are as in
equation (3), to obtain

®) 8 = (h,h) — a1 (g1, h) — as(gs, B) — . . . — an(gn, h).

The determination of 82 is reduced to the elimination of the quantities q
from equations (4) and (5). This elimination yields
(k) — 8 (2,h) @uh) ... (gnh)

(h8) (81,81 (8081 ... (8m8) | _ 0

(h,gn) (81,85) (83:8n) --- (8n,8n)
Hence,

(6) sazp(h’gl’g!" . 'sg”).
I‘(gbgb oo ,g")

This is the formula we wished to obtain.

Since I'(g,) =(g., £1) > 0 (forg, #0), it follows from formula (6)
that the Gram determinant of linearly independent vectors is always
positive. This fact can be regarded as a generalization of the Cauchy-
Bunyakovski inequality, which asserts that

T'(g1,8:) >0
for linearly independent vectors g, and g,.

8. Orthogonalization of a Sequence of Vectors

Two sets M and N of vectors in H are said to be equivalent if their
linear envelopes coincide. Therefore, the sets M and N are equivalent if
and only if each element of one of these sets is a linear combination of a
finite number of vectors belonging to the other set.

If the elements of the set M are pairwise orthogonal vectors, and if
each of the vectors is normalized, i.e., if each has norm equal to one, then
the set M is called an orthonormal system. If, in addition, the set M is
countable, then it is also called an orthonormal sequence.

Suppose given a finite or infinite sequence of independent vectors

)} Z1:88 . 380y« - .
‘We show how to construct an equivalent orthonormal sequence of vectors
) €15€5y ..y Cnyu.. .
For the first vector, we take
1 =_g'1_ s
lgll

the norm of which is equal to one. The vectors e, and g, generate the same
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(one dimensional) subspace E,. The vector e, is constructed in two steps.
First, we subtract from the vector g, its projection on E, to get
hy =g, — (g2 €1)ey,
which is orthogonal to the subspace E;. Since the vectors (1) are linearly
independent, g, does not belong to E,, so that 4, = 0. Now let
hs
€y = .
TN
The vectors e, and e, generate the same (two dimensional) subspace E, as

do the vectors g, and g,. We now construct the vector e;. First, we subtract
from g, its projection on E, to get

hy = g3 — (g3, e)e, — (83, €s)eq,

which is different from zero and orthogonal to the subspace E,, i.e., &, is

orthogonal to each of the vectors e, and e,. Next we let
hy

lhsll

We continue in the same way. If the vectors

€3

€1,€94. ..,€n
have been constructed, then we let
n
hn+l = &n+1 — kEl(gn+lv ek) €

and

_ P
T

The method described is called orthogonalization.?

In the solution of many problems concerning manifolds generated by
a given sequence of vectors, preliminary orthogonalization of the sequence
turns out to be very useful. We illustrate this in the problem considered in
the preceding paragraph. That problem concerned the determination of
the distance from a point A€ H to a linear manifold G, which was the
closed linear envelope of the given sequence (1). We shall show how
elegantly this problem is solved if the system (1) is orthogonalized before-
hand.

* Often, in particular cases, one does not bother to normalize the system (2) of pairwise
orthogonal elements which is equivalent to the system (t). The transition from (1) to such an
orthogonal system likewise is called orthogonalization. (See Section [1 below.)
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Assume given the orthogonal sequence (2) and a vector 4 € H. For each
integer #, the vector A can be expressed in the form

h=3 (hedes+fa

where the vector f, is orthogonal to each of the vectors e;, €5, . . ., es. The
vector

n
©) =X (hede,
belongs to the set of vectors )
) Aey + A8y + ..+ Apen
and, of these vectors, s» is nearest to the vector h. The distance from s,
tohis
&) 8y, = rmn lh — Aey — Ageq — —Menl = |fall=

= J k2 — El(h e [

This is the distance from the point 4 to the linear envelope Gy of the set con-
sisting of the first » vectors of the sequence (2). If instead of the linear
combination of the nth order (4), we wish to find the linear combination of
the (n + 1)th order,

4" Brey +opges + .+ By 1€,

which is nearest to the vector A, then we must take the vector
n+1

Spt1 =I;(h, € e
Thus, we do not change the coefficients in the linear combination (3).
Rather, we merely add one more term,

(h’ en+ l)en+ 1

to the right member of (3).

These considerations show that, being given the infinite orthonormal
sequence (2), it is appropriate to associate with each vector heH the
infinite series

(6) l;l(h,ek)ek.
Equation (5) yields the important inequality
™ 2| (ed P < Ihir.

The convergence of the series

S lthen
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implies that

IS —sulf= > [(he) | (m <n)

k=m+1

converges to zero as m, n — oo, i.e., the series (6) converges in H.* We
see that the square of the distance from the point 4 to the manifold G is

I |2 —gl(h,ek)v

and that the vector & belongs to the manifold G if and only if there is equality
in formula (7).

We shall say that a system of vectors is closed in H if its linear envelope
is dense in H. From our considerations, the orthonormal system (2) is
closed in H if and only if

® k1= 3] (e

for each e H. Following V. A. Steklov,!! we call this equality the closure
relation.® We show next that if the Parseval relation holds for each
vector heH, then for any pair of vectors g, he H, the general Parseval
relation

) (&1 = 3 (8 e) € h)

holds. In fact, we have the Parseval relation for each vector g + A A:

g + Mo =f_;‘ll(g L Me)

which yields
(8,8) +A(h,8) + (g, h) +|A|*(h, ) =

=§:1{|(g, e |2+ A(h,ed(eng) + Mg, e (e k) + | A2 | (h,e) |3
and

Mg+ 1(gh) = A3 (he) (en8) + L3 (8 €0) (e ).

Since A is arbitrary, equation (9) follows.

19 We remark that convergenc: in H of any series fi4- fa+ ..., where ( fi, fi) = 0 (i # k)is
equivalent to the convergence of the numerical series || £11F+ | flF+ || AlF+ ... .

1V, A, Steklov showed for the first time the important significance of the closure relation in
various problems of analysis and mathematical physics. Before the work of V. A. Steklov, the
relation under consideration was known only for systems of trigonometric functions (the so-
called Parseval-Liapunov equation).

1t Translator’s Note: Following rather common English practice, we shall refer to (8) hence-
forth as the Parseval relation. Some authors refer to it as the completeness relation.
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9. Complete Orthonormal Systems

The vectors of an orthonormal system cannot be linearly dependent.
Therefore, in n-dimensional Euclidean space each orthonormal system of
vectors contains at most n vectors.

We say that an orthonormal system M is complete in H if M is not
contained in a larger orthonormal system in H, i.e., if there is no nonzero
vector in H which is orthogonal to every vector of the system M. In
Euclidean n-space any orthonormal system of n vectors is complete. In
Hilbert space a complete orthonormal system contains an infinite number
of elements, and there arises the problem of the cardinality of such systems.
This problem is solved easily for separable spaces. We begin with them,

THEOREM 1: If the space H is separable, then every orthonormal
system of vectors in H consists of a finite or countable number of elements.

Proof: Let

(l) .fbf!sf!a- ..
be a sequence of vectors which is dense in H, and let M be an orthonormal
system of vectors. We proceed to show that M can be enumerated. Let e
and e’ be distinct vectorsin M. From (1) choose vectors f; and f,. such that

(2 le —ful <} v2
and similarly for e’ and k. We show that k’ # k. In fact,
le —e'lt=le|?+ |le’|2 =2
so that
Vi=le—¢elsle—fill+le —fill <} V2 +le —fil.
Therefore,
le" —fill > 4 v2
so that f,r = f, and k % k’. Thus, we can associate with each vector of
M a different integer k. This proves that the set M is finite or countable.

The existence of a nondenumerable orthonormal system of vectors
in H implies that the space is not separable. An important example of this
kind will be considered later.

THEOREM 2: An infinite orthonormal sequence

3) €1,€5,€5, ...
is complete in H if and only if the sequence is closed in H.

Proof: (A) Letthe system (3) be closed in H. Then, for each vector
of H, the Parseval relation holds. Assume that the system (3) is not com-
plete, and denote by 4 a nonzero vector which is orthogonal to each of the
vectors (3). Thus, (h,e,)) =0 (k=1,2,3,...) and the Parseval relation
for h reduces to the contradiction

0#|lAl*=0.
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(B) We suppose now that the system (3) is complete. We choose an
arbitrary vector 4 ¢ H and consider the sequence of vectors

Sn = gl(h, ede, (n=1,2,3,..)).

By the preceding section, {sa} is fundamental, which implies that it con-
verges to some vector g. Then

@ @e)=lmGme)=(hed (k=123 ..)

and g belongs to the closed linear envelope of the sequence (3). Conse-
quently, the Parseval relation is valid for g:

) gl = 2 @ enlt =1 e

It follows from (4) that the vector g —# is orthogonal to each vector of the
sequence (3). The assumption that this sequence is complete implies that
g—h = 0, so that g = A, and (5) takes the form

I =kz°°_:l| (he)l.

We have shown that for an arbitrary vector 4 H, the Parseval relation
holds. Thus, it is proved that (3) is closed in H.

THEOREM 3: The space H contains a complete orthonormal sequence if
and only if it is separable.

Proof: (A) We assume that the space H is separable, and let N
denote a countable set of vectors which is dense in H. Deleting from the
sequence N any vector which is a linear combination of the preceding
ones, and orthogonalizing the resulting sequence, we obtain an ortho-
normal sequence M. This sequence is complete. For, let the vector h e H
be orthogonal to each element of the sequence M. Then 4 is orthogonal
to each vector of N. For each € > 0 there exists a vector f € N such that

th—fll <e
which implies that
hR=Gh =G—Lfh sih—fl-lhl <elhl
and
1Al <.
Since e > 0 is arbitrary, # = 0 and the orthonormal sequence M is com-
plete in H.

(B) We assume that (3) is a complete orthonormal sequence in H.

Let N be the set of all linear combinations of the form

¥We, + ey + ... + yPen (n=1,2,3,..),
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where ¥ = o’ + iB{, and o, B are rational numbers. The set N is
countable. Foreachh € Hand each ¢ > Othere exists an integer  such that

h— gl(h, e e

Itis possible to approximate the complex numbers (h, ¢;), (k= 1,2, 3, ..., n),
by numbers of the form y{” such that

H;{(h &) — v }e| <

Thus, there exists a vector,

€
<.
2

2

f=§lyg')€k,
” h _f” < €,

and this implies that H is separable.

The question of the cardinality of a complete orthonormal system in
a separable space now can be answered completely: every complete ortho-
normal system in a separable space is necessarily an infinite sequence -- -
a so-called orthonormal basis of the space.

Now we consider arbitrary Hilbert spaces. First, we remark that
whatever the cardinality of an orthonormal system M, each vector f has
no more than a countable set of nonzero projections on the elements of
the system M. This follows from the fact that for any sequence of elements
e,e'’, e, ...of M the inequality

L+ +I(fe) P+ SIS

holds, which shows that it is possible to enumerate the set of all nonzero
numbers ( f, e) with e e M. Further, we have

in N, for which

THEOREM 4: Any two complete orthonormal systems in a Hilbert space
have the same cardinal number.

Proof: Let M and N be two orthonormal systems, each complete in
H, with cardinalities it and n, respectively. Choose ¢ e M. Atleast one of
the scalar products (e, ), f €N, is different from zero because otherwise
it would be possible to extend the orthonormal system N by appending
to it the vector e. On the other hand, by the remark of the previous para-
graph, there exists no more than a countable sét of elements f € N for which
(e, f) # 0. We denote these elements by

(6) f;l’fla e ’f” (1 =n < °°)
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We define a function ¢ with domain M such that ¢(e) is the set of vectors,
(6), for which (e, f) 7 0. The function ¢ is at least single valued and at
most countably valued. This function maps M onto a set of countable
subsets of N. Each f* eN satisfies f* e ¢ (¢*) for some e* M, since for
each f* €N there exists an element e* € M which is not orthogonal to the
element f*. From what has been said it follows that

mzmn

Reversing the roles of the systems M and N, we get
nzm

And so
m=,

and the theorem is proved.!® The following definition is based on this
theorem.

DEFINITION: The dimension of a Hilbert space H is the cardinality of a
complete orthonormal system in H.

It is not necessary to make a separate definition of the dimension
of a subspace G < H. The dimension of an arbitrary linear manifold
L < H is defined as the dimension of the corresponding subspace L.

If two Hilbert spaces H and H' have the same dimension, then they
are isomorphic in the sense that there exists a one-to-one correspondence
between H and H' having the following property. If the elements f, geH
correspond to the elements /', g’ € H', respectively, then (1) of + Bg
corresponds to of’ + Bg’ and (2) (f, g)u = (f', g)u. In fact, since the
spaces H and H' have the same dimension they possess complete ortho-
normal systems of identical cardinalities. We choose any one-to-one
correspondence between the elements of these two orthonormal systems
and extend this correspondence to the linear envelopes of the orthogonal
systems under consideration in such a way that condition (1) is satisfied.
Then condition (2) is automatically satisfied, which permits one to get, by
passage to the limit, the required correspondence for all the elements of
the spaces Hand H'.

From the proof it follows that any separable space is isomorphic to
the space /3. It is evident that two Hilbert spaces of different dimensions
are not isomorphic. Therefore, two abstract Hilbert spaces (similarly, two
abstract Euclidean spaces) differ from each other only in their dimensions.

13 The actual construction of a complete orthonormal system in a non-separable space re-
quires transfinite induction.
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10. The Space L?

Let (a, b) denote a finite or infinite interval'* on the real axis. We
denote by L3(a, b) (or simply by L?) the set of all complex valued Lebesgue
measurable functions fdefined on (a, b) such that | |2 is Lebesgue integrable
on (a, b). We do not regard as distinct elements of L? a pair of functions
which differ only on a set of measure zero.

It follows by means of the inequality

la+BIPS2]al"+2|8)?

that f + g € L? whenever f, g € L2, Furthermore, for each complex number
A and each fe L3, it follows that A feL2. Thus, L2 is a linear space and the
zero element is a function which is equal to zero almost everywhere in
(a, b). In this linear space the scalar product is defined by the formula

b
8 = [gDat

The existence of the integral on the right side is a consequence of the
inequality
laB| s $lal* + %812

In the present case, the inequality

[ sil-ligl

b b
s J [ J [1e@pra

This inequality was obtained by Bunyakovski for Riemann integrals.

Now we show that L? is complete, from which it will follow that L?
is a Hilbert space. Let the sequence of functions fael®(n =1,2,3,...)
be fundamental, i.e., let

has the form

b
[roz®a

b

lim | [fa(®) —/u(®)[*dt = 0.

m, n—wo
Then there exists an infinite sequence of integers
ki<ki<kyg<...<k,<...,

14 Instead of an interval, the domain of definition of the function could be any measurable
set (of finite or infinite measure) on the real axis, on the plane, or in Euclidean #-space.
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for which
b
flﬂ,+l(t) — f (Ot <$ r=1,2,3,...).

From this inequality it follows that the set of points of the interval (a, b)
for which

TANCESAGIES:

has measure less than 21' For s =1,2,3,..., let I, denote the set of

points ¢ € (a, b) such that
rgia® =01 <35,
iyl =i s <

The complement of I, with respect to the interval 7 = (g, ) has measure

S 1 1
-1 E— -2
m( ’) < 2 2s-1

n=s

Since In < I,,; < ..., lim I = I* exists and
m(l —I*)=0.

The sequence { fi (£)},~, converges uniformly on each set I,. This follows
from the inequality

) =1 % D 1yl =01 < D o <

r=

ZTI-T (n>m>ys)

which is valid for zeI,. Consequently, {f (¢)}2, converges on /* (i.e.,
almost everywhere in I). Let

(Lim fi (1) (teI*),
10 = {’3“’ (tel —1I%).

Since {fx} was assumed to be a fundamental sequence, for each ¢ > 0
there exists an integer N(¢) such that

[ 10—t 1dt S 1fu— 1o 10 <o

I(2)
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tor m, k, > N(€), where I,(a) = I, if the interval (a, b) is finite and I () =
I, 0 (—a, o) otherwise. In I(a), convergence of the sequence { fi ()}, is
uniform. Therefore, in the integral, passage to the limit is legitimate and
we obtain

[ —ropa s e m>NE).
I5(a)
It follows that

A
m

[11 =100 pa
where s is arbitrary. Hence

b

[ 110 —f @ pae <

This implies that f,, — f€L?, so that feL? Since ¢ > 0 is arbitrary, we

have proved also that
b

Lim J1/.() —f(®)}*dt = 0.

In the process of the proof, we have obtained the following fact: if
the sequence frel*(n =1,2,3,...) converges to f in norm, i.e., if
I fa —fl =0 (n - o), then there exists a subsequence { f; (#)};2, which
converges to f(f) almost everywhere. Furthermore, if a proper set of
arbitrarily small measure is removed from the interval (q, b), then in the
remaining set the subsequence { f; (1)}~ converges to f(f) uniformly.

We remark that it is possible to consider the space L*(a, b) as a sub-
space of L¥a,, b,) if a, £ a <b £ b, and, in particular, as a subspace of
L3 — oo, o0). For this, it is necessary to extend each function f€L? (a, b)
beyond the limits of the interval (a, b) by defining f(¢) to be zero for ¢
outside of (a, b).

Convergence in the metric space L? is called convergence in the mean

and is denoted by
SO =Lim.f(0,
if
b
lim [iro-nora—o

(1.i. m.) is an abbreviation for limes in medio, i.e. limit in the mean).
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11. Complete Orthonormal Systems in L?

In the present paragraph, we show that there exist complete ortho-
normal sequences in L*(a, b), where a and b are finite or infinite. Hence,
by Theorem 2, Section 9, it will follow that the space L? is separable. It
would be possible to prove this latter fact immediately. In fact, using the
definition of the Lebesgue integral, it is not difficult to prove that the linear
envelope of the set of functions f'such that f = 1 on some finite interval and
J = 0 outside, is complete in L2, Hence, the separability of L? follows.

A. We begin with the space L*(0, 2=). In this space, the functions

ﬁre”“ (+k=0,1,2,...)

form an orthonormal system. We wish to show that this trigonometric
system is complete. Assume there exists f € L*0, 2x) such that

2%

[1r1ar520

0
and

2w
o) ff(t)e-"“dt =0  (+k=1,23,...).

It follows by means of integration by parts that the function

Fo)= f f(yds

satisfies the equations
2%

o) f{F(t)—C}e“’"dt=0 (£k=1,2,3,...)

for any constant C. We specify this constant so that equation (2) holds
also for k = 0. Since the function

o()=F1—-C
is continuous, the well-known theorem of Weierstrass applies: for each
¢ > O there exists a trigonometric sum

o) =3 Ae™
k=-n

such that

|2()—0o(t)] <e
Therefore, using relation (2), we obtain
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2w 2%
[10@1a = [ 3@ (2()—o(}dt <

2 I I
éef|¢(r)|dtse\/27rA/f|¢(t)|=dt

o

f | B(f) 2dt < 2met,

whence

Since & > 0 is arbitrary, this implies that @ (¢) = 0, so that F(t) = C and
S (@® = 0 almost everywhere. Thus, the completeness of the trigonometric
system is proved.

B. We consider now the space L%(a, b), where (g, b) is an arbitrary
finite interval. The orthogonalization of the sequence of functions

Lte...
yields the sequence of polynomials

d‘{(t—a)(t - b}* -
Ci pr (k=0,1,2,..),

where C, are certain positive constants. These are the well-known Legendre
polynomials. They are usually considered for a = —1, b = 1. The com-
pleteness of this orthonormal system may be proved in the same way
as the completeness of the trigonometric system.

C. We consider the space LY — oo, o). The orthogonalization of
the system

i [ o
e dte e’ . ..

yields the sequence of Tchebysheff-Hermite functions,

w=(- L —m et k=012,

where H,(?) is the so-called Tchebysheff-Hermite polynomial of degree k.
The Tchebysheff-Hermite functions satisfy the relations

[osontydr ={3n,, o %Zi';’;:

so that they are pairwise orthogonal but not normalized. We prove next
that the sequence of Tchebysheff-Hermite functions is complete. Assume
there exists a nonzero function f €L* — oo, oo) such that
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[roamd =o *k=0,1,2,...)
or, equivalently: :uch that
3) f fOErd =0 (k=0,1,2,...).
We introduce t;; function .
Fz) = f fe e dr

which, it is evident, exists for every complex z. The function F(z) has the
finite derivative

F'(z) = j FOe e it

Since this equation holds everywhere in the complex plane, F(z) is an entire
function. But, by (3)

-—,’
F®(0) = J' fe Hinydi=0  (k=0,1,2,..)
so that F(z) is identically zero. Therefore,
[ fye Terdr =0 (= o0 <x < o).

Multiplying this equality by e ", where y is real, and integrating with
respect to x from —w to w, we get

3 Lsinw (t—y)
He ?— Ht=0,
Jroerset
which is valid for every real y and ». Hence, as is proved in analysis
courses, it follows that £ (f) = 0 almost everywhere, and this contradicts
our original assumption.

D. In the space L*0, «), we have the orthonormal system of
Tchebysheff-Laguerre functions

e_;’Lk(t)
k!

where the L,(¢) are the Tchebysheff-Laguerre polynomials which are defined
by the formulas

di(t) = k=0,1,2,...),
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d* . -
Lk(t)=e"§,-‘(tke ) (k =0, 1,2,. . .).

I'he completeness of this system can be proved by an argument based on
the completeness of the Tchebysheff-Hermite system. We leave this to the
reader.

12. The Space L?

Letanon-decreasing function of bounded variation o (f)(— o0 <t < o)

be given. We assume that it is left-continuous:
o(t—0)=0o(d).

Such a function is often called a distribution function. With the aid of the
function o (¢)it is possible to construct a measure analogous to the Lebesgue
measure but differing from it in that the length b—a of the interval [a, b},
(a £b)*® is replaced by the o-length o(b+0)—o(a). Some points may have
o-length different from zero (points of jumps of o(¢)) and some proper
intervals may have o-length equal to zero (intervals of constancy of o(f) ).
The measure determined by the o-length is called the o-measure; the
o-measurable functions and the corresponding Lebesgue-Stieltjes integral
are constructed from it.

We consider the linear space of all o-measurable functions f for which
the Lebesgue-Stieltjes integral

[1f®rde

exists, and metrize it by means of the metric generated by the scalar product

(9= [ 102®do ).

This linear space is complete, so that it is a Hilbert space. It is denoted
by LE Special significance is possessed by characteristic functions, A
characteristic function is equal to one in a certain finite interval of positive
o-length and is equal to zero outside of that interval. We do not exclude
improper intervals here. The linear envelope of the set of all characteristic
functionsis dense in L2, Using this fact, it is easy to prove that L? is separable.

The case of a distribution function o(¢) for which each integral

sk=f #da(h) k=9,1,2,..)

18 For a = b, we get an improper interval, i.e., a point.
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exists is of great interest. Because of mechanical considerations these

integrals are called moments of the distribution function o(f). If o(¢) has

only a finite number of points of increase, then the Stieltjes integral be-

comes a finite sum. We do not consider this uninteresting case.
Orthogonalizing the sequence,

L2, ...,
in L%, we get a sequence of polynomials {P,(£)}7_, (where Pi(f) is a poly-
nomial of degree k), which satisfy the relations

; 0 (k#m),
[ BOP@ac={ ] GT
This polynomial sequence is said to be orthonormal with respect to the
distribution function o(f). If the function o(¢) is absolutely continuous
and if
o' (1) = w()
then the orthonormality relations can be written in the form

| PeoPaywierar - ) E;’iiﬁi

In this case, it is said that the polynomials P,(f) are orthonormal with
respect to the weight w(t). For instance, the Tchebysheff-Hermite poly-
nomials are orthogonal (but not normalized) with respect to the weight
e " (~ oo <t < oo)

If the interval of orthogonality is finite (i.e., if o(f) is constant for
t <a and for t>>b), then the orthogonal polynomials P,{¢) form a complete
system. This is proved with the aid of the theorem of Weierstrass in exactly
the same way as in the proof of the completeness in L(a, b) of the sequence
of Legendre polynomials.

If the interval of orthogonality is infinite, then the system of orthogonal
polynomials P (t) may fail to be complete. We restrict ourselves to one
example, which is due to Hamburger.'® Consider the interval (0, o).
The orthogonal polynomials on this interval with respect to the weight

ﬂ‘/i_
w(l) =e BT
is an incomplete system because the function

Int "
g(t) = ™" sin Vilnt 4w
In?t + =2

1o H. Haml;urger [t}
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sutisfies the relations
f tg(Ow(dt=0  (k=0,1,2,..).

]

13. The Space of Almost Periodic Functions

We consider the set of all functions of the form e (— oo < ¢ < o),
where the parameter A is real. We denote by L the linear envelope of this
set, i.e., the collection of all “polynomials™ of the form

;A,‘ &M,

Adding to L the limits of sequences of functions of L which are uniformly
convergent on the entire real axis, we get a certain set B of continuous
functions. As H. Bohr proved, a continuous function f(¢) defined on the
real axis belongs to the collection B if and only if it is almost periodic, i.e.,
if for each € > O there exists a real number I = K(¢) such that in every inter-
val of length / there is at least one number = for which
[fE+7)—f()l<e (= oo <t <o)

We can metrize the linear system L, by defining the scalar product of

two polynomials

1@ =3 4,6,

g() = X B, e
sl
as

R I
(/; ) =tim ﬁ_jr fOF@de=

T
_ i
=lm > 4,837 f e -ud gy — E 5(\,u) 4, B,
-

T—®

r,s=l re=1

where

[0 (#p),

sen={1  aZp
When L is closed by means of the metric generated by this scalar
product, we get a certain complete Hilbert space B* which contains B as a
linear manifold. The space B? is not separable. This follows from the fact
that in B2 there exists a continuum of orthonormal vectors ¥ ( — oo <A < o),
whereas (see paragraph 9) every orthonormal system in a separable space

contains a finite or countable number of vectors.




ChapterII

LINEAR FUNCTIONALS AND BOUNDED
LINEAR OPERATORS

14. Point Functions

Two kinds of point functions are considered in elementary treatments of
3- and n-dimensional spaces: scalar functions, the values of which are (real
or complex) numbers, and vector functions, which relate the points of a
space to other points of the same or another space. In the present book we
shall study point functions in Hilbert space. In correspondence with the
indicated division of the functions of elementary analysis into scalar func-
tions and vector functions, we introduce in H so-called functionals and
operators. The appropriate definitions follow.

Let D denote a subset of the space H. A function ® which relates to
each point f €D a definite complex number @ (f) is called a functional in
the space H with domain D. A function T which relates to each element
f €D a particular element Tf = g €H is called an operator! in the space H
with domain D, The set 4, consisting of all g = Tf, where f runs through
D, is called the range of T. Sometimes we shall denote the domain of a
functional ¢ by D, and, correspondingly, the domain and range of an
operator T by Dy and 4; respectively.

The identity operator, i.e., the operator which maps each vector into
itself, we shall denote by E. The operator which maps every vector into
zero, we shall denote by O.

If the operator T maps each pair of different elements of D into a
pair of different elements of 4, then T has an inverse operator, which maps
the elements of 4 into elements of D. The inverse operator is denoted by
the symbol 7-%, and T~ 'g = fif and only if f = Tg. Moreover,

DT—I == AT’ AT—I = DT‘
We shall consider two functionals (or operators) to be equivalent if

their domains coincide and if for each element of their common domain,
the values of these functionals (or operators) coincide.

1 Sometimes it is necessary to consider also functions which map elements of the space H
into clements of some other Hilbert space. These functions are also called operators. They will
not be encountered often in this book.

30
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If the domain Dy of the operator T contains the domain Dy of the
operator S, i.e., if Dg © Dy, and if
If =8
for cach f € Dy, then T is called an extension of S and we write
ScT.

1 he concept of an extension of a functional is defined analogously.

Motivated by the notion of a continuous function, we make the follow-
g definition of the continuity of an operator: T is continuous at a point
fo ¢« Dpif

imIf=Tf, (feDy).
S=fs

An equivalent condition is that for each € > 0, there exists § = 8(g) > 0
such that if f satisfies the inequality,

If=foll <8, feDy,

then
1Tf — Tholi<e

‘The continuity of a functional is defined analogously.

If the element f, does not belong to D, but lim 7f = g, exists as
| »f, with feDy, then the operator T can be defined for f;, by letting
1fs = go. Proceeding in exactly the same way with all such elements f,,
we arrive at the so-called extension by continuity of the operator T. This
cxtension is uniquely defined for each operator T. The extension by con-
tinuity of a functional is defined analogously.

We shall introduce below notation relating to so-called linear func-
tionals and linear operators, which are the basic objects of our study.

Here we consider only the operator analogue of a ‘“function of a
function”. Let S and T be two operators such that the range of T intersects
the domain of S (i.e., let 4. " Dg 5= 0). In this case we define the product
ST of the operators S and T as the operator such that

STf = S(Tf)
for each element f in its domain, which is defined as the set of all £ € D for
which TfeDg. The product TS is defined analogously whenever the set
4¢ N Dris non-empty. It is clear that ST and TS are not generally equiva-
lent because their domains may be different, and, moreover, even if g
is an element belonging to both domains, it is possible that

STg#TSg.

Since it is difficult to give a reasonable completely general definition
of the commutativity of two operators, we restrict ourselves here to the
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case in which at least one of the two operators Sand T is defined everywhere
in H. Let Dg=H. Then S and T are commutative if
STeTS
i.e., if f e Dy implies both SfeD; and
STf=TS/.
In particular, if both operators are defined everywhere in H, then S and
T are commutative if and only if ST=TS.

15. Linear Functionals

A functional @ is said to be linear if:
(a) its domain D is a linear manifold and

P(af +Bg) =aP(f) +BP(9)
for f,g €D and any complex numbers a and 8;
(b) the inequality

sup |P(f)] < oo
feD,lif1s1

is satisfied.
The left member of this inequality is called the norm of the functional @
and is denoted by the symbol || @ ||, or, if D = H, simply by || @ |I.

If f €D and f # O then, by the definition of the norm of a functional,

(%)
Hence, for f €D,

m [N = 1Plp- A

Relation (1) shows that the linear functional @ is continuous. Infact, by (1),

|12(f) = 2(f)|=12(f =S} 2P lp* ILf —foll

= 1P llp.

for £, f, € D.

From (1)it also follows that,if fe Dand || f|| £ 1, then
with strict inequality if || /|| < 1. Therefore, the norm || @ ||, can be defined
by

#)) sup |2(N)|=12lp,
feD,iifli=1
or, equivalently, by?
, [2(N)]
2 sup —== = || Pllp.
) P ST P

* Translator’s Note: The condition f# 0should be included in (2°). Similar conditions should
be added in many other relations which occur below. This task is left to the reader.
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If ® and ¥ are two linear functionals with domains of definition
1), und Dy, then « ® + B ¥, where « and B are constants, is also a linear
functional, with the intersection D, N D, of the domains D, and D,
an domain (of course, only the case when D, N D, contains elements
diferent from f = O offers much interest).

If the functional  satisfies the condition (a) listed above, which states
that @ is homogeneous and additive, and if ® is continuous at any one point
for D, then @ also satisfies condition (b) above, i.e., ¢ is bounded and,
therefore, P is a linear functional. In fact, if @ is continuous at f, then for
ench 8 > 0 there exists € > 0 such that

|®(h) —P(f)| <3
for | A —foll < ¢ and heD. For each feD such that f#0,

o) =Lo(L) ~Ula (L 4 1) - 0(sy).

€ I € I
Since the vectorﬁ +fy = h satisfies the relation || h—f||=¢ we have, for
/D,
10N <2 1fl;
in other words, for feD and f #0,
12(NI 3
1£1 €

This proves that @ is bounded.

If the linear manifold D on which the linear functional @ is defined is
not closed, then it is possible to extend @ by continuity to the closure of
D. This extension, as is easy to see, leads to a unique linear functional
with the same norm as the initial functional.

16. The Theorem of F. Riesz

The following theorem of F. Riesz provides a representation for each
linear functional in H.
THEOREM: Each linear functional ® in the Hilbert space H can be
expressed in the form
() =(*.1)

where f is an element of H which is uniquely determined by the functional
D; furthermore,
@0 = 11
Proof: We denote by G the set of all elements g € H for which
P(g)=0.
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By the linearity of the functional @, the set G is a linear manifold. Further-
more, G is closed, so that G is a subspace. In fact, if gne G, n 2 1, and
gn —> g then, by the continuity of &,

?(g) =,.li‘3 D(gn),

so that @ (g)=0 and ge G. If G=H, then the functional @ is equal to
zero everywhere, and the theorem of Riesz is proved by taking f=0. We
now suppose that G = H. Then there exists a nonzero element f,cH © G.
We consider elements of the form

S fo—P(fo) b,
where A runs through H. These elements belong to G because
e[2(h)fo— P(fo) h] = P (W) P(fo) —P(fo) P(h) = 0.
Since fue H © G,
(M fo— 2(f)hfo) =0

and L
2 (fy)
D (h) = {h, o)
=k o)
If we set .
2
=Gt
then it follows from the equality just obtained that
@ (k) = (h,f).

This is the required representation of the functional &.
We now prove that fis unique. Assuming the contrary, we have the

equation

(ha f,) = (h;f”),
for he H, where f' 7 f”. But this is impossible since the substitution of
h=f'—f" yields the contradiction,

Wf —f1k=0.
It remains to be proved that
1PN =111

P(h) =(h.f)
@IS II-1AI

ol = 1.
On the other hand, taking & = f, we get

(N =I1I%

1t follows from the equation
that

which yields

]
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whence it follows that
Nz A
Fhus the theorem of F. Riesz is proved.

We consider now a linear functional ¥ with domain Dy closed in H.
Then Dy is a subspace of H and the theorem of F. Riesz asserts the existence
of a unique element g e Dy such that

3 ¥(h)=(h,g) (heDy)
and

| ¥lpy = llgIl

By means of (3), the linear functional ¥ may be extended to the whole
space H without increasing the norm.? Any other extension of the linear
functional ¥ to the whole space H increases the norm of the functional.
In fact, if @ is any extension of ¥ to the whole space, then

®(h) = (h.f)
and
el =1ri
For heD,,
(h,8) =(h./)

so that f—g | D,. Because geDy,
NfE=ligh®+If—gl?

where there is strict inequality if f £ g.

which implies that

17. A Criterion for the Closure in H of a Given System of Vectors

According to the definition in Section 8, a system M of vectors is
closed in H if it is possible to approximate each he H to any degree of
accuracy by means of a linear combination of vectors belonging to M.

THEOREM: In order that the system M be closed in H, it is necessary
and sufficient that a linear functional ® in H which vanishes for all ge M,
be identically equal to zero.

Proof: The necessity is an immediate consequence of the continuity
of the linear functional. In order to prove the sufficiency, let us assume that
the system is not closed. Then there exists 8 > 0 and a vector h, € H for
which

inf fho —ayg1—asge— ... —angall=38>0 (g, eM).

n, a¢

3 Since any linear functional can be extended to the whole space without increasing the norm,
one usually considers a linear functional as being defined on the whole space when the domain

is not specified.
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hote by G the closed linear envelope of the system M. On the basis
ion 6, there exists g e G such that
he —gli = 8.

f=hy—g.

F 1| G. Consider the functional @ defined by

& (h) =(h,f),

brm of which is equal to || fll = 8 > 0. This nonzero functional
es for each vector of G and, in particular, for each vector of M.

the sufficiency is also proved.

18. A Lemma Concerning Convex Functionals*
efinition: A real functional p(h) in H is said to be convex if

3] p(f+8) sp(f)+p(®

2) plaf) =lalp(f),

g €H and any complex number a.

From this definition it follows that p(0) = 0 and p(h) = 0.

LeMMa: If a convex functional p(h) is lower semicontinuous, i.e., if for
hy € H and each ¢ > 0 there exists 8 >, 0 such that

ph) —plh) > —¢

((h — holl < 8, then the convex functional is bounded, i.e., there exists

0 such that
ph) s M(Al

e H.
Proof:% First, we prove that if the functional is not bounded in the

sphere (|| 4 (| < 1), then it will not be bounded in the sphere S(p, g)
center g € H and radius p > 0, where g and p are arbitrary. For,
ming that p(h) < C for ||h — gl| <p, we find that

ph—g) = plh) + p( —g) = p(h) + p(g) <2C

th —gll <p. Consequently, if

In this section we follow 1. M. Gelfand {}).
This proof does not require that H be a Hilbert space; it goes through if H is any Banach

Rce.
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then
p(f) =2
P

(or feS(1,0), so that the functional p(h) is bounded in the unit sphere. In
view of property (2) it is sufficient to prove that the functional p(k) is bounded
in the sphere S(1, 0). We assume the contrary. Then p(h) is unbounded in
cvery sphere. We choose a point f; € 5(1, 0) such that p(f;) > 1. The
lower semicontinuity of the functional p(h) implies that there is a sphere
S(py, /1) < S(1,0) with radius p, < 4 at all points of which p(h) > 1. Since
p(h) is unbounded in every sphere, there exists a point £, € S(p,, f;) and also
o sphere S(p,, f2) < S(ps,f1) With radius p, < 4 p; in which p(h) > 2. Con-
tinuing this process, we get an infinite sequence of spheres,

S, 0> S f)=> Safa)> ...

for which ps <3}p,.1, (n=1,2,3, ...;p,=1), and also p(h) > n if
h € S(pn, f»). But the sequence of centers { f»}{ is fundamental and, there-
fore, converges to some element f. Then p(f) > n for each n, which is
impossible. Thus, the lemma is proved.

We remark that this lemma can also be formulated as follows: if a
convex functional is lower semicontinuous, then it is continuous.

CoROLLARY: Let pi(h), (k = 1,2, 3,...) be a sequence of convex con-
tinuous functionals in H. If this sequence is bounded at each point he H,
then the functional

P() =suppa(h)

Is also convex and continuous.
Proof: That p(h) is a convex functional is evident. On the other hand,
for each h, € H and each e > 0, there exists & such that

PCho) = Prlhe) <.
Then there exists 8 > 0 such that
|Pal) = Pt | <5
for ||h—hg))<8. But if ||h—h,j <8 then
P(R) — p(h) > sup pa(k) — pathe) =5 2 Pa(H) — Palle) =35> —e.

This implies that the functional p(h) is lower semicontinuous. It remains
only to apply the lemma, and the coroliary is proved.
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We give two simple applications of the propositions just proved. We
jow that each linear functional in L*(a, b) can be expressed in the form

b
(1) () = [ h) v ()t

here ¢(7) is the function in L*a, b) which “‘represents” the functional
(h). We shall prove that if a functional ®(h) is defined everywhere in
f(a, b) by means of formula (1), where ¢(?) is some fixed function, then
jis functional is necessarily linear, so that ¢(¢f) belongs to L*g, b). In
ther words we shall prove that if the integral (1) exists for each function
t)e L¥a, b), then o(t)e L¥a, b). This fact is a special case of a more
eneral theorem of F. Riesz.®

For the proof we denote by e, the set of all points 7 which belong to
ne intersection of the intervals [a, b}, [—n, 7] and for which

le(®)| S n

urther let
palt) = [ |H)e(t) |

'his is a convex continuous functional in L*a, b). The quantity
b
p(h) = sup pa(h) = lim pa(h) = f | h(2)e(?) | dt

L finite for any h(7) e L¥a, b). So, by the corollary of the lemma, the func-
ional p(h) is continuous, i.e., p(h) £ M || h | for he H. But |®(h)| = p(h)
o that, since the homogeneity and additivity of the functional ®(h) are
tvident, ®(h) is a linear functional.

An analogous proposition is valid for the space /2. We restrict our-
jelves to its formulation. Let a functional @( f) be defined everywhere in
by means of the formula

sN=Fax (=D

L;vhere {a\}7 is some fixed sequence. Then

el

(2) Zlak|2<°°s

k=1

¢ Riesz’s theorem pertains to the space L (a, b) for agy p>1. (The space LP(q, b) is defined
&s the space of functions measurable in (a, b) for which _fl f(x)|Pdx exists). See F. Riesz [1].
a
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which implies that ®( 1) is a linear functional. In other words, if the series

o0
Zakxk
=1

converges for each sequence {x,};° such that

0

lek|2<°°

k=1
then the inequality (2) must hold. This fact is a special case of a more
general theorem of E. Landau.”?

19. Bounded Limear Operators

An operator T is linear if its domain of definition D is a linear manifold

und if
T(af + Bg)=oTf+ BTg
for any f, g € D and any complex numbers « and 8.

We emphasize the fact that, in contrast with the definition of a linear
functional, this definition does not require that the operator be bounded.
This is related to the fact that many important operations of analysis such
us, for instance, the operation of differentiation, generate unbounded but
homogeneous and additive operators, i.e., operators which are linear in
the sense of the definition given here.

A linear operator T is bounded if

sup I Tf] < oo.
feDIfIIE1
The left member of this inequality is called the norm of the operator T
in D and is denoted by the symbol || T || or, sometimes, by || T ||p.

It is easy to see that the properties of Section 15 relating to linear
functionals are also valid for bounded linear operators:

i. The norm of a bounded linear operator T can be defined equivalently by

JTh= sup ITf) = sup SV
feD, lfl=1 seD Ifll
2. A bounded linear operator is continuous.
3. If a linear operator is continuous at one point, then it is bounded.
4. The extension by continuity of a bounded linear operator T leads to a
unique linear operator with the same norm as the original operator.

7 Landau’s theorem pertains to the space /P foranyp>1. (The space /P is the space of numeri-
-]
cal sequences x;, X, . . . for which the series 2,‘1 |x:|? converges.) See E. Landau {1].
i=




40 HI. LINEAR FUNCTIONALS AND BOUNDED LINEAR OPERATORS

5. If S and T are linear operators, then oS + BT, where « and 8 are com-
plex numbers, is a linear operator with the intersection Dg N Dy of the
domains Dg and Dy as the domain of definition. Each of the products
ST and T'S (cf. Section 14) is also a linear operator. If S and T are bounded
linear operators defined everywhere in H, then the operators ST and TS
are also bounded linear operators defined everywhere in H, and

ISTH=USH-0TH,  1TSISHTI-ISH.

20. Bilinear Functionals

We shall say that 2 is a bilinear functional defined in H,® if to each
pair of elements f, g€ H there corresponds a definite complex number

Q (f,g), and
(@)  Karfi + asfs8) = a1 2(f1,8) + 22 2( 15, 8),
(b) RQ(fiB181 + B282) = BiSAf,81) + B £, 82),
© sup {Q(f,8)] < oo

IFIS, st
An example of a bilinear functional is the scalar product (f, g). The number
sup | 2(f,8)l
1S, lgls1

is called the norm of the bilinear functional 2, and is denoted by the
symbol || 2. It is not difficult to prove that

i _ apl2)
121= S, U = s Al

Therefore, for any f, g € H,
1L S IHLU-IA- T gl
A bilinear functional is a continuous function of each of its arguments,
since
12(f,8)— 2 fo, 80} | =| (S~ S0, 8 —80) + A Sf—So. 80) + A fo, 8 —80)| =
< QU {1 —Soll - g —goll + 1L —Soll -ligoll + I foll-lIg —&oll}.

The following simple proposition is often useful.

THEOREM: If a complex scalar function o (f, g) satisfies the conditions

@ w(afi+aafy,8) = a10(f1,8) + a0 (f2,8),

(b)  w(f,P181+ Bags) =B w(f,81) + Baw (f,82),

© Jo(fLNI=CIfR

@ le(f,=lw(gnNl

* It is possible to introduce bilinear functionals which are not defined everywhere in H, but
in what follows they will not be considered.
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where C is a constant, f, /1, fs, 8, &1, 8z are arbitrary elements of H and «,,
wa, By, B are arbitrary complex numbers, then w is a bilinear functional with
norm e| £ C.

Proof: 1t is immediately proved by means of (a) and (b) that®

o(f,h) + w(h,f) = }{e(f+hf+h) — o(f—hf—h)}.

This implies that

(1) le(f,B)+ olh, f)| S 3C{f+RIR+ 1 f—h1IZ =C{I F1I2+ I1hI%}.
let[fIS1, 1Al < 1and A = Ag where A is a complex number such that
| A] = 1 (A will be specified later). Then (1) yields

@ |Aw(f,8) + Aafg,f)| = 2C.
We suppose that «( f, g) # 0 and, in accordance with (d), let

o(f,.8)=w(f8)le",  w(g.f) =|w(f,g)|e".
Then, by (2),
| f,8) || 2"+ Ae®| = 2C.

letting
il
A=¢e T |
we find that
. jot8 ‘°+ﬂ ks
AP+ AP = 2 +€ 2 =2 2
which yields

le(£)1=C  (fisLlghs1).
T'his proves the theorem, since this relation is also correct for «( f, g) = O.
COROLLARY: If the bilinear functional 2 satisfies the condition

12(f,8)1 = 12, N,

— sup RN
llﬂll—igg an

for f,geH, then

Proof: By the theorem,

[AAD]
[l€21! é;sgg T

104,01 [2f,8)| _
e TR Ay

* From this equation and the analogous equation

Wi —w(hf) =5 o (f+ ik S+ i) —o (f—ih f—ih)}

it follows by means of (¢) that w is a bilinear functional with norm < 2C. But, by means of con-
dition (d), it is established that the norm of « does not exceed C.

but on the other hand
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21. The General Form of a Bilinear Functional

THEOREM: Each bilinear functional 2 (f, g) has a representation of'|

the form

Af,8) = (41.8).

In this equation A is a bounded linear operator with domain H which is:

uniquely determined by 2. Furthermore,
A4l =} 2.

Proof: For fixed f, the expression 2 ( f, g) defines a linear functional

in g with domain H. Consequently, according to the theorem of F. Riesz
(cf. Section 16), there exists an element h,, uniquely determined by the
element £, for which

2(/,8)=(gh)

«A£,8) = (h,2)

or

for each g e H. Define the mapping 4 from H into H by the equation |

Af=h, for feH. Then
Af,8)=(4/.8)-

Qarfi + a3 f3,8) = a1 2(£1,8) + 2 f2,8)

Since

we have
(A{arfi + asfa} —a1 Afy — a0, Af3,8) =0
for g eH. Since g is arbitrary,
Alarfi + axf)) = a1dfy + agdfy,
so that A is a linear operator. The domain of the operator A4 is the whole
space H. Furthermore, since

(41,8 = 1411 -iigll

ol o (AAR) o IS
1= s el =P g =P

we have

On the other hand

[(4£8)] 4r4h [%54]
Q| =su 2 su =Ssu .
WA =S8py i = P i 14 fi = P i
These relations show that the operator A4 is bounded and that
1821 = Il 4Il.

The operator 4 is uniquely determined by the linear functional 2. In

fact, if
Af,8) =(41.8) =(4f.8),
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tor f, g € H, then
(Af—Af,8) =0.
ttut this is possible only for 4'= 4",

22. Adjoint Operators

Let 4 be an arbitrary bounded linear operator defined on H. The
expression
(f, 48)
ucfines a bilinear functional on H with norm | 4 |. According to the
thcorem proved in the preceding section, there exists a unique bounded
linear operator A* defined on H with norm || 4*{ = || 4 || such that

) (/. 4g) =(4%/,8)
lor f, g eH. This operator 4* is called the adjoint of 4. It is easy to see
that the operator (4*)*= A** is equivalent to the original operator 4.

If A is bounded and 4* =4, then 4 is said to be self-adjoint. Abounded
linear operator A4, defined on H, is said to be normal if it commutes with
its adjoint, i.e., if

A*4 = AA4*.
Let A and B be two bounded linear operators defined on H. Then
(ABf,8) = (Bf,A*g) = (f, B*4*g),
which implies that
(AB)*= B*A*.
I'herefore, the product of two self-adjoint operators is self-adjoint if and
only if the operators commute.
THEOREM: If A is a bounded self-adjoint operator, then

sup |(4f,8)| = sup [(4£. ).
WAl =lgll=1 Ifl=1

In other words,1?
4]l =max {|4],|A]}

A =sup(4f,f), A= inf (4f,1).
Be=1 WA=

Proof: The bilinear functional
Af,8) = (4,2)

12(/,8)| = 12N
Therefore, the corollary of the theorem of Section 20 applies and the
theorem is proved.

where

satisfies the condition

I Translator’s Note: It follows from (1) that (4 f, f) is real for f € H if A is self-adjoint.
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23. Weak Convergence in H

We say that the sequence of vectors fye H, (k = 1,2, 3...) converges
weakly to the vector fand we write f, 5 fif

lim (£, B) = (/,4)

for he H. The concepts of a weakly Jundamental sequence and of weak
completeness are defined analogously.
If the sequence { f;};° converges to f in the sense of Section 3, i.e., 1f

klim Ife—fll=0
then we shall continue to write f, — f, but we shall say, to avoid confusion,
that the sequence converges strongly to f. Strong convergence implies

weak convergence, but not conversely. Indeed, let {e;};° be any infinite
orthonormal sequence of vectors in H. Since, for any he H,

S el s (k)

(see Section 8), then for any he H,
lim (e,, ) = 0.
k—

Thus, the sequence {e;};° converges weakly to the vector 0, but this sequence |

does not converge strongly since

lee—ellt=2 (i£k)
so that Jle,—e,| does not converge to zero as i, k — oo. However, the
following theorem is valid.

THEOREM 1: [f the sequence of vectors {f,}y converges weakly to the
vector f and if

Em (FAAFAS
then
}im W —f1=0,

i.e., the sequence {f,}7 converges strongly to the vector f.
Proof: The proof follows from the equation

I fe—= S =11 I* = (S /) — (LS + LI~
Indeed, by the hypothesis of the theorem,

lim (LA 12 = (fuf) = (S + 1118 =0,

An important property of every weakly convergent sequence of vectors
is boundedness. The proof of this property does not present any difficulty
if the following general proposition is proved first.

4.

]
]
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THEOREM 2: If the linear functionals ®,, $y, D, . .., defined on the
wpace H, have the property that the numerical sequence {D(h)}Y is bounded
for each he H, then the sequence {||P,|}° of the norms of the functionals is
hounded.

Proof: The proof follows almost immediately from the lemma con-
cerning convex functionals proved in Section 18. For he H, let

Dn(h) = [ Pa(h)| n=1,273..)

the pa are convex continuous functionals in H. By the lemma just men-
toned, the convex functional

plh) = sup pn(h)

I8 continuous, i.e.,

M =sup p(h) < co.
A5 1

(‘'onsequently,
IPall = M r=123,..)

and the theorem is proved.
COROLLARY 1: Every weakly convergent sequence { f,}7 is bounded.
Proof: Each vector f, determines a functional ?,(h) = (h, f;). Since
the sequence {f;};° converges weakly, the numerical sequence {®(h)};
converges for each h € H and, hence, is bounded. It remains only to apply
'Theorem 2 and to use the fact that

N Dl = 1 frll.
COROLLARY 2: Every Hilbert space is weakly complete.
Proof: Let the sequence of vectors { f;}° be fundamental in the sense
of weak convergence, i.e., for each he H, let
lim (f, —fm h) =0.

m, n—>®©

1t follows that the sequence of numbers ( f;, h) (k=1, 2, 3, . . .) converges
for each fixed he H. According to Theorem 2 the sequence {f} is
bounded:
Al =M k=1,2,3,..)).
Therefore, the limit
lim (1, )

defines a linear functional ¢(h) with norm < M. According to the repre-
sentation theorem of F. Riesz, ®#(h) = (h, f), where f is a unique element
of the space H. This element is the weak limit of the sequence { f,}7.
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24. Weak Compactness

A point set is said to be compact™ if every sequence belonging to it |
contains a convergent subsequence. Corresponding to the two types of |
convergence (strong and weak) are strong (or ordinary) compactness and
weak compactness. The concept of compactness is associated with the most
important theorem of elementary analysis —— the Bolzano-Weierstrass
theorem. The conclusion of this theorem is false for a Hilbert space if the !
theorem is stated in terms of strong convergence. To prove this, it i§.
sufficient to take the infinite orthonormal sequence of vectors ey, e, es, . . . .
This sequence is bounded, but none of its subsequences is strongly con- |
vergent. In connection with what has been said, it may be surprising that
the following theorem holds.

THEOREM 1| : Every bounded point set in H is weakly compact. |

Proof: Let us take any sequence {&:}7 of points such that, for some C, |
Let L denote the linear envelope of the set {g,}P°, and let G = L be its
closure. Define F by

F=HoG
Consider the numerical sequence
(l) (gbgk)9 (k = 1’2’ 3’ . )
It is bounded because
l(gngd| Slgll g £ € (k=1,2,3,..).
Therefore, the sequence (1) contains a convergent subsequence. In other
words, {g,} contains a subsequence {gu}i-1 for which

lim (81> 8
k—>o
exists. Similarily, from the boundedness of the numerical sequence
V) (g2 810

we conclude that {g;J2_, contains a subsequence {g,,}¢., for which
lim (g2 82+)

k—»o

exists. Repeating this argument, we get an infinite sequence of sequences j
811, Q1 818 -+ - s ‘
a1, Zans 823 - - o f
831, 8sv 83 + - s

each of which is a subsequence of the preceding. It is evident that the

diagonal sequence

"1 Translator’s Note: This general concept is often called sequential compactness.
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&1, f22 8335 - - -
han Lhe property that, for each integer r

’Eln: (gn gkk)

snints. Hence, it follows that
klilg (8> &)

enists for each g € L and, therefore, for each g € G. If fe F, then

(f:8) =0, k=1,2,3,...).
Consequently, .
,Em; (/58xe)

sxists foreachf e F. Since H = F @ G, the results we have obtained imply
the cxistence, for each h € H, of

lim (A, ge)-

I herefore, the sequence {g,,.}:-, is fundamental in the sense of weak con-
vergence. By the weak completeness of the space, this sequence converges
weakly to some element of H, and this proves our theorem.

THEOREM 2: For the weak convergence of the sequence of vectors
{na) v it is necessary and sufficient that:

1. the numerical sequence

(gkan (k = l; 2’ 39 .. )

converge for each f of some set M which is dense in H; and

2. the sequence {g,}_, be bounded, i.e, the inequality

lgell & C < oo k=1,23,...)

hold for some C.

Proof: The necessity of condition 1 is evident. The necessity of con-
dition 2 is indicated by Corollary 1 of Theorem 2 of Section 23. We turn
to the proof of the sufficiency of the conditions mentioned. By Theorem
I of the preceding paragraph, {g.}i-, has a weakly convergent subsequence
{8x}i21. Let g be the weak limit of this subsequence.

Then
lim (&, i) = (, g).

According to-condition 1 of the theorem,
lim (/, £)
cxists for each f€ M. Therefore,
lim (£,8 =(/.8)

for feM, and it remains to prove (we leave this to the reader) that this
cquation holds if fis any element of H.
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25. A Criterion for the Boundedness of an Operator
THEOREM: Let A and A* be linear operators defined on H and assume

that
(41,8) = (/f, 4*g)
Jor f, g e H. Then A is bounded, and A* is the adjoint of A. ,
Proof: We assume the contrary and suppose that there exists a

sequence of vectors { f;};° such that

Ifill =1, 4fidl>k  (k=1,23,..).
The expressions

(8, Af) = 2.(8) k=1,23,..)
define linear functionals @, in H. Since

D (g) = (A*g,fk) (k =1,2,3,.. D)

the numerical sequence {®,(g)}s_, is bounded. By Theorem 2 of Section |
23, the sequence of norms | ¥, || (k =1,2,3,...), ie., the sequence of
numbers | Af,ll, is also bounded, which is a contradiction. Thus, the
theorem is proved.

An important special case of this theorem is due to Hellinger and
Toeplitz. We mention it in the following section.

26. Linear Operators in a Separable Space

In this section we shall consider linear operators defined everywhere
on a separable Hilbert space H. We show that bounded operators admit
matrix representations completely analogous to the well known matrix
representations of operators on finite dimensional spaces.

We choose any orthonormal basis {e,};° in H and let!?

Aek=ck, (k=1,2,3,...)

and
(1) (Aek, e,) = a‘k (i,k = 1, 2, 3, .o .).
Thus
ck = E a,ke, (k = 1,2, 3, .o .).
i=1
Moreover,

3 lagf? < oo (k=1,23,..)).
i=1l

13 We remark that if the operator A is not defined everywhere in H, but only on a set D which
ie cli)ense in H, then there exists in H an orthonormal basis {e,}}°, the elements of which belong
to D.
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We introduce the infinite matrix

G Gyp Gy - . -

Qg Ggp dgg - . .

Qg1 Qg3 Ags . .«
of which the elements of the kth column are the components of the vector
into which the operator 4 maps the kth coordinate vector. If the operator
A is bounded, then it is uniquely détermined by the infinite matrix (ay).
l‘or the proof of this assertion it is necessary to show how to represent
the operator in terms of the matrix and the orthonormal basis {e;};.
First, we have

Ae, =ialkel (k=1,2,3,...).
i=

Since the operator A4 is linear, it is well defined on the linear envelope of
the given basis, i.e., for all vectors each of which has only a finite number
of nonzero components relative to the basis. Since A4 is continuous, the
value of Af for an arbitrary vector f € H may be found by means of a passage
(0 a limit.

It is not difficult to write a simple formula for the components of
the vector f; indeed, if

2 f= kE_‘ Xi€x
then
3 Af = 2 Vin
where
@ Y = ; [ J9% 98
In fact, if
So= I‘Z‘i Xi€ks

then

where
) = S g,
w ; A Xy
By the boundedness of the operator A4,
Vi =(4f,¢) =lim (4fs, &) = hﬁ;yg' ="1Lrl; li_:lamxi = ; Qg Xy
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DEFINITION: If the operator A is defined everywhere in H and if its
value for any vector (2) is given by the formulas (3) and (4), then we say
that the operator A admits a matrix representation relative to the orthogonal
basis {e;}y.

Thus, we have proved that every bounded linear operator defined on
the entire space admits a matrix representation with respect to each ortho-
gonal basis. This is the analogue, mentioned at the very beginning of the
present section, between a separable Hilbert space and a finite-dimensional
space, with respect to bounded linear operators.

THEOREM: If an operator A, defined everywhere in a separable space
H, admits a matrix representation with respect to some orthogonal basis,
then it is bounded.

(This proposition is a frequently used special case of the theorem
of the preceding section, mentioned above, which is due to Hellinger and
Toeplitz).1?

Proof: By hypothesis, the series

(Afvek)=;aldxl (k=1’ 2, 3:---)
converges for each vector
f =k; xkek’

where {e,}; is the orthonormal basis, mentioned in the theorem, with
respect to which the operator 4 admits a matrix representation. Therefore,
by the theorem of Landau (see Section 18),

®) Slaut<o  (k=1,23..).
i=1
We introduce the sequence of vectors
o =Yawe (k=1,23..)
i=1
and by means of them, define the linear operator A*. First, let
A*e, =cp k=1,273,..)
and then use linearity to define A* on the linear envelope of the set of
vectors ¢,. Finally, extend A* by continuity to all of H. It is easy to prove
that for any f, g € H,
(4f,8) = (f,4%®)

after which, to complete the proof, it remains to apply the theorem of
the preceding section.

12 E, Hellinger and O. Toeplitz [1].
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We shall not present all the details of the proof just outlined, but we
mention another proof of the theorem, which is based directly on the lemma
voncerning convex functionals in Section 18. In view of inequality (5),
the expression

¢k(.f)=~'zlaki‘xl (k= 1’ 2, 33"')
dclines a linear functional of
f= ,Z_:lxkek.
I herefore,

W)= SN =1,23,..)

delines a convex continuous functional of f. Since

SIOUN I = I Afe) I S 141

the sequence {pa(f)},>, is bounded for each feH. On the basis of the
corollary of the lemma concerning convex functionals, the functional

P =sup pulf) = limpu()= [ 2| 94N = 1471

w continuous, i.e., there exists a constant M such that

p(f) s MIf).

But this implies that the operator 4 is bounded.
The proof of the theorem can be formulated also in the following
form: if for arbitrary numbers x,(k=1, 2, 3, . . .) such that

o
Do Ix]r < oo
=

the inequality

PO o
kZ I
ml | =l

holds, then there exists a constant M such that
2
k=1
T'his reduces to the theorem of E. Landau (see Section 18) if a,, = 0 for
k> 1.

Let us agree to write

2
<< oo

@

E Qg X

i=1

2 Lo
< MY | X%
kw1

A ~ (ay)
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if the bounded linear operator 4, defined everywhere in H, corresponds
the matrix (a;) according to (1). Here the orthogonal basis {e,}{ is arbi
trary but fixed.

If

A~ (aw), B ~ (by)
then, as is easily verified,
A B~ (cy)

where

Cix =E]a,,b,k (l,k = 1, 2, 3, .o .).

If we define matrix multiplication by means of this equation, then

. AB ~ (a,)" (b,0).
Furthermore, if

A~ (aw)
and
A* ~ (a)
then 3
ay =ay (,k=1,2,3,...).

Therefore, the condition that the bounded operator 4 be self-adjoint ma;
be expressed in the form
(6) ay = Ay,
Matrices for which equation (6) holds are called symmetric or Hermitean,
A bilinear functional is generated by the operator 4 by means of t
equation

]

(4,9 = X G aux) e

T et e s

In this equation

f=kz_:]xkek, g =E)’k €.

In the double sum appearing above it is possible to reverse the order of
summation, since the equation

(41,8) = (f, 4%

implies that J
?_:l( 'Z_:amx,) Y = i;(kz_lakrj’k) Xi.
From the inequality
M [(4£,8)l = MIfli-ligl

it follows that

Ma

)
2
i=1

laerij’k ‘ = M,\/;h‘i'z A/g__:}‘)@P-

X
]



26. LINEAR OPERATORS IN A SEPARABLE SPACE 53

Il cach of the vectors f and g has only a finite number of nonzero com-
ponents, then the last inequality may be written in the form

® |5 Sawn] smfEme S

THEOREM: In order that the matrix (a,) represent a bounded linear
wperator defined everywhere in H, it is necessary and sufficient that, for some
constant M, the inequality (8) hold for any-numbers x,,X,, . . ., X, and y,, s,

o Vg
Proof: If the operator A is bounded and
Ay = (Aek,e,) (i, k= 1, 2, 3, .. .),
then (7) implies (8). Now let (a,) be a matrix which satisfies condition (8).
We shall show that this matrix determines a bounded linear operator A.
arst, from (8) with

x1=x2=. .. =xk_1=xk+1 = ¢ =0,xk¢0,
Nn=yr=...=Ym1 =Vap1=VYns2=...=0
we get
zark)-’i =M iEl)h-l’ .

I'his implies the convergence of the series
@
EarkJ_’r
fa]

for any sequence {y,}T in /2. Hence, the theorem of Landau (see Section
I8) implies the convergence of the series

3| aye |2 (k=1,2,3,...).
=]
We define the operator A,, first for the basis elements by the formula
Agey =iaiker (k=1,23,..),
1=

and then, by means of linearity, for all vectors with only a finite number
of components different from zero. Now we prove that the operator A4,
w bounded. We have, by (8) for fand g with only finite number of nonzero
components,
® [(Aofi8)1 = MIfI-ligll
By the continuity of the scalar product, the inequality (9) is satisfied for
all geH. Let
g=Aof

| Aof12 = MUSI~ 1| Ao SNl

i (9) to get
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i
so that |
| Ao fll £ MIIf1. i
Thus, A4, is bounded. Extending A4, by continuity to the whole space H, |
we get the bounded operator 4 and the correspondence !
A~(ay).
The theorem is proved.
We note that if the matrix (a;) is symmetric (Hermitean), i.e., if
Ay = Gy,
then it is possible to replace the condition (8) by (see Section 22)

i: XXy | S MES [ x; 2
k=1 =1

We now give an example of the matrix representation of a bounded
linear operator. Consider the integral operator in L¥— oo, o) defined
by the formula

g() = 476) = [ K(s,0/(®)ds

where the function K (s, #) is called the kernel of the operator. If the kernel
satisfies the condition

(10) f }| K(s, 1) |ds dt < oo,

it is called a Hilbert-Schmidt kernel, and the operator determined by it
is called a Hilbert-Schmidt operator. We suppose that the condition (10)
is satisfied. Then, for almost all 7 and u

f!K(s,t)-K(s,u)ldséJflK(s,t)l*ds'\/ f|1<(s,u)|=ds.

But since

ff|f(’)|if(u)|J flK(st)I*dsJ f|K(S,u)|’dsdtdu-
’ If(t)'/flK(st)|2mdtlz<
l-m f =

<fmm%ffmam%m<w

- o - -
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we huve, by Fubini’s theorem,

3 3y
ugu={f (

{ J' ds J' K(s, 1)/ (1) dt J' KG, u)f(u)du}*é

/ [ir@par / | f |K (s, ) rdsdr

-0 -

IK(s, Nf(@)de

We see that the Hilbert-Schmidt operator is bounded and that its norm
does not exceed the quantity

A/f TlK(s,t)l’dsdt.

-0 -®

Let us take in L? (— oo, oo) any complete orthonormal system of func-
tions {¢,(#)}° and define

ay, = J' J' K 0a@eddsdt  (k=1,23,..).

('hoose any f (f) € L¥— oo, oo) and let

«©

f fOeddt =x, (k=1,2,3,...).

—C

Then the Fourier coefficients

y,=fg(s)mds (=1,2,3,..)
of the function .
£ = [ K0 f@de
wegivenby
= [[ K070 2 ds de=

=ff(t){ fK(s,t)mds%dt (=1,23,...).
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But since

an  [Kene@ds~Taed  (=123,..)
and 7
SO~ L x o),
we have, by the Parseval relation,
Vi =kz-:1a'kxk (i=123,..).
In a similar way, it follows from relation (11) that i
) i

@«

fdz

-

But on the other hand, by the Parseval relation,

[x609®ds| =X jar (=123,

-

flK(s,t)l’ds >

-

f K60 70|

and, therefore,
] [1KG01dsd= 55 1 aul

We see that each Hllbert Schmidt operator is represented by a matrix
operator for which

Elalk]z<°°
k=1

27. Completely Continuous Operators

Hilbert considered first the important class of completely continuous
operators. A linear operator A defined everywhere in H is said to be com-
pletely continuous if it maps each bounded point set into a set which is
compact in the sense of strong convergence.

A completely continuous operator A is bounded. In fact, otherwise -
there would exist a sequence of points f, (k=1, 2, 3, . . .) for which ;
Il =1, l4fli>k (k=123,..)

but this is impossible, since the point set {4/} is compact.

Completely continuous operators have another definition: a linear
operator 4 defined everywhere in H is completely continuous if it maps
every weakly convergent sequence into a strongly convergent sequence.
The proof of the equivalence of these definitions we leave to the reader.
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We also leave to the reader the proofs of the following simple facts:

1. If A4 is a completely continuous operator and if B is a bounded
operator defined everywhere in H, then the operators 4B and BA are
completely continuous.

2. If A, and A4, are completely continuous operators, then
«, A; + a4, is a completely continuous operator.

THeOREM: If A is a bounded linear operator defined everywhere in H,
and if the operator A*A is completely continuous, then the operator A is
completely continuous.

Proof: Let M be any bounded infinite set of points f (I fIl £ C). Let
| /.JF be any sequence of elements of this set. This sequence is mapped
by the operator A*4 into a strongly convergent sequence. Since

”Af” - ’4.1;11“z =(A(f” “fm)’ 4 (f” —fm)) =
=(A*A(fn —fu)Su —f,) S 1 A*Afn — A*AL N\ fo — fulls

we have
lim || A* Afs — A* Af,ll =0
where '
(lfn —full £ 2C.
‘Therefore,
lim ” Afn “Afm ” = 0,

so that the sequence {Afa};° converges and the theorem is proved.
COROLLARY : If the operator A is completely continuous, then
the operator A* has the same property.
Proof: In fact, if the operator 4 is completely continuous, then the
operator AA*= (A*)*A4* is completely continuous, and it remains only
to apply the theorem just proved.

28. A Criterion for Complete Continuity of an Operator

The following theorem is often used to prove that a given operator is
completely continuous.

THEOREM: If for each e > 0 there exists a completely continuous
operator A, such that

(4 —A4)f1l = el fl

for f €H then the operator A is completely continuous.

Proof: We choose a sequence of positive numbers € > e3> ...
(lim &, = 0) and consider a sequence of completely continuous operators

n +00

Ae Ae, - . . corresponding to it by the condition of the theorem. Let M
be an arbitrary bounded set of points A|| fIi £ C) in the space H. Let us
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take an arbitrary sequence { £} of points belonging to M. According to
the complete continuity of 4, there exists a subsequence

(1) fu’flz,fm, ..
which is mapped by the operator 4, into a convergent sequence. From the
sequence (1) we select a subsequence

)] Sa, faso fas, -
which is mapped into a convergent sequence by the operator 4,. Continue
ing this process, we get the infinite sequence of sequences

.flhflz:.fl&; LA |
.flhf;!:.fl!h cevy
fahfsbf;sa» AR |

such that each is a subsequence of the preceding. The diagonal sequence‘

fil! fzz’fss’ s

is mapped into a strongly convergent sequence by each of the operators 4.
We prove next that the diagonal sequence { fi,}i., is mapped into a con.
vergent sequence also by the operator A. For this it suffices to prove that:

3 nlin‘f,’m | Afun— Afymll =O.

We have the inequality
| Afan — Afpunll S 1(A — A,) fanll + | Aey frn— Aey frnmll +
+ “ (A - Ae;,)fmm“ é ZEk C + ”As;,fml_ Askfmm"-

By taking k sufficiently large, we can make the term 2¢,C as small as
desired. After this, we can take N so large that the second term of the
last member is made as small as desired for m, n > N. Thus, the relation
(3) is proved.

We make use of the theorem just proved in order to establish the com-,
plete continuity of the matrix operator defined by

Vi =g;]a,k>ck (i=1,23..)

where
@ 2 el <o,

which implies the complete continuity of every integral operator with al“
Hilbert-Schmidt kernel. From (4) it follows that

kZlatkl < oo,
p—»oa j=1
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I herefore, for each £ > 0 there exists an integer p = p(¢) such that
o o
E E l alk[z
imp+1 k=1

Now we construct the operator 4, with the aid of the relation

Af=ye; +ysea+ ...+,

where
=) auX i=1,23,...
Vi ;_:] kXk ( )
1l
=" X8
k=
et
Af=§_]:y,e,-
We have

I Af — A fIP =;§l‘y"2 -

Za,kxk Y2 S S laultlifie £ e lfn.
_p+| Kk =1 fumpyl k=1

It remains only to verify that the operator A, is completely continuous.
('hoose any bounded set of vectors in H. The operator 4, maps this set
mto a bounded set in a finite-dimensional subspace of H, and this set is
compact by the classical Bolzano-Weierstrass theorem.

We emphasize the fact that the convergence of the series

o
; [au

fk=1

w only a sufficient, but not a necessary condition for the complete con-
tinuity of the matrix operator. In the special case when the numbers a;;
sutisfy the relation

ag=0forli—k|>r (,k=1,23..)

lor some fixed r, it is possible to specify a necessary and sufficient condition
tor complete continuity. It is expressed by the relation

lim a"‘ == 0.

i, k—w
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For simplicity we sketch the proof only in the case with r = 1. In
this case, the matrix defining the operator has the form

a,y Bl 0 0 0
y1 a3 B 0 O

(5) 0 7 a3 B 0 .
0 0 Ys G4 B‘ “ e

........... A
[
i

and is called a Jacobi matrix. For r> 1 the matrix is called a generalize?

Jacobi matrix. Let the operator 4, determined by the matrix (5), be
completely continuous. Then the sequence of vectors ‘
Ae, =P, 16+ e +y,€,,
(Bo=0’i=112539'°°) .
must converge strongly. Supposing that the matrix 4 does not satisfy thel
condition in question, we select a sequence i,, iy, Is, . . . such that

B2 +3
and

|Btk—l|’ + Ia'lk" + ‘7{,‘ I’_) ) > 0
where 8 £ oo. A simple computation yields
| de;, — Ae 1P = | By |* + l oy |* + [vi I* +
+ | Bm-1 Pt e [P+ | 7, [ > 28 £0.

This contradicts the strong convergence of the sequence {Ae,}{.
We now prove the sufficiency of the assertion. Let

a0, B >0, y,—> 0 (k— o)

and let the sequence { f W} converge weakly to f. Because !

- ¢ |

Af® =3 xf de, =?-:lx2')(ﬁk—|ek-| + ey + Viliiy) =

k=1

=k2_;(ﬁkx¥'ln + @ X + v X2 e (7o =0)
we have
IAf® — Af |2 =

= 1B — X2 + oy — ) + e ok, — i)
=‘§1 +l§;+ !
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Ihe first term on the right side tends toward zero for fixed ¢ as m, n— oo,
I herefore, it is sufficient to show that it is possible to make the second term
on the right side as small as desired for all m and »n by taking g sufficiently
Ilnige. But, if ¢ is sufficiently large and k > g, then

| Bel <& la] <&lyoa| <e
‘I herefore,

3 Bl — ) + o) — Xy (A — A S

S 9af® —fos,
‘Thus, our assertion is proved.

29, Sequences of Bounded Linear Operators

We distinguish three modes of convergence of a sequence {Aa}; of
bounded linear operators defined everywhere in H: weak convergence,
atrong convergence (or, simply, convergence), and uniform convergence.
A sequence {An}{

converges weakly to the operator A if for each fe H

A, 2 A A SIS Af  (n>o)
converges strongly to the operator A if for each fe H

A, - A Af—-Af (n—>oo)
converges uniformly to the operator A if

A,—> A A, —All-+0 (n—>c0)

If a sequence of operators converges uniformly, then it also converges
strongly; if it converges strongly, then it also converges weakly.

Using the results of Section 23 and the lemma about convex functionals
In Section 18, it is possible to prove the following proposition : if the sequence
{4a}7 of bounded linear operators defined everywhere in H converges
weakly, then the sequence {ll4al};° of the norms of these operators is
bounded.

We mention one more proposition, which is analogous to Corollary 2
mn Section 23: if the sequence of bilinear functionals {2.( f, g)}? has the
property that for arbitrary fand g the limit

I,i_‘.’lg"(f’ g =o(f,g)
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exists and is finite, then this limit defines a bilinear functional. As is eas

seen, it is sufficient to prove that
lo(f,8)] SC <o
forf fIl < 1, gl £ 1,and some number C. Each of the bilinear functions
24(f, g) is determined by a particular bounded linear operator:
9 (f,8) = (s £ 8). |
The hypothesis implies that the sequence of operators {4} converges
weakly. Consequently, for f, ge H, ‘
[(4afig) | S CUAL-ligl

or equivalently,

[(f,)ISCl - lgll

le(f,0) | =CIfl-ligl.

Hence, it follows that



Chapter III

PROJECTION OPERATORS AND UNITARY
OPERATORS

30. Definition of a Projection Operator
Let G be a subspace of the space H and let

F=HogG,

so that
H=GgF.

‘T'hen each vector 4 € H is uniquely representable in the form
h=g+f

where g eG and feF. In Section 7 the vector g was called the projection
of h on G. The operator which maps each 4 e H into its projection g on G
1 called the operator of projection on G or, simply, a projection operator.
It is denoted by Pg or sometimes, when the subspace G is specified in
ndvance, by P. Thus, if g and 4 are related as above,

g = Ph = Pgh.

A projection operator is evidently linear. In addition, it is bounded
and its norm is equal to one. Indeed, since the equation

WAlE=Illgl® + £

implies that
1) gl =ihl,
we have
(Pl =t
But if & €G, then g = A, so that there can be equality in (1). Therefore,
WPIl=1.

31. Properties of Projection Operators

From the definition of a projection operator it follows easily that
1) P2 =P,
2) P*= P,
Indeed, if P = P; then for an arbitrary Ac H the vector g = Ph

belongs to G, so that Pg = g and P*h = Ph, and this implies that P* = P.
63
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In order to prove that P is self-adjoint, we choose two arbitrary vectors §
hy, hye H and let
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hl =& +f1s hz = g2 +f29
where g, = Ph, and g, = Ph,. Then i

(gla h!) = (gh gﬁ) = (hl’ gﬁ)!

(Phy, hs) = (h1, Phy)

for h,, hye H. This implies that P* = P,
From the properties just established it follows that

(Ph, k) 2 0.

so that

In fact,
(Ph, h) = (P%h, h) = (Ph, P*h) = (Ph,Ph) 2 0.

Now we prove that the properties 1), 2) characterize a projection
operator.

THEOREM: If P is any operator defined on H such that, for arbitrary
hl’ h2 € Ha

) (P*hy, hg) = (Phy, hy),

2 (Phy, he) = (hy, Phy)

then there exists a subspace G < H such that P is the operator of projec-
tion on G.

Proof: The operator P is bounded. This follows from (2) and a
theorem in Section 25. However, it can be proved also by the following
simple argument. We have

|Ph \I* = (Ph, Ph) = (P*, h) = (Ph, )

#
b

and
PRI < |\ PRI -l A,
so that
WPRi < Al
Thus, the operator P is bounded and its norm is not greater than [. We
deriote by G the set of all vectors g € H for which

Pg =g. |
Clearly, G is a linear manifold. We shall prove that G is closed so
that it is also a subspace. Let gac G (n =1,2,3,...) and g» - g. Then
&gn = Pga
and
Pg — gn = Pg — Pga = P(g — gn),
so that
1Pg—gnll Sllg —gnl.
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let n — oo to get

IPg —gli =0,
o that

Pg=g.

tience, g € G, which implies that G is closed. We must prove that P = Pg,
where Pg is the operator of projection on G. For each / € H, the vector
'h belongs to G because P(Ph) = Ph. The subspace G also contains Pgh.
I'herefore, it is sufficient to prove that

(Ph — Pgh,g) =0

(Ph,g) =(Pch, g")
for each g’ € G, But this follows from the equations
(Ph,g') = (h,Pg) = (h,8),
(Poh,g') =(h,Psg) =(h,g).
To conclude the present section, we remark that if G is a subspace and

¥ is the identity operator, then £ — P is the operator of projection on
Hoe G,

or

32. Operations Involving Projection Operators

In the present section we shall prove a few simple propositions concern-
ing the multiplication, addition and subtraction of projection operators.

THEOREM 1: The product of two projection operators Pg and Pg_ is
ulso a projection operator if and only if Pg, and Pg, commute, i.e., if

PG,PG| =PQ'PG‘.
In this case,
P, G.P Gy, = P G»
where G = G, N G,.!

Proof: First, let the product be a projection operator. Then
PG‘PG. =(PG.PG.)* =P8.P3l =PG.PG,-
Vix he H arbitrarily and let
g =Pg Poh =Pg Pgh.

By the first representation ge G, and, by the second, g€ G;. Hence
NE Gl 8 Gg. If h € Gl (a) Gg, then Ple)G:h = h. Thus, one half of the
theorem is proved. Now assume that P;, and P, commute. Let

PG|PG|=PG|PGx =P-

! A geometrical implication of the commutativity of the operators PG, and Pg, is that thesub-
wpaces G;© (G, N Gy) and G; © (G; N G,) are orthogonal.
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it follows that
P*=(Pg Pg) = Pg Ps,Ps,Pc, =P; PsPsPc, =PsPs, =P 1
and
(Phu hy) = (PG.PG. hy, ha) = (PG. hl,PG,hl)
= (hy, Po. Pc. he) = (hy, PG, PG. hy) = (hls Ph,).

These equations show that the operator P = Pg P, satisfies the conditi
of the theorem of the preceding section. Therefore, it is a projecti
operator.

COROLLARY: Two subspaces G, and G, are orthogonal if and only
P, Pg, =0. 1
THEOREM 2: A finite sum of projection operators
Pg,+Ps,+...4+4P5,=Q (n< o)
is a projection operator if and only if

PoPo, =0 (i#k) 1
i.e., ifand only if the spaces G, (j = 1, 2, 3, . . ., n) are pairwise orthogonal.
In this case
Q = P Gs
where

G=G,0G;®...DGn.

Proof: If the spaces G; are pairwise orthogonal, then Q* = Q, and,
therefore, the sufficiency of the condition is evident. The last part of the
assertion of the theorem is also evident. It remains only to prove the]
necessity of the condition. Let Q be a projection operator. Then

If12 2 @£ = ,Zl( Po,f.f) 2 (Pofif) + (Pa fif) ‘
for any pair of distinct indices 7 and k. From this relation it follows that |

1P fI* + | Po S1* < 11 £1I1%

In this inequality let
=P GL}"
Then
| Pg,Pghl® + |1 P A |1 S Il Pgh
which yields
| Pg.Pg hll=0
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torhe H. Thus,
PgPg, =0
w0 that the spaces G, and G, are orthogonal.
THEOREM 3: The difference of two projection operators,
(1) Pg, — Pg,
Is a projection operator if and only if Gy = G,. In this case P, — Py, is the
operator of projection on G, © G,.

Proof: In view of the remark at the end of the preceding section,
we attempt to find conditions for which the difference

Q=E"‘(PG.“PG.)
in a projection operator. Since the equation
Q=(E—Pg) + Pg,

represents Q as the sum of two projection operators, it follows from
‘Theorem 2 that
(E — Pg)Pg,=0
or, equivalently,
) Pg, = Pg, Pg,.
If g € G, then
8="P;8=Ps P8 =P8,

so that g € G,. Since every element g € G, belongs to G,, we have G, <G,.
This condition, which can be expressed in the form of (2), is necessary
and sufficient in order that the difference (1) be a projection operator.
1t remains only to characterize the space G on which the operator (1)
projects. The operator Q projects on

HOG,]1® G,.
Hence, the operator (1) projects on
3 Ho{HoG]® G,

i.e., on the subspace of vectors orthogonal both to G; and to H © G,.
Since this subspace consists of all the vectors of G, which are orthogonal
to G, it is the subspace

@) G, 6 G,.

We notice that the difference (4) can be obtained directly from (3) by
formally removing the brackets.
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33. Monotone Sequences of Projection Operators
We shall prove that the relation G, < G, is equivalent to the inequality

1) | Po,f I < Il Pg, Sl
for all feH. The inequality (1) is evidently equivalent to
(PGl-f;f) =<= (P G,.f’f)

or
({Ps,—Ps} 1) SO
for feH. The last two inequalities are generally expressed by
Pg, = Pg,.

Thus, we wish to prove that the relation G, < G, is equivalent to the
relation Pg = Pg. This will permit us to introduce for consideration
monotone sequences of projection operators.

First, let G, = G,. Then it follows that

Pg, = PG Pg,.
Therefore, for each fe H,
Po.f=PG.PG,f
and
2 | Pg fll £ 11Pg Sl
Conversely, assume (2) for each fe H. Consider

S=(E—Pg)h,

where 4 is an arbitrary element of H. From (2) and

P (E—Pg)h=0,
we obtain

Pg(E—Pg)h =0
or

Pgh = PgPgh.
Since this equality holds for each 4 € H,
P, G, =P o.P Gy

so that G, < G,. This completes the proof.

THEOREM: If P, (k = 1,2,3,...) is an infinite sequence of pro-
Jection operators and if Pg, < Pg, ., (k =1,2,3,...), then, as k — oo,
Pg, converges strongly to some projection operator P.

Proof: For m < n the difference Pg, — Pg,, is a projection operator.
Therefore, for each feH,

3) WPgf—Pgs fIF=1(Pg,—Ps ) fIF =

({Pg. — P} .) =1Pg, [ — | P, [l
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e, for fixed f, || Pg, f|? increases with k but is bounded above by || f |,
it has a finite limit. Hence, the right member of (3) tends to zero and the
wquence {Pg, f}r., is fundamental in the sense of strong convergence.
lty the completeness of the space there exists the strong limit

f*=Ilim P, f.

We define the operator P by

f*="Pf,
{+ H. The operator P is obviously linear. Since

(Pka;PGkg) = (Pka, g = (frPGkg)
i passage to the limit yields
(Pf,Pg) =(Pf.8) =(/,Pg).

I'herefore,

P =pP*=p

so that P is a projection operator.

34. The Aperture of Two Linear Manifolds®

The present section is devoted to a concept which was introduced by
3. Nagy and, independently of him, by M. G. Krein and M. A. Krasno-
selski.?

DEFINITION: The aperture of two linear manifolds in H is defined as
the norm of the difference of the operators which project H on the closures
of these two linear manifolds.

The aperture of the linear manifolds M, and M, is denoted by the
symbol 6(M,, M,). Thus,

6 (M, M,) =[Py — Py =||Py — Py |},
where P,, P, are the operators of projection on the closed linear manifolds
(subspaces) M,, M,, respectively. From the definition of aperture it follows

that
8(M,,M,;) =6(M,,M,)=8(HOo M, Ho M,).

Consider the identity
Py — P, =PyE — P,) —(E — Py)P,.
* The results of this paragraph are necessary only for the construction of the theory of sym-

metric extensions (Chapter 7).
* M. G. Krein and M. A. Krasnoselski {1], B. Sz. Nagy {2].
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It follows that, for heH,
(Py—Py)h=Py(E—P)h — (E — Py)Psh.
Since the vectors P,(E — P,)hand (E — P,)P,h are orthogonal,
(1) I(Py — PAI® = ||Po(E — P)AI® + II(E — Py)P,hJ? =
S I(E — Py All* + |Pyh||® = [iA)2

This inequality shows that the aperture of two linear manifolds does ni
exceed 1:

@(Mla M2) é l

In addition to this, we see that the aperture is certainly equal to 1 if o
of these manifolds contains a nonzero vector which is orthogonal to
other manifold. This fact implies the following criterion for the equali
of the dimensions of two linear manifolds.
THEOREM: If the aperture of the linear manifolds M, and M, is less
than 1, then
dim M, = dim M,,

i.e., the two linear manifolds have the same dimension.
Proof: It is sufficient to prove that the inequality
dim M; > dim M,
implies the existence of a nonzero vector in M; which is orthogonal to the
manifold M,. With this purpose in mind, we project M; on M,. We get
the subspace
G = P ZMD
the dimension of which evidently does not exceed the dimension of the
subspace M, and, consequently, is less than the dimension of the subspace
M,. Therefore, M, © G contains a nonzero vector, i.e., M, contains a
nonzero vector which is orthogonal to G. This vector is orthogonal to
the whole subspace M, because the subspace M; © G is orthogonal to M,.
The aperture of two linear manifolds has the equivalent definition,
(2 O6M,,My =max{ sup |(E—Py)fl, sup E — Pajgll}.

SeMa lifll = 1 g€M,, ligl =~

!

The quantity
I(E—P)fil=D[f,M]

represents the distance between the point f and the manifold M,. The sig-
nificance of this formula consists in the fact that it can be used to define
the aperture of two linear manifolds not only in a Hilbert Space, but in
any Banach space.*

“M. G. Krein, M. A. Krasnoselski, and D. P. Milman (1].
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We now proceed with the proof of formula (2). According to the
original definition of aperture and formula (1),

®) Oy My = sup LPL =PI _
ke WAl
= sup VIP(E —P)h\? + | (E—Py) Pih|?
herl Al :

¢ onsider the equation obtained from (3) by restricting the vector k to the
subspace M,. Then the right member is either unchanged or decreased, so
that

VIPy(E —P)hIE + | (E — PYPshjt _

o(Mla MS) ; sup
heM,

A
_ sup WE~Po Al _
hesd, (1Al
In the same way it is proved that
I(E —Pyh
e 2 ez ¥ M —p,.
M, M,) ?:l}?, Al 21

Thus,
8(M,, M,) = max {p,, ps}
and it remains to prove that
9(M1, Mg) < max {Phpg}.
With this purpose in mind we remark that, by the definition of p,,
@ I(E — P)Pihl* < A3l Prhi2.
On the other hand
|\PAE — P)hiit = (Py{E — P} h,Py{E — P} h) =
(PS{E—Pl}h’{E—Pl} h) =
(Pz {E—-P,}h, {E _P1}2h) =
=({E“—P1}P2{E _Pl}ha{E" P,}h) s
S W(E—P)Py(E—P)h|-I(E —Pyhl,
and, consequently, according to the definition of p,,
|PLE —P)h | <pill Py(E~P)h{ - [((E— P)hi,

(!

so that
(5) | Py(E —P)hil 20,11 (E— Py A\
The inequalities (4) and (5) imply that
IE —P)Pih|? + ||Py(E —PY)h\?® S p3\PLAIE + ot | (E—Pphl* 5
< max{p}, 03} [IP,AI2 + I(E — P h|?] =
= |{h|{* max {}, 03},
so that formula (3) yields
&(M,, My) < max{p,, Pa}
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35. Unitary Operators

1

In three-dimensional Euclidean space the simplest operation after that
of projection is rotation of the space, which changes neither the lengths of
vectors nor the angles between pairs of them. We now consider an analogous:
operation in Hilbert space.

DEFINITION: The operator U with domain H (Dy= H) and range R
(4y= H) is unitary if

() (U, Ug)=(f.8)
Jor f,ge H.

We emphasize that the given definition does not require that the
operator be linear. :

We prove first that the unitary operator has an inverse operator,
which is also unitary. Recall that an operator T has an inverse if and only!
if Tf = Tg implies that f = g (cf. Section 14). Therefore, assume that Uf==j
Ug. Then '

0=(Uf-UsUf—Ug)=
=(Uf, Uf) — (Uf, Ug) — (Ug, Uf) + (Ug, Ug) =
=(N—08)—&f)+ (88 =(f—8f—8),
sothat f =g. Thus, the operator U~! exists. Since Dy-. =4 and 4,,-. = Dy
the operator U~ is defined in the whole space and maps it onto the whol
space. Choose f*, g'€ H arbitrarily and let f = U~ 'f', g = U~ 'g’. Thi
Uf’:f,, Ug = g,
and the substitution of these equations in (1) yields
(f,8)y=WU"Y",U"g)
so that U~! is unitary.
From the proof just given it follows that, for f,ge H,
)] (Uf,8) =(f,U'g).
Indeed, let U-'g = g’, so that g = Ug’. Then, since U is unitary,
U, UgY = (f. 8,
which is equivalent to (2).
We prove now that a unitary operator is necessarily linear. Let
S=afi + afs
Then, from (2),
(Uf,8) =(f,U'8) = ay( /1, U™ 'g) + ag(fo,U " '8) = '
=ay(Uf1,8) + ay(U f2,8) = (a1 Uy + o,Ufs, 8). !
Since g is arbitrary, ‘
Uf = o, Uf; + aUfs.
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| herefore, every unitary operator is linear. Equation (2) shows that for
» unitary operator, the adjoint operator coincides with its inverse:
U*=U"\
Frequently the following simple proposition is useful: if a linear
wperator T satisfies the condition

(3 (TLTf) = (L)
sl if D; = 4, = H, then T is unitary.
Proof: By condition (3),
(T{f + og}, T{f + ag}) = (S + ag,f + ag).

Nince T is linear,

(T£,T) + T8, If) + TS, T) + | |*(T8, T¢) =

=(£LS) + a8, f) + a(f,8) + |2 [*(g,8).
‘Therefore, again by (3),
o(Tg, Tf) + &(Tf, Tg) = ofg.f) + a(£,8):
Nince a is arbitrary,
(TS, Tg) = (/.8),

so that T is a unitary operator.

36. Isometric Operators

Let H, and H; be two Hilbert spaces. We shall indicate the scalar
product in H, by the index 1, and the scalar product in H, by the index 2.

DEFINITION: The operator V with domain H, (D, = H,) and range
H, (4, = H,) is isometric if

()] (V8= (/.81
for f, ge H,.

In particular, H, and H, can be subspaces of a space H. In this case
the indices on the scalar products are superfluous. Often the term isometric
wperator applies only in this special case, and the phrase isometric mapping
i used in the general case.

A unitary operator in H is a special case of an isometric operator
for which H, = H, = H. Many properties of unitary operators carry over
to arbitrary isometric operators. We list now some of these properties,
omitting those proofs which do not differ essentially from the proofs of
vorresponding properties for unitary operators.

1°  Each isometric operator has an inverse operator which is also
wometric.
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2° If the operator V is linear, and maps all the space H; onto

space H, and if
VLV =(fi )
for f €H,, then V is an isometric operator.

3° Every isometric operator is linear.
Indeed, let /', f" e Hy,and f = o' f’ + a”"f". Then, for each g € H,,

(V. Vehh = (f,8)i =0 (f",8h + 2" (f",8), =
= a'(Vf', Vg + " (V" VE)s = (a'Vf' + o"Vf", Vg)s
Since 4, = H,, it follows that
Vf=a'Vf + oV

hence, the operator V is linear. -

Isometric operators were introduced implicitly in Section 9, where!
we introduced the concept of isomorphism of two Hilbert spaces.

To complete the present paragraph, we introduce an important concept |
which will be used repeatedly in what follows.

DErFINITION: Let T, and T, be linear operators defined, respectively, |
in spaces H, and H,, so that Dy, < H,, 4;, < H,, Dy, < H,, 45, < H,,
(In particular, the spaces H,, Hy may coincide). The operators T, and T,
are called isomorphic or unitarily equivalent if there exists an isometric
operator V, whichmaps H, onto Hyand Dy, onto Dy, suchthat VI, f =T,V f
Jor each f € Dy,.. In other words, T, and T, are unitarily equivalent if

DT. = VDT|

and
Tl = V- ‘TQV.

37. The Fourier-Plancherel Operator

The object of this section is the proof of the Plancherel theorem, which |
may be stated as follows. Let g(t) be any function in L¥(— oo, o) and let

1 d e —
V2rdt S —is l
This formula defines a function h(t) for almost all real t. Furthermore,
h(f) e LY — oo, o). The operator & defined by §g = h, where h is given in

terms of g by (1), isunitary. Its inverse operator, § ~%, can be expressed by the
Jormula

) Lo(s)ds = h(s).

P U

-



37. THE FOURIER-PLANCHEREL OPERATOR 75

The operator § is called the Fourier-Planchere! operator. If it is
assumed that the function g(¢) is absolutely integrable on the entire real
axis, then formula (1) can be replaced by

@ h(e) =‘/—‘2_" _ { e~ g(s) ds.

hus, in this case h(t) is a Fourier integral in the elementary sense.

The set of absolutely integrable functions in L? (— oo, oo) is mapped
by the Fourier-Plancherel operator, expressed for this case either by (1) or
(2), onto a linear manifold L which is dense in L? (— oo, oc). The value of
the Plancherel theorem consists in the fact that it gives an extension of the
clementary Fourier integral operator to an operator defined on all of
1.}(— o0, o0).

This approach to the Fourier-Plancherel operator leads to an equiva-
lent definition. Let g(¢) be an arbitrary function in L3 — oo, oo) and let

_[g® (-NstsW)
2 = | (It]> ).
Since the function gy(?) is absolutely integrable,
N

Ban) = = f = o [ ey

Since the operator § is bounded,
Al,im I &g — Fgnll =0

or
3) MO = B9 = Lim. f - tng(s) ds.

llence, this alternate definition of the Founer-Plancherel operator follows
from (1).
It is easily proved that, in turn, definition (1) follows from definition
(3). Indeed, for any element f(¢) € L¥— oo, o0),
@ lim (Sgv./) = (88.1).
Substituting
_ ©srso),
J@®) { 0 (t<0andt>f)
in (4), we obtain
T N

lim dz?j e tig(s)ds = fgg(z)dz
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After integration, passing to the limit and replacing = by ¢, the last equatiok
yields

-]

L f i _j'i: 1 g(s)ds = of Fg (o) dtr.

Vo
This relation implies that, for almost all real ¢,

1 d fe'"—
\2ndt ) —is
Thus, formula (3) implies formula (1). 1

There exist various proofs of the theorem of Plancherel. The two essen
tial elements of each proof are that the operator §,, which is defined b
equation (2) on the set L < L¥ — oo, o), does not change the norms o
functions, and that it maps the set L onto a set which is dense in LY — oo, oo
Extending the operator §, by continuity onto the whole space L — oo, colf
we get the operator § which is defined by formula (3). Thus, the domain
of definition of this operator is the whole space L — oo, o). Since th
operator & does not change the norms of functions and since its range if
dense in L?, its range must also be the whole space.® To complete the proo
it is sufficient to verify that the inverse operator results from the replaceq
ment of i by —i in formula (1). ‘
From the standpoint of the geometry of Hilbert space, it is particug
larly instructive to consider the set L, of functions '

o

&) J()=P@)e *
where P(f) runs through the collection of all polynomials. The set L, if
dense in L¥ — oo, oo). Each function (5) can be represerited in the form

(6) SO = ao@o(?) + a19:() + ... + anen(l)
where the ¢(¢) (k = 0,1, 2,...) are the Tchebysheff-Hermite functio
By the orthogonality of these functions (cf. Section 11)

g(t) = lg(.s') ds.

-]

[1rypde = /7 3 21 e

Now we apply the operator §, to the function f(¢). For this purpose wq
make use of the relation
1 ’ s d w 5d5 s
7 _ f -t ko2 Y -:’ds= keI__ -1
@) 75 e ¥(—1)e I e i pr e

-

®Assuming the contrary, we coutd extend the inverse operator 8 onto the whole spa¢
L3(— oo, 00). The isometric operator thus obtained would take the identical values at at lea
two distinct points, which is impossible.
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(k=0,12,...),
which will be proved later. The relation (7) implies that
%0¢k=(_i)k¢k (k=0!l’2" . ‘)‘
I herefore,
(6) A= FoS(1) = ao@olt) + (—D)'arpi(t) + . . . + (=) anen(D)
which yields

fwlh(t) I’dt=f|f(t)l"dt-

Thus, the operator §, does not change the norms of functions in the
st L,. Moreover, it follows from our considerations that the range of
i, contains L,, which is dense in L? (— oo, o0). Comparison of (6) and
(') proves also that in order to change &, to § ~' it is necessary only to
change i to' —i.

It remains to prove relation (7). Here is the proof:

- -]
l -istf _ 1)}k "l"dk -gt — 1 -5t dk —ist+:’ —_
\/Z;Ie ( l)eﬁe ds—ﬁ e F(e Nds =

—~ -

S R

v

_1 fd g

\/Eemte e

\/l; eggd; e_g_';-“'ds=i"e¥%:-e“'.
w

Examples of operators defined on the space L*0, o) are . and
%, where

@ N
_ [2 d (sinst _ 2.
&g =, /== f g(s)ds = J - l&x_.'rg. J g (s)cos st ds,

n dt K}
0

@ N
2d (1—cosst 2. .
F.2(0) = :r_d_t‘;[’T g(s)ds = J; 13;1'2. !g(s)sm st ds.

As an exercise we recommend that the reader verify that §. and §, are
unitary. Since these operators satisfy the relations

g =8"'=5.

gs. = g'—l = g.n

they are self-adjoint.




Chapter IV

GENERAL CONCEPTS AND PROPOSITIONS
IN THE THEORY OF LINEAR OPERATORS

38. Closed Operators

In chapter II, a general definition of a linear operator was given, but in
the subsequent presentation we considered only bounded, i.e., continuous,
operators defined everywhere in H. In the present chapter we begin &’
study of linear operators which are not necessarily continuous. The related;
but less restrictive requirement that given operators be closed is qui
sufficient for many of our purposes.

DEFINITION: An operator T (not necessarily linear) is closed if the
relations

f2€Dy, hmfn =f, IimTfa =

n-+0

f € DT) Tf =g.
Thus, the difference between closedness and continuity consists of the
following: if the operator T is continuous, then the existence of lim fy

R0

(fn € Dy) implies the existence of hm T f; but if the operator T is only!

imply that

closed, then the convergence of the sequenoe

(D SofouSo ... (faeDy)
does not imply the convergence of the sequence
2 Tf Tfo Tfs, - - . -

However, if T is closed then, in particular, it has the property that two
sequences of the type (2) cannot converge to different limits if the corre-
sponding sequences (1) converge to the same limit.

An operator T having the property mentioned in the preceding sentence
may not be closed; but it has closed extensions. Among these is the so-
called minimal closed extension, which is contained in every closed exten-
sion of the operator T. The minimal closed extension is uniquely defined
for each operator T. It is denoted by T and is called the closure of T.* In

! Translator’s Note: The reader shogld verify that the operator z_'deﬁned in the next sentence |
is closed. To do this, first prove that 7 = 7. The minimality of T is then easily established.
78
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onder to obtain 7, it is sufficient to adjoin to D, all those elements f € D,
wiuch are limits of sequences (1) generating convergent sequences (2), and
i 1cquire that

N—oo
It is not difficult to show (we leave this to the reader) the truth of the
fnttowing assertion: if the operator T is closed, then each operator T — AE
In vlosed, and if the inverse operator 7' exists then it is closed.

39. The General Definition of an Adjoint Operator

In Section 22, in the definition of the adjoint operator for a given
bounded operator A defined everywhere in H, we started from the fact
that each element g € H uniquely determines an element g* such that

(Af,8) =(f.8")
for all feH. Letting T denote an arbitrary operator, we consider once
aguin the scalar product

M (If.8)
where f runs through D;. We can no longer assert that for every element

# the expression (1), as a function of the vector f € Dy, is representable in
the form

(f,8%).
However, in general, there exist some pairs g and g* for which
2 (11,8 = (f.g")

for f € Dy. Indeed, this equation holds at least for g = g* = 0.

The existence of vectors g and g*, for which (2) holds for each f e Dy
in not sufficient to enable us to define an operator T* which is adjoint to 7.
1t 1s also necessary that the element g* be determined uniquely by the ele-
ment g. This last requirement is fulfilled if and only if Dy is dense in H.
Indeed, if Dy is not dense in H then there is a nonzero element & which
is orthogonal to Dy; then equation (2) implies that

(T8 =(fg* + h)
{or f € Dy. On the other hand, if Dy is dense in H and if, for each f € D,

(Tf,g) = (f.g"),
(Tf,8) = (f.83),

(f.8F —g2)=0.
t'his implies that g = g¥.

then, for each f € Dy,
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Thus, if Dy is dense in H, then the operator T has an adjoint opera!
T*. Its domain D;. is defined as follows: g € D,. if and only if t
exists a vector g* such that (2) is satisfied for f € D;. For each such
g and g*,

T*g =g*.

We now list several simple propositions concerning adjoint operatorl
the proofs of which follow immediately from the definition.

1°  The operator T* is linear.

2° If S =T, then S* 5 T*.

3°  The operator T* is closed whether or not T is closed.

4°  If the operator T has a closure T, then (T)* = T*

5° If the operator T** exists, then

T < T**,

The last proposition shows that a necessary condition for the existen
of the operator T** is the possibility of closing the operator T. The questiog
as to whether this condition is sufficient for the existence of T** we leay
open until Section 46. There we shall consider the problem of the possibili
of generalizing to the case of arbitrary operators the equation 7**=
which was proved in Section 22 for bounded operators defined everywhe
in H.

To complete the present paragraph, we consider the case of a lin
operator T which has an inverse operator T-!. Assume that D; and D.
are dense in H. Then the operators T* and (7~')* exist. We shall pro
that

(T*)'=(T"H*
To begin with let us assume that f runs through Dy and g runs throu,
D-s. Then
(,8) = (T'Tf,9) =(If.(T"")*®).
But this equation shows that
(T-")*g € Dy
and

3 THT 'y*g =g A

On the other hand, if f runs through Dy, and h runs through Dy., then
(k) =(TT"'f,h) =(T'f, T*h). ‘

T*h e D(T—l).

and {

“) (T-Y*T*h = h. ‘
Relations (3) and (4) imply that

(T*)-l — (T— l)*.

It follows that
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40. Figenvectors, Invariant Subspaces and Reducibility of
Linear Operators

A complex number A is called an eigenvalue of the linear operator T
il there exists a vector f 7 0 such that

M Tf=2af.

I-ach such vector fis called an eigenvector of the operator T (more precisely,
/ is an eigenvector which belongs to the eigenvalue A).

For each fixed eigenvalue A of T the set consisting of all vectors which
sntisfy equation (1) is a linear manifold which contains at least one non-
rero vector; each such set is called an eigenmanifold of T. Thus, the eigen-
manifold corresponding to a given eigenvalue A consists of the zero vector
nnd all of the eigenvectors belonging to A. The multiplicity of an eigenvalue
A is defined as the dimension (finite or infinite) of the corresponding eigen-
manifold. If the operator T is closed then each eigenmanifold is closed, so
that each eigenmanifold is a subspace.

More general than the concept of a closed eigenmanifold is the con-
cept of an invariant subspace. A subspace H, = H is called an invariant
subspace of the operator T if every element of D, belonging to H, is
mapped by the operator T into an element also belonging to H,, i.e., if
the inclusion relation

feDynH,
implies the inclusion relation
TfeH,.
The operator T determines an operator 7T, defined in the subspace H, such
that
Dy, =DrnH, T, <T.

This operator 7, is called the restriction of the operator T to H,.

If H, is an invariant subspace of the operator T, then its orthogonal
complement H © H;, may or may not be an invariant subspace of this
operator. For the moment, let us suppose that both H, and H;, =H o H,
are invariant subspaces of the operator 7, and let T, and T, be the restric-
tions of the operator T to H, and H,, respectively. Does the study of the
operator T reduce in this case to the study of the two operators T, and T5?
The answer is evidently in the affirmative if the operator T is defined every-
where in H. Indeed, for each element 4 ¢ H we have a unique representation

h=h, + h,
where i, € H, and A; € H;, from which it follows that
Th = T\h, + T,h,.
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If the operator T is not defined everywhere in H, then the conclusion -
remains valid only under the additional condition that the projection Py,
on H, does not map elements of D outside of D;. Thus, we have the follows !
ing proposition.

THEOREM 1: If H, and its orthogonal complement H; are invariant sub=
spaces of the operator T, and if Py Dy < Dy then, for each f € Dy,

If =T/, + Tufs

where T, and T, are the restrictions of T to H, and H,, and f, and f, are
the projections of f on H, and H,.

DEFINITION: If the subspace H, satisfies the conditions of Theorem 1,
then we say that it reduces the operator T.

It is easy to see that if the subspace H, reduces the operator 7, then
its orthogonal complement H, also reduces 7. Trivial subspaces which
reduce T are the subspace {0} and the space H itself. If the operator T'
does not have any other reducing subspaces, then it is said to be irreducible.

THEOREM 2: Let P be the operator of projection on a given subspace
G. Then G reduces T if and only if

1) PfeD, and 2) PTf=TPf

forfe Dy, ie., if the operators T and P commute.

Proof: We show first the necessity of the condition of the theorem.-
If the subspace G reduces T, then f'e D, implies that Pfe D; so that 1) is
proved. In order to establish 2), we suppose that

f=g+h

where
g="Ff

Since G reduces 7,

Tf=Tg +Th
where Tg € G and The H © G. Therefore,

PTf=PIg=Tg

so that

PTf=TPf.

In much the same way, the sufficiency of the condition is easily proved.
We say that the projection operator P reduces T if the subspace G :
on which P projects reduces 7.
The reduction of the study of the structure of the operator T to the
investigation of its reducing subspaces and the restrictions of the operator
T to them is based on the following proposition. ‘
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THEOREM 3: Let the subspaces H, (k = 1,2,3,..., n; n S o) be
juirwise orthogonal and let

H =;®Hk'

It T be a linear operator which is reduced by each of the subspaces H,.
issume T closed if n = oo. Finally, let P, be the operator of projection on
H,, and T, the restriction of T to H,. Then f e D; if and only if

2 P.feDyg and kZIH T, P.f? < oo,
In this case

3) Tf=k§”:, T,P.f.

Proof: Let fe D;. Since H, reduces 7, we have P, fe D,, which
iniplies that
PkaDTﬁHk =Drk.

Inaddition, P, If = TP, f. Therefore,
Tf=kZlPk Tf=kZlTPkf=kEl T,.P.f.
In case n = oo, this result implies the convergence of the series
kEI | Te P f 12

Now let us assume conditions (2). If n < oo, then the linearity of Dj
nuplies f € Drand equation (3). If n = oo, then the linearity of Dy implies
that each of the vectors

SPS (r=1,23..)

Ihelongs to Dy Furthermore, the convergence of the series

kzlll T P f1?

unplies the convergence of the series

iTkPkfz lim T(Erlpkf)

r—w k

Since the operator T is closed,

feDyand Tf = 3. T Pof.
k=1
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Remark: The theorem remains valid in the more general case in,
which the space H is decomposed into an uncountable family of subspaces
H.,. This follows from the fact that each of the vectors f and T f has at most |
a countable set of nonzero projections on the subspaces H, (cf. Section 9),

To complete the preseat paragraph, we consider a typical example,
Let the space H be separable and let {¢,}. _. be an orthonormal basis.,
We consider the linear operator U, which is defined for these elements by

U, = ery (= o0 <k < )

and then extended to all of H by linearity and continuity; U, is a unitary
operator. The closure G of the linear envelope of the set of vector#
{e}r-,» where q is fixed arbitrarily such that g > — oo, is an invariant sube
space of U,. But G does not reduce U, Indeed, if P is the operator of,
projection on G, then

UoPeq_l——_O, Perq_|=Peq=eq,
so that
UyP # PU,.

The operator U, is an example of an operator having no eigenvectors.J
Indeed if

Uf=2Af, f= i a.e, 7Z0

k= -0

then

e o

E oy =A Z a €

k=—c0 k=—o
whence
o = Aag (— oo <k < o).

Because

(L) = U/, Uf) = AL AN) = 1A 12(SS) a
and f# 0, we have | A| = 1. Therefore, ﬂ

lagl=laol  (2k=1,2,3,..)), !
which contradicts the fact that

o
0<E Ia'k|2<°°'
k

-

Since U, has no eigenvectors, there does not exist a finite subs
reducing U,. Later (cf. Section 48) we establish the existence of infinite
subspaces which reduce U,. '

d

i
!
I
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41. Symmetric Operators

A linear operator A is said to be symmetrict® if:

(a) its domain D, is dense in H; and

(b) for f,geD,

(4f, &) = (f; 49).
I'rom this definition it follows that the scalar product (4f, f) is real for
/¢ D,. It may happen that
A.NH=zo

for each fe D,. In this case a symmetric operator is said to be positive.
A negative symmetric operator is defined analogously.

If a symmetric operator is bounded, then its extension by continuity
15 defined everywhere in H and is evidently a bounded self-adjoint operator
(cf. Section 22). But if a symmetric operator is not bounded, then by the
theorem in Section 25 its domain cannot be the whole space H.

If A4 is a symmetric operator, then evidently

A = A%

Since the adjoint operator is closed, this relation shows that a symmetric
operator always has a closure,

If B is a symmetric extension of the operator 4, then B < A4*, i.e,
cvery symmetric extension of the operator 4 is a restriction of the adjoint
operator A*, Indeed, from B > A it follows that B* < A*, and it remains
merely to recall that B < B*. An operator 4 which coincides with its
ndjoint (4 = A*) is said to be self~adjoint; it does not have a symmetric
proper extension. A symmetric operator A not having symmetric proper
extensions and not coinciding withits adjoint (4 & 4*), is called a maximal
symmetric operator.

THEOREM 1: A symmetric operator A such that its range 4, is all of
H is self-adjoint.

Proof: 1tis sufficient to verify that every element g € D .. also belongs
to D,. Thus, let ge D, and 4*g = g*. Since 4,= H, there exists an ele-
ment h € D, such that 4 = g*. Consequently, for each fe€ D,,

(Af,8) = (f:8*) =(/, 4h) = (A S, ).
Again since 4, = H, we have g = h. So ge D, and the theorem is proved.
CoROLLARY: If a bounded self-adjoint operator A has an inverse
operator A~" then A~ is self-adjoint (bounded or unbounded).

* The word *Hermitian is often used in place of the word *“symmetric.”
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Proof: 1t suffices to prove that the domain of 4!, i.e., the range of 4,
is dense in H. Assume, therefore, that the range of A4 is not dense in H.J

Then there exists a vector A % 0 orthogonal to 4,, so that (f, Ah) =]
(Af, h) = 0, for every fe H. It follows that 4h = 0, which contradicu?
the existence of the inverse operator.

THEOREM 2: The eigenvalues of a symmetric operator are real.

Proof: 1f
Af=2Af (f#0),
MEL) = QLN =ALN) =(LAN) = (LAf) =L S),

whence
A=1

THEOREM 3: Eigenvectors f, and f; belonging to the two different]
eigenvalues A, and Ay of a symmetric operator are orthogonal.
Proof: Letting
Afl = ’\fb Afa =’\afa
where A, 7 A;, we obtain

M(fuf) = Qufufd) = (Ahuf) = (h, Af) = (1, 1 f3) = M1, /o).

Therefore

then

M —2) (fuf) =0
(fufa) =0.

THEOREM 4: If G is an invariant subspace of the symmetric operator A:
and if the projection P on G satisfies the relation PD, = D, then the sub-
space G reduces the operator A. ‘

Proof: In view of Theorem 1 of Section 40, the only thing to prove]
is that H © G is an invariant subspace of the operator A. According to
the conditions of the present theorem, if fe D, n (H © G) and ge D,,

and

then
(Af,Pg) =0
so that
(PAf,g)=0.
Since D, is dense in H, this implies that
PAf=0
and
AfeHoG,

so that the theorem is proved.
In conclusion we present the following lemma, which will be needed
later (in Appendix II).

|
|
|
|
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LEMMA: In order that a linear manifold D (D, < D = D,.) be the
domain of a self-adjoint extension of a given symmetric operator A, it is
necessary and sufficient that D be the set of elements fe D . which satisfy
the condition

(4%, 8) = (f,4%2)
for each g e D.

The proof of this lemma follows immediately from the considerations

of the present section.

42. More about Isometric and Unitary Operators

In this section we consider isometric operators in the narrow sense,
1.c., the domain D, and the range 4, of the operator V are subspaces of
the same space H. An isometric operator is said to be maximal if it does
not have an isometric proper extension.

THEOREM 1:3 Each eigenvalue of an isometric operator V has absolute
value one.

Proof: Let

Vf=Af,
where 7 0. Then
SN =LV =QLM) = AL

whence | A | = 1, because (f, f) #0.

THEOREM 2: Eigenvectors f, and f, belonging to two different eigen-
values Ay and Ay of an isometric operator V are orthogonal.

Proof: Let
V=M VhA=Mf,
where A, 7 A;. Then

(o) =V V) = Ouf, 2 o) = M AN o)
(1 =X 2)(fi.fo) =0.
(fb.fﬂ) = 09

so that

Then

since 1 — A, 1, #0.

THEOREM 3: In order that a subspace G reduce a unitary operator U,
it is necessary and sufficient that G be an invariant subspace of each of
the operators U and U~".

Proof: Let G reduce U. Then H © G is an invariant subspace of the
operator U and, for each fe H © G and each g € G,

(Uf.g) =0,
! In essence this fact was established already in Section 40.
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so that

(LU 'g)=0.
This implies that U-'ge G, so that G is an invariant subspace of U-!,
Conversely, let G be invariant with respect to the operator U~'. Then,)
forfeHO Gand ge G,

Uy =LfU'g=
1t follows that the subspace H © G is invariant w1th respect to the operator:
U. Byanargument similar to that in Theorem 4 of Section 41, G is invariant]
with respect to U. Consequently, G reduces the operator U.

43. The Concept of the Spectrum (Particularly of a
Self-Adjoint Operator)

In linear algebra, the spectrum of a quadratic form is defined as the
set of its eigenvalues. Analogously, in the elementary theory of integral
equations the spectrum of an equation is defined as the set of eigenvalues
of the equation, i.e., the set of eigenvalues of the corresponding integrak
operator. In this case it turns out that certain nonhomogeneous equatio
(vector or functional) containing a parameter A are uniquely solvable for
any right member if A does not belong to the spectrum. These equations§
are not usually solvable if A belongs to the spectrum.

We turn now to some general considerations. Suppose that we ard
given a closed linear operator T defined on a manifold Dy which is dens
in H. Let A denote a parameter which can assume any complex value a
consider the operator equation,

If - Af =g.

The study of this equation reduces to an investigation of the linear manifol
4,(%) which consists of the vectors (T — AE) f where f runs through Dy,
Thus, 4,(2) is the range of the operator T — AE. It can be expressed if
the form 4;(3) = (T — AE)D,. The operator T -AE = T, defines §
correspondence (not necessarily one-to-one) between D, and 4,(2). If th
correspondence is one-to-one, then the operator T — AE has an invers§
operator (T" — AE)-' with domain 4,(}) and range D;. b
DEFINITION 1: [f (T — AE)"" exists and is a bounded operator define
everywhere in H (d4,(X) = H), then X is called a regular value (or regulaf
point) of the operator T. All other points of the complex plane comprise the
spectrum of the operator T.
In each of the cases mentioned above, which are related to lines
algebra and the elementary theory of integral equations, the spectrum of
an operator consists of all of its eigenvalues. But, in more general situs
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t1ons, the collection of eigenvalues does not exhaust the spectrum. Indeed,
I'heorem 1 stated below characterizes the eigenvalues of an operator T
ns the complex numbers A for which either the operator T — AE does not
have an inverse, or (T — AE) ™! exists but is not a bounded operator defined
on all of H.

THEOREM 1: The correspondence between Dy and A(X) determined
by the operator T — AE is one-to-one if and only if X is not an eigenvalue
of the operator T.

Proof: If the operator T — AE does not determine a one-to-one
correspondence between D; and 4,2, then there exist f;, f:€ Dy such

that f; £ f; and
Th—M=g Ifi — My =8.

If=2f,

where f = f; — f; £ 0, so that A is an eigenvalue of the operator 7. The
proof of the converse assertion is also simple and is left to the reader.

Instead of considering the general case, which includes all possible
hypotheses concerning the operator (7 — AE)~' and the domain 4,(}),
we restrict ourselves to the important special case in which the original
operator is self-adjoint (we shall denote this operator not by 7, but by 4.)

THEOREM 2: The number A is an eigenvalue of the self-adjoint operator
A if and only if

C'onsequently,

Z,)#H.
Proof: Let A be an eigenvalue of 4, so that
Af=Af  (f#0).

‘I'hen, for each he D,

(f,{4 — AE} h) = (Af — Af,h) =0,

fL4,M.
But this is possible only when 4,(3) # H. We suppose now that 4,(A) 7 H.
‘I'hen there exists a nonzero vector f which is orthogonal to the manifold
1,(2). Therefore, for each 2 e D,
' (/,{A—2E} h) =0.
It follows that fe D,. and

which implies that

A =17

Af =1,
1¢c., 4 is an eigenvalue of the operator A. Finally, 1 = A because the eigen-
vilues of a self-adjoint operator are real.

But A* = A4, so that
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We note that in the course of the proof of Theorem 2, we have proved
the following proposition.

THEOREM 2*: The eigenmanifold of an operator A corresponding to
eigenvalue X is the orthogonal complement of the linear manifold 4,\)m
(4 — AE)D,.

THEOREM 3: Nonreal points X in the complex plane are regular point
of a self-adjoint operator A.

Proof: The number A = ¢ + in (3 7 0) cannot be an eigenvalue
the operator 4. Therefore, on the basis of Theorem 1, the operatof
(4 — AE)~! exists. Letting
we obtain
1818 =({A ~ ¢E} [~ inf, {4 — €} — inf)=

= {4 — EE}f1? + in({d — EE} £, ) — in(f,{A — ¢E} /) + *| fI*=

=11{d — ¢E}f1I* + * 1A%,

whence
171 s gl
[9]
ie.,
I(4 —AE)"'gl| ganlngn.

Since this relation is valid for every g € 4, (%), the operator (4 — AE)~
is bounded. By Theorem 2 and the fact that A is not an eigenvalue of the
operator A, ]

L0 =H. ,
It remains to show that the manifold 4,(}) is closed. Supposing that!
4,2 # 4,(0) we extend the bounded operator (4 — AE)~' by co
tinuity to 4,(2). This extension coincides with the closure of the operato
(A — AE)~!, which therefore is not closed. But this is impossible because;
the closedness of the operator 4 implies the closedness of the operator’

(A4 — AE)-\. ‘

COROLLARY 1: The spectrum of a self-adjoint operator is a subset o/h
the real axis.

COROLLARY 2: A regular point of the self-adjoint operator A can beé?
defined as a value of the parameter X for which 4,()) = H.

Proof: If X is nonreal then it is regular by Theorem 3. If A is real and
4,(2) = H then, by Theorem 2, A is not an eigenvalue of the operator A.;
Therefore, by Theorem 1, there exists the inverse operator (4 — AE) ' de-
fined everywhere in H. This operator is self-adjoint and consequently!
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{+1 the beginning of Section 41) it is bounded, so that Definition 1 applies.

Now, without contradicting Definition 1, we can use the following
delinition.

DEFINITION 2: If A is a self-adjoint operator, then the point X is a
regular point of A if 4,(X) = H and X is a point of the spectrum if 4 ,()) #H.

A further refinement of the concept of the spectrum of a self-adjoint
aperator is given by the following definition.

DEFINITION 3: We say that the point X belongs to the point (discrete)
spectrum of the self-adjoint operator A if 4,(X) #H and A belongs to the
continuous spectrum if 4 (X) % 4,(3).

The possibility that A belongs to the point spectrum and also to the
continuous spectrum (for 4,(A) # 4,(0) # H) is not excluded.

On the basis of the theorem 2, the point spectrum of a self-adjoint
nperator coincides with the set of its eigenvalues.

To complete the present paragraph, we prove the following proposition.

THEOREM 4: The spectrum of a self-adjoint operator is a closed set.

Proof: 1t is sufficient to show that the set of regular points of a self-
ndjoint operator A is open. Let A, be a regular point. Then there exists
n number k > 0 such that

HASf = Aof1t 2 k(IS
for feD,. If 0 <8 §§ then, for |A —X| £ 8 and feD,,

AL = A1 Z 1AS = Xfll — 811 ;lzkau.

‘Therefore, in the first place, A is not an eigenvalue of the operator A,
so that 4,(A) = H, and, in the second place, the inverse operator (4 —AE) !
is bounded. The equation 4,()) = 4,(}) is a result of the fact that 4 is
closed. Thus, every point A such that |A — A)| £ 8 is regular, and the
theorem is proved.

44. The Resolvent

As in the preceding Section, we begin with an arbitrary closed linear
operator T, the domain of which is dense in H, and specialize later to a
self-adjoint operator 4. The operator R, = (T —AE)~?, which depends
on the parameter A, is called the resolvent of the operator 7, and is de-
fined for all the values A for which it exists and for which its domain of
definition, i.e., 4.(), is dense in H.
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For each regular point of the operator T the resolvent R, is a bound
operator defined on the whole space. The operator R, determines a one-
one correspondence between 4.() and Dr. In particular, if A is a reg
point of the operator T then Rh = 0 if and only if 4 = 0.

THEOREM 1: For any two regular points A and y of the operator T thh
equation,

R,—R,=(u —NR, R,
is satisfied. (This is the so-called Hilbert relation.)

Proof: Since A and p are regular points of the operator T we haw§
for each he H, *

Rh =R, (T — pE) Rih,
RA=R,(T—AE) Rh.
Subtracting the first equation from the second, we get the desired relatiof

From the Hilbert relation follows the commutativity of the resolven

corresponding to any pair of regular values y, A:
R,R, =R, R,.
This is a special case of the following general proposition.

THEOREM 2: In order that the operator T commute with a given boundd
operator S which is defined everywhere in H, it is necessary that S co ,
with the resolvent R, = (T — MAE)~1! for each regular value A, and it is suf
cient that S and R, commute for at least one regular value . A

Proof: We suppose first that the operators 7 and S commute, i.c., th

TSf=STf
for fe Dr. If Ais a regular point of the operator T and

S=R\h, y
then f runs through Dy as A runs through H. But, the commutativity of th
operators T and S implies that

(T—AE)Sf=S(T —AE)f
for each fe Dy, which yields
R(T —AE)Sf=R,S(T —AE)f.
Since R(T — AE) = E and (T' — A E) f = h, we obtain
SRh = R,Sh.
Since proof of the second part of the assertion is quite simple, it is omitted
We turn now to an arbitrary self-adjoint operator 4. We shall defin§

its resolvent also for eigenvalues (i.e., for points of the discrete spectrum

after which the resolvent of 4 will be defined for all points of the A-plang
With this aim, we assume that A’ is an eigenvalue of the operator A
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and we denote by G, the corresponding eigenmanifold. As we know,
¢i, reduces the operator 4. Let 4’ be the restriction of the operator
110 HO G, = H’. It is easy to see that 4’ is a self-adjoint operator in
i1” for which A’ is not an eigenvalue. We define R, by
R,.=(A'"—XE)™ .
| he domain of the operator R, is the manifold 4,(}'), which is dense in
I1'. The manifold 4,.(") consists of all vectors which can be represented
in the form
(A" —XNE)f'=(4—XNE)f,
with f” € D,.. But it is easy to see that this manifold also consists of all
vectors of the form
A4 —-XNE)f
tor fe D,. Thus,
4,(X) = 4,(X).

| he range of the operator R, is obtained if D, is projected on the ortho-
gonal complement of the eigenmanifold corresponding to X'.

The manner in which the resolvent R, of a self-adjoint operator de-
prnds on the value of the parameter A is shown in the following table :

A is a regular point of the R, is a bounded operator
the operator. defined everywhere in H.

A belongs to the point spectrum,
but does not belong to the con-
tinuous spectrum.

R, is a bounded operator
defined on a set which is not
dense in H.

A belongs to the continuous R, isanunbounded operator
spectrum but does not belong defined on a set which is dense

to the point spectrum. in H.

A belongs both to the point spec- R; is an unbounded operator
trum and to the continuous defined on a set which is not
spectrum. dense in H.

To complete the present section, we show that

(D (RY* =Ry
i and only if A does not belong to the point spectrum of the operator
(if it does, then the operator R, does not have an adjoint). If A is real,
then R, = (4 — AE)™! is a self-adjoint operator, and (1) is obvious.
Suppose A is not real. Then, for f, g € H,

(R.f,8) = (Rif, {4 — AE}Rsg) = ({4 — AE} R, f, R;g) = (f, R:g),

which implies formula (1).
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45. Conjugation Operators*
A conjugation operator is an operator I defined on H such that
) ufly =19,
2y Brf=f
forf, ge H. From 2)it follows that the range of the operator Iis the whole
space H. In fact, each vector 4 € H can be represented in the form & = Ig

merely by taking g = Jh. Instead of the usual linearity, the operator J
has the following property, which is sometimes called conjugate linearity:

I(af + Bg) = alf + Blg.

g=1h

Indeed, letting

in 1), we get
df, by = (1, Ih.
It follows that
(I(af + Be), ) = (of + Bg,Ih) = a(f, Ih) + B(g, Ih) =
= a(If, h) + Blg, ) = (aIf + plg, h),
and the assertion is proved.
An example of a conjugation operator in L? is the operation of trans]
sition to the complex conjugate function:
I (1) = o (2).
For each conjugation operator in a separable space it is possible to sel
an orthonormal basis {¢,}{° such that if

X0
f= ;lxk €xs

If =2 %e.
k=1

The proof of this simple fact we leave to the reader.

DEFINITION: A symmetric operator A is said to be real with respec

to a given conjugation operator I, if the operators A and I commute, i.e,

iffe D, implies that If € D, and ’
IAf = Alf.

THEOREM: If R, is the resolvent of a self-adjoint operator A whic

is real with respect to a given conjugation operator I, then for each nonreal |

(1) R,=IR}I.

¢ The results of the present section will be used only in Appendix II.

then
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Proof: We apply the conjugation operator to both members of the

cquation

(A—AE)R,=E
lo get

I(A—2E)R, =1
Since A is real with respect to 7,

(A—-2E)IR, =1
Now we apply to both members the operator IR;. This gives
R, =1IRs 1

Since Ry = R¥, the proof is complete.

If T'is a linear operator with domain dense in H and [ is a conjugation
operator, then, by analogy with the terminology of the theory of matrices,
the operator IT*I = T’ is called the transposition with 7. Now (1) can
be written in the form

R, =R,

46. The Graph of an Operator

We consider the set of ordered pairs { f, g} where the abscissa fand the
ordinate g run through the Hilbert space H. A vector space is defined on
this set by means of the equations

off,g} ={afiag}, {fi8} + {fo8a} ={/i +/o81 + &1}
{the zero element is {0, 0}). With the scalar product defined by

({fl’gl}’ {fz;gz}) = (j'bﬁ) + (gl’gz)
this vector space becomes a Hilbert space, which we denote by H.

Let T be an operator in H. Then the set M( T) of all points of the
torm { f, Tf} is called the graph of the operator T. Every point of the set
M (T) is determined uniquely by its abscissa. Conversely, if all the
points of a set M in H are determined uniquely by their abscissae, then M
in the graph of some operator in H.

Whether or not an operator is ‘closed is reflected in a very simple
munner by its graph. In fact, an operator T in H is closed if and only if
itv graph M ( T') is a closed subset of H. Starting from the fact that every
anbset of H has a closure one might be tempted to infer that every operator
! has a closure. The fault in this reasoning is that the closure M ( T') of
the graph of T may contain points which are not determined uniquely
hiy their abscissae. In this case, M (7") is not the graph of any operator.
However, if the set M (T) does not contain two distinct points with identical
abscissae, then the operator T has a closure T and M (T) = M (T).
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Letg = fto get
0=(USN+ULT*TN=(LS) + (TS TS). |
This equation yields f = 0, which implies that 4 = 0. Therefore, Dyed
is dense in H. It follows that T * T and, hence, £ + T* T are symme
operators. But, according to what has been proved, the range of the
operator E+ T*T is the whole space H. Therefore (cf. Section 41),
E + T* Tis a self-adjoint operator. Since ;
T*T=(E+T*T)—E, _
T* T is self-adjoint. This completes the proof. Under the conditions of

the theorem, it is proved in the same way that T T* is a positive self-adjoing
operator.

47. Matrix Representations of Unbounded Symmetric Operators

The present paragraph is essentially an extension of Section 26. W
assume again that the space H is separable and concern ourselves with the
question of the matrix representation of an operator 4. The operator A4 i
now unbounded, symmetric and closed.

As in Section 26, we select an orthonormal basis {¢;};° in H, whi
is no longer arbitrary but must belong to the dense subset D,. Let

(1) Ae, = ¢, k=1,2,3,..)
and

)] (Aey, €) = ay G,k=1273,...)

We shall attempt to recover the operator A from its values for the vectors)
e, or, what is the same thing, from the matrix (a,).

With this purpose in mind, we introduce the linear envelope L =
L(e,, e, es, . . .) of the set of all vectors e, (k = 1, 2, 3, ...). Let B denots;
the linear operator defined for ¢;, k 2 1, by ‘

A3) Be, = ¢, k=123..)
and extended by linearity to L. Thus, the domain Dy of B is the linea|
manifold L. Since 4, = ay, B is symmetric. In view of (1) and (3),
is a closed extension of B. Therefore, the closure (the minimal closed]
extension) B of B satisfies the relation |

B < 4. ]
If a closed linear operator has the matrix representation (a,) with respect’
to the basis {¢,}* then this operator must be B rather than any of its closed
extensions, which also satisfy (1) and (2). It is possible that B = 4, In]
this case we say that the operator A is represented by the matrix (a,) with
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1espect to the basis {e,}°. A change of basis {e,};> changes the matrix (ay)
und the operator B. Therefore, the question arises: given a closed sym-
mulric operator A is it possible to find an orthonormal basis {e.}; with
1espect to which B = A4, i.e., with respect to which the operator 4 has a
mtrix representation? Below (Theorem 3) we answer this question in the
sllirmative.

DEFINITION: An orthonormal basis {e,} is called a basis for a matrix
representation for a closed symmetric operator A if:

1. the elements of this basis belong to D ,; and

2. there is a minimal closed linear operator which assumes the value
Ac,aten,k 2 1.

In contrast with Section 26 we have not considered yet the question
of the construction of the components of 4f from those of /. The follow-
ing two theorems are devoted to this question.

THEOREM 1: Let A be a closed symmetric operator; let {e;} be an
urbitrary orthonormal basis, the elements of which belong to D,; and,
finally, let

(Ae, e) = ay G,k=12,3...).
I'hen the value of Af for each f € D, is given by the formulas

) Af= Zy e

@) » =k°'§a,kxk (i=1,23..)
{

(5) f=’;lxkek-

Proof: The proof follows from the equations,

¥ =(Af, &) = (f, dey = é(f, e0) (e Ae) =

—S(fe)(ewe) = Taux (=123, ...

THEOREM 2: Let A be a closed symmetric operator; let {e,}y be abasis
Ivr a matrix representation of A; and let

ay = (Ae, &) (L k=1,2,3,..)).
Fmally, define the operator T by the relations

szzzieb
i=1

@
Z; = Eaikxk
k=1
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on the set Dy of all vectors
f= klek €k
Jor which

L

1D ay xi|? < oo.
i=1 k=1
Then T = A*, ie., Tis the adjoint of A.

Proof: We prove first that

6,) A* < T.

Let g € D, . and A*g = g*. Letting

®© ®©
—_ * __
g —kzl:xk €k, g = zl:zlel’
- i=-

we obtain
z=(g*, &) = (g, Ae) =k2-:1(g’ e (e, Ae) =
= kEl(g, ) (Aey, €) =,‘Z_:la,kxk-
We also have

[ <)
IZ}M T=|g*|* < oo

Therefore, the vector g belongs to Dy and Tg == g*, so that relation (6
is proved. In the proof we did not use the hypothesis that the basis {e}{
is a basis for the matrix representation of 4. We now prove that ‘

4

(64) T < A*,
Letting g e Dy and
g = klekek
we obtain

(Ae, g) = Z)?k (de, &) = ;akljk-
=1 =t
But since
(Tg,e) =kZla1k Xk =kEldk' Xk
we also obtain

, (Ae;, 8) =(Tg,e),=(e;, Tg).
It follows that

M (4f.8) =(/,T3)
for each f in the linear envelope of the vectors ¢, (i = 1, 2, 3,...). But
since {e,} % isa basis for a matrix representation of the operator 4, equatior
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t/) holds for feD,. Hence, geD,, and A*g = Tg, so that relation (6,)
i cstablished. Since relations (6,) and (6,) yield T = A4*, the theorem is
proved.

We remark that Theorem 2 yields the equation

®) i ( i QX )y; = i X ( iakl »)

where 1t is assumed that the vector Zxkek belongs to D, and that the
vector Z ¥, ¢, belongs to D .. Equatxon (8) can be expressed in the form

i; ( I;laz W = g:l(g:latk VX

Il the reversal of order of summation which this equation indicates is
vuhid for every vector in D ., then the operator A* is symmetric. In this and
ouly this case Aisa self-adjoint operator.

The above theorems indicate why matrix representations of symmetric
nperators cannot be based on formulas of the form (4,), (4,) and (5), as
wus done in Section 26 for bounded operators.

The possibility of the matrix representation of an operator is equiva-
lent to the property that the operator can be recovered from the matrix.

THEOREM 3: There exists a basis for matrix representation of each
vlosed symmetric operator A.

Proof: We prove first that there exists a sequence {f;};° < D, such
thut, for each fe D, there is a subsequence {f;};>, for which

lim f; =f, lim Af,, = Af.
i~ i~—>

After this, in order to complete the proof of the theorem it remains only
(o orthogonalize the sequence { f;}7°. As a preliminary to the construction
of the sequence {f;};°, we choose an arbitrary sequence {#};° which is
dense in H. If for a triple of integers, (m, n, p), there exist elements fe D,
antisfying the inequalities

Ik, — %, lhn —Afl s 1

then we associate with this triple any one such element f and denote it
b frnp Since {h}y is dense in H, this defines an infinite sequence
{ fa,t- The possibility that a triple (m, n, p) might not have a correspond-
g clement, or that the same element might correspond to different triples
will not matter in what follows. We enumerate the elements f,, , , in order
1v obtain the desired sequence { fi}°. For the proof we choose an arbitrary
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element of fe D,, an arbitrary number &> 0, and any integer p’ 2 _2é

Since the sequence {#,};° is dense in H there exist integers m’, n’ such that

i
¢

1
©) W =11 S 5 i — Af1 S 5. !
? P .
In view of (9,) the triple (m’, n’, p) has an associated element f,, . - such %
that
O M o | S oy = Af | S .
p p

From (9,) and (9,) it follows that

ISy =S S & N Afppe e — Af | S &
Since ¢> 0 is arbitrary, the existence of the required subsequence { /. }/2,
is established, so that the theorem is proved.
We have proved that to each closed symmetric operator there corre-
sponds d (Hermitian) matrix which represents the operator in terms of
some basis. However, not every Hermitian matrix defines a symmetric

operator.
THEOREM 4: If the Hermitian matrix (a,) satisfies the relations
(10) laplt< oo (k=1,2,3,..)),
i=1

then, in terms of each orthonormal basis, it defines a closed symmetric
operator.
Proof: Tt suffices to let

Ae, =Zalkei (k=1,2,3,...)
i=t

and then to construct the operator B by the method indicated at the begin- |
ning of the present section. i

The Hermitian matrices satisfying condition (10), but which are not
bounded, are called unbounded Hermitian matrices. An unbounded |
Hermitian matrix (a,.) does not admit, in general, a transformation by an |
arbitrary unitary matrix by means of the formula

(@) = (uy) * (a) -+ (ug)- 3
If the corresponding infinite series converge so that such a transformation |
is formally possible, then it can happen, nevertheless, that the transformed
Hermitian matrix (&) does not satisfy condition (10) and hence does not
determine an operator in H. Moreover, even if the transformed matrix '
satisfies condition (10) then the operator A determined by it may not coin-
cide with 4. (It is remarkable that the intersection D, N D; may turn
out to be empty.)
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These various possibilities form the foundations for the so-called
pathological properties of unbounded Hermitian matrices.® These proper-
ties make matrices unsuitable for the study of unbounded symmetric
operators.

48. The Operation of Multiplication by the Independent Variable

If [a, b] is a finite interval, then the operator Q of multiplication by
independent variable is defined for each function ¢ = ¢(f) e L¥a, b) by the
equation

(¢)) Qo) =19(2).

In this case Q is a bounded self-adjoint operator, the norm of which is
equal to the larger of the numbers {a | and | b]. If [a, b] is an infinite
interval, then the multiplication operator Q is defined by formula (1) on
the manifold D, of functions «(t) € L¥a, b) such that ¢ ¢ (r) € L%a, b).
This manifold D, is dense in L%a, b) since it contains the set D of all
functions in L2a, b) each of which vanishes outside of a finite interval
(the interval depending on the function). If [a, b] is an infinite interval
then it is evident that Q is an unbounded symmetric operator. We show
now that Q is self-adjoint.

Let ¢ € Dy. and ¢* = Q*¢. Then for each.¢ € Dy,

(@ %, ¥) = (o, ¥%).

Equivalently,
b

b
[1e0¥®d = [ 20Dt
or

b
fep(t) {t4 () —$*(@)} dt = 0.
The last equation holds, in particular, for any function ¢(¢) in L¥*a, b)

which vanishes outside of a finite interval. Therefore, for any finite « and
B in the interval (g, b),

B
f o(t) {£9(0) — $*(t)ydt = 0.

It follows that, for almost all ¢ in [a, b],
¥ () =14(0).

ty () eL¥a,b),

Hence

¢ Cf. J. v. Neumann [1].
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and

$ € Dy, ¥* =0y .

This argument shows that Q* < Q. But since Q < Q* by the sym-
metry of Q, we have Q = Q*. From the equation Q = Q* it follows, in |
particular, that Q is closed. ]
If we restrict the multiplication operator to a smaller domain, i.e., ]
if we define an operator Q, by

O.9(f)=te(t), Dy, =D,

where D < Dy, then the above argument yields

or=0.
It follows that (cf. Section 46)

Q=0*=0*=0,
i.e., the operator Q defined originally is the closure of the operator Q,. |
The operator of multiplication by the independent variable does notj
have any eigenfunctions. Since '

Qo=2A¢
implies that

b
[11=2ple @1 =0

we have ¢(f) = 0 almost everywhere, i.e., ¢ = 0.
All points of the interval [a, b] belong to the continuous spect
of the operator Q since the manifold
4,0 =(Q@ —AE)D, (a<A<b)
consists of all functions ¢(#) in L*a, b) which remain in L%(a, b) aftes
division by ¢ — 2; i.e., ¢ € 4,(2) if and only if
¥(H) e L¥a, b)

and
%)i ¢ L¥a, b).

It is evident that 4,(2) is dense in L*(a, b). But it does not coincide with
L*(a, b) because, for instance, it does not contain a function equal ¢
one in a neighborhood of the point ¢ = A. |

The subspace M = M, of functions in L*(a, b) which are equal to zend
outside of some fixed point set e < [, b] evidently reduces’ the operatol
Q. If ¢eL¥a, B), where 8 — a < ¢, then the operator Q satisfies
inequality,

7 It is not diﬁicﬁlt to prove that all subspaces reducing the operator Q have this form.
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| Q9 — A ll = €l @l

for each fixed A, in the interval [a, 8]; i.e., Q differs by not more than ¢ in
norm from the similarity transformation A,E. Thus, decomposing the
mferval [a, b] into subintervals of sufficiently small length, we get a decom-
position of the space L¥a, b) into a countable sum of subspaces, each
teducing Q and in each of which the operator Q differs by an arbitrarily
small amount from a similarity operator.®

It is possible to consider the operator of multiplication not only
by the independent variable but also by a function of it. We restrict our-
weives here to one particular case. Let the operator U be defined on all
functions ¢(¢) in L¥0, 2=) by the equation

Ug(t) = €9 ().
buch element of the orthonormal basis {_Te‘ } is transformed

k= -
hy the operator U into the following element:
Ue* = e+ (— oo <k < o0).
From this fact it follows that the operator U is unitarily equivalent to
the operator U, defined in a separable space H in Section 40. Indeed, if
we define the isometric operator ¥ which maps H onto L¥0, 27) by the
equation

2 Ve, —We"“ (— o0 <k < o),

U=VU,V-1

This representation of U in terms of U, will be used to find the (infi-
nitely many) subspaces which reduce U,.* We shall base the derivation
on the following general proposition (the proof of which is left to the
ieader).  If the subspace G of the space H reduces a linear operator T,
and if the operator T, defined on the space H, is unitarily equivalent to the
operator T(Ty = V' T V1), then the subspace G, = VG of the space H,
reduces the operator T;. According to thxs proposition the class of sub-
spaces reducing the operator U, includes the set G,, which consists of all

the elements
SO =V"9()

such that ¢(f) = 0 outside of the arbitrary subset e of [0, 2=] and the oper-
ator V is defined by formula (2).

then

* In Chapter VI we shall prove that every self-adjoint operator has an analogous approximate
.\uohme%osmon into a similarity transformation. This fact plays a fundamental role in all of
the t

*Cf. theend of Section 40.
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In conclusion we note that, in place of the multiplication operate
Q in the space L*(a, b), one can consider the operator Q, of multiplicatiof
by an independent variable in the space L¥(a, b). It is not difficult to verif§
that Q, is a self-adjoint operator. We propose to the reader as us
exercises the proofs of the following propositions.
(a) The real regular values of the operator Q, are the points of constan
of the function o(z).
(b) The eigenvalues of the operator Q, are the points of discontin
of the function o(2).
(¢) The continuous spectrum of the operator Q, is the set of all not
isolated points of increase of the function o(f). y
The operators Q, play a special role in the theory of self-adjoit
operators: in Chapter VI we shall see that the study of any self-adjoin
operator can be reduced to the study of the operators Q,.

49, A Differential Operator

We shall consider the differential operator P in L*a, b) which is d |
fined by the equation
P —_ 1 —
et dt
for each function ¢(t) in its domain D,. A function ¢(¢) belongs to
domain D, if certain conditions, given below, are satisfied. :
(A) If ¢ € D, then the function ¢(¢) is absolutely continuous on ead
finite subset of the interval [a, b], and both ¢(f) and ¢’(¢) belong to L¥a, b);
We examine separately the cases of a finite interval [a, b], a semi-axis, a

besides condition (A), also satisfy certain boundary conditions (B).
1°  Finite interval. In this case we assume that the interval is [0, 2#
and the boundary conditions have the form :

0:)) ¢(0) = 9 (2m) =0.
The set D, of functions satisfying conditions (A) and (B) is evidently

dense in L0, 2n). Then P is a symmetric (unbounded) operator, sino#
2n

(Posh) = [ 19 B :

4

27
= e ¥ — 2@ FO + [ o) FFD) dt
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lor 4, 4 € Dp. This equation implies that

(P o, $) = (v, PY),
sin e the integral expression vanishes. The integral expression vanishes
sl 1 case ¢ belongs to D, and ¢ satisfies only the condition (A). Hence,
every function ¢(¢) satisfying condition (A) belongs to D,., and

P*y(t) =id'(2).
Cunversely, let ¢ € Dp. and P*¢ = ¢*. Then, for each ¢ € D,,

27
(Py, ) = (o, ¥*) = f oD FFD dt —

— iffp(t) dﬁ,{ - f i y*(s)ds + c} dt,

where C is an arbitrary constant. Integrating by parts we get

) Ped= Ti«o'(t) (- fw*(s) ds + |,
0 0

since ¢(2) vanishes at the end-points of the integral. From (1) it follows
tlt, for ¢(t) € Dp,

) f "ep'(t) { (e + f i y¥(s) ds — c; dr =0.

We¢ define C by the equation
2n

[{#@ + [14%9yds — c}ar =0
nud substitute for (:p(t) the f:nction
w) = [{4@ + [ipr@ds -} o,
which evidently belong: to Dp. Tohen (2) assumes the form
2n :
f 10 +fi¢*(s)u; —Cprdr =0
winch yields ’ ’ ‘
b (t) + J'i.p*(s)ds —Cc =0,
0
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Therefore, for almost all ¢,
iP'(1) = ¢*(1).
We have proved that the domain of the operator P* is the set of all
functions ¢ () satisfying relation (A), and that

P* (1) =i’ (2).
From the proof of these facts it follows that the symmetric operator P is
not self-adjoint; in fact, the functions in D, must satisfy two conditions
(A) and (B), whereas the functions in D,. must satisfy only the condition
(A).
We prove now that the operator P is closed. In place of a direct proof,
we proceed, first, to prove that (cf. Section 46)

P** =P
From the relation
P < p*
it follows that
P** e P*

Therefore the functions x(f) in D;.. satisfy condition (A) and ’

P**(1) = ix'(1).
Hence, for each ¢ € D;.,

27 27
[s0R®d =@ Pron =P 0 = [ 140 xDdr =
0 0

=i[$(2m)x(2m) — $(0)x (0) 1+ | ¥ ix' (D dt,

which implies that

$Q2m)x @) — $(0)x ) =0. |
Since the values of ¢ (0) and ¢ (2n) are arbitrary, this equation is satisfied
if and only if

x(0) = x(2m) =0,
i.e., if x(f) e D, We have proved that

P¥* c p,
Since the reverse relation

P Pt P**
always holds, we have

P = p*~.

This equation implies that the operator P is closed.
If we replace (A) and (B) by more rigid conditions, requiring, for
example, that the functions in the domain of the operator be repeatedly
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(or even infinitely often) differentiable and that these derivatives vanish
for ¢t = 0 and ¢ = 2n, then the closure of the operator is P. In order to
be convinced of this fact one may verify that the adjoint of the adjoint
of the new operator coincides with P.

However, it is possible to strengthen (A) and (B) to such an extent
that the closure of the operator obtained does not coincide with the operator
P. For example, if we leave condition (A) unchanged, and replace condition
(B) by

?(0) =¢(mM) =927 =0,
then the operator P, obtained turns out to be closed, but P,7%=P (of course,
P, < P).

In this connection we remark that the subspace of functions in
L¥O0, 27) which vanish for = <¢ < 2= (we can identify this subspace
with L¥0, =) ) reduces the operator P, but does not reduce the operator P.

We now look for the symmetric extensions of the operator P. Let P
be one of them. Since P < P* the functions in D; satisfy relation (A).
Hence, for all functions ¢, ¥ € Dp we have

2w 2
(Po, ) = [ 19/ () WD) dt = il @m0 — #O)FO1 + [ D) dt =
o o
=i[@(27) ¢ (2m) — 9(0) ¥ (0)] + (9, P ¥).
Since the operator P is symmetric, it must satisfy the relation

3) e(2m) ¢ (2m) — ¢(0) ¢ (0) =0.

Since P # P, there exists a function ¢, (f) in D not satisfying relation

(B); assume, for the sake of definiteness, that y, (27) 0. Letting ¢ (¢) =
¥ (¢) in (3), we obtain for each function ¢ (¥) € Dj the relation

(B) ?(2m)=09(0)
where o
g O
Yo(2m)

Since condition (B) holds for ¢(¢) = ¢(t), we must have | 6 | = 1.

Our result may be stated as follows: all functions ¢(f) in Dz must
satisfy conditions (A) and (B), where for each extension P the constant 6
has absolute value one.

We now prove the converse: every function y(z) which satisfies condi-
tions (A), (B) belongs to D;. With this purpose in mind we select a con-
stant o such that

$(0) —aihy(0) =0
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and we let

?(0) =4 (1) — a (1)
It is easy to see that ¢ (7) satisfies conditions (A) and (B) and, hence, belongs
to D,. But, since D, < Dj;, we have ¢(¢) € Dj, so that the function

P (1) =9(t) + aho(2)
also belongs to Dj.

Thus, the symmetric extensions P of the operator P are characterized |
by conditions (A) and (B). The extension of the operator P has led to a
weakening of condition (B).

In view of the fact that each extension is determined by a number
6(| 8 = 1), which appears in (8), we shall write P, instead of P. It is
not difficult to verify that D, consists of the functions ¢ (¢) in D;. such that |

9(2m) 4 (27) — 9(0) $(0) =
for each ¢(s) €D, Hence it follows that Dy and D, coincide, so that
every extension P, of the operator P is a self-adjoint operator.

We now determine the spectrum of the operator P, (for simplicity
only for 8 = 1). The equation

Pip =29
implies that
io'(t)=2a9(t)
and
?(27) = 9(0).
Hence
A = Ak = k

o) =) =e™* (£k=0, 1,2,..)).
It is not difficult to verify that for A £ A, the equation

(Pr—AE)f =g
or, equivalently, the equation

if'@—-rAO=g0 /27 =1(0)]
is solvable for each function g(¢) € L¥0, 2=). Hence, P, has no continu-
ous spectrum.
2°  Semi-axis [0, o). If the function ¢(t) satisfies condition (A)
in the case of a semi-axis, then the product ¢(#)¢'() is absolutely mtegrable

on this interval. The formula
1 1

[+07@ds = a1 1201~ [ () o0 ds

0 0
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shows that | ¢ (¢) | has a limit as £ — oo, But, since ¢ (¢) € L? (0, oo), we
must have
lim ¢(r) =0.

o> 00
As we see, the boundary condition on the right end of the semi-axis is
automatically fulfilled.
For the second condition in the definition of the domain D, we shall
require that
(B) #(0) = 0.
For every ¢, ¢ € D, we have

w©

o =i OFO = [ o) FDd = o, PY).
0 0
Hence P is a symmetric operator.

As in the case of a finite interval it is not difficult to show that Dj.

is the set of all functions satisfying the single condition (A), and that
P*y =iy’
Thus, P # P*, so that the operator P is not self-adjoint.

In contrast with the case of a finite interval the differential operator
on the semi-axis does not have a symmetric proper extension. In fact the
domain of definition of such an extension 2 would have to contain a func-
tion ¢4(¢) which is different from zero for 1 = 0. But then we would have

(Phor ) =i [ ) Vo) ds = i1 4sQ) 2 + [ 4o(s) FGs) ds % (o, P
0 0

which is impossible. Thus, the differential operator on the semi-axis is
a maximal symmetric operator. Later (cf. Section 82) we shall prove that
it is irreducible.
3° The whole real axis. For each function ¢(¢) satisfying condition
(A) the boundary conditions
limo()=lime(¥)=0
t— -

1> 0
are automatically fulfilled. Therefore, the domain of D, is defined by the
single requirement (A) and it is proved without difficulty that P is a self-
adjoint operator. The operator P has no eigenvalues because the equation

does not have a nontrivial solution in L3(— oo, o).
We now establish a connection between the operator Q (of multipli-
cation by the independent variable) and the operator P. From this con-
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nection it will follow that every point of the real axis belongs to the con-
tinuous spectrum of the operator P. The connection between the two
operators amounts to the fact that they are unitarily equivalent. To show
this we shall use the r:lations

W (0) =ﬁ _ l ols)e~" ds,

o«

iy (1) =;—/i2_; J- s o(s)e "' ds.

Thus, multiplication of the function ¢(s) by s corresponds to differentiation
of the function ¢ (¢).
THEOREM: The operators P and Q are related by
P=%Q0%!
where & is the Fourier-Plancherel operator. ‘
Proof: The proof consists of two parts. First, we shall show that

h € D, implies that
§heDp, PFh = FQh
and then we shall show that g € D, implies that
§'geDg, F'Pg=0F g

Let h € Dy. Then
d 1 et —1 ‘
=——e | ———Sh(s)ds =i— 1 ds
@ oMY =5 f kO =i f e = 1phds

and, since h € Dy,

J' |h(s) | ds < oo.
Therefore,
Fh(f) =—L_ J' e~ h(s) ds,
Vom
and relation (4) can be expressed in the form
—_ - ist
§Qh()=id vl f h(s)ds

which implies both the inclusion § 4 € Dy and the equation

FOh =PEh.
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Let us assume now that g € D,. Then

Fe —

FPg(r) =2 = \/2 J' Lie'(s)ds =
_d 1 [{etist—(e"—1) _
= dt'\/Z’r_;[( 5 )g(s)ds_
_d T e"—l —ist _
‘:5;/7—,,f is ()dH-dt\/z f g(s)ds =

e“

g(S)dS= 1 'g(0).

—-—t—

dt \/2

Since the left member belongs to L¥(— oo, o), so does the right member.
Hence, §~'geD, and

§'Pg=0Q% g
Since every real point belongs to the continuous spectrum of Q, the
equation
(@ - AB)g=f
is not always solvable. Hence, the equation,
(@ —AE) §'h =/,
is not always solvable. Neither is
FQR-AE)F h=FSf
which can be reduced to the form
(P—AEYh=f,.

Since P has no eigenvalues, every real point belongs to its continuous
spectrum.

Using the unitary equivalence of the operators Q and P it is easy to
determine the subspaces which reduce P. Each such subspace consists of

the functions
(O =Fe@)

where ¢(¢) is equal to zero outside of some fixed set on the real axis.
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50. The Inversion of Singular Integrals

To begin with let us assume the following important theorem?® from
the theory of functions: for each function g(x) € L¥ — oo, o), the equation

M sw=1 [ 2o

(where the prime signifies that the integral is considered as the principal
value in the sense of Cauchy) has a solution''; the solution belongs to
L¥(— oo, o0), and is given by the formula

@ 0=, [ £2a.

Moreover,

[iraras= [ 1869 s

Therefore, the singular integrals in (1) and (2) define unitary operators in
L¥(— oo, o).

Equations (1) and (2) form a pair of inversion formulas. If we assume
that the first of the functions f (x) and g (x) is even, we find without difficulty
that the second is odd. This leads to the following pair of inversion
formulas in the space L0, <o):

g(x) = 2 f o) x dy,
wd xt—yt
f(x) __J‘ g(,v),v‘dy :
— x ‘?
where ;
[0 rax = [ gy ra. |
Letting ’ ’

xt=s, y*=t, f(x) =F(s), g(x) =1/5G(s),

10 Cf. Titchmarsh (1], page 120.
1 When we say that a function is the solution of the equation (1) we mean that, after the sub-
stitution of this function, the right member exists and equals the left member for almost all x.
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we get
1 FQ@)
G = ;J. 5— tdt’
3 @
_1 -G
FO) =~ j Vil dr.
Therefore,
@ J’\%IF(t)lgdz‘:J‘vilG(’)lgd’-

If we agree to denote the space L? (a, b), where o'(x)=p(x), by the symbol
L¥(p(x); a, b), then we can say that formulas (3) give an isometric mapping
of L’(L_; 0, oo) onto L¥(4/x; 0, oo).
VX
Now we can easily derive inversion formulas for a finite interval. With

this aim in mind we let
_1+x t=1+'v
1—x’ 1—y

in (3) and (4), to get the formulas

J 8x) = lJ.A/l+yxf(—i))
lf(x) le/”;i(y’x y,

©® N— o) edx = N‘—ﬂ 80 dx.

This gives an isometric mapping of the space
/1 —Xx,
2
L ( 1+x° -1 1)

L’( i{—;;—l,l).

)

onto the space
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These formulas lead to an inversion in which, instead of one interval
of the real axis, there is a system of such intervals. We confine ourselves
here to one simple example.!2 Let E denote a point set which consists of
the finite intervals ‘

(al, bl), (ag, b’),. .o (an, bﬂ) (al <b1 <y < b| <... <b1|)
and let

_ (x—b)(x—by)...(x—bn) _ 1
PX)= A= x—a)(x—ay)...(x—an) ) p(x)°

Then the desired formulas have the form

j s@=1["p0) L2 4,
n) y—x
l =1 [ a0 ED &,
E

and

o1 rdr = [al1ge) rax.
E

E

The isometric mapping of the space L% p(x); E) on the space
L¥g(x); E), defined by these formulas, has a curious property. It maps |
polynomials into polynomials of the same power. The proofs and further
generalizations and examples the reader will find in the works cited
above.

18 N. 1. Akhieser {1], N. 1. Muschelishvili {1].




Chapter V

SPECTRAL ANALYSIS OF COMPLETELY
CONTINUOUS OPERATORS

51. A Lemma

The present chapter is devoted to the spectral theory of certain classes
of completely continuous operators. Since it is a direct and easily surveyed
generalization of the corresponding sections of linear algebra and of the
elementary theory of integral equations, the spectral theory of completely
continuous operators represents the most natural introduction to the general
spectral theory of operators in Hilbert space.

In the formulation of the spectral theory of completely continuous
operators, the completeness of the space, as we shall see below, is not
generally exploited. Moreover, by the elimination of the requirement of
completeness, the domain of application of the theory is extended. There-
fore, in the present chapter, together with propositions referring to operators
in a Hilbert space H, there is established a series of propositions concerning
operators in an arbitrary inner product space R. A number of these
propositions are related to the lemma to which the presentsection is devoted.

LeMMA: If {g}3 is an infinite orthonormal sequence of vectors in R and

Agi = B8o + B g1+ . . . + Bu8i (k=123,..),
where A is a completely continuous operator in R, then
lim B = O.
k—
Proof: Letn> m. Then

| Agn — Ag|I2 = |Bangn + . . . + Bom+18ms1 +
+ (Bum— Brm)&m + -+ - + (Bro — Bmo)@ol* =
= |Banl2+ .o 4 [Bums12+ | Bum— Bml®+ - - + | Bio— Bumol® Z |Brnl2.
Suppose that B, does not tend to zero as k — oo. Then there exists an
infinite sequence of positive integers
n<n<ng<...,
such that
|Bam;} 28>0 (j=1,2,3,..)
117
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for some 8. Therefore,

”Agnk —Agn, 2z 8>0
which implies that the infinite sequence of vectors {4gs}>2, does not
contain a convergent subsequence, and this contradicts the compactness
of the set of vectors {4g,}¢’; i.€., it contradicts the complete continuity of
the operator A.

52. Properties of the Eigenvalues of Completely Continuous
Operators in R

The propositions which we establish in the present and following sec-
tions are generalizations of well-known propositions in the theory of
integral equations. In the present section, as its title indicates, operators
are considered in an inner product space R. In the following section, we
shall assume that the system R is complete, so that R becomes a Hilbert
space.

THEOREM 1: If A is a completely continuous operator in R and p > 0,
then A has only a finite number of linearly independent eigenvectors such that
the corresponding eigenvalues exceed p in modulus.

Proof: Supposing the contrary, we assume that there exists an infinite
sequence of linearly independent vectors f» (n = 1,2, 3,...), for which

AfnzAnfn, lAnl> p>0 (n=1,2,3,...).
Orthogonalizing { f»};°, we get the orthonormal sequence of vectors

& = enfy,
82 = aafi + a2 f,

...............

Then
Age = audfi + qdfs + . .o+ agdfi = s fi + ade o+ o+ g S
and, consequently,
Age — Mg = — i+ oo+ a1 — A o =
=Bg1 + Pueg2 + - - - + Brk-18k-1-
Thus,
Ag. = B8 + Bia8a + - -+ + Bri-18k-1 + Mg

By the lemma of the preceding section, A, — 0 as k — oo, which contradicts
the assumption that | A,| > ¢ > O for every k.
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COROLLARY 1: Only the point zero (0) can be a limit point of the eigen-
values of a completely continuous operator in R.

COROLLARY 2: To each nonzero eigenvalue of a completely continuous
operator in R belong only a finite number of linearly independent eigen-
vectors. In other words, each nonzero eigenvalue of a completely continuous
operator in R has finite multiplicity.

COROLLARY 3: Each completely continuous operator in R has only
countably many linearly independent eigenvectors belonging to nonzero
eigenvalues.

THEOREM 2: If A is a completely continuous operator in R and if, for
a fixed X # 0, the equation

) Af —Af=h
has a solution for each h € R, then the equation
) Af —2f=0

has the unique solution f =0, i.e., X is not an eigenvalue of the operator A.
Proof: Supposing the contrary, we assume that equation (2) has a
solution fy % 0. Thus,

Afo= M.
Solving equation (1) with £ = f;, we get a certain vector f;:
Afy =My =f.
Analogously, we find a vector f; such that
Af 2= )‘f 2 =fl-

Continuing this process, we find an infinite sequence of vectors { f;}1* such
that
Afe —Me=fi.., *k=1,2,3,..)).
We also have
Afy — 2y =0.
We show next that the vectors f, (k =0, 1,2, ...) are linearly independent.
Supposing the contrary, we assume that in the sequence of vectors

fm.fl,.f%- .. ,f;‘, ..

the first one which is a linear combination of the preceding vectors is fx, s0
that

3) Sa=afotafit. .. +a1fus
Applying the operator 4 to both members of this equation, we obtain

Afn + fuo1 =aoMo + ay (My +fo) + oot e My +fn—2)-
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This equation and (3) yield

Soar=afotafi+.. . +a, 1 face

which contradicts our assumption. Therefore, the vectorsf;, (k=0,1,2,...)
are linearly independent. Orthogonalizing this sequence, we get the ortho-
normal sequence

8o = “oofo,

&1 = aofo + anfi,

.........

..............

It follows that

Agi = ap Mo+ aa(Mfi + ) + - -+ auMfi +fion) =
=agufotapfit. .. Fawfiot+ A=
=PBo8o+ Bua8r+ ... + Brx-18x-1+ A

Since this equation contradicts the lemma of the preceding section, our
theorem is proved.

COROLLARY 4: If for a fixed X # 0 equation (1) is solvable for each
h e R, then, given h € R, this equation has a unique solution and, consequently,
the operator A — AE has an inverse operator (4 — AE)™,

THEOREM 3: Let A be a completely continuous operator in R and fix
A # 0. There exists a constant L, depending only on A and A, such that if
the equation !

0y Af —Af =h,

with a given right member h, has a solution f, then, for at least one of its °
solutions,

Ifl = LiAl.

Proof: Fix h and assume that (1) has a solution f*. If A is an eigen-
value of 4, let ]

oo S

i
be a complete system of linearly independent eigenvectors of the operator |
A belonging to A. In this case, the general solution of equation (1) has the !
form '

S=f*+afitafet. ...+ af
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where a,, a,, ..., a, are arbitrary complex numbers. We select these
0
numbers so that the norm || | of the vector fis a minimum. Let f denote

0
the solution of (1) with minimum norm. If A is regular then f= f*. Now
let & run through the set M of all vectors for which the equation (1) is
[

solvable. To each vector & € M, there corresponds a minimal solution f.
We must show that!

0
TP
e ATV

We suppose the contrary. Then there exists a sequence of vectors {i}>
such that, as kK — oo

[
el

I e I
[

where f; is the minimal solution of (1) with right member A,. We divide
both sides of the equation

(] [\

Afe =M =h, (k=1,2,3,..))
[

by |l fx Il to get the equation

[ [V
Af;c_Af;¢=h;c (k=1’2’3s°")
where
’ hk 01 _
he=—-,lfl=1 k=1,23,...).
ISl
0
Thus, the minimal solution f; of equation (1) has norm one if the right

member is h;. Since the operator A is completely continuous, there exists
a subsequence

0 0
of {fi} for which the limit
0
lim A4 f,,.
—»o
exists. Since
h,—0
as k — oo, the limit
0
lim 4 f,,'., =g
i—o

1 Translator’s Note: In the displayed inequality f" is determined by A.
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also exists and, consequently,
Ag — g =0

where | g | = 1. Thus, g is an eigenvector of the operator A.

0 0
Both the vector f,,— g, and the vector f;,, are solutions of equation (1)
with the right member 4,. But, because the minimum norm of a solution
of this equation is one, we have, for each i,

0
If—gll z L
Since this is impossible, the theorem is proved.

53. Further Properties of Completely Continuous Operators

THEOREM |: If A is a nonzero eigenvalue of the completely continuous
operator A in the Hilbert space H, then 1 is an eigenvalue of the operator A*.
Proof: Let the vector 4 run through H. Then the vector

g=Ah—

does not run through the whole space, but only through some linear mani-
fold G < H, because the equation

Af —Af=g
is not solvable for every right member g. It is not difficult to see that the

manifold G is closed, so that G is a subspace. Indeed, if ga e G (n =
1,2, 3,...) then, according to Theorem 3 of the preceding section, there
0

exist a constant L and vectors Ay for which

0 0
Ahn—)\hn—_—gn (n=1,2,3,...)
and

0
lhnll S LI gnll n=123,..).

0
If g» — g, then the sequence of vectors {/n}, is bounded and, therefore,
0

it has a subsequence {h,,‘};'i1 such that
0
lim Ah,

i—»®

exists. Consequently,

[
h = lim h,
i—»®©

exists, and we obtain
Ah — 2 h=g.
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Hence, g € G, so that the manifold G is closed. Since the subspace G does
not coincide with H, there exists a nonzero vector f which is orthogonal
to G. Then, for each h € H,

(A4h — M, f) =0
(4h, f) = (Ah,f)

(4h, f) = (b, 11).
This relation shows that f € D . and

A*f=1f.

so that

or

The theorem is proved.

Now we can strengthen Theorem 2 of the preceding section somewhat.
This theorem asserts that if A 20 is an eigenvalue of the completely
continuous operator 4 in R, then the equation

¢)) Af—Af=¢g
is not solvable for every g € R. Supposing that A4 is now defined in the
Hilbert space H, we shall determine the set of vectors g for which equation
(1) is solvable.

THEOREM 2: Let A be a completely continuous operator in H and fix
X £ Q. Then equation (1) has a solution if and only if the vector g is orthogonal
to the eigenmanifold ¥ of the operator A* belonging to 2. If X is not an
eigenvalue of the operator A*, then F is understood to be the null subspace,
i.e., in this case, equation (1) is solvable for every right member g € H.

Proof: Let G be the set of all vectors g having a representation

g = Ah — Ah,

for some h € H. We must show that H © G coincides with the eigenmani-
fold F of the operator A* belonging to 1. Let the vector fbe orthogonal to
G. Then, repeating the corresponding part of the proof of Theorem 1, we

find that
A =1f.
Thus, f € F, which implies that
HoG<cF.
In particular, if 1 is not an eigenvalue of the operator 4* then H © G = 0,

so that G = H and equation (1) is solvable for every right member g € H. It
remains to show that if 1 is an eigenvalue of the operator 4*, then

@) F<HoG.
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Let f e F and let g be any vector of the form

g = Ah — A
Then

(f:8) =(f; Ak — M) = (f, Ah) — A(f.h) =(4*f — 1f,h) = 0.

This implies that £ | G. Therefore, F | G and relation (2) is proved.
At the same time, the theorem is proved.

The reader familiar with the elementary theory of integral equations
will recognize that the propositions established above are generalizations
of two theorems of Fredholm.

A generalization of a third theorem of Fredholm is also valid. It is
formulated as follows: the eigenmanifolds of the completely continuous
operators A and A* belonging to the characteristic values A and 1 have the
same dimension. We shall not prove this theorem.

54. The Existence Theorem for Eigenvectors of Completely
Continuous Self-Adjoint Operators

The fundamental theorem concerning completely continuous self-
adjoint operators asserts: every completely continuous self-adjoint nonzero
operator A in R has at least one eigenvector e which belongs to a nonzero
eigenvalue A,

We shall give two different proofs of this theorem.

First proof: Let

M = sup | (4g, g)| = sup | Ag .
Hgl] =1 llgl| =1

Clearly, M > 0. It follows from the definition of the supremum that there
exists a sequence of normalized vectors {ga}{ for which

lim (Agn, gn)

exists, and is equal to +M or —M. We denote this nonzero limit by A
Since A is completely continuous, the bounded sequence {gs}7 has a subse-
quence {gs};>, for which

) lim Agn, = h

i~

exists. From the equation
| Agn,— Agn, 1> = Agn, |12~ 2A (Agn,, gn) + A®
it follows that
(2 lim| Agn, — Agn, P =[R2 — 222 + A2 = ||| — A%

i+
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Since
I Agn,)l = Mlignll =M =|A|
equation (1) yields

Al = [A].
But, since the left member of equation (2) is non-negative, || Al = | A|,
so that (2) becomes
3 lim || Agn, — Agn, [ =O.

i~»®o
It follows from (1) and (3) that lim g, exists and is equal to g Introducing
i~

the vector e = 2, which has norm one, we obtain from (1) and (3) the

equation
Ae — e =0,
This completes the first proof.
Second proof: We choose an arbitrary vector f, for which Af; #0.

It is not difficult to prove that A%, #0,n = 1,2, 3,.... Indeed, assume
that 47, = 0 forsomen. If nis even and n = 2k then

0= (A"fo,f 0 = (Akfo; Akfo)-
If nis odd and n = 2k — 1 then

0= (A%’ Aﬂ)) = (A’%s A’%)-
Thus, for each n, if 4%, = 0, then A%/, = 0, where k = [—g-] Repeating
this argument, we get finally that Af;= 0, which is impossible.* From
this result it follows that there exist two infinite sequences of nonzero

vectors
{fde, ke
defined by means of the equations

=t fo—af k=0,1,2,...)
Nl
From these definitions it follows that
C)} (fell S Wfirdl  (6=0,1,2,..)

and
G fi-all Al = (f;c—laf;c-}-l) = (fk+1afk—1) (k=1,2,3,...).
Indeed, fork 2 1,
Il = (ffi) = i fi) = fe-1, Afe) =
= (fk'_l,f;(.;.l) = “fk,_x ” " ”f;«-}-l ” = ”fk+1 “,

% Translator’s Note: The proof is slightly easier if n is chosen as the smallest integer for which
Anfo = 0. Since Afo # 0 by hypothesis, n > 1. By the argument given above, Akfo= 0 for some
k < n. This is a contradiction.
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which proves the inequality (4) and
. (fe-vfir)) =ikl
which implies (5).
Apgain denote the norm of the operator 4 by M. Then
l4fiall =M
and, consequently,
Ifell = M.

Therefore, { | f; [} is a bounded nondecreasing sequence of positive
numbers, so that it has a finite (positive) limit:

© ,}im If ll = A

Moreover, since 4 is completely continuous, there exists a subsequence
{ fudi2, for which the sequence of vectors

f,,‘+1=Af,," (i=123..)
has a limit as i - oo:
.ﬁn.-+1 - 8.
Noting that

f;lg+2 = Af;‘+l = A_L_f" L,
Ifopa
we infer without difficulty that the sequence {f, . ,};2, converges. Similarly,
the convergence of the sequence {f, ,3}2, is established. We suppose
that,asi — oo,
fn;+2 - h, .ﬁu+3 -h’

and evaluate |j A’ — g ||%. Using relations (5) and (6), we get
hh'—gi? =}im ”f;x.-+3 —f;u+1 2=

= 1112 {”.ﬁ,+3 II®+ “f;.‘-;.l I — (f;n+3’f;u+l) - (.ﬁu+1:.ﬁ.,+s)}= 0.
Therefore, ' = g. On the other hand, since
_Ag g _d4n

A A

we have
Ag = )‘h9 Ah = Aga
so that
Ath+8)=MNh +g), Ath—g = —Mh—g).

The vector g is not equal to zero because || g | = A. So at least one of the
vectors & + g and A — g is different from zero. This nonzero vector is an

eigenvector of the operator 4 belonging to an eigenvalue which is either
Aor — A
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55. The Spectrum of a Completely Continuous Self-Adjoint
Operator in R

In the preceding section we proved that each nonzero completely con-
tinuous self-adjoint operator A in R has at least one nonzero eigenvalue A.
In this section we construct a complete system of nonzero eigenvalues
of the operator A.

THEOREM: Each nonzero completely continuous self-adjoint operator
A has a finite or infinite orthonormal sequence of eigenvectors ey, e, €, . .
belonging to its nonzero eigenvalues Ay, Ay, Ay, ... (| 21| 2|22 25)2...)
such that for each vector f of the form f = Ah the Parseval relation

IAIE = ; |(fred I?

holds.
Proof: On the basis of the theorem of the preceding section there
exists a vector e, such that |e, || = 1 and
Ae, = Moy
where

Ay = tsup|(4g, &) I.
ligl=1

For later convenience we re-denote our linear system R by R,, and the
operator A by 4,. Let
Rz = Rl e el.

It is clear that R, is also a linear metrizable system. Moreover, if f e R,
then A4, fe R,, since the equation (f, e;) = 0 implies that

(A:1f,e)) =(f, A1) = (S, he)) = M(f, 1) =0.
The restriction 4, of the operator 4, to Ry is also a completely continuous
self-adjoint operator. If the operator A, is not identically zero then, by
the theorem of the preceding section, there exists a vector e, € R, such that

Asey = Xey (lexlt =1).

Since e, € R; we have (e, ¢;) = 0. Furthermore,

|%| = sup [(4.f,))] < sup [(4:8,8) =Nl
Ifli=1, e R, gh =1

In the same manner we define the linear system
R;=R;0 e,
and let 4, denote the restriction of 4, to R;. If Ay 70, we select a normal-

ized eigenvector ¢, and the corresponding eigenvalue A;. This process
comes to an end at the nth step only if the restriction 4 of the operator
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A, to Ry, turns out to be identically zero. In that case we get a finite ortho-
normal sequence of vectors

€1y €2 ...,y €n-1»
belonging to the nonzero eigenvalues
Al: A29 e An—l;
where
A2 2] 2. .. 22,
and

| Al = sup |(4.f,f)I.

IIfil=1,feRk

If the process does not come to an end after a finite number of steps, then
we get an infinite orthonormal sequence {e,};° such that the corresponding
sequence of eigenvalues converges to zero: A, — () as k — oo. Let m be
the numbers of elements of the sequence {e,} if the sequence is finite, and
let m be an arbitrary fixed integer otherwise. Now we choose & € H arbi-
trarily and let

g=h “kz:l(h, €) €.
Since
(g’ek)=0 (k=1’2’3r---)m)
we have g € R,,.,. Therefore,

I AGIE < Nl Apys IRy sy - 1812
or

@ NAR =2 (he) Aei | S || Apyy o,y 18 1%
k=1
Noting that
(h,e) Aey, = (h, e) A e = (h, A e e, = (h, Aey)e, = (Ah, el)e,

and also that
gl < HAll

and letting f = Ah, we obtain from (1) the inequality
!If—kzl(f, eexl® S 1 Appy i,y IR

If the sequence
€1, €3, €3, . . .

is finite, then 4,,,, = 0, so that (2) yields

f= g'"l(f,eoek.
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If the sequence {e,} is infinite, then it follows from (2) that

If —lgll(ﬂ AL -1
which yields

I.£112 —kle (fLed B X A2
Letting m — oo, we get

£l =§'l(f, e .

56. Completely Continuous Normal Operators

Let S denote a completely continuous normal operator in the linear
system R. We shall consider the operator A = $*S = SS*, which is
completely continuous, self-adjoint, and nonnegative:

AN =20
for every fe R. The nonnegativity of 4 follows from the fact that
(Af.S) = (S*SL.1) = (£, 5/).
This property implies that all the eigenvalues of 4 are nonnegative. We
denote them by
PRzpzppz...
On the basis of the preceding section the operator A has a complete ortho-
normal system of eigenvectors g, :
Ag, = pig, k=1,23,...).
We choose a positive eigenvalue of the operator A (let it be p®) and suppose
that its multiplicity is . Let
g™, g®, ... g"

(1) (g(l)’ g(k)) = 8ik (la k= 1, 2, 39 ey r),
comprise a complete orthonormal system of eigenvectors of the operator 4
belonging to the eigenvalue p2. We define A such that

S*D =ph®  (i=1,2,3,...,71)

Then
p Sh® = SS*g(l) — Ag(" = Psg(l)
so that
SHO = pg®  (i=1,2,3,...,7.
Since

(0, ) = (S°5, $76) = (4°,8) = (&%,¢®)
P

the vectors 4“2 comprise an orthonormal system:
©)) HOh®y =8, (G k=1,23,...,n.
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Furthermore,
Ak = Lgsrgrgn ~Lguggn _psegn — om0 1=1,2,3,...,p).
P P

So h? is an eigenvector of the operator 4 which belongs to the eigenvalue
p% Hence, A is a linear combination of the vectors

. g(l)’g(Z)”"’g(’),
1.e.,3

3 B = ay gD + a,8® +. .. + 0,8,

We consider the n-dimensional space G spanned by the vectors g® (i =
1,2,3,...,r). Let U denote the linear operator in G which is defined by
Ug=H> (1=1,2,3,...,r.

Relations (1) and (2) imply that U is a unitary operator. We proceed to
determine the eigenvectors of U. If fis an eigenvector and

S=x80 + x,8% +. .. + xg7,
then from the equation

Uf=of

a3 X +agXg + ...+ a, X, = 9x1,
G19X7 + @peXy + . . .+ X, = 0,

it follows that

alrxl + a2rx2 +...+ arrxr = oxr .

Thus, we obtain the equation

a; — 40 21 cen e
12 azp—0 v g -0
a, ay, oo a,—0

Conversely, each root 8 of this equation corresponds to an eigenvector
of the operator U. Since U is unitary, each root has absolute value one.
Let &Y be one of these roots and let /¥ be the corresponding eigenvector.
Consider the subspace G, consisting of all vectors of the space G = G,
which are orthogonal to f®. Obviously, U is a unitary operator in G,.
Therefore, repeating the foregoing argument, we find that the operator U
has an eigenvector f® in G, with corresponding eigenvalue #?. Con-
tinuing this “splitting off” process, we construct an orthonormal system

of r vectors
fo @ o

? Translator’s Note: Since the g(i ) are linearly independent, the coefficients in (3) are unique.
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These vectors satisfy the equations
UF® = 0O (;=1,2,3,...,7.
The vectors £ also span the space G. If f@ is given in terms of the vectors
g% by the equation
O = X0g® | xPg®d 4 x(gt)
then
S*O =p (XOHD £ XDHD 4 4 XORO} = p UfD = p 60 £O,
Therefore, £ is an eigenvector of the operator S* belonging to the eigen-
valuepé”. Analogously it is proved that /@ is an eigenvector of the operator

S belonging to the eigenvalue p6.  In the system of eigenvectors g,, g,,
gs, . . . of the operator A we now replace
g®, g® . . g®

by the vectors

fo, @ 0
If we proceed in the same way with each eigenvalue of the operator 4
having multiplicity larger than 1, we get the proof of the first part of the
following theorem.

THEOREM: If S is a completely continuous nonzero normal operator
in R, then there exists an orthonormal system of vectors {e,} and a system of
nonzero (complex) numbers {A} for which

Se, = Ney, S*e, = 1,e, k=1,2,3,...).
This system of vectors is complete in the sense that each element f of the
form Sh or S*h is represented by the series

C)) f= ; (fs eney.

In order to prove the second part of the assertion we shall let f = Sh
and consider the vector

f' = 8*f=S*Sh = Ah.
The theorem in Section 55 on completely continuous self-adjoint operators
and the factt that the vectors ¢, form an orthonormal system of eigen-

vectors of 4 which is complete in the sense of this theorem yield the Parseval
relation,

11 =2 e

Thus, /' is the strong limit of the sequence
kzl(f,, ey ey n=123,..)).

4 We assume for definiteness that they form an infinite set.
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Therefore,

(f',h) = lim /;1 (f's e (e ) = kZl(f se) (e ).
But since — )
(', ) = (S, b)) = (£, Sh) = (£.),
(f',ed =(S*f,el) = (f, Ser) =L (fren),

I 1 1
(e h) = I_,((S*ek’ h) ='I_k(ek’ Sh) = I—k (ew])
the Parseval relation yields
Ifl2 = kEl |(f, e 1%

Therefore, equation (4) is proved if f = Sh. A similar proof works if
f = S*h.

57. Applications to the Theory of Almost Periodic Functions

As was indicated in Section 13, a (complex) continuous function
SJ(@® (— oo <t < o) is almost periodic if for each e > O there exists
! = I(g) > 0 such that each real interval of length /() contains at least
one number = for which

L+ —fO <e
for all t. Each such  is called a translation number.

Starting from this definition, it is not difficult to establish several
simple properties of almost periodic functions. We list these properties
without proof.

1. Every almost periodic function is bounded and uniformly continuous
on the whole real axis.
II. For each almost periodic function f(¢) there exists the so-called

mean value
T+a

M {f(1)} —hm— f f(di=lim — J' f()dr.
—T+u
The right hand limit is uniform in a.
III. The product and sum of two almost periodic functions are almost
periodic.
IV. If f(¢)is an almost periodic function and if

M{l/(®13 =0,
then f () = 0.

* The reader will find a detailed presentation in the survey article by B. M. Levitan [1].
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The set of all almost periodic functions becomes a metrized linear
system R if the scalar product is defined by the formula

0)) (/,8) =M{/(ng(®)}.
Now property IV has the equivalent form: (f,f) =0 implies f=0.
In Section 13, the scalar product (1) was introduced for all poly-
nomials of the form
2 3 A e
k

Being the sum of periodic functions which are, therefore, almost periodic,
every such polynomial belongs to our linear system R. In particular, the
linear system R contains the continuum of functions, € (— o0 < A < o),
which form an orthonormal system. Therefore, as was the case with the
space B? defined in Section 13, the linear system R is nonseparable.

The central place in the theory of almost periodic functions is occupied
by the theorem, mentioned in Section 13, to the effect that each almost
periodic function is the uniform limit on the whole real axis of poly-
nomials of the form (2). As was first shown by Bohr, it is possible to prove
this theorem with the aid of a particular method of harmonic analysis
of almost periodic functions. Instead of the usual Fourier coefficients of
pure periodic functions, we introduce in the harmonic analysis of the almost
periodic function f'(¢) the function

e =lim 75 [ e di =M{f(e™} = (f, ).

The existence of «(A) for each real A follows from properties II and III.
On the basis of the remark preceding Theorem 4 in Section 9, for each
function f(f) e R there exist only countably many values of the para-
meter A for which a(A) 20. We denote these values by Ay, A,,. .. and
we call them the Fourier exponents of the function f'(r). We call the corre-
sponding numbers

Ci=a(d) (*k=1273,..)

the Fourier coefficients of the function f(¢). Thus, to each function
J(®) € R there corresponds a Fourier series:

f(f) ~E Ck e""“.
k
From the general situation of Section 8, it follows that
-3 DIC I sM{jf(O*}.

k
This is a generalization of the so-called Bessel’s inequality.
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The fundamental theorem of the Bohr theory asserts that there is
equality in (3) for each almost periodic function f'(£). We present next a
proof of the Bohr theorem. The proof, which is due to H. Weyl, is based
on the theory of completely continuous operators. For this purpose, fix
S R and let

T+

y(s) = lim El'f ! S = u(eyde =M {f(s — ().

This formula associates with each function #(r) € R a function w(r) which,
it is evident, also belongs to R. Thus, we have a linear operator, deter-
mined by the function f(r), which maps u(r) into w(r). We denote this
operator by 4.

We shall prove that 4 is a normal operator. For this purpose we intro-
duce a second operator B: let w = Bu if

w(s) = 1\:1 {/t—s)u@)}.
We shall prove that

(@)  (Auy, ug) = (u1, Buy) for u,(0),u, (1) R,
(b) AB = BA.

As for property (a), we have
(Auy, ug) = M{l\:l [fs—Du(D]us(s)} =
= M{u OM /(s — )]} =
=M ()M [FGs —D1a(9)1} = (. Bu).

The reversal of the order of the operations M and M is valid because the

s t
mean value is a uniform limit according to the alternate definition given
in property IT above. We now prove property (b). First, we note that

ABu=M{f(s—OM[f(r —)u() ]} =
=M{u()M[f(s —0f(- — )1}

Next, we consider in detail the function of s and = defined by

» =MLfGs —0fG=D]=lim . j S — 0FG =D
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After the change of varable from r to s indicated by

T—I=0—3S5

we get
¢ = lim ZTme f(o =)o =5)do =
= lim J' f(a = DfG=s)de = M[f(e = DT =)
Hence,

ABu=M {u()M[f(o —)f(e =91} =
=M Tz =) M (e — ()]} = Bd,

and property (b) is proved.
Now we are ready to prove that A4 is a completely continuous operator.
Let G denote an infinite set of functions #(¢) € R for which

lul =M{|u(@®?} =1

We must prove that G contains a sequence {un(7)}{* such that the correspond-
ing sequence {vn(r)}y°, where va = Aua, converges in the norm of R to some
function ¥(f) € R. The function u(r) € G is transformed by the operator 4
into the function

) v (s) = Tlff!z_lr fT S5 — Du(t)dt

so that
T
[¥9)| $ lim J f fs— s J 217f (o)

()| SV MITOR = C

Thus, the transformed function v(s) is uniformly bounded. Furthermore,
from formula (4) it follows that

or

V(&) — ¥ = lim 2~‘7f (Fs' = 1) ("= D} ule) o
which yields
V() =y S VM{FE =0 =76 — -
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This inequality shows that the function »(s) is uniformly continuous.
Indeed, f (?) is uniformly continuous, so that for each & > O there exists
8 = 8 (¢) > O such that

"= —f("—Dlse  (—oo<t<)

for |s' —s"| £ 8. Hence,for|s" —s"] <8,

[v(s) — W) | SV/M{) ==

According to the well-known theorem of Arzela the set of functions v(r)
contains a sequence {va(¢)}° which is uniformly convergent on the whole
real axis. We denote the limit function by V(¢). It also satisfies the in-
equality

V)=V s \/M {1/ = =f(s" =D P}

Therefore, if = is a translation number of the function f(f) corresponding
to eand if s" — s” = =, then

|V(s) — V) s

From this it is evident that F(r) is an almost periodic function. Since

VM{|w, (1) —wa (1) [*} §_22P<w[wl(t) — wa(1) |

the sequence {va(7)};2, converges not only uniformly on the real axis, but
also in the norm of R. It follows that the operator 4 is completely con-
tinuous.

Let x be a nonzero eigenvalue of 4 and let

(5) 8:(1), 8:(2), . - ., & (D)

be a complete orthonormal system of eigenfunctions (in other words, eigen-
vectors) of the operator 4 belonging to the eigenvalue p. If g(r) is any
one of these eigenfunctions, then

lim — f f(s—Dg(Odt = ng(s).

It follows that for each real number o the function g(r + o) also is an
eigenfunction belonging to . From this fact we obtain the equations

®  glt+o)= zc @& ¢ =1,23,...,n).
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Thus, the almost periodic functions in the orthonormal system (5) satisfy
the functional equations (6). By various methods it is possible to prove
that each of the functions g,(r) has the form¢

g(f) = 3 cWehs
k=1

where the ¢® are constants. If necessary, one can replace the original
eigenfunctions g,(¢) by linear combinations of them to obtain the eigen-
functions .

gni ght e,
According to the definition of the function a (),

lim - f S5 —pedr = lim — f f(s — )™ -9ds = M a()).
T

Thus, we have found the general form of the eigenfunctions of the
operator 4 and have proved that the eigenfunction ¢’ corresponds to
the eigenvalue which is the Fourier constant

a(A) =M{f()e~ "}

et e""‘, M
be the sequence (in some order) of all eigenfunctions of the operator 4
and let

Let

Cl = “()‘1), Ca = “()‘2), Ca = “()‘a)a e
be the corresponding eigenvalues. We consider the series

@) i: Cy (P, &%) v,
k=1
where @ € R. Since

IGO0 s [SCr [ Si@enps

éJchk|= JMe0n

¢ For this one must first show that the functions c,.(c) are continuously differentiable. Then
the system (6) yields the system of differential equations,

0= 3 u@a® ¢=1,23...,m.

The solutions of these equations are linear combinations of functions of the form
(@0 + ayt+ ...+ a, t™) ebt,
Since each function gx(¢) is bounded uniformly, ﬂmust be pure imaginary and the polynomial
factor must reduce to the constant term.
Another proof, which is richer in ideas, is based on the simultaneous reduction to diagonal
form of the Abelian group of unitary matrices

(cri(9) )y, k=1
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the series (7) converges uniformly in 2. Now we examine the function
M{f(t—5)f(—5)}.

It is of the form Ag where g(r) € R. According to the theorem in Section |
56, this function can be represented by the series

3 CM{F—s) e} et
=1 s

which converges in the norm of R. By what was proved above?’ this series
converges uniformly, so that

MU= 9F(=9)) =2 CM{TT=s)e ) e
Hence, for t =0,

M {I/(—9) 1% =3 M {f{=5) e~}

or
M{If@1} = ZIC I

and, finally, the fundamental theorem of Bohr is proved.

" The role of the function ®(¢) is now played by f (—1).
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Chapter VI

THE SPECTRAL ANALYSIS
OF UNITARY AND SELF-ADJOINT OPERATORS

58. The Trigonometric Moment Problem

Our next considerations will be based on a series of facts related to
the so-called moment problem. In general form, the moment problem can
be formulated as follows: let there be given a set of functions u, (f)
(a<t<b) and a set of numbers c,; the parameter o determines a one-to-
one correspondence between these sets; it is required to find a nondecreas-
ing function of bounded variation o (¢) (a< ¢ < b) satisfying the system of

equations
b

) f ut) do () = c,.

This problem consists of several parts, of which the basic one is the
determination of conditions for the solvability of the above system of
equations in the indicated class of functions o(¢).

The earliest moment problem, which concerned the important special
case with the given set of functions

,t,5...,
(the algebraic moment problem) was studied by P. L. Tchebysheff and A. A.
Markov in their remarkable works on limiting values of integrals.

In the present section we consider the trigonometric moment prob-
lem. In this case the system (1) has the form

2n

@ o= fe"k'da (O (£k=0,1,2,...:2 =c_p).
0

THEOREM: For the existence of a nondecreasing function® o(f) satisfy-
ing equations (2) it is (a) necessary that the non-negativity of the trigo-
nometric sum

n
Y g™ n=0,1,2,..)
k=-n

in the whole interval [0, 2= implies the inequality

1 The boundedness of the variation follows automatically from equation (2) for k¥ = 0.

1
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kack—

and, (b) suﬁ'iczent that for any real number u the expressions
)y (1 |k|>e be  (n=1,23,..)
k=—-n
be non-negative, which correspond to the particular trigonometric sums
n k ( e 1
1 _ ‘__) exk(t [ R
k;n( n n
Proof: If the system (2) has a solution o(¢), then

27
Z £ G = jki & eMdo (1),
0

-1 2
E eik=-u
k=0

k= -n - —n

and this yields the necessity of the first condition stated in the theorem.
In order to prove the second part of the theorem, we consider a sequence
of trigonometric sums

.pn(u):i(l —lkl)ce'”‘" (n=1,23,..)

k= -n
which are non-negative by hypothesis. Let

un(t)=21—1r(! bn@du  (n=1,23,...).

These are nondecreasing functions for which

o (0) =0, 0n 27) = ¢ n=123...)
Thus, we have a sequence of functions ox (f) which are nondecreasing
in the interval [0, 2#] and satisfy the inequality

0L () £ ¢ n=123..)
By the first theorem of Helly there exists a nondecreasing function o(f)
and a subsequence {on; (£)};2, such that

lim o, (1) = o (1)
J—w
at each point of continuity of o(t). By the second theorem of Helly

J' eide (i) = lim J' oy (f) = lim J' (1) dt =
=j_'h_{1:(l - l—’%) Cp = Cps

and our assertion is completely proved.




58. THE TRIGONOMETRIC MOMENT PROBLEM 3

We turn now to the question of the number of solutions of the system
(2) under the assumption that it is solvable. Let us assume that (2) has
two distinct nondecreasing solutions, o(f) and ¢*(f). Their difference

w(f) =o(t) — o* ()
is a function of bounded variation for which
27

3) fﬂumo:o (+k=01,2,...).
0
Now we shall prove that if the (real or even complex) function of
bounded variation w(f) satisfies (3), then it is constant at all its points of
continuity. With this aim, we consider, for k = + 1, +2,..., the

equation
27 2 27
fﬂﬂﬂo=ﬂ@m —mfwwmmz
0 0 0

2 2
=fdw@y—mfdmuom.
(1] (1]

It follows by means of (3) that
27

fﬂ@mm=o (1hk=1,23..)

0

Letting
2w

1
—E;o w (£) dt,

we find that

2n

fﬂqwm—C}m=o (+hk=0,1,2...).

0
It follows from this equation and a fundamental uniqueness theorem from
the theory of Fourier series that

w() —C=0

at each point of continuity of «(¥).

From what has been proved, it follows, in particular, that, if o(r) and
o*(?) are two distinct solutions of (2), then their difference is constant at
all the points where this difference is continuous. We say, therefore, that
the solution of (2) is essentially unique. If we impose certain normaliza-
tion conditions on the function o(7), then the solution is unique without
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reservation, i.e., the italicized word “essentially” is unnecessary. These
normalization conditions involve, first, the points of discontinuity of
o(f) and, second, the end points of the interval [0, 2=]. At each point ¢
of discontinuity in the open interval (0, 2#), the limits o(t — 0) and
o(t 4+ 0) exist. The value at the point ¢ itself can be any number lying
between these limits. We let

o () =a(t —0),
i.e.,, we require that the function o(¢r) be continuous from the left. In

order to motivate further normalization conditions, we point out that the
function o(p) itself is of no interest; rather, the interest is in the integrals

fz "f(t) do (1),

where f (¢) is a continuous function with period 2». Every integral of this
kind may be represented in the form
27 -0

2a
[f0de) = [sda) +

+/2m{e@m) —oQm - 0)} + ) {o(+0) —=(0)}.

Since
f(@2m) = f(0)

we have
20 27-0
[f(ao) = [ £0dett) + f@e(@m) — o(2m — ) + o+ 0) — o(0)} =
0 +0 27-0 2

— {10 do@) = [ 0y dorer,
where 0 0

*)=0o(@) O <t <27),
o*27) = o*Q27 — 0) = e 27 — 0),
o*(+ 0) — e*(0) = o(+ 0) — 0 (0) + o (2m) — o (27 — O).
Thus, the new function ¢*(f) is continuous from the left also at

the point 27. At the point zero it has a well-determined jump from the
right (concentrated mass) which in special cases can equal zero. Finally,
let us define

5 (1) = o) — o%(0).
Then the equation
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ff(z) do (1) = f 10450

holds for any continuous periodic function f(¢). Both &5(f) and o*(¢) are
continuous from the left in the interval 0 <t < 2=. But, in addition,
5(0) = 0. We will always impose these normalization conditions on the
solutions of the trigonometric moment problem. They serve to determine
a unique solution.

59. Analytic Functions with Values in a Half-plane

In the present section we consider analytic functions, regular in the
interior of a circle or a half-plane, which take on values which lie in some
half-plane.

THEOREM 1: In order that a given function f (L), finite in the circle
| £| < 1, admit the representation

M f(c)—zﬂ+f" £2do0,

where B is a real constant and o(t) is a nondecreasing Sunction®, it is necessary
and sufficient that f (L) be regular and have a non-negative real part in the
circle | | < 1.
PRELIMINARY REMARK. We have here a particular moment problem
with the moment function
e+
The role of the moments is played by the numbers

where the parameter { runs through a discrete sequence in the circle
[¢] < 1.

We remark also that 8 = J f(0).

Proof: The necessity of the condition of the theorem is obvious,
since the right member of formula (1) is regular in the region | { | < I and

{J'e'+§d (t)]=}"1— I —r2 do() 2

2rcos(t — ¢) +r*

wherer = | {| <1and ¢ = arg {.

* The boundedness of the variation of o(z) is obtained automatically from the finiteness of
the value £(0).
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We prove now that the condition is sufficient. Assume that f () is
regular and has non-negative real part in the circle | {| < 1. Then, as
is known from the theory of functions, f({) is given, for | {| £ R < 1, by

2m
1 (Re +1

J@Q =18+ 2n) RO L4 (Re db,

where
w(re =€) +T0)

is the real part of the function f({). Hence
2z

R7O) = L [ u(Re") dr.
27 :
The indicated representation can be written in the form
27
. Re" + ¢
2 [ =ip +!I—(e'—‘———cd%(t)’

where
1
og (t) = 5 of u (Re*) ds.

Since u(Re”) = 0 by assumption, og(?) is a nondecreasing function of ¢
and, for 0 =1 =2,

0 5 0x (1)  og (27) = RS(0).
Thus, the set of functions og(t) (0 <<R<1) is uniformly bounded. By the
Helly theorem, there exists a nondecreasing function o(¢) and a sequence

R1<R2<R3<... (R]QI),
such that
lim o, () = (2
J-»

at each point of continuity of o(¢). Applying the second Helly theorem
to (2), we find that

2n ”
3 f@ =i+ S

eit —

for each { in the circle | { | < 1. Thus, the theorem is proved.
If we expand f({) in a Maclaurin series

f@O =c+2c,0+2c_ 02 +...
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and let c_—|2-_c_ = ¢4, then by (3) we obtain the following expressions for the

coefficients

2w
q=fdd0,
0

2m
c_kzje—ik‘dﬂ'(t) (k=1’2’3,"')‘
0

Introducing the numbers ¢, = c_y(k =1, 2, 3,...), we obtain the equa-
tions which appear in the trigonometric moment problem. Therefore,
under the normalization conditions of the preceding section, the function
o(?) in (3) is uniquely determined by £ ({).

This fact can be proved also with the aid of the following well-
known inversion formula from the theory of Fourier series.

THEOREM 2: (R. Nevanlinna) In order that a given function ¢(2), finite
in the half-plane 3z > 0, admit the representation

L+2Z 4.0
t—z

q>(z)=a+pz+f

(where 1z 0 and a are two real constants, and o(t) is a nondecreasing
Sfunction®), it is necessary and sufficient that ¢(z) be regular and have non-
negative imaginary part in the half-plane 3z>0. Here the Stieltjes integral
with infinite limits of integration is to be interpreted as

B
lim fl T2 0@,
A — o t—z

B> A
which corresponds to the assumption that the limits

o(—o) =1lim o(4), o() =Ilimae(B)
A—> - B—w
are finite. If, in addition, one applies the normalization conditions
U(I—O)———U(t), ”(— w)=09

then the function o(t) is uniquely determined.
Proof: Let

I+

1-0

¢ (@) = if (D).

3 The boundedness of the variation of o(?) follows from the finiteness of the value ¢(7).

=i
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These transformations map the half-plane Iz > 0 into the circular
region | { | <1, and the function ¢(z), regular in the half-plane J z > 0,
into a function f({), regular and having non-negative real part in the
circle. The integral representation of such a function was treated above.

It has the form
27 -0

s = zﬂ+f" @) = tﬁ+fe £la ) +

1+

H =7 (@) —p Q7 =0 +p(+0) —p O} =
2n-0

. 14¢ e +{

=i+ py __§++‘!e,,_§dp(s),

where we denote the distribution by p(s) instead of o(s). With the aid of
the transformation defined above we obtain

@ 2@ = — B +in 1+€+, e',“dp(s)
1—¢ e'
or
27 -0
zcot%—l
?(@)=—B+pz+ ————s———dp(s).
coti +z
+0
Letting

—B=a, -cot§s=t, p(s) = o (),

we obtain for ¢ (z) the representation

) 0@ = otz + [LEE a0,

The transition from (4) to (5) is also correct in the reverse direction.
Therefore, Theorem 2 is proved.
THEOREM 3: In order that a function ¢ (z) in the half-plane J z > 0

admit the representation
L]
dow(t
¢ = f 10 ()
t—2z
-

with a nondecreasing function of bounded variation w (f), it is necessary
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and sufficient that ¢ (2) be regular and have non-negative imaginary part in
the half-plane 3z > 0 and
sup | y ¢ (i) | < co.

Y=

The function w (t) is uniquely determined by ¢ (2) if we require that
w(—o)=lmw(d) =0, ot —0) =w() (— o<t ©).
A—> - ©

Proof: The necessity of the condition is easily verified. We concern
ourselves only with the proof of the sufficiency. If the function ¢ (z) is
regular and has non-negative imaginary part in the half-plane Jz > 0,
then it admits in every case the representation

0@ =a+uzt [T a0,
as we saw in the previous theorem. _I:;'om this representation it follows
that _
yo ) = e + i + [LEE ao o)
By hypothesis, there exists a constant-;'l such that

ay + iuy? +J.}—)£~l_j‘l—;t—y—) de(t) | =M (y> 0.

Hence, a fortiori,

wy(l -yt
ay +_Im— d”(t) < M,
(6) 3
lyy [ ‘+’ L de) | =M.

The second inequality shows that » = 0 and also that

[*e]

ft’ fyz(l +)de(f) M

Hence, for any N > 0,
N

tz+ 2(1 + ) do () = M.
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Let y — oo to obtain
f(l ) do(f) £ M,
-N

and, consequently,
Ja+maos

We can, therefore, introduce the nondecreasing function
H

w(® = [+ mde@),
for which it is obvious that
lim o (f) = 0,

> — O
and which, together with o (¢), is continuous from the left.
From the first inequality in (6) it follows that

o = lim f( 1)’da(z)

y—>o

From this one easily gets

o = ftdo(t).

Since, as was shown, p = 0, (5) takes the form

e(2) = j tdo (1) +J.lt%tzz do (1)

or
¢(Z)=f%,

which was to be established.

The uniqueness of this representation (under our normalization con-
ditions) is a consequence of the uniqueness of the function o (¢) in Theorem
2, since this follows from the equation

_ (de()
(t) —_ 1 + t2,
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which relates the functions ¢ (f) and o (#). However, it is possible to
establish the uniqueness directly by using the following Sticltjes inversion

formula:
t

@t =0+l +0) _ congt ¢ tim L [ 3o (x +iy)ar.

2 y—0 T
0

60. The Theorem of Bochner

In the present section we consider the continuous analogue of the
trigonometric moment problem. The problem consists of finding condi-
tions, which a given function F(f), — o <t < oo, must satisfy in
order that it have a representation

M F(f) = f & des (5),

where w (5) is a nondecreasing function.

Bochner was the first to prove that such a representation exists and
is unique under suitable normalization® if and only if the function F (f)
is continuous and

n

(2) BEIF(ta - tB) P ﬁﬁ 2 0’
for any integer n, any real t,, t,, . . ., ts, and any complex p,, p, . . - , pn.
Functions which satisfy (2) are called positive definite.

The necessity of these conditions is easily verified. In fact, the right
side of (1) is a continuous function of ¢, and, on the other hand, by (1),

L~ s = [ | o™ 1do ),

1

a,

the right side of which is finite and non-negative.

The proof of the sufficiency, to which we now turn, is not so simple.
Let F (7) be a continuous function which satisfies (2). We remark that,
by (2), for any ¢ (— © <t < o) the equation

F() = F(—1)

and the inequality

3 |F@O | = FO
both hold. Let

¢ The boundedness of its variation follows from the finiteness of the value F(0).
8 ¢f. Theorem 3 of the preceding section.
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[*e]

®(2) = f e F (1) d.
0
By (3), the function @ (z) is regular in the region 3z > 0. In addition,
for each y > 0,

y2@)15 [ye” | F@)1de s FO) [ yedi = FO)

Now we show that
RP(2)20 (z=x+1i)
for y > 0. With this aim let us introduce the identity
1 _ fe“"e"'i' dv.
2y J

We have further

6(2) +B() = femF(u)du + e ™ F(— u) du.
(4]
Therefore,
1] (Z) + ] (Z) J. J. ezt =ity F(u) du dv + f e-li(u+v) ei:vF(__u) dudv=
00 0

0

o

jfe‘“‘e ""F(a—ﬁ)da-i—fdaje‘“‘ -8 F(a—f) dB =

0
ov.__H 8

F(a — B) &P =50 o dp —

Il
Ot 8
Ol 8

Il

4 4
am “.F(a — B e M e A dadp =
A0 0 o

n
= lim lim ‘.}_11 F(r_ — s A) &Xr - DAIn g =Y+ Aln
A->® pso0 N = n
and our assertion follows from the fact that the sum on the right side has
the form (2) (it is sufficient to let ¢, = kA/n, p, = e~ &4 gixtkdlny)
The function & (2) differs only by the factor i from a function con-
sidered in the previous section (cf. Theorem 3). Hence, under our normal-
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ization conditions, there exists a unique nondecreasing function w (s)
such that

¢(z)=if%“_’£ Sz > 0).

On the other hand,

i = f et gy
s+z ;
and, hence,

f ¢ F(f)dt = f do (5) f et gp — f e di f & du (5).

0 - V] 0 -
This means that two piece-wise continuous absolutely integrable functions
of ¢, which equal zero for ¢+ < 0 and equal

e "F(t), e f & dw (5)

for ¢t =z 0, have identical Fourier transforms. By a well-known uniqueness
theorem these functions are identical. Hence, the representation (1) is
obtained and its uniqueness is proved.

From the uniqueness of this representation we have the following
more general proposition: if w;(s) and w,(s) are two complex functions
of bounded variation which are normalized in the usual manner and if, for
— 0 <t < W,

«©

@ f e duy 5) = [ € duy (5,

then
w; (5) = w, (5).
Indeed, if (4) holds and

@ (8) = w1 (s) — wy (s),
then
fe’"dzb(s) =0 (—wo<t <o)

If we let
a(s)=9() + iy,

where ¢ (s) and ¢ (5) are real, then we get
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© -]

f cos st dg (s) = f sin st dy (s),

-0
-]

f sin st de (5) = —f cos st dy (s).

Since one member of each of the equations is an even function, and the
other members are odd functions,

f cos st de (s) = f sin stdp (5) = f cos stdy (s) = f sin st dy (s) = O.

In other words, for all real ¢,
fe‘"dqa(s) -0, fe‘"dn/a(s) =0

Since each of the functions ¢ (s) and ¢ (s) is the difference of two non-
decreasing functions, the equations

() =0, $(5)=0 (— o <s <)
are direct consequences of Bochner’s theorem.

61. The Resolution of the Identity

‘We recall the results of Section 55 concerning completely continuous
self-adjoint operators. Here we assume that the operator—we denote it
by A—operates in a Hilbert space H (rather than in an arbitrary inner
product space R). As we have seen, the operator 4 has a finite or countable
set of pairwise orthogonal and normalized eigenvectors ey, e,, e, . . ., which
correspond to nonzero eigenvalues. The set H, of all vectors from H
which are orthogonal to each vector ¢, is a subspace. From the theorem
of section 55 it follows that for h € Hy,, 4h = 0. Therefore, it is possible
to consider H, as the eigenmanifold of the operator 4 which belongs to
the eigenvalue A = 0. This space is separable if H is separable, and not
separable otherwise. As far as the subspace H © H, is concerned, it is
always separable and {e;} is an orthonormal basis for it. We can represent
the subspace H © H, in the form of an orthogonal sum of eigenmanifolds
H,, which belong to distinct eigenvalues. Then

H=H0®H1@Hz®--- s
Af=’\kf

where

for fe H, (A = 0).
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Thus, we have decomposed the space H into subspaces, in each of
which the operation of A4 is merely the multiplication of an element by a
particular number. Designating the operator of projection on H, by P, we
can write

(1) E=P0+P1+P2+....
For each fe H,
(2) Af=A1P1f+A2P2f+....

The numbers A, appearing here are real, they lie in a finite interval, and can
have as a limit point only the single point 0. To enumerate the numbers
A, in the order of increasing or decreasing magnitude is possible only
if they are finite in number or if all are of one sign. Therefore, the terms
of the series (2) follow not in their natural order, but in the order determined
by the enumeration of the set of eigenvalues. This defect of the repre-
sentations (1) and (2) can be removed by using the Stieltjes integral.

With this aim let us introduce, for each real ¢, the subspace G, spanned
by the eigenvectors which belong to eigenvalues less than ¢. Here we
regard zero as the eigenvalue which belongs to the eigenmanifold H,. Let
E, be the operator of projection on G,. The operator E, has a limit both
for increasing and for decreasing 7. Therefore, E,_, and E,_, exist. It is
easy to see that

E,_,=E,

Thus, E, is a function of ¢ which is continuous from the left. If A, is an
eigenvalue, then the difference

Eak+o - Eak = Pk
is the operator of projection on the eigenmanifold H,. Now formulas (1)
and (2) can be represented in the form

B
) f=Ef=[dE},

8
@) Af=ftdE,f,

where the integrals are taken over an interval [«, 8] which contains all the
eigenvalues of the operator A.

These integrals are nothing other than sums of particular series. We
have introduced the integral representations because, as we shall see later,
they generalize to arbitrary (not necessarily completely continuous) self-
adjoint operators in H. Anticipating this generalization we make the
following definition.
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DEFINITION: A resolution of the identity is a one-parameter family of
projection operators E,, where t runs through a finite or infinite interval
{a, B], which satisfy the following conditions.®

(@ E,=0, E; = E,
by E_,=E (e<t<p)
¢ E,E,=E, (s=min {u}).
From the definition it follows that, for each fixed f € H, the function

of ¢ given by
ELS) =@

is nondecreasing, has bounded variation, is continuous from the left, and

o(a) =0, o (B) = (/,.f).
Indeed, for s <1t,

ELS) =N1ESI*=1EE[fI* < |EfI*=(ELS)
For each interval 4 = [t', t"] < [a, B8], we denote the difference E. — E,.
by E (4). If 4, and 4, are intervals of this type, it follows from (c) that
E(4,) E(4)) = E(4),
where 4 is the intersection of 4, and 4,. In particular, if the intervals 4,
and 4, do not have common interior points, then
E(4) E(4y) =0,

i.e., the subspaces on which E (4,) and E (4,) project are orthogonal. On
the basis of what has been said, property (c) is called the orthogonality
property of the decomposition of the identity.

The considerations which preceded our general definition shows that
every completely continuous self-adjoint operator generates a resolution
of the identity. In the next section we show that arbitrary unitary operators
and arbitrary self-adjoint operators in H have well-defined resolutions of
the identity. It is true that these resolutions of the identity do not have
those simple properties which the resolution of the identity of completely
continuous operators possess. This, as we will see, is connected with the
fact that the spectra of these operators have more complicated structures
than the spectra of completely continuous operators.

62. The Integral Representation of a Unitary Operator

Let U be a unitary operator in H. We choose an arbitrary element

feH and let

¢ If the interval [q, 8] is infinite then we define E- = lim E;, Ew = lim E;.

—-o t—>©
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(1) (U,ffsf) = ck(f) = Cy (:i: k = 03 13 2’ .. ')3
so that
e =UMN)=ULLUY) =&
We shall prove that
@) Bu(t) = Z (1 _ %‘) Cee ™ 2 0

k= -n

for each integer n and each real z. By (1),

Palt) = "Z (1 — |—];|) e~ (U, 1)

k=-n

On the other hand, if

T=E+e U+ e MU+ ... + e~ C-Diyn-1,
then

T T) = 3 UL, UY) =

="21e1(:—r)t(Ur—sf;f) =,‘_Z’_'"(n — |k|)e-ik'(ka;f).

r,s=0

Therefore,
1
Pu(t) = . (T1, Tf),
which implies (2).
The sequence {c,}* , satisfies the conditions of the theorem of Section
58. Therefore, there is a uniquely defined normalized nondecreasing

function ¢ (¢) for which
27

¢ =fe”“do(t) (£k=0,1,2..).
[\]

For each fixed ¢, the function ¢ (¢) is some functional of f:
a(t) = o ().

With the aid of this functional, we now define another functional dependent
on a pair of vectors f, g€ H :

0(:4,8) = g oS +8) — 5o (S —9) +

+io @S i) —o (S —ie).

As above, ¢ is any real number in the interval [0, 2x]. In the equation
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27

fe"“do (t h) = (Ukh, b)) (£ k=0,1,2,...)
0

substitute, in turn,
h=f+g f—gf+ig f—i
to obtain ,
3) fe-""da t:f,8) = Ug) (xk=01,2,..)
[}

Thus, we have derived representations in the form of trigonometric
Stieltjes integrals not only for the quantity (U*f, f) but, more generally,
for (U*f, g). This representation is unique (under the normalization condi-
tions on the function o (¢; f, g) ) according to the general theorem at the
end of Section 58.

Starting from the uniqueness of the representation (3) we prove that
o (¢; f, g) is a bilinear functional of f, g, whose norm does not exceed 1.
Let

Sf=afi+afs

(UM, &) = al(U1, 8) + al(UM:, 8),

Then

and, hence,

27 27 27
[eda(t:£,8) = or[ ¥ (1 11 8) + o Mo (1 £ ) =
0 0 0

2n
= f e*d, {a10 (t; 11, 8) + a0 (£ /2 8) }-
o

Since this relation holds for +k =0,1,2, ..., and the normalization
condition is satisfied, we have

a(t;£,8) = ero(t; /1, 8 + a0 (85 12, 8)-
We see that o, as a function of f, g, is linear in the first of these arguments.

We remark now that on one hand
2

& UY) = (Ug,f) = [ e™da (t;5.1),

and on the other
2n

& UY) = TF8) = [ e*da];8).

0
Therefore, for any integer k,
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27 27

[ewac@fg) = [ eda (s 8.0).

[} [}

o(t;£,8) =o(t;8.1)
From this relation and the linearity in the argument f, it follows that
a(t;/,B181 + B2 8s) = Bio (13 £, 81) + Bao (8 £ 82)-
We recall now the theorem of Section 20. Since o (¢;f, g) is a non-

decreasing function of ¢ and since

«0:£.f) =0,
2w

e S a@nff) = [de £ = (1),
0

Hence,

it follows from the indicated theorem that o (¢, f, g) is a bilinear functional

of f, g with norm not exceeding 1.
By the theorem on the general form of a bilinear functional, there

exists a family of operators E,, which depend on the parameter #(0< ¢ £ 27),

such that
a(t; f,8) = (E [, 8).

Now we prove that E, is a resolution of the identity.
It follows by means of the equation

a(t; £,8) =ca(t;8.),
(g, Erf) = (Erg’f)

In other words, E, is a bounded self-adjoint operator.
We write (3) in the form

that

3) W49 = [ d(E S 8),
0

and let
g=U"h (£r=01,2,..)).
We obtain

27

(UM, U~"h) = J’ ed (E f, U~"h)

and, hence,
27

WA, b) = [ A UE S b,

0
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But since
27
(UES by = [ e*d(BE,f, b,
we have ’
27 2a
@ @k = [ eva | [ ed(EELB) .
On the other hand, ° °
2n 2n t
(5)  (U*'fk) = f I (E, £ h) = f eid, { f ¢nd(E, f, h)}.
o o o

From the validity of the representations (4), (5) for any integer k and from

the normalization properties of the functions of ¢
27 t

[ erdiEES: B, [eraE.s;m),
it follows that ’

f "e‘”d,(EJE, L= f e”d (E,f, h).

This relation is satisfied for any integer r. Therefore, by the uniqueness of
the representation, the equation
(EE f,h) = (E.f, h)

is correct for any f, h € H, whenever s < ¢. We have also shown that

© EE =E (s =0,
which implies that

Erz =E,
i.e,, E, is a projection operator. Instead of (6), it is possible to write the
more general relation
EE,=E, (s=min{y v}).
It remains for us to verify that
E,=O,E,=E E_,=E (0<tz2n)

in order to complete the proof that E, is a resolution of the identity. The
first and second equations need no proof. In order to prove the third
relation, we use the normalization conditions which imply that

lim (E.f, g) = (£./, ).

<t
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Thus,
E,_, =E,

in the sense of weak convergence. But this equation also holds in the sense
of strong convergence, since, for ¢ > s,

I(E, — E)fI? = ((E, — E)LS) =ELS) — (ESLS)
and this implies that

I (B, — EJQSI

tends to zero as s — £ (s < f).

We have obtained a resolution of the identity, with the parameter
interval [0, 2=], which belongs to the operator U in the sense that for any
integer k and any f, g € H

27
3) W,8) = [ ed (& 1, ).
[}
This equation is expressed often in the form
27
U = f eMdE, f,
V]

We show now that this equation has a valid interpretation, in its own
right, in addition to being a symbolic representation of (3'). As in elementary
integral calculus, we introduce a subdivision of the interval [0, 2=]:

O=f <t <thb <...<tw=2m
Corresponding to this subdivision we construct an operator’
Tn = eik"E (Al) + e”“’E (Az) + ... + e”“"E (An),
where 4, = [t;_,, ;]. Now we prove that, for each f e H,
M Tuf>UY¥ (n—> o),

if the largest of the lengths of the intervals 4, tends to zero. In other words,
we prove that the sequence of operators T, converges strongly to the oper-
ator U*. After that, we use the limit of the operators T} as the definition of

the integral
27

f edE,
o

In order to prove (7) we recall Section 23. In view of Theorem 1 of
that section, we should verify that

7 Translator’s Note: The dependence of 7. on k might have been indicated by writing
T in place of T,
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(@) foranyf,gcH
(Tnf,8) >~ (U, 8) (n— ),
(b) I Taf Il = 1 U1 = 11
The validity of (a) is obvious from (3°), since

2=
(Taf,8) = 2, E @), 8) > [ d (Efog).
V]
In order to prove (b) we notice that

I Taf 2 = (Tnf, Taf) =3 HOIXE(8) fE(4)f) =

ros=

= S M AEU)EUNLS) = X EAILN = (4f).

These relations show that not only does the limit equation (b) hold, but,
simply,
N Taf =111

From our considerations, we remark that the resolution of the identity
E,(0 << 27) is not only completely defined by the operator U, but in turn
completely defines this operator.

Completing the present section we show that the operator E,, for any
fixed ¢, reduces the operator U, and moreover, reduces each integral power
of the operator U. This is equivalent to the assertion that

(U*E,f,8) = (EUY,g) (+£k=0,1,2,...).
for arbitrary f, g € H, i.e., the operators U* and E, are permutable. The
proof follows at once from the formula (3'); in fact
2w t

(UE.f;8) = [*d(EE.1,8) = [d (E, S, )

and, on the other hand,
27

(EUY,8) = (U, Eg) = [d/E. 1, E,g) -
2 t

_ f e*d(EE,f, g) — f ¢*d (E, f, g).

63. Operators Represented by Stieltjes Integrals

In the preceding section we defined the integral
27

f eMdE,

0
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as the limit, in the sense of strong convergence, of the sequence of operators
é*E (4,) + éE(dy) + ... + e*E (dn),

which have the form of Stieltjes integral sums. The present section is
devoted to a certain generalization of this construction.

Let us take a particular resolution of the identity E, in a finite or
infinite interval [a, 8] and a particular real or complex function ¢ (7)
which we assume to be continuous at every point of [a, 8] with the possible
exception of a finite number of points. We form the expression

8

| s0aEZR,
and we denote by M the set (linear manifold) of all those elements f for
which this expression is a linear functional of f. By the theorem of F.
Riesz there exists a unique element 7f which depends on /€ M, such that

[

[¢@dETPH = (L,

or
8

M [ewa@sm = (17, 1.

It is easy to see that T is a linear operator with domain D;=M. The
present section is devoted to the study of this operator.

For simplicity we assume that the function ¢ (¢) is continuous on the
half-closed interval [a, 8). Thus, we will have only one exceptional point
(the right end point of the interval). This assumption, however, does not
decrease the generality of our conclusions, since the case of any finite num-
ber of exceptional points can be reduced to the simpler one by subdividing
the interval into parts.

We proceed to show that the domain M of the operator T is the set of
all vectors f for which

8
@ [le@rdELH < w.

The first step is to prove that the inclusion fe M implies. inequality (2).
Fix fe M and, in (1), let

h=Tf.
Then
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[}

1Tf12 = [ ¢ VAELTS) =tim [ ¢V d(ES, T).
a 8 a

But
ELTN=TRED = f s@dEFED = f v @ d(ELD).
Therefore,
|71 = lim f |9 () PA(ELS) = f |9 @) P(EL1),
which yields inequality (2)

Let us assume now that inequality (2) holds for a fixed element £, and |
prove that f€ M. Since

[e@dELR) =lim 3o (1) E(@01, b,

and
UIBICIEATTED HETOIRICIERYSACAIE
s Bl @IHE@LN [ S E@I b,
and
2 (E@)hh) = k1P,
lim 32| 9 () I (E(4) /1) f o () " (EL ),
we see that

1% I
[ | <p(t)d(E,f,h), < k| A/ [1e@yraEL.

By this ineyuality, in which ', »" are any numbers which satisfy the
inequality o« £ ¥’ <" < B, we conclude that the improper integral

8
[ewaEsn

exsits and also that

B B '
[ewa@rm1<in A/ [1e@raEs0).
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This implies that fe M.

From our proof it follows that if the function ¢ (¢) is bounded in the
interval (a, B), then T is a bounded operator which is defined everywhere
in H. In this case 7 can be defined also as the Stieltjes integral operator

8

€) [+ aE,

i.e., as the strong limit of some operator integral sum, similar to that which
was done in the preceding section.

Further, in this case it is immediately verified that the operator T*
adjoint to T has the form

8
f 9 () dE,.

If the function ¢ () is not bounded, then the domain of the operator
does not coincide with the whole space H, but it is dense in H. If, for
example, ¢ (¢) is bounded on each interval [a, y] with y € (q, ), but is
unbounded in the neighborhood of g, then D, contains the set of all the
elements in some manifold

(E, —E)H
with y € (a, B). This set is dense in H. From what has been said, it follows
that 7 has an adjoint operator T* also in case ¢ (¢) is not bounded. We

show now that 7* is defined by the formula
8

T*£,5) = [+ ®d(E S0,
where Dy =M =Dj. In a similar manner, we show that in the case of an
unbounded function ¢ (#), the operator T can be represented by a Stieltjes
integral, this time improper. For simplicity we again restrict our consider-
ation to the case when the function ¢ (¢) is continuous in the half-closed
interval [e, 8).
First, we introduce the function

_[e(® (est=y<Pp),
20 { 0 (t> yy)

in terms of which we define an operator T, as a proper Stieltjes integral

T, = J.ﬂcpy(t) dE, = fy 9 (¢) dE..
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Now, T, is a bounded operator which is defined everywhere in H and the
adjoint operator T has the form
[ b4
T} = [ 0,0 dE, = [ 5(0) dE,

Forany f,heH
B v
T f5h) = (e, d B fh) = f o () d(Ef, ).

Now we prove that for any f€ M the equation
Tf =lmT,f
y—>B

holds, so that the operator T can be represented as an improper integral
8

Jewae,

with the linear manifold M as domain. Indeed, according to what has been
proved above, for any fe H

IT, 11 = [ 1o @ Pd B L.

Therefore,
lim (| T, £l
B
exists if and only if f € M, in which case
@ lim | T, fIl = I Tf |l
y—>8

But on the other hand, for fe M, andeachhe H

lim (7, £, #) = lim [ 9 () d(E.S, 1) = (T£, ).
y—B 8 "

In other words, for y — 8,

T,f % Tf.
This result and (4) imply that

T,f - 1f.

Replacing ¢ (¢) by ¢ (¢) in the preceding development, we find that,
for each g e M,

8 y
| 7@ dEg =i [ 40 dEg = imTg = s,
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where the limit is in the sense of strong convergence. Therefore, for

f,8eM,
(Tf, &) = (f; Sg),
which implies that
5 M < Dj..

We assume now that for some pair of elements A, h* e H
(Tf, b) = (£, h*)

for any fe M. For f, we substitute the element 7T} A, which certainly
belongs to M. Noticing that

k4
E T3 ) = [ 96 dEh, ER),

we get
k4 Y

8

(T = ATk W) = [¢ 4| [¢6) dEA ER) = [l 1d (Ep ) =
= TyhIE

From the equation

IT3RIP = (T3 h, h*),
it follows that
IThI < 1 A* I
This yields the inequality

lim f | (1) [Pd(Eh, b) < 11 h* I? < oo,
y—>8 by

i.e., he M. And so, it is proved that D,. = M. From inclusion (5) it
follows that Dy = M = Dy and also that

B
T*= S=J'<p—(t)dE,.

Since the transition from 7T to T* resulted from the replacement of ¢ (f)
by the complex conjugate function ¢ (), we have (T*)*=T. Among other
things, it follows that the operator T is closed.

There is still another way to construct the operator T in the case of
an unbounded function ¢ (). In place of approximating ¢ (f) by the
functions ¢,(7), it is possible to use the function ¢ (¢) directly to define the

operator
8

[ewaE,
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first for the elements, for which the integral exists as the strong limit of
integral sums (in the proper sense), and then to close that operator. This
closure will be our operator T.

Until now we have been considering the class K of all functions ¢ (¢)

|

which are continuous with the possible exception of a finite number of

points. A further generalization is related to the larger class K, which is

defined by the condition that ¢ (f) € K if and only if there exists some .

f€ H such that ¢ (£) € L2, where ¢ ()=(E, f,f) (ast<h).
In order to define the integral

[

[e@aE,f

for ¢ (f) € K, we choose a sequence {pa(?)}?, of functions in K which con-
verge in the sense of the metric of L? to the function ¢ (). We let

[

o= [ dES  m=1,23..).

Since, for functions of the class K,
8

8m —8n = f {(Pm(t) - (Pn(t)} dEtf

and
8
1&n — &0 I1= [ o) — 0.0 A E.1,f)

the sequence {g,}{° converges to some element g € H. We define
8
[ewdES=s.
Denoting by D the set of elements f € H such that ¢ (1) € L2, where
o ()=(E, f,f), we obtain an operator defined by the Lebesgue-Stieltjes

integral
8
7= [k,

If the function ¢ () belongs to the class K, then this Lebesgue-Stieltjes
integral coincides with the integral considered earlier.
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64. The Integral Representation of a Group of Unitary Operators

The method which we applied in Section 62 in the study of unitary
operators, we apply now in some other cases. We use it to obtain an integral
representation of a group of unitary operators (in the present section) and
the resolvent of a self-adjoint aperator (in the following section).

Let a family of unitary operators U, be given which depend on a
parameter s (— 0o <Cs << c0) and which satisfy the following conditions

) UU =Uy,

2) U,=E,

3) (U.f, g is a continuous function of ¢ for any f, g€ H. From 1)
and 2) it follows that U;'=U_,. Butsince U¥=U, !, we have U}=U_,.

The family of operators under consideration comprises a continuous
abelian group.

We select an arbitrary element f € H and consider the function

F() = (U1.f).

This function is positive definite. In fact, it is continuous and, for arbitrary
real ¢, and complex p,(a=1,2,3, ..., n),

i F(tu - tB)Papﬂ =i (thU-tgf’f)Paﬁp =

e, B=1 e, B=1

=Y G.USrtaUnf) = 120U, S 2 0.
e B= a=

Therefore, we can apply the theorem of Bochner to the function F(#). By
this theorem, there exists a unique nondecreasing function w (s)=w (s5; f)
such that

w(—w)=1limw(s) =0, w(E—0=w() (—o<s<wo)

=~ ©

and

F() = fe‘"dw () (—w<t<w)

-

For t = 0 it follows that
) =F©O = [ du(5) = w(c0).

Further, the function w (s; f) determines a function  (s; f; g) such
that

(U8 = [ evdu(sif,g).

Under the normalization conditions
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w(—0;f, 8 = lir_n w(s;f, 8 =0,

(—o<s £ ),
w(s —0;f,8) = wl(s;f 8);
this representation is unique. By this uniqueness, as before, it is proved
that w (s; £, g) is a bilinear functional of f, g, the norm of which does not
exceed unity and which has the following property:

w(s;f,8) = w (51, 8).
Therefore, there exists a one parameter family of bounded self-adjoint
operators E, such that
w(s:£,8) =(Efg (—o=ss= o)
The proof that E(— c < s £ ) is a resolution of this identity does

not differ much from the analogous proof in Section 62. Indeed, on one
hand,

3

(Ueafo) = f S0d(E, £ 8) = fed{ f e"d(E,f.¢g)

- )

and, on the other

(Unnrfs ) = (U1, 8) = [ ed, (EV. £, 9).

Therefore, by the uniqueness of the representation,

(EU.£,9) = [ ed(E.1,8)

We now make use of the representation,

-]

(EU.£,9) = (U.J, Eg) = [ e7d, (E., Eg).

- w0

Again by the uniqueness of the representation, we obtain the equation
(E.f,®) =(E.f, Eg) = (EE,f,8) (o%9),
from which it follows that
EE, = E, (s = min {u, v}).
Further, the normalization conditions satisfied by o yield
E _ ,=E, E_ =0 E,=F
first in the sense of weak and then in the sense of strong convergence.

In complete correspondence with the considerations of the preceding
section, the integral representation
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Uf= T e'dE, f

has a direct meaning as an operator in addition to being a symbolic nota-
tion for the equation

@«

WUL9) = [ ed (B f).
In conclusion, we leave to the reader the verification that the operator
E, reduces the operator U,.

65. The Integral Representation of the Resolvent of a
Self-Adjoint Operator
Let A be a self-adjoint operator and R,=(A4—zE)~! its resolvent,
which we shall consider only for 3z 7 0. Fix fe H and, for z in the upper half-
plane, consider the function
RAS) =2 ().
From the Hilbert relation
Rz‘ - Rz = (Z’ - Z) Rz'Rv
we get
2E) =20 _ RRAS) = (RRSS) + @ = D (RRRLS).
Since the second term of the right member tends to zero as z’ — z,
lim ‘B_(z_?‘___q’(z) = (RR. 1, 1)
z'—z Z — 2z
Therefore, ¢ (2) is a regular analytic function in the upper half-plane. We
determine its imaginary part. It equals

9(2) —9(2) _ RAN ~(LRS) _ RES) — (RSS )
2i 2i 2i
But (cf. Section 44)

R} =R;.
Hence, again by Hilbert’s relation,
RSN —RLS) =@ —D(R; RLS) = (2 — 2) (RLLR.f).
But, since z = x + iy where y> 0,
Je@=yRSLR)) 20,
i.e., the imaginary part of the function ¢ (z) is non-negative in the upper
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half-plane; moreover, it is positive if £ 0, since R, f = 0 implies that

f=0,
We prove also that
sup y | ¢ () | < 0.
»>0

Indeed, we saw in Section 43 that
IR.F1 < Lisi.
y

Therefore,
yie@ =yl R, L] = (L)
We now recall Theorem 3 of Section 59. By this theorem there exists
a unique nondecreasing function of bounded variation w (f) = w (¢;f),
which satisfies the normalization conditions
w(— 0)=1lim w(®) =0, o -0 =) (— o0 <ts o),
t— -

and the equation
2 () =f if_“ﬁ Sz> 0),
- - z
Thus, it is proved that for Jz > 0
0 ®R.1f) = [2 8D,
-0 -z
From this representation it follows that
oy _ [de ()
Gk = [EE,
and, hence,
@ @&t f) = [LED).
- -z

If z lies in the upper half-plane, then 7 lies in the lower. Therefore, from
formulas (1) and (2) it follows that the representation

(R.h, b) - i i";‘_ffizh_)
is valid for each nonreal z and each # e H. We define
w(1if,8) = g +8) — Ja(t:f — @) +i0 (S +18) = olt:— ),
and we find that, for each nonreal z and every f, g € H,
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®3) R ) = [LELD,

Here w (¢; f, ) is a complex-valued function of bounded variation equal to
rero for t = —~ oo and continuous from the leftat each point ¢ > — oo, Itis
not difficult to verify that under these normalization conditions, the integral
representation (3) is unique. In fact, otherwise there would exist a complex-
valued function of bounded variation

o) =a(®) +iB()

for which
@ do (tz —0
R4 t—2Z
for every nonreal z. Then, by (4),
[do() _
Ji—z 7
or
@) de()) _,
t—2z

- 0

A comparison of (4) with (4') shows that for every nonreal z

[da(t) _-[dB®) _,,

t—z t—z

But from theorem (3) of Section 59 and the normalization conditions it
follows that

a(f) =8@F) =0.
Now that the uniqueness of (3) is established, it is easy to prove that
&) w(t; f,8) = (t; 8/
and
w(t;afy + 0sfo, 8 = qo (£ /1, 8) + a2 w (85 /2 8)-

We show next that
wtf0) s (L)
Then it will follow from the theorem in Section 20 that » (¢;f,g) is a
bilinear functional of f, g with norm not exceeding unity. We already

noted that
YIRLENDI (LS >0,

or, equivalently,
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l fyd“’(t;f;f) ‘ < (ff)
t —iy T
We split the integral into three parts and find that

fydw(t,ff) < (ﬁf)+rdw(t;f,f) +wa(t;ﬁf).

Lety - oo to obtam
[dot.1) s (SN + [dut:fif) + [duefh)

Now let 4 — oo to get
w (0 £,f) 2 (fS)

Since w (¢; £, g ) is 2 nondecreasing function of ¢, the inequality

w (L) 2(LS)
is proved.

By the theorem on the general form of a bilinear functional, there
exists a family of operators E(— o £t £ o0) such that

w(t; f, 8) = (E. [, 8-
From the relation (5) it follows that
(E /. 8) = (/, Eg),

i.e., the operator E, is self-adjoint. Further, the function (E, f, f) is a non-
decreasing function of ¢.
These considerations yield the equation

R S,8) = [ - dE S,

which is valid for arbitrary f, g € H and each nonreal z. From this equation
it follows that

© RS R = [ L dE s R0,

and, on the other hand,
(sz’ R?s g) = (Rz'sz; g) =

g) —(R.f,9)} =

- == - d(&ﬁg)=_£@—_51(,_-—z,—)d(E.ﬁg).

-
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And so, besides representation (6), we also have the representation

(RS, Re®) =_f: : d,{ f s—_‘Z-,d(E,f,g)}.

t—z

-

‘These representations must agree. Therefore,
t

[ LaEreo=EsRe - RES 0,

-

or
t

[LaEre~[ 1 dEELe.
§—Z _QS—Z

-

Since these representations are identical,
(E f.8) =(EEf & (=0

EE,=E, (s=min{u}),
which implies that

A

It follows that

E, < E, (s 29
From the normalization conditions of the function w(f;f, g) it
follows immediately that
E_ .,=0, E_,=E,
first in the sense of weak, and second in the sense of strong convergence.
Furthermore, the strong limit

lim E, = E,
t—>0
exists. We prove now that
E, = E,
from which it will follow that E, is a resolution of the identity. Let
E—E,=F.

Then
FE,=(E - E,)E,=E,—limEE,=E, —E, =0.

>0

Hence, for every f, g € H,
1
RF9) ~ [ ——d(EF,8) = 0.

This implies that, for every fe H,
R,Ff=0.
Therefore,
Ffr=0.
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Hence, F = 0, which was to be shown.

The representation derived for the resolvent R, of a self-adjoint
operator A is also an illustration of the general representation of Section
63, which refers to operator integrals. This representation can be written
in the form

1

R. =
z t—z

We propose that the reader verify that each of the operators E, re-
duces the resolvent R,, where z is an arbitrary nonreal number, i.e.,

ER, = RE,.

dE,  (3z #0).

8*——38

66. The Integral Representation of Self-Adjoint Operators

From the general considerations of Section 63, we obtain, as a parti-
cular case, the following theorem.

THEOREM 1: To each resolution of the identity E, (— © £t £ )
there corresponds a uniquely defined self-adjoint operator

1) B= ftdE,.

The domain Dy of this operator is the set of all vectors [ for which the
inequality

[ra@Erp) <
is satisfied. The left member of this inequality is equal to || Bf |2

The basic problem of the present section is the proof of the converse
proposition. For the purposes of this proof, let 4 denote a given self-adjoint
operator and let R, denote its resolvent. According to the theorem of the
preceding section there is a resolution of the identity which corresponds
to A. We shall prove that this resolution of the identity belongs to the
operator A in the sense that it generates 4 in the way indicated by Theorem
1. The first step of this proof is the following lemma.

LeMMA: If E, (— w0 £ t £ ) is a resolution of the identity which
belongs to the resolvent R, of a self-adjoint operator A, then the set of all
vectors f € H, for which inequality (2) holds coincides with the domain D
of the operator A.

Proof: We know that the vector f = R, runs through D, when the
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vector A runs through H and z is any fixed nonreal number., We take z=i
and, for brevity, write

R, =R, R_, = R*.
Our proposition will be proved if we verify the equivalence of the following
two assertions:
a) The element f has the property
f #d (E,f,f) < .

=

B) There exists a vector 4 such that

f=Rh.
We prove first that g implies «. Therefore, let
f = Rh.
Then
(Etf’f) = (E,Rh, Rh) = (REh, Rh) = (R*RE, h,h) =
1 11
=_—({R—R®Ehh) =— ||———)d(EEnH,
2i({ yEhB) 2i . (s—i s+) (EEh B) =
and, hence,
M
J'ﬂd(Eff) f s dER B <fd(Eh k) < (b, B).
-M

This inequality shows that

o«

[ra@sr) s @by <,
so that assertion « is proved.
Now we prove that « implies 8. Assume e. This implies that the vector
fbelongs to the domain of the operator B which was defined in Theorem 1.
Let
h = (B — iE)[.
Assertion g) will be proved if we verify that
R(B —iE)f=/.

For an arbitrary vector g € H, we have the equations
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(R(B —iE)f8) = j - d(E(B — iE)],8),
and

(BB Eg) = [~ (ELED = [ —(EL )

Therefore,

(R(B —iE)f,8) = f’ —ldE L9 = (/9.
Since g is arbitrary,

&) R(B—-iE)f=/.

THEOREM 2: The resolution of the identity E(— o £t £ o) deter-
mined by the resolvent R, of a self-adjoint operator A is the resolution of
the identity which belongs to the operator A in the sense that, first, D, is
the set of all vectors f for which

o0

[ra@sf) <o,

-®

and, second, for any fe D,
Af = f tdE, f.

Proof: We construct the operator B, which corresponds, in the sense
of Theorem 1, to the resolution of the identity determined by the resolvent
R, of the operator 4. By the lemma, Dy=D,. Hence, it remains to prove
that the equation

Q)] Bf = Af
holds for each fe D,. But, in Section 44, it was shown that the equation,
Rg =0,

with z nonreal, is satisfied only for g = 0. Therefore, instead of (4), it
is sufficient to prove that
RBf = RAf,
or
R(B — iE)f = R(4 — iE)f.

This equation holds since the left side equals f by (3) and the right side
equals f by the definition of the resolvent.

THEOREM 3: The resolution of the identity E(— o < t < o) belongs
to the self-adjoint operator A if and only if
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1° E (4) reduces the operator A for any interval 4 < [— o, w0},
2°  the relation
Se(E,—E)H (—oEs<tg ©
implies the inequality
sIfIF s (ALS) stlfIn
Proof: The necessity of condition 1° was noted earlier. The necessity
of condition 2° follows from the representation

) = [ d(EL.1),

which is valid for fe (E,— E,) H.

We turn now to the proof of the sufficiency of the conditions. There-
fore, assume conditions 1° and 2° and choose an arbitrary element fe D,,.
By condition 1°, (E;—E,) f belongs to the domain D, for any a and 8.
Supposing that « and 8 are finite, we form the partition

®)] a=ay <oy <ay<.,..<op_; <ap =24,
of the interval [, 8], and we represent (E;—E,) fin the form
n-1
(Eﬂ - Ea)f =kZO(Eak+l— Eak)f:
By 1°,
n-1
(6) (Eﬂ - Ea) Af =I§)A (Eak+1_ Eak)f:
It follows from condition 2° that, for fe (E,—E,) H,
~12Un s (=) SR 0.

In other words, the restriction of the self-adjoint operator

s+t
A — E
2

to the subspace (E, — E,) H has norm < : ; 5. Therefore, we write (6)
in the form

n-1

) - Exf= ) HE A, —E )1+
k=0
n-1

k=0
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and note that
n-1

2
=

+ %k
(4 -2ty @, B

k=0

n-1
< Z (‘ié:_%)’ (B, , — EDSI2 < 1111,
k=0
where
- Ghet T %
£ mlzi\x S

In (7), let the diameter 2¢ of the subdivision (5), tend to zero. This passage |
to the limit yields

8
(B — Eyaf = [ wE.f,

and
8

1B — EAIP = [ 2d (B,

a

The second of these relations shows that

(-

f £d (E,f,f) = | Af |* < oo,

-

and the first gives
Af = J’ tdE, f.

Therefore, the theorem is proved.

In the derivation of the integral representation of the resolvent of a
self-adjoint operator (Section 65) we used only the fact that R, (Jz 5= 0)
is a family of operators, defined everywhere in H, which satisfy the follow-
ing conditions:

I RS éﬁ”f” (» =32). :

2 R=R. '

3 R,.—R,=( —2)R.R,.

4 If R, f=0 for any z, then f=0.

Now we can assert that every family of operators, which satisfy these

[
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«onditions is the resolvent of some self-adjoint operator.® Indeed, having
«uch a family of operators, we can find its integral representation by some
tesolution of the identity E,, and then construct a self-adjoint operator
4 with this resolution of the identity. The resolvent of this operator 4 is
the family R,.

Completing the present section we mention several simple facts about
welf-adjoint operators which are immediate consequences of the integral
representation of these operators.

1° 1If A is a self-adjoint operator for which

A5 S)
f <2277 = a,
Dy (f+f)
LS _
G P

then the integral representation of 4 has the form

B
A= f tdE,

E, =0 (fort = a),
E,=E (fort z B).
2° 1In order that a vector f€ H admit the n-fold application of the
self-adjoint operator A4, i.e., in order that
A f = A (4% f) k=12,...,n
have meaning, it is necessary and sufficient that the inequality

(-

f Pd(E, f,f) < o

[\7

-

be satisfied. If this inequality is satisfied, then for k=1,2,...,n

Aty = [ #dE 1, | A 1e = [ (E 1.1,
3° There exists a linear manifold dense in H which is in the domain
of every positive integral power of the self-adjoint operator 4. One such
manifold is the set of vectors of the form E (4) A, where h runs through
H, and 4 runs through the set of all finite intervals on the real axis.
The proof of these assertions we leave to the reader.

¢ This fact can be established without the use of the integral representation of the family
of operators R:. If one uses only properties 2°, 3°, 4°, then it is easy to show that the operator
A defined by the equation 4 = zE+ R;! does not depend on z, is self-adjoint, and its resol-
vent is Rz. Thus, it is revealed that property 1° is a corollary which need not be assumed.
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67. The Cayley Transform

In the present section we give another construction of the integral
representation of a self-adjoint operator—a construction which is based
on the so-called Cayley transform. ;

Let A be a closed symmetric operator and let z be a nonreal number. .
Let A run through D, and let

M (A4 —zE)h =/,
) (A4 —zE)h=g.
The vector f will run through some linear manifold F, and the vector g

through some linear manifold G. We prove that F and G are closed and,
hence, are subspaces of H. With this aim, we assume that “

fa=A —ZE) ha n=1273..),
and

3 Jo L.
If z = x + iy, where y #0, then

fn = (A —_— xE)hn — iyhn,

which yields
I fo —Jful?* = (4 — XE)(h, — hy) |* + ¥ 1 By — Byl
Therefore, from (3), it follows that
lim (4 — xE)h, and lim A,

n—»0 n—»

exist. We denote the second of these limits by # and use the fact that 4
is a closed operator to conclude that

f=(A —xEYh + iyh = (4 — ZE) h.
Hence, f € F, so that the manifold F is closed. Analogously, it is proved
that G is closed.

By means of relations (1) and (2), the manifold D, is mapped in one-
to-one manners onto F and G, respectively. Therefore, for each f € F there
is one and only one element 4 € D, which satisfies relation (1). Having
found this element A, we determine the element g by formula (2). Thus, to
each element f € F is associated a unique element g € G, i.e., we have an
operator ¥ with domain D, = F and range 4, = G:

g =V
It is easy to see that ¥ is an isometric operator. Indeed, it is linear and
IfIE =0 (4 —xE)hIE + »2 1 A2
hgl*=1(4 —xE)hI* + y* 1l A I2
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I he isometric operator V is called the Cayley transform of the symmetric

operator 4.
Let z = i. Then equations (1) and (2) have the form

) (4 +iEYh =,
29 (4—iE)h=g=Vf.
I'rom these relations it follows that

h—E(f g)—E (E-N1

Ah =2 (f+8) = (E+ WS,

‘Therefore,

)] Ah =¥E + V)Y(E — V) 'h
Thus, the symmetric operator A4 is expressed in terms of its Cayley trans-
form V.

Especially important is the case when V is a unitary operator.

THEOREM: Let the Cayley transform of a symmetric operator A be a
unitary operator U with a resolution of the identity F(0<s<2n). If

E,=F, (t=— t-s-),
, cot—~

then the domain D, of A is the set of all vectors h for which

f 1d (Eh, h) < oo.

The operator A has the integral representation
@«

Ah = f tdEh.

-

Proof: Let he D, and f be the element which corresponds to 4 by
the mapping (1°). Then

1y
h =5{E—U)/

In this case,

() Fh=y(E—U)ES=2[ (1 ~edFES) =

e
‘ziof“ ed F.f,
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and
(EM) = L({E — UYFf (E— UY) =

({E-U} {E-U}ESS) =

!
4
© =~ (RE—U—-UE£S) -

27
_1 __ pit __ =it —
—Zof(z e —e)d,(FFLS)

=fsin’%d(F,f,f),
On the other hand ’
. 1 — 1 is
(7) Ah—E(E+U)f—5of(1+e)dm:
and
| 4RI = L({E + UM, {E+ V) = §(RE + U+ U} £.f) =
® - f cost2d (F,1.1).

A comparison of (6) and (8) reveals that
27

2
I A2 = f cot’%sin’%d(F, ff) = f cot? %d(F,h, h).
0

0

In the same manner it follows from (5) and (7) that, for each 4’ € H,
27

(4h, b') = — of cot% d(Fh, b').

We now let
t=— coti, E, =F,
2
Then E, is a resolution of the identity in the interval [—- o, ). If ke D,,
then
) f #d (Eh, B) < oo

-
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and

(10) Ah = f tdEh.
In order to complete the proof of the theorem, it remains to prove
that if

@ 2n
(11) f d(Eh, k) = f cotzgd(F,h, k) < o,
- 0

then A e D,. Therefore, assume that (11) holds with a particular element
h. Then the operator

27
— e-ls/2 1 dE
0 sin i
is defined for the element h. Let
2n
1
__ -2 _ 1 —
f e _dFh =]

0 sin =
2

Then, for each ' e H,

2n

e _L_a@En ) =K

0 sin =

2
Setting
W= — (E = U,
2i
we find that
1 AN 1 -
(58— 03sr) =) - Ef AR (E-US)
o sin
- % ——a wwm@ﬂ—fﬂﬂf)(ﬁﬂ
! sm =
2
Since f” is arbitrary this implies that
h= (B — V).

In other words, the element A has a representation, which implies that it
belongs to D,.
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Since the Cayley transform of a self-adjoint operator is a unitary

operator, it follows from the theorem that every self-adjoint operator has -
an integral representation, which fact we also obtained in the preceding '

section.

form of a symmetric operator A is a unitary operator, then A is a self-

adjoint operator. Indeed, from the theorem it follows that the operator

A has the representation (10) and is defined for all the elements A for
which inequality (9) holds. By Theorem 1 of the preceding section, such
an operator is necessarily self-adjoint.

68. The Spectra of Self-Adjoint and Unitary Operators

Let E, be a resolution of the identity. Without loss of generality we
suppose that £, is defined for — o £ ¢ < 0. Indeed, if £, is defined origin-
ally for ¢ € [, 8], then we can extend the definition by letting £,=F for
tzBand E,=0fort < a.

We: call the point ¢ a point of constancy of E, if there exists an e > 0
such that

Et+¢_ Et-tz O’
and a point of growth otherwise. Furthermore, we call the point ¢ a jump
point if

Et+0 - Et# O,
and a continuity point if

E,, —E =0.

Continuity points which are also points of growth we call points of con-
tinuous growth.

Let E, be the resolution of the identity of a self-adjoint operator A4.
We prove that

(a) A real number A is a regular point of 4 if and only if A is a point
of constancy of E,.

(b) A real number A is an eigenvalue of 4 if and only if A is a jump
point of E,.

In order to prove assertion (a) we use the equation

M) IA—ESE = [~ dELD,

which is valid for fe D,. If A is a point of constancy of E,, then the func-
tion (E, f, f) is constant in some neighborhood of the point A. Let ¢« be
the radius of this neighborhood. Equation (1) yields the inequality

But the proof of the theorem yields another fact: If the Cayley trans-
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(4 — AE)fII* 2 f + f (t — NA(Ef.1) 2 S

from which it follows that A is a regular point of 4.
Conversely, if A is a regular point, then, for some ¢« > 0 and every
/ c DA’
(4 —2E)fll 2z el fll,
and this implies that, for fe D,

@ [e—wd@Es1) 2 e[ dELD.

Let us assume that A is not a point of constancy of E,. Then there exists
an element g and a positive n < e such that
(E).+-n - E).—-n)g #0.
Applying inequality (2) to the element
f= (El—hy - El-n)g)
which is known to belong to D,, we get

A+n A+m
[¢—»aEeo 2 o[ dEg o).
A-n A-n
Since this is obviously false, assertion a) is proved.
We proceed now to the proof of assertion b). Let A be an eigenvalue
of the operator A and let f be an eigenvector associated with it. Then

@

0= |(4 —AE)fIP = f (t — A?d(E, 1)

-~

This equation shows that the only point of growth of the function (E, f, f)
can be the point ¢ = A. Since

0 (£ = [dEL,

the point ¢ = X is definitely a point of growth. But an isolated point of
growth is a jump point. Therefore

Erpo L) E(ELS)

and, consequently,
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EA+0 #* E)‘-

Conversely, let A be a point such that
EyoF E,.

This implies that for some vector g

(Brvo — EYg =f#0. ;
The vector f belongs to D, and |

14 =) f1 = [ (¢ = W EL). |

But the function
(Etf;f) = (Et{EH—o - E}‘}gaf)
is equal to zero for ¢ < A and does not depend on ¢ for ¢ > A. Hence,
(4 —=2E)fll =0,

i.e., A is an eigenvalue of the operator A.

From the propositions (a) and (b) it follows that each point of con- '
tinuous growth of the resolution of the identity of a self-adjoint operator
belongs to its continuous spectrum. !

A trivial consequence of our considerations is that the spectrum of -
each self-adjoint operator is nonvoid. ;

Turning now from self-adjoint operators to unitary operators we
recall that every eigenvalue of a unitary operator has absolute value unity,
i.e., each has the form e™ where A is called the eigenfrequency of the unitary |
operator. The equation 4

U = *f
holds for each integer k if f is an eigenvector associated with the eigen- |
frequency A. Let U, (— o < s < o) be a continuous group of unitary

operators. In this case A is called an eigenfrequency of the group of oper-
ators if an element f % 0 (an eigenvector) exists such that, for every real s,

U f = e
We now prove that: a real number X is an eigenfrequency of a unitary
operator U (respectively, a continuous group of unitary operators U,) if and
only if X is a jump point of the corresponding resolution of the identity.
For definiteness, we consider the case of a group of unitary operators.

Let A be an eigenfrequency of this group and let f be an associated eigen-
vector. Then, for each real s, |
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U f— e =0.
But since

(U, — e*E)fIP = ({U_, — eE} {U, — é*E}f,f) =
—(RE—eé?U_,—e U} £,f) =

— [e—et0 — ey u(E £ p) =

- fnmzi(izl’ld(aﬁf),

the only possible point of growth of the function (E, f, f) is t = A. This
must be a point of growth, since otherwise the relation

0#(£S) = [dELS)

would not be possible. Hence,

(Bxro i) #(BLS)
and

EA+0 7& EA-

We remark that the role of the non-negative factor (A — #)2in the case
sQ— 1. ; 0 Other than
this, there is no difference in the proof. We refer to the second part of
the assertion and also to the following proposition: the point A is a point
of constancy of the resolution of the identity of a unitary operator U
(respectively, a group of unitary operators U,) if and only if ¢** for any
integer k (respectively, € for any real s) is a regular point of the operator
U* (respectively, of the operator U,).

Since the resolution of the identity E, of a self-adjoint or unitary
operator completely determines the spectrum of the operator, one often
calls E, the spectral function.

Whether or not a given point A belongs to the spectrum of a self-
adjoint operator A4 is determined by the behavior of its resolvent R, for z
in the neighborhood of the point A. The circumstances are contained in
the proposition: a real point A does not belong to the spectrum of a self-
adjoint operator A, and hence, is a regular point of this operator if and only
if, for each fixed element f € H, the function (R, f, )

of the self-adjoint operator is played now by 4 sin?
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1) is regular for z in some neighborhood of the point A, and

2) takes on real values in some interval A — 8 <t <X + 8.

The necessity of these conditions follows immediately from the integral
representation of the resolvent and assertion a) of the present section. The
sufficiency follows from the Stieltjes inversion formula (cf. Section 59) and
assertion a) of the present section.

In the following section we shall become acquainted with a class of

operators for which the above conditions need to be verified only for one
(specially chosen) element f.

69. The Simple Spectrum

In linear algebra and the elementary theory of integral equations, the
spectrum of an operator is called simple, if the multiplicity of each eigen-
value of this operator equals one. This definition does not apply to arbitrary
operators in Hilbert space, since in general the set of eigenvalues of an
operator does not exhaust its spectrum. We make the following definition.

DErFINITION: The spectrum of a self-adjoint (respectively, unitary)
operator is called simple if there exists a vector g € H (generating vector)
such that the linear envelope of the set of vectors E(4) g, where A runs
through the set of all intervals on the real axis (respectively, the segment
[0, 27]) is dense in H.

By this definition the spectra of d self-adjoint operator and of its
Cayley transform are simultaneously simple or not simple. In addition,
from the given definition it follows that in a nonseparable space a self-
adjoint (unitary) operator cannot have a simple spectrum.

For operators, which occur in linear algebra and the elementary

theory of integral equations, it is characteristic that the linear envelope

of the set of all eigenvectors of these operators coincides with the space,
or in any case is dense in it. It is not difficult to show that for an arbitrary
self-adjoint (or unitary) operator in H, which possesses these properties,

the new definition adopted above for the simplicity of the spectrum is in -

complete accord with the elementary definition mentioned at the beginning
of the present section. This fact can be regarded as a justification of the
general definition.

We consider as an example the multiplication operator® Q in L3
(— o0, ) (cf. Section 48). The spectral function E, of this operator is
defined by the equation

EN SO =x0Of0) (fOeL),

® For simplicity we write Q instead of Q.
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where x, (f) is the characteristic function of the interval 4. In order to
ascertain this it is sufficient to recall Theorem 3 of Section 66. The oper-
ator @ has a simple spectrum. Indeed, let us take a step function g (r)
which satisfies the conditions

gB)=a>0 (k—1<t<k),

> el {o(k) — otk —1+0)} < o.

=- -

This is a generating function for the operator Q in the sense of our defini-
tion. Hence, the linear envelope of the set of functions E (4) g (f) coincides
with the set of all step functions which are equal to zero outside of some
interval, and this set is dense in L% — co, o) (cf. Section 42).

It is evident that a function g (f) € L% (— oo, o) which is equal to
rero on a'set of positive o-measure, cannot be a generator for the operator
0.

For a generating element one may take any function g (f) € L2(— o, ),
which is distinct from zero everywhere with the possible exception of a set
of zero o-measure. For the proof of this assertion it is sufficient to establish
that any function f'(¢) € L%(a, b) can be approximated with any accuracy
by products of the form g (¢) g (£), where g (¢) is a step function:

b
M [0 -g@q@rde <<

a

We introduce the space L? (a, b), where

o) p() = f |£(5) 1 do (5.
1@

Since the function —~(—) belongs to L (a, b), there exists a step function
g (¢) for which

f f((’))—q(t)(dp(z)«*

After the replacement of p (¢) according to formula (2), we obtain (1).
THEOREM 1: If the spectrum of a unitary operator U is simple and g
is a generating element, then the linear envelope of the vectors U*g (+ k =
0,1,2,...) is dense in H. Conversely, if there exists a vector g such that
the linear envelope of the vectors U*g (+ k =0, 1,2,...) is dense in H,
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then the spectrum of the operator U is simple and the vector g is a generating
element.

Proof: Let the spectrum of the operator U be simple and let g be a
generating element. Assume that the linear envelope of the set of the
vectors Ukg (£ k =0,1,2,...) is not dense in H. Then there exists a
vector h == 0 for which

(Ug,h) =0  (+£k=0,1,2,...)

From the integral representation of the unitary operator U it follows that
2n
fﬂwm&mzo (£k=0,1,2,..) |
[}

These equations and the uniqueness theorem yield
(Eg,h) =0 0=t <2

This implies that the vector h is orthogonal to each vector of the form
E (4) g. But this is impossible, since g is a generating element. Thus, the |
first part of the theorem is proved.

The second part is proved very easily in the same way.

THEOREM 2: (The canonical form of a self-adjoint operator with a
simple spectrum). Let A be a self-adjoint operator with a simple spectrum,
g be a generating element, and o (t) = (E,g, g). Then the formula

f= ff (NdEg

associates each function f(t) € LX (— o, ) with a vector f€ H, and this
correspondence is an isometric mapping of LY — oo, ) into H. It trans-
Sforms the domain D < L — w0, ) of the multiplication operator Q in
LY — o, ) into the domain D, < H of the operator A. If the element
fe Dy, corresponds to the function f(f) € L% (— o, ), then the element Af
corresponds to the function tf (¢).

Proof: We denote by G the set of all vectors of H which can be repre-
sented in the form (3). Since G is a linear manifold which contains all the
vectors of the form

[ xdydEg = £y,
Gis densein H. If £ () belong to the set K which was introduced in Section
63, then
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(Eg.) = [f©)d, (Eg Eg) = [76)d(Eg, 0)

and
N =[10dEen = [ 110 1rdEe ) = [ I/ 1o 0.

Thus, a linear manifold which is dense in LZ(— oo, o) is transformed
isometrically by (3) into a linear manifold which is dense in G. Therefore,
the completeness of L% — oo, o) implies that G is closed and, hence, G
coincides with H, so that the first part of the theorem is proved.

In order to prove the second part of the theorem, we allow f(¢) to
run through the set of all continuous functions which are equal to zero
outside of a finite interval. If £(¢) is such a function and f'is the vector in
H which corresponds to it, then f'e D, and by (3), for each h € H,

(Af, h) = fzd(E, )= 7 td(f, E) = T td { } f()d(E.g, E,h)} =
@ - © ¢ - _: -
— [l [r0dEen) - [/ aEsh.

It follows that

© af = [t/ dEg.
We let in (4) 7
h=Af,
and get
O L4f 1 = [ 11/ 1o (.

Recalling the definition of an operator represented by a Lebesgue-
Stieltjes integral, we conclude from formulas (5) and (6) that an arbitrary
function f'(¢) € L}(— oo, o) belongs to the domain Dy, if and only if fe D ,.
We see also that the application of the operator A to the vector fcorresponds
to the multiplication of the function f'(¢) by ¢.

By the theorem just proved, each self-adjoint operator with a simple
spectrum in a separable space is isomorphic to the operator of multi-
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plication by the independent variable in LX(— o, o). The latter will be |

referred to as the canonical form of the operator A.
This isomorphism determined by

®3) f= f f()dEg
implies that -
3) EWS=[f(dEg

first for continuous functions f(f) which are equal to zero outside of a
finite interval, and then for arbitrary f(f) € L%(— o, ). Choosing in (3)
distinct generating elements g, we obtain an entire class of multiplication
operators which are isomorphic to 4. In the following section we charac-
terize all distribution functions o () = (Eg, g).

Here we note one general property of all generating elements g: every
point of growth of the spectral function E, is a point of growth of the
function (E,g, g). The validity of this assertion follows from the fact that
if 4, is an interval of constancy of the function (E.,g, g), then the linear
manifold consisting of all the vectors E (4) g, where 4 runs through the
set of all real intervals, is orthogonal to the subspace E (4,) H.

Let us recall the criterion given at the end of the previous section for |

a point A to belong to the spectrum of a self-adjoint operator 4 which has

a simple spectrum. In view of our present considerations, it is sufficient

to verify this criterion for any one generating element.

We complete the present section with a proposition concerning self-
adjoint operators which is the analogue of Theorem 1.

THEOREM 3: If a self-adjoint operator A has a simple spectrum then
there exists a vector h such that A*h is defined for k =0,1,2,... and
such that the linear envelope of this set of vectors is dense in H. Conversely,
if there exists such a vector h, then the spectrum of the operator A is simple
and the vector h is a generating element.

Proof: The proof of the second part is very simple. Indeed, let the

|
:

linear envelope of the set Ak (k =0, 1, 2, ...) be dense in H. The integ-

ral representation

o

(4*h,f) = [ #d(Eh, 1)

-

shows that there does not exist a vector f 7= 0 which is orthogonal to Eh
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for all . Hence the linear envelope of the set E (4) h is dense in H, so that
the spectrum of the operator is simple and 4 is a generating element.

Turning to the first part of the theorem, we prove that the vector A
van be taken as

h = f e-"dEg,
where g is some generating element of the operator. In this case,
Ak = f fe-dEg  (k=0,1,2,..).

If there exists a vector f % O which is orthogonal to all the vectors A*h,
then

@D

J' te-M)do() =0 (k=0,1,2,...),

-

where o (f) = (E,g, g) and

Q) 0~ f L) IMdo (1) < oo.
Letting o
®) 0@ = [f)do ) - €,

with a suitable choice of the constant C, we find that
fz*e-f’w'(z) dt=0 (k=01,2...).

Since the system of Tchebysheff-Hermite functions is complete, it follows
that « (f) = 0, which by (7) and (8) reduces to the contradiction

0 [17(1do@) = [F@du( —o.

- -

Orthogonalizing the sequence of vectors {4*h}¢°, we get an orthonormal
basis {e,}s° all elements of which belong to D,. Obviously, fori > k + 1,

(Aek’ el) = 0’
and, since the operator 4 is symmetric, this equation holds also for i <k —1.
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Therefore, the matrix ( (Adey, €) )%-o of the operator A4 relative to the:
basis {e,}¢° is a Jacobi matrix. It is necessary to note that, in general, the
constructed basis is not the basis of the matrix representative of 4 in the
sense of Section 47.

70. Spectral Types

A distribution function is any left continuous nondecreasing function
of bounded variation which is defined on the whole real axis. If o (¢) is |
such a function, then ¢ (4) = o (") — o (¢’ ) (¢" and ¢" are the end points
of 4) is an additive interval function. (We also use the name distribution
function for o (4).)

Let us agree to say that a distribution function o (f) is inferior'® to
the distribution function p (¢) and write

(M a(f) <p ()
if o (¢) is absolutely continuous with respect to p (¢), i.e., if for any 4 <
['_ o, w]

o@ = [e®dr@, *
4a

where ¢ (¢) is a p-measurable non-negative function.

If simultaneously with (1)

2 p(t) <o(d)

holds, then the distribution functions o (f) and p (f) are said to be of the
same spectral type. If (1) holds but (2) does not, then we say that the
spectral type of o (¢) is less than the spectral type of p ().

Now let 4 be an arbitrary self-adjoint operator and E, be its spectral |
function. The function (E, £, f), it is evident, is a distribution function in
t for each fixed f € H. We call the spectral type of the function (E, f, /) the
spectral type of the element f (with respect to the operator A). We say that |
the spectral types of the elements f belong to 4. If among the elements
Se€H there exists an element g of maximal spectral type with respect to |
A (i.e., an element g such that (E, f, f) < (E,g, g) for all f'e H), then we
ascribe this spectral type to the operator 4. '

If A is a self-adjoint operator with a simple spectrum, then there exist |
elements of maximal spectral type with respect to 4. This follows from the
next theorem which, at the same time, gives the answer to the question of

¥ Translator’s Note: Inferior has the meaning of “less than™ in the partial ordering de- °
fined by the concept of absolute continuity.

S
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the preceding section about the characterization of the set of generating
«lements of an operator with a simple spectrum.

THEOREM 1: Let A be a self-adjoint operator with a simple spectrum.
In order that an element g be a generating element it is necessary and sufficient
that g is of maximal spectral type with respect to A.

Proof: Let g be a generating element and f an arbitrary vector of H.
In this case

s= Tf(t) dEg,

where f(¢) is some function of L2( oo, o) and o () = (E,g, 2).

b urthermore, for each interval 4 < [— o, ®],
o0

E@f = f 7@ dEg = [ xi0 1) dEg.

I'hus, under the mapping of H into L2(— oo, ) determined by g, the vec-
tors fand E (4) f correspond to the functions f(¢) and x,(¢) £ (f). Since the
mapping is an isometry,

E@LD = [ 1100 det) = [ 176) Pdo o).

‘Therefore,
(Erf;f) < (Er ,g)’
so that the necessity is proved.
Let us assume now that g is an element of maximal spectral type, so
that, for each fe H,
(ES.f) <(Eg, 8).

In particular, this relation holds for the generating element g,, (which the
operator 4 possesses since its spectrum is simple), i.e.,

(Ego 80) <(Eg, 8)-
On the other hand, by the first part of the theorem,

(Eg, 8) < (Egv &)
Thus, the elements g and g, are of the same spectral type, which implies that

()= (E@) g8 = [ P doe ),

o) = (B (4) g0, 89 = [ P do (),




A

58 VI. SPECTRAL ANALYSIS OF UNITARY AND SELF-ADJOINT OPERATORS I

where the functions p(f) 2 0 and po(f) = 0 belong respectively to]

Li(— o, ©) and LY — o, ). These equations imply that the sets of

zero o-measure and zero o,-measure coincide. In addition, it is not diffi- |

cult to see that {
p@Op1) =1

everywhere except a set of zero o-measure. Therefore, each of the functions l
p (9) and p(t) can equal zero only on a set of zero o-measure.
We must prove that g is a generating element for the operator 4. In |
other words, we must show that the equation
(E(4 g h=0

is satisfied for every 4 < [— o0, o] only when A = 0. But, by the isomor-
phism between H and L2 (— oo, ),

EWDeh = gD dolr),

where g (f), h () e L2 (— o0, ) and | g () | = p (f). Hence, if g is not a '
generating element then, for some function 4 (¢f) € L} (— o, o) and for
arbitrary 4 < [— o0, 0}

[e0h®dnin =0,

or, equivalently,

[ 2@ R dortt) = 0.

This is impossible, since the linear envelope of the set of functions
x4(t) p (f), as we showed in the previous section, is dense in L2 (— co, ),
since the function p (f) = 0 can be zero only on a set of zero s-measure.

In connection with the theorem just proved the question arises: is it
possible to represent, in the form (E, f, f), every distribution function of
a type which does not exceed the spectral type of 4. An affirmative answer
is given to this question in the following theorem.

THEOREM 2: Let A be a self-adjoint operator with a simple spectrum |
and o (t) a given distribution function of a type which does not exceed the
spectral type of A. Then there exists a vector f € H which this distribution
Junction generates in the sense that

o () = (ELS)

Proof: From the conditions of the theorem it follows that the distri-
bution function o (f) can be represented in the form
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s@ = [e(0d(Ee 9,

4

where g is a generating element and ¢ (f) =2 0. Let
f=[rwdEg = [ve®aEs.

I'he element f generates the distribution function o (), since

EWDL) = [1f0)d(Eg,8) = ()

71. The Multiple Spectrum

If the linear envelope of the set of all eigenvectors of a self-adjoint
operator is dense in the space, then it is natural to define the multiplicity
(total multiplicity) of the spectrum of this operator as the maximal multi-
plicity of its eigenvalues.

Before we give the definition of the multiplicity of the spectrum of an
arbitrary self-adjoint operator in H, we introduce the concept of the
penerating subspace. A subspace G is called a generating subspace of the
self-adjoint operator 4 with the spectral function E, if the linear envelope
of the union of the sets E (4) G, where 4 runs through the set of all inter-
vals, is dense in H.

DEFINITION 1: The multiplicity (or total multiplicity) of the spectrum
of a self-adjoint'* operator A is the minimum dimension of the generating
subspaces of this operator if A has a finite-dimensional generating subspace;
otherwise, the multiplicity of the spectrum of A is infinite. The multiplicity
of the operator A in the interval 4,= [t', t"] is defined as the total multi-
plicity of the spectrum of the operator E (4,) A.

It is easy to see that if G is a generating subspace of the operator
E (4,) A, then for 4; < 4,, the subspace E (4,) G is a generating subspace
of the operator E (4,) A. Therefore, for 4, < 4,, the multiplicity of the
operator 4 in the interval 4, does not exceed its multiplicity in the inter-
val 4,,.

Hence, we are justified in making the next definition.

DEFINITION 2: The multiplicity of the spectrum of a self-adjoint operator

M We omit the analogous definition for unitary operators. It is evident that the multi-
plicities of the spectra of a self-adjoint operator and of its Cayley transform coincide.
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of the multiplicities of the spectrum of A in the intervals [A—}', H—}l].

It is not difficult to verify that, if A is an isolated point of the spectrum,
then Definition 2 coincides with the definition given earlier for the multi-
plicity of an eigenvalue. If the linear envelope of the set of all eigenvectors
is dense in the space, then Definition 1 gives as the total multiplicity of the
spectrum the maximal multiplicity of the eigenvalues.

It follows from Definition 1 that in a nonseparable space the total |
multiplicity of the spectrum of a self-adjoint operator is necessarily infinite.

In conclusion, we prove a lemma which will be used in the following !
section. .

LEMMA: Let a self-adjoint operator A have an n-fold spectrum and a
generating subspace G. If the linear operator Ay < A is defined only on
the linear envelope of the sets E (4) G, where A runs through the set of all
finite intervals, then the operator A is the closure of the operator A,.

Proof: Since the relation 4, = A is evident, we must show only that
A < A,. With this aim we choose an arbitrary vector fe D, and let

fl‘c = E(Ak)f (k = 1, 2’ 39 . '))
where 4,=[—k, k]. Since G is a generating subspace, the linear envelope
of the sets E (4’) G, where 4’ runs through all subintervals of the finite

interval 4, coincides with E (4) H. Therefore, the vectors f, belong to the |
domain of 4, and

Aofie = AE(4) f = E(4) 4f.
Let k¥ — oo to obtain
E(40)f —f, E(4) Af —~ Af.

Therefore, the vector f belongs to the domain of 4, and

Aof = Af,
A c A, L

so that the relation

is proved.

72. The Canonical Form of a Self-Adjoint Operator with a
Spectrum of Finite Multiplicity

In the present section we sketch a generalization of Theorem 2 of |
Section 69 for the case of an operator with a spectrum of finite multiplicity. |
With this aim we proceed to define the space L% — oo, ) of vector-
valued functions, which is a generalization of the function space L( — oo, o).
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Let

SO = (D) f1-1 (m < 05 — o0 <t < ®)
he a Hermitean matrix function which satisfies the conditions:

Jor arbitrary complex &,
Ii}{“m(f”) —ou(t')} 6,620 (r =1),
2° S(—w©)=0, S —0)=S(®.

A matrix function S (t) defined by conditions 1° and 2° we call a matrix
distribution function and we write S (4) in place of S(t") — S(t") if 4 =
[, t"].

From condition 1° it is easy to conclude that ¢,(f) (i=1, 2, .. . m) are
nondecreasing functions of ¢ and that the functions o, (¢) (i, k=1, 2,. .., m)
are of bounded variation in every finite interval.

In the construction of the space LI(— c, o) we start with the set of
nll vector functions of the form

m = {Xl(t)’ XZ(t)’ LI ] XM(t) }9

where y,(¢) is the characteristic function of the interval 4,(k=1, 2, ... m).
Such vector functions will be called characteristic vector functions. We
form the linear envelope R of the set of all characteristic vector functions,

letting
a X(l)(t) + azx(”(t) = {“1X(l)(t) + azX(o)(t)a a1x§”(1) + agXz 2)(t) }

In terms of the matrix distribution function S(z), we define a scalar
product. First, let
(P, x2()) = oA O AP),
for vector functions of the form

——

@) =1{0,...,0,x"®,0,...,0},

X0 = (0,...,0,x2(t),0,...,0,

where x®(¢) and x,®(¢) are the characteristic functions of the intervals
4" and 4,® and then, by linearity, extend the definition of the scalar
product to the entire system R.12

11 Translator’s Note: The closure of R in the norm introduced is L% (—eo, oo).
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The construction described does not give an analytic characterization
of the space Li(— w, o). Moreover, this construction does not give us a
justification for calling L%(— o, o0) a space of vector functions, since
those of its elements which do not belong to R are defined only as limits
in norm and cannot be interpreted as vector functions on the basis of their
definitions.

A functional analytic characterization of the elements of the space
L%(— o, o) can be given,!? in which the distribution function r

V() =3 au(d)

i=1

appears. There it is shown that the space L%(— oo, o) consists of all vector
functions

FO = {AO, - ful)}

with components which are measurable and finite almost everywhere with ‘
respect to the measure induced by v (¢), and such that

lim (A, /u(0)) < e,

where

_

/O fmax |f@OI<N,
Jult) = |

0 otherwise.

However, for our purpose the functional analytic characterization of
the space L%(— oo, o) is not necessary. We remark only that our con-
struction of L%(— oo, o) reveals that this space contains the vector func-
tions with continuous components which are zero outside of a finite
interval. Therefore, we can define on the manifold of these vector functions

1O = (KOSO, - 10} |
an operator @, by the equation |

Qo f (1) = {th(D), t /o), . . ., tflD) }. j
The closure Q of the symmetric operator Q, we call the operator of |
multiplication by the variable 7 in the space L%(— o, o). With the aid

of the remark at the end of Section 67 it is easy to establish that Q isa
self-adjoint operator. Furthermore, Theorem 3 of Section 66 enables us

13 cf.,, 1. Kaz [1], Vol. I.
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to obtain the spectral function E, of the operator Q. On the vector functions

IO = {AD D, - S}

with continuous components which are equal to zero outside of a finite
mterval, the spectral function E, is defined by the equation

E@) 1) = (d®) S5O, xd SO - - 2 x4 D ],

where x,(?) is the characteristic function of the interval 4.

Repeating the argument of Section 69, we find that the multiplicity of
the spectrum of the operator Q in L%(— o, o) does not exceed the order
m of the matrix S(¥).

Now let 4 be a self-adjoint operator with a spectrum of multiplicity »
(n < o0) and the spectral function E,. Let us agree to call every basis of
any generating subspace of the operator A a generating basis of the oper-
ator. If g,, gs, . . . , g{(MZ 1) is a generating basis of the operator 4 then
we denote the closure of the linear envelope of the set of all vectors E(d)g,,
for fixed i, by G,.

A basis of an n-dimensional generating subspace we call a minimal
generating basis. 1t is possible to select a minimal generating basis so that
the corresponding subspaces G,(i = 1, 2, . . ., ») are pairwise orthogonal.
To obtain such a minimal basis gi, g3, . . . , gs We start from an arbitrary
basis Ay, Ay, . . . , hn and, letting g,= h,, we generate the subspace G,. It
is evident that A, is not in G, (since otherwise the multiplicity would be
less than n) and, hence, (E—Pg ), 7 0. Letting g, = (E—Pg )h,, we generate
the subspace G,. It is not difficult to see that G, | G,. We continue this
process in order to obtain the desired basis. .

We do not presuppose that the generating basis gy, g2, . . . , g (M= 1)
1s chosen such that the corresponding subspaces G,, G, . . ., G,, are pair-
wise orthogonal, and we restrict ourselves only to the requirement that
these subspaces be linearly independent. In what follows, when speaking
of a generating basis, we shall assume always that this last condition is
satisfied.

Itis easy to see that for any generating basis g, g3, . . . , §n (2 Em < 0),

the matrix function
S () = ((Eg» &) Nx-1

1s a matrix distribution function. Thus, each generating basis defines some
matrix distribution function.

Now it is possible to formulate the theorem about the canonical form
of an operator with a spectrum of finite multiplicity.
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THEOREM: Let A be a self-adjoint operator in H with a multiple spec-
trum of mudltiplicity n. Let g,,82 ...,8,(nEm<©) be an arbitrary
generating basis and S (f) = ( (Eg;, &) )'xk-1- Then there exists an
isometric mapping of the space H into L%(— oo, ) with the following
properties. The domain D, < H of A is mapped into the domain Dy < L§
(— o0, ) of the multiplication operator Q. If the element f € H maps into

the vector function f 6 € L% (— o0, o), then the element Af maps into the

vector function Q f(?).
Proof: We associate with the vector

0)) f=E(d)g, +Ed)g.+... +E(4,) gn
of H the characteristic vector function
@ SO = ay O, %ty (s« < -5 Xa,, ()

of LE(— o, ). Then
1£1=0 =( SE@e, S E@a) -

=3 E@N 4580 = Sou4,04) = 17O I

It is easy also to verify that to orthogonal vectors of the form (1) correspond
orthogonal vector functions of the form (2). The extension of this corre-
spondence by linearity and continuity to the whole space H is an isometric
mapping of the space H into Li(— oo, o0). It is not difficult to verify also

that for continuous vector functions () = {1(?), . . . , f(?) }, with com-
ponents equal to zero outside of a finite interval, formula (3) of Section 69
now takes the form

o

1 =3 [ #io) dEg.

We find next the vector function which corresponds to the vector Af,
where fis a vector of the form (1). We have

Af =j?tdE,f =ftdE (212 (4) gi) =‘__i‘ftdEx i =§ j.otXI(t) dEg;.

If one takes into account the method of construction of the multiplication
operator Q and the lemma of the preceding section, then the theorem on
the canonical form is proved.
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In Section 69 we showed that for every self-adjoint operator with a
simple spectrum there exists an orthogonal basis with respect to which the
matrix of the operator is a Jacobi matrix.

Completing the present section we show that this result generalizes to
self-adjoint operators with spectra of finite multiplicity. Let 4 be such an
operator. We select a generating basis gy, g3, . . . g» such that

H=Go®GoG®...2Gs (G L Gy iFk).

Repeating the argument of Section 69, we get in each G, a corresponding
Jacobi matrix

( (Aeri’ erk) )
If we select in H a particular orthonormal basis e(s=1, 2, 3, . . .), number-
ing the unit-vectors e (r=1,2,3,...n; k=1,2,3,...) first in the order
of increasing first index and then in the order of increasing second index,
ie.,

€1=€31,€2= €215+ .+ 3y = €p1 5 €317 €19, € 2= €235 - ..

then, with respect to the basis {e};2., we have a generalized Jacobi matrix
((Ae;, €;) ). It will be of a special type since its only elements different
from zero lie only on the principal diagonal and on the pair of nth neigh-
boring diagonals.

73. Some Remarks about Unitary Invariants of Self-Adjoint Operators

Two operators A, and A, which act respectively in the Hilbert spaces
H, and H, are called"* isomorphic (or unitarily equivalent) if there exists an
isometric mapping V of the space H, into H, such that

(1) DA, = VDA.,
and

2 Ay = VA, V™1

If the operator A4, is symmetric, then the operator 4, isomorphic to
it is also symmetric. This follows immediately from (1) and (2).

The spectra of a pair of isometric operators coincide, since (1) and (2)
yield

(B) 44 -5 =(A:—AE)D,,=(FA,V -2V )D,, =

= V(Al - )‘El) DA. = VAA, ~ AE,*

Moreover, it follows from the last equation that the total spectrum of A4,
and each of its parts (the point spectrum and the continuous spectrum) are
unitary invariants, i.e., they do not change under the isomorphic transition

14 We repeat here the definition which was given in Section 36.
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from A, to A4, Finally, it follows from the fact that the operator A4, is
self-adjoint that the operator 4,, isomorphic to A,, is self-adjoint.

We limit ourselves here to some remarks concerning unitarily equiva-
lent self-adjoint operators. Let E;, be the resolution of the identity of the
operator A,. Let

(4) Ez: = VEltV- L
This formula defines a family of bounded self-adjoint operators in H, and

it is easy to see that E,, is a resolution of the identity in the space H,. We
verify, for example, that

E2uE2v = Ez.y’
where s = min {u, v}. Hence,
EyE,, = VE,V WE,V ' =VE,E\,V 1 =VE,V ! =E,,

We shall prove that E,, is the décomposition of the identity of the
operator 4,. With this aim, we consider the integral representation

0

(Aifg) = [ 1(Enfo ).

- 0

Letting
h=V"fs &r=V g,
we get
VAV g = [ 1 (VELV a2
or i

o

(sfug) = [ 1(Euti 8.
This is essentially what we set out to prove.

From relation (4) it follows that the multiplicity of the spectrum (the
total multiplicity or multiplicity at a point) also is a unitary invariant of
the self-adjoint operator.

If the linear envelope of the sequence of all eigenvectors of a self-
adjoint operator A4 is dense in H, then the spectrum of A and the multi-
plicity of the spectrum at each point represent a complete system of unitary
invariants of A, i.e., every other operator with identical spectrum and
identical multiplicity of the spectrum at each point is isomorphic to 4.

For self-adjoint operators with arbitrary spectra, the problem of find-
ing a complete system of unitary invariants is extremely complicated, even
in a separable space.
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We show next how to solve this problem in the case of an arbitrary
self-adjoint operator with a simple spectrum. Let 4; and A4, be two unitar-
ily equivalent self-adjoint operators with simple spectra acting in the spaces
H, and H,, respectively. From the equation

(EaefonSo) = (Ex V™Yo, V7o) = (Ev 1),

it follows that the spectral types of the element f, with respect to 4, and
of the element f,= Vf; with respect to 4, coincide. Therefore, the operators
A, and A, are of the same spectral type.

The spectrum and multiplicity of the spectrum at each point do not
represent complete systems of unitary invariants if the operator 4 has a
continuous spectrum, as the following example indicates. The multi-
plication operator @, in L%(0,1) and Q,, in LZ(0, 1), where oy(r) = ¢
and o,(¢) = 2, have total spectra each of multiplicity one. But they are
not isomorphic, since the spectral types of the distribution functions ¢,(7)
and o,(¢) do not coincide.

On the other hand, two operators with simple spectra and identical
spectral types are isomorphic since, by Sections 69 and 70, they are both
isomorphic to the same multiplication operator. Thus, the following
theorem holds.

THEOREM: In order that two operators with simple spectra be iso-
morphic it is necessary and sufficient that their spectral types coincide.

For the extension from the case of simple spectra to the general
case of multiple spectra, the determination of a complete system of
unitary invariants is extremely complicated. The question of a complete
system of unitary invariants of a self-adjoint operator with a multiple spec-
trum cannot be decided easily by a decomposition of such operators into
orthogonal sums of operators with simple spectra, because such a decom-
position is not defined uniquely. For the solution of the problem in the
general case, one must choose the decomposition of the operator into an
orthogonal sum in a special manner. This requires the introduction of the
notion of the so-called independent spectral types.

The theory of unitary invariants of self-adjoint operators was devel-
oped by Hellinger for the case of a separable space and was developed later
by A. I Plesner for the case of a nonseparable space. The examination of
these topics is beyond the scope of the present book. We recommend to
the reader who desires to become acquainted with the theory of invariants
the paper of A. I. Plesner and V. A. Rochlin in Vol. II of the journal Uspekhi
Math. Nauk where this theory is presented with exhaustive completeness.
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74. Some Remarks about Functions of Self-Adjoint Operators

In Section 63 we constructed the integral

o

M [ewaEs=1r
by starting from a given resolution of the identity E(— o < t £ o), an
element € H, and a function ¢ (r) which belongs to L¥(— oo, ), where
o (§) = (E, f, f). For a fixed function ¢ (¢), this integral defines an operator
with domain Dy which consists of all vectors f € H such that ¢ (¢) is measur-
able with respect to the distribution function o () = (E, f, f) and

[1e@rar@) < .

We now consider the self-adjoint operator 4 to which the resolution
of the identity E, corresponds. If we take as the function ¢ (r) some posi-
tive integer power of the variable #, then the operator T defined by formula
(1) coincides!® with the same power of the operator 4. Therefore, if for
¢ (f) we take the polynomial

pt) =ag+ ait + ...+ ant
then the operator integral

fp (O dE f

becomes
(0E + 044 + ... + and") f = p(A) f.

We see that a polynomial in a self-adjoint operator 4, which has a
direct definition, can also be defined as an operator integral with respect
to the spectral function E, of 4. The latter method, i.e., the definition in
terms of an integral, we can apply also in cases when an immediate defini-
tion of the function of an operator is not possible.

DErINITION: If ¢ (¢) is an arbitrary complex function defined on the
whole real axis, then ¢ (A) is the operator defined by the formula
v S~ ¢ @dE,f

15 Cf. the end of Section 66.
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for all vectors f € H for which ¢ (f) is measurable with respect to the distri-
bution function (E, f, f) and for which

[le@rdE £ < .

We remark that the values of the function ¢ (f) at regular points of
the operator A do not affect the definition of the operator ¢ (4). There-
fore, we can assume that the function ¢ (¢) is defined only on the spectrum
of the operator A.

For the construction of a productive theory of functions of operators
it is expedient to introduce a somewhat restricted class of admissible
functions ¢ (¢). We limit our considerations to functions ¢ () which are
measurable with respect to the distribution function (E,f,f) for any
feH. We denote this class of functions by K,.

Thus, let ¢ (1) € K,. We prove first that the operator ¢ (4) is linear.
Evidently, it is sufficient to prove that if fe Dy, and ge Dy, then
f + g € Dy, But, for arbitrary h,, h, € H,

Nhy +holl® + Ay — bl = 20 Ay 12 42| Ay |I%
Therefore, for any f,g €H and any 4 < [— o0, o]

(E){f+8},f+8) =2(E(A)Lf) +2(E(4)g.9),
and this implies that

[1e0rdElr+8.7+0) 52 [ 120 1dELN +2 10 () PdEg.0).

This proves our assertion.
THEOREM: Let ¢ (1) € X, and

o

¢ () = [ ¢ () dE.

-~

Then, for each f € D, and each h e H,

o

CWAH = [o®dELh).

Proof: First, we notice that for the functions ¢ (¢) in the class K,
introduced in Section 63, the theorem was proved in Section 63. Using
this, it is easy to establish the theorem for any bounded function in the
class K,. Indeed, let ¢ (#) be such a function. We fix fand A, and let
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p() = ES+B,F+B+LELS—R,—h)+
+ 2 (E{Sf+ i}, f+ih) + F(EAS — ik}, f— ih) = (E.f, f) + (Eh, h),

and introduce the space L2 (— oo, o) which is generated by the distribu-
tion function p (¢). Further, we construct a sequence {¢(?) };° of functions
in X which converge to ¢ (¢) in the metric of L*(— oo, ). For each of the
operators yu(A) the theorem is valid. Therefore,

Ul ) ;1) = [ dn () d .S, )

On the other hand,
190 =4y PaEL1) = [190) = balt) P D).

Hence, in view of the definition (cf. Section 63) of the integral

o

[e@aes

-

as the limit in the sense of strong convergence of

f ¥al(?) dE, £,

we conclude that

lim (4u(d) £, B) = (2 (A) /. h).

It remains to prove that

@  im[WOdELD =[O dELR.
But o o
[ @ —woraEsm -
=1 [ (2 — 4D} d{0s(®) — oolt) + i) — iolD)},
where o

o =ESf+hL,f+h), o) =ESLf—h,f—h),
ol(t) = (E{f +ih}, f+ih), o t) = (E{f — ik}, f — ih).
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Hence,

f () — M ELRD | 5 f BIOE 2O A0E

J fdp(t) J J.M(t)—'/m(t) |2dp (1),

and the limit relation (2) is proved. Thus, the theorem is proved for
bounded functions in K,.

We assume now that ¢ (7) is an unbounded function in K,. Let o (¢)=
(E.f,f), where fis an arbitrary element in D, such that

[1e@ e < .

Letting
[ e@) for |e()|sSn
o) ={ %" for Lo ()| > n
we obtain
3) (el ) £, 1) = [ on() d (B 1, B

- @

Now, since ¢a(f) converges to ¢ (f) in the metric of L3(— o0, o) as
n —> 0O,
ou(A) f — o (4) f.
Hence, the right side of formula (3) has a limit as n - . According to
the definition of the integral of an unbounded function, this limit is the
integral
[eaEsm.

-

Thus,

(¢ LR = [odESD),

- 0

and the proof of the theorem is complete.
For bounded functions which belong to the class K,, it is easy to see that
if
¢ (t) = a;0,(8) + “z‘Pz(t),
then
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? (A) = a;01(4) + ap5(A),
where a, and q, are arbitrary numbers.
Furthermore, if ¢ (¢) is a bounded function in class K,, then [¢(4)]*=
%(A4), where ¢ denotes the function defined by ¢ (£) = ¢ (/). Hence, for
any f, g € H,

@ W= [+0dEL = [+()dEeN =

=(e(4)gN)=(f2(4)g.
It is not difficult to verify that if ¢,(¢) and ¢,(¢) are bounded functions
in class K, and
¢ (t) = <P1(t) <Pz(t)a

? (A) = 9u(4) po(4).

In particular, it follows that each pair of bounded functions of a self-
adjoint operator commute.

Another consequence of the facts established above is formulated: if
¢ (1) € Ky, then ¢ (A) is a projection operator if and only if ¢ (f) assumes
only the two values zero and one, i.e., it is the characteristic function of
some set ¢ — [— o0, o] which is measurable with respect to the distribu-
tion function (E, f, f) for every fe H.

If x4(?) is the characteristic function of some interval 4 « [— o0, o0],
then

then

o

x4 = [ xt dE, = [ dE, = E(a).
- ® 4
Therefore, it seems natural to define E (), for an arbitrary set e < [— o0, 0],
which is measurable with respect to all distribution functions (E, f, f),
by the formula

E(e) = x.(1),

where x,(¢) is the characteristic function of the set e.
We prove now that the relation

o (D ]* =72 (A).
holds not only for bounded functions in K, but also for unbounded func-
tions ¢ (¢) € K, if the domain of the operator ¢ (A4) is dense in H (otherwise
the operator ¢ (4) would not have an adjoint). Let g € Dy, so that,
for every f e D,
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)] (eADf 0 =(fg8")
Letting e, denote the set of points on the real axis for which
fe@ | =n,
we define
_[e® (tcen),
w = { %07 (eey
Since pa(A) is bounded, we have, for every h € H,
(6 (pn(A) b, 8) = (b, 9n(4) 8).
We define the vector f by
f = E(en) h.

It is not difficult to convince oneself that this vector belongs to D).
Indeed

Ef=EE(@en)h= [ x,(5)dEh,

and, therefore,

[1e@PELD = [ 1o Px 0 dEMD =

~ [l P (EA ) < .

- o

By means of a similar calculation we find that, for each A’ € H,

(@ DLH) = [eMdELK) = [ 2@k OdELR) =

= [ en0d(E, 1) = (@)1, 1),

so that
9 (A) f = oa(4) .
On the basis of (5) and (6), we conclude that

(h, 2n(A)g) = (E (en) h, £%),

(B, pn(A) g) = (h, E (en) £%).
Since A is an arbitrary vector,

and, consequently,
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on(A4) g = E (en) g*.

Il on(A) g |} = | E (en) g™l = li g™}l

Therefore,

and
[Im@rdEg o) <80

As n increases, the left side does not decrease. This implies that

[lroraEee s 1gmm

In other words, it is proved that if g € D4+ then g € D ,,. Butif g € Dy,
then, for every f € D),
M (e f8) =(fi2(4)2),

which may be proved in exactly the same way as equation (4). Comparing
(5) and (7) we obtain the equation

g*=9e(4)g,
and our assertion is completely proved.
The product
® ?1(4) 9:(4)

can be examined also in case the functions ¢,(7), ¢4(?) € K, are not bounded.
It is defined only for those elements fe D, , for which ¢,(4) f€ D, -
Therefore, generally speaking, it does not coincide with ¢ (4), where ¢ (1)
=oq,(t) 9.(r). But, if an element f is in the domain of the operator (8),
then, for every A e H,

-

(o) 21, 1) = [ o) d(Epos ), By

-

and '
(o), ER) = [ o) 4 (E.S, ),
so that . .
(@) 1) = [0 o) dES 1) = [0V A(ES) = (2 (DL, ),
and, hence,

?1(4) 9(A4) < @ (A).
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We consider now the question of the inverse operators. The operator
9 (A), where ¢ (7) € K,, has an inverse if and only if the relation

¢ (A)f=0,
or, equivalently,

[le@paE s =0

is satisfied only for f = 0. This condition is satisfied if and only if the point
set on which ¢ (1) = 0 has zero s-measure for each distribution function
o(t) = (E,f,f),f€H. Assume this condition and let

1

o(n)’

It is evident that the operator ¢ (4) is the inverse of the operator ¢ (A4).
This justifies the equation

(1) =

1
? (4)
In light of the considerations of the present section, the Cayley trans-

form of a self-adjoint operator A attains a new aspect. It is a linear frac-
tional function of the operator 4:

[o (4) )7 =

. A — iE
V = (A—iE) (A + iE)~' = .
(A—iE) (4 +iBE)"" ="

The Cayley transform of a self-adjoint operator is a unitary operator. In
general an operator ¢ (4) will be unitary if and only if [ (®) | = 1. As
an example, consider the operators
@
et = f edE, (—oo<s < w),
which form the abelian group studied in Section 64.

Completing the present section, we consider what simplifications the
assumption that the spectrum of the operator A4 is simple brings to the
theory. Making this assumption, we let g denote some generating element
of the operator and we let o (¢) denote the distribution function (E.g, g).
It is easy to see that the class K, consists now of all functions which are
measurable with respect to this particular distribution function. Indeed,
let e be a set with finite o-measure. This o-measure equals
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-

©) [ e,

- @

where x() is the characteristic function of the set e. If fis an arbitrary
vector, then for any 4 < [— o0, o]

(10) EDLN = [p0)d(Ee o),

where p (¢) is some non-negative o-integrable function. Comparing (9)
and (10), we see that the measure of the set e with respect to the distribu-
tion function (E, £, f) exists and equals

@

E@LN =[x dELN = [ PO d(Eg, 8.

-

Let us take a particular function ¢ (f) € K, and construct the operator
¢ (4). Each vector fe D, can be represented in the form

11 f=[rodes,

where f(f) belongs to LY — o, o). This representation shows that

f=r(4g
so that

¢ = ¢ W) (ADg = [0 dEg.

The relation (11) maps H isomorphically into LZ(— oo, ). Hence, the
operator 9(4) in H corresponds to the operator of multiplication by
¢ (7) in LY(— o, ).

75. Commutative Operators

In Section 14 we defined the commutativity of a pair of operators S
and 7, of which at least one (say, S)is bounded. According to this definition,
S and T commute provided that if f € Dy then S fe Dr and

STf = TSf.

Now we replace the operator T by an arbitrary self-adjoint operator 4. We
continue to let S be an arbitrary bounded operator. We shall prove that



75. COMMUTATIVE OPERATORS 77

S and 4 commute if and only if S and E, commute for each real ¢, where
E, is the resolution of the identity for the operator A.
Thus, let the operators S and 4 commute. Then for each nonreal z
and each fe D,
S(A—z2E)f=(A4—2zE)S/.

Consider the resolvent operator R, = (4 — zE)™! of A. Since the range
of R, is D,, we have, for each h e H,
S(A —zE)Rh = (A — zE) SR.h
and
R,Sh = SR.h.

By the integral representation of the resolvent, we have, for each g e H,
ft——éd(ESh g) = f— d(SE, g).

Since this relation holds for every nonreal z, it follows by means of an
argument applied earlier that
ES = SE,

for each t € {[— o0, w]. Thus, one of the assertions is proved. The same
formulas in the reverse order yield the other assertion.

From the considerations of the preceding section it follows that each
bounded function of a self-adjoint operator of class K, commutes with this
operator. The converse proposition is not valid, i.e., the commutativity of
a bounded operator S with a self-adjoint operator 4, does not imply that
S'is a function of 4. However, the following theorem holds.

THEOREM 1: If a bounded operator S commutes with a self-adjoint
operator A which has a simple spectrum, then S is a function of A.

We shall prove this theorem below, but first we pause to consider a
general question: what are necessary and sufficient conditions for a
bounded operator S to be a function of a given self-adjoint operator 4.
One answer to this question is given in the following theorem.

THEOREM 2: (Riesz-Neumann) A bounded operator S is a function of
a self-adjoint operator A if and only if S commutes with every bounded
operator T which commutes with A.

The proof of the necessity of the criterion given in the theorem is very
simple. Indeed, let

S = ¢ (4).
Let T be a bounded operator which commutes with 4. Then
ET =TE,




78 VI. SPECTRAL ANALYSIS OF UNITARY AND SELF-ADJOINT OPERATORS

for each ¢. 1t follows that

TLD = [2(0dET,8) = [e(VdTESE) =

= [2WdELT® = (¢ T*D = Te(0)f2)

for all f, g € H. Therefore,
¢ (AT = To (4).

However, the proof of the sufficiency is not so simple. It will not be
given in complete detail in this book. We restrict ourselves to the case
for which the eigenvectors e, (k=1,2,3,...) of the operator 4 form a
complete orthonormal system in H (this condition is satisfied, for example,
for a completely continuous operator in a separable space).

Let P,(k=1,2,3,...) denote the operator of projection on the
eigenvector e,. Since the equations

Aek = Akek (k=1, 2, 3, .o .)
imply that
AP, =P A (k=1,2,3,..)),

we have, by the assumption of the theorem,
SP k - P kS‘

The last equation implies that each eigenvector of 4 is an eigenvector
of S, and that eigenvectors which belong to equal eigenvalues of 4 also
belong to equal eigenvalues of S.

Let p(k=1,2,3, ...) be the eigenvalues of S, so that

Se, =me, (k=1,2,3,..).
The operators 4 and S are represented by the formulas

Af=§l Mf,edec  (feDy),

Sh = kEl wi(h, €p) e (h e H).
Since to equal values X, correspond equal values p,, we can define a func-
tion ¢ (¢r) on the spectrum {A,}° by the equations

(P(Ak)=p'k (k=192’3"")'
Thus, we obtain a representation of S in the form



75. COMMUTATIVE OPERATORS 79

Sh=3 008 (b &) e
;_:1 ? (A (A, ) e
Thus,
S = ¢ (A).
Now we shall prove Theorem 1. Let g be a generating element of A.
Then each vector h € H is represented in the form

h =th () dEg,

where A (1) belongs to L%(— o, o) with o (1) = (E,g, g). In particular,
we have the representation

a
Sg = f ¢ (1) dEg.
-
We prove that the function ¢ (¢), which appears here, is bounded.
With this aim, we assume the contrary. Thus, we assume that there exists
an infinite sequence of sets ey, e,, €;, . . . of positive s-measure such that

le@®|>n
for t € en. Consider the elements
Jn = Elen) 8.
These elements are different from zero since
I fall* = (E (en) g, 8) = m,{ea} #O.
Since the operator S commutes with 4, it follows from the necessity of the
criterion® of Theorem 2 that § commutes with every function of 4 and,
in particular, with the operator
E (en) = x.,(A).
Thus
E (es) S = SE (en),
and, therefore,

I Sfal*= | SE(en) g II*= |l E(en) Sg |I*= (S8, £ (es) Sg) =

~ [ d(Eig, Een 5O =[x, (0 2 () d (Eig. S5) =

- -

-]

=[x 100 P Eg.0)>n [ 1,0 dEg.0) = ifal

- -

18 Recall that the necessity was proved in complete detail.
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This implies that the operator S is not bounded, which contradicts the
original assumption. Therefore, the function ¢ (7) is bounded. Now choose
f € H arbitrarily and let

f= f f®dEg,

where f(¢) e L — o, o). Then, for each A e H,

(Sf, 1) = (,5*R = [ 1) d(Es, 5*0) =

— [rwasEg,hy = (10 dESs,h) = [ 19 d(Sg, EA).

But since i t
(S8, E) = [¢ () d(Eg, EB) = [0 () d(Eig, ),
we have i
m = [£© () d(Eg. ),
and, hence,

Sf=[+0f®dEs.

By the concluding remarks of the preceding section, this implies that
S =¢(4),
so that Theorem 1 is proved.
Remark: Since each bounded operator T has the representation
T= B1 + iBz,

where B, and B, are bounded self-adjoint operators, it is sufficient in
Theorem 2 to require that S commute with every bounded self-adjoint
operator B which commutes with 4.

76. Rings of Bounded Self-Adjoint Operators

A set M of bounded self-adjoint operators 4, B, C, ..., is called a
ring, if A, Be M implies that ABe M and o4 + BB e M for arbitrary
real o and 8.
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A ring is called weakly closedif Ane M (n=1,2,3,...)and 4a ¥, 4,
imply that 4 ¢ M.

Since the product of two bounded self-adjoint operators is self-adjoint
if and only if these operators commute, the operators in such a ring com-
mute in pairs. Conversely, every set i of pairwise commutative bounded
self-adjoint operators determine a weakly closed ring, namely the smallest
weakly closed ring which contains it. We donate this ring by R (RN). It
can be defined as the intersection of all weakly closed rings which contain
N.

The following important theorem is due to von Neumann.

THEOREM 1: For each weakly closed ring M in a separable Hilbert
space H, there exists a bounded self-adjoint operator A such that M = R(A).

Since the presentation of the proof of this theorem of von Neumann
does not fall into the plan of the present book, we restrict ourselves to the
statement of the theorem and to some of its implications.

Consider a finite or infinite set i of pairwise commutative bounded
self-adjoint operators in a separable space. We form the ring R (). By
the theorem of von Neumann, there exists a bounded self-adjoint operator
A such that R (R) = R (4). Let P (4) denote the set of all bounded self-
adjoint operators which commute with 4. Let B {3 (4)} denote the
set of all bounded self-adjoint operators which commute with each oper-
ator in P (4). Since this set contains the operator A, every operator in
B {PB (4) } commutes with 4. Hence,

B{PA)} < B(A).

We show next that P {8 (4) } is a weakly closed ring. Let C’, C" €
P{P(4)}. It is evident that the operator a'C’' 4 «"C” belongs to
B {*B (4) } for arbitrary real «’ and «". Since C’ and C” belong to B{P(A)},
they commute with each bounded self-adjoint operator which commutes
with A. But, by Theorem 2 of the preceding section and the remark at
the end of that section, C’ and C” are functions of the operator 4, so that
C’C" is contained in P {P (4) }. Hence, B {P (4)} is a ring.

It remains to show that the ring P {P (4) } is weakly closed. Let

CacP{B(4)}
for n=1, 2, ... and, for arbitrary f, g € H, let

lim (Ca.f, 8) = (C/. 8.
If C’ is an arbitrary operator in B (4), then
(CaCY,8) =(C'Caf, 8) = (Cuf, C'®),
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which yields
(CCY,8) = (¢f, C'9).
CC'= C'C,

so that the operator C commutes with every operator of P (4). Therefore,
CeP{B(4)}and B {P (4)} is a weakly closed ring.
This result and the relation

AeP{P)}

It follows that

imply that

R(4) < B{P4)}.
Since

N<cRO =R,
we have

RN<PB{PA}

Every operator in B {P (4) } is, as we know, a function of the operator 4.
Hence, the same property is possessed by all the operators of 9. Thus,
we obtain the following theorem.

THEOREM 2: If the bounded self-adjoint operators

) c,c,c, ...

in a separable space are pairwise commutative, then there exists a bounded
self-adjoint operator A such that the operators (1) are functions of A.

There is a case for which this theorem can be proved simply without
the application of Theorem 1, viz., if the number of operators (1) is finite
and if the linear envelope of the eigenvectors of each of these operators
is dense in H. We simplify the proof, without loss of generality, by assum-
ing that the number of operators (1) is two. Thus, we have two commuta-
tive bounded self-adjoint operators L and M such that the linear envelope
of the eigenvectors of each of these operators is dense in H.

Let E, and F, be the spectral functions for L and M, respectively.
Further, let £, and M, be the eigenmanifolds of these operators which
correspond to the eigenvalues A and g, i.e.,

Ba = (E,\+o - Ea) H,
M, = (F,,o — F)H.
Since L and M commute,
(E»\+o - EA) (Fu+o —F“) = (Fu+0 - F“) (E»\+o - Ea)-

Therefore,
Pa,u = (Ex+o - Ea) (Fu+0 - Fu)
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is a projection operator for which
G)\,“ =P)\,“H = 2)\0 %“.
It is easy to verify that if (A, n') and (1", p") are different pairs, then the
subspaces G, ., Gy .- are orthogonal.
We prove that there does not exist a nonzero vector f which is ortho-

gonal to all the subspaces G, ,. Indeed, if f 7 O, there exists at least one
A for which

(Ervo — E)f#0.
We denote this value A by A, and let
(EA.,+0 - E,\,)f :f,~
There exists p, such that
(FM0+0 - Fl‘o)f, 7 0.

P )\,,,uof # 0’

which implies that the vector f is not orthogonal to the subspace G, ..
Thus, our assertion is proved.

In each of the subspaces G, , we construct a complete orthonormal
system of vectors

Hence,

1 2 8
e, eD, e ... .
The set of all these vectors is countable, since the space H is separable.
We enumerate this set of vectors e and obtain orthonormal basis
€1, e2’ €3, ...

for H. Each vector ¢, is an eigenvector of both of the operators L and M.
Let

Le, = Ney,
ko *k=1273,..)
Me, = ey,

Now we choose an arbitrary bounded sequence of real numbers
{a:} T and define an operator A4 by the formula

Af = z ailf, € e

Note that 4 is a bounded self-adjoint operator. Moreover, A is com-

pletely continuous if the sequence {a}T converges to zero. The only

restriction which we impose on the numbers o, is that they all be distinct.
Let o (f) and ¢ (f) be real functions which satisfy the conditions

e (a'k) = )\k’ l!’(ak) = P (k = 1’ 2, 3, .. )
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and otherwise are arbitrary. We find without difficulty that
L=o(4), M=)

77. Examples

We illustrate some of the general results of the present chapter in
terms of the differential operator

d
P=i—
dt
and the operator Q of multiplication by an independent variable, both
defined in L% — o, o). These operators are self-adjoint. Furthermore,
they are unitarily equivalent, i.e.,

P=303*
where § is the Fourier-Plancherel operator. Since the spectrum of the
operator Q is simple and is the set of all real numbers (cf. Section 69), the
spectrum of the operator P has the same properties.
A. Let E( be the spectral function of the operator Q@ and E® that
of the operator P. Then
E@(d) h = x4(t) h (1),

where x,(¢) is the characteristic function of the interval 4 and s = h (¢) is
an arbitrary element of the space L — o, ). Since (cf. Section 73)

E(P) — 55. E(Q)ﬁj*

we have, for each finite interval 4 = [a, B8],

lﬂ(u 1 __ e;a(u 1)
EP(4) f = 2]——#—77—ﬂww,

where f = f(¢) is an arbitrary element of L2 — o, o).
B. We recall Theorem 2 of Section 69. By this theorem, if g is any
generating element of the operator Q, then the formula

r={e@aE®s,

which associates the element f = f(f) € L¥ — o, ) with the element
¢ (f) € L}(— o, ), where o (f) = (E,g, g), establishes an isometric map-
ping of L — oo, o) into L% — o0, o). Since @ is the multiplication oper-
ator in L% — oo, o), the question naturally arises as to the choice of a
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generating element g, for which this isometric mapping is the identity
transformation:

76) = [ £ dE@g,

This equation holds if and only if

E@(4) gy = x4(1),

where 4 is an arbitrary finite interval and x,(¢) is the characteristic function
of 4. But, as 4 — [— o0, o], the functions x,(f) do not tend to a limit in
L* — oo, o). Hence, the desired vector g, does not exist. Nevertheless, if
we want an affirmative answer to our question, then we must augment
the space L* — oo, ) by adding to it an improper element g, such that the
projection of g, on each subspace L*a, b), where —o<a <b < oo, is
the characteristic function of [a, b]. Thus, the element g, is a unit function
which does not belong to the space L — oo, ).

C. We consider now the operator P. Let k = h (¢) be an arbitrary
generating element of this operator. Then, for each f e L} — oo, ), there
exists an element ¢ (1) € L? (— o, ), where ¢ (f) = (E©h, h), such that

7 = [4@®dEDh.

The question naturally arises as to the choice of a generating element A,
for which ¢ (¢) is the Fourier-Plancherel transform (or the inverse trans-
form) of the function £ (). We desire that

¢ (1) =)

The representations

76 = [ 4 dEPh,

and

f©=1im - f ¥ () e~*dt
\/211'_“
yield
1 e-iﬁt — e-iat
E® () hy=—— ¢ "¢
@h= =7

for each finite interval 4 = [a, B]. Thus, the desired vector A, should
satisfy the condition
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1) E®(4) hy = § E9(4) g,
where g, is the identity function. Such a vector h, does not exist in
L — o, ). We introduce A, as another improper element!? of the space
L¥— o, o). Equation (1) shows that the element h, should be considered
as the Fourier-Plancherel transformation of the improper element g,.

D. Turning to functions of the operator P, we should, first of all,
define the class K,. This class is the set of all functions ¢ (f) which are
measurable on each finite real interval. We obtain the same class for the
investigation of functions of the operator Q. Bounded functions are of
greatest interest since they generate bounded operators.

Let ¢ (¢) be such a function. If f = f(¢) is an arbitrary function of
L¥— o, o) and g = g () is its inverse Fourier-Plancherel transform, then

@ (P f=F{e(Wg®}.

The situation is particularly simple when the function ¢ (f) not only is
bounded but also belongs to L% — o, o). Indeed, then

$ (O =T

exists and the right member of the equation is equal to

7‘2=" _ ! b (t = 5) £ (s) ds.
Thus, in this case,

1 @0Q
3) o (P)f = Vz“;f bt — () ds.

Since the right side of formula (2) becomes ¢ (f) when g () is replaced by
the identity function go(¢), ¢ (¢) should be considered as the image of the
improper element h, by the operator ¢ (P):

() = cP(P)ho-
Thus, if ¢ (f) is bounded and belongs to L% — o0, o) then it is sufficient
to find ¢ (P) h,, and the determination of ¢ (P) fis reduced to finding some
convolution according to (3).
Let us assume now that the function ¢ (f) is bounded, but does not
belong to L¥— o, ). Then it is natural to let

17 We remark that_ the introduction of improper elements is often useful not only in
L*— oo, oo) but also in other spaces.
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where
¢ (?)
f) = T\
‘Pl( ) PR
and ¢, belongs to L¥ — oo, ). Let

‘Pl(P ) by = ‘/’1(‘)-
Then

1 0
w(Pf = _ f Yt — 5) f(s) ds

and
P =@ +) B = 7= (5 1) [he—9r6) s

E. Integral operators with kernels as functions of the difference of
two arguments often occur in problems of analysis. We see that such
operators are functions of the operator of differentiation. As an example,
we introduce the operator defined by the formula

1 fsm\/‘(t f()d

D,\f =
where A is a non-negative parameter. This operator plays an important
role in the theory of the Fourier integral. It is of interest that D, is a reso-
lution of the identity. This fact follows from the general circumstance: if
E, is the resolution of the identity for a self-adjoint operator A4, then

Evi - E-VX Az0
is the resolution of the identity for the operator A% But, it is easy to see
that
D, = EJ} — E%Qx

Therefore, D, is the resolution of the identity for P:. Now we show that
the operator P? coincides with the operator L which is defined by the
formula

d¥f

dre
for each function f(f) in L — oo, 0) with a second derivative almost
everywhere which also belongs to L(— o0, ).
To begin with, it is clear that
Prc L.
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Therefore, it remains only to prove that if

[irora<w, [1rrora<e

then
flf’(t) Pdt < co.

It is sufficient to establish this fact for the case when the function f(f) is
real and the integration is over the positive real semi-axis. Consider the
identity

[r@ra =166 -r0ro -[roroa

[roredas-tror-2ror

Assume that f '(¢) does not belong to L% — o, o). Then
lim f [f(t) Prdt = oo
500 o

From the first identity, of which the last term of the right member is
bounded, we conclude that

11;12 S Sf(s) = .
Therefore, from the second identity, we find that
lim [f(5) ] = oo,
>0

which contradicts the assumption that

-]

f [F () Tt < oo.

0

We proceed to prove that the multiplicity of the spectrum of the oper-
ator L equals two. First we show that this spectrum is not simple. Assum-
ing the contrary we choose a generating element g of the operator L such
that the linear envelope of the set of vectors D,g(Az 0)is dense in L3 — oo, 00).
Hence, the element g is a fortiori a generating element of P. But since
the spectrum of P is the entire real line, the vector E®(4)g can equal zero
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for no finite interval 4. Let us take a finite interval 4 = [a, 8], where
B> a> 0, and represent the vector E®)(4)g in the form

E™(@)g = [+ () dDg,
0

which is possible since g is a generating element of L. This representation
can be written in the form

-]

B ©
[aEPe = [0 d{ES: —E_03 g = [ o() Mg
a 0 -
from which it follows that
1 a <t <Pp),
v = {, E-ﬁ<t2 —a),
which is impossible.

Thus, the spectrum of the operator L is not simple. In order to prove
that the multiplicity is two, it is necessary to show that the operator L
has a generating basis which consists of two vectors. Let us choose two
generating elements A, = h,(f) and hy = hy(¢) of P, such that the first is an
odd function and the second is an even function. We represent an arbitrary
function £ (¢) of L¥ — oo, ) in the form of the sum

F@&) =A0) + 10
of an odd function f1(¢) and an even function f;(f). Since A, is a generating
element of P,

-]

@ fi= [ w0 dEP— EPOh.
But o
1 feftn
Py __ (P) = v ) = — -
B~ EDh=s(:9 =5 ! g M
and, hence,
1 [esun — 1
—t—) = [~ h@du=
& 9 2 J i) 1(u) du
1 feed — 1
2 Ji(—u+1) (—w)du
1 [euo 1

- 5;-‘,0 l_(u—_t)hl(u) du = gy(t; 5).
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Since fi(f) is 0dd, it follows from (4) that
fi= [ o5 d EP~ B .

This implies that ¢,(¢) is also an even function and the representation (4)
takes the form

o«

fi = [0 d EP—E b = [0:/7) dD .
0

0
Analogously, it is proved that

fi = [vi/7) dDhs
0

Hence, the vectors #; and h, form a generating basis for the operator
L. 1t may be observed that this basis is orthogonal.



Chapter VII

THEORY OF EXTENSIONS OF SYMMETRIC
OPERATORS

78. Deficiency Indices

Let T be an arbitrary linear operator. For the present we require only
that the domain of T be dense in H.

We call a complex number A a point of regular type of the operator T
if there exists k = k (X) > 0 such that for all f € Dy

(T —2E)fll 2 kISl

From this definition it follows that A is a point of regular type of the
operator T if and only if (T—AE) ! exists and is bounded. In particular,
the eigenvalues of the operator T are not points of regular type of T.

If A, is a point of regular type and

A =2 =8 =Lk,
then, for each fe Dy,

(T — AE)fIl 2 I(T — 2E)fll — | A = Aol If1l 2
z k(o) — 1S 2 k) IS
This fact, used once before (cf. the proof of Theorem 4, Section 43), shows
that the set of points of regular type is open. We call this set of points the
field of regularity of the operator T.
If A is a symmetric operator and z = x + iy (y 7 0), then (cf. the
proof of Theorem 3, Section 43)

(A — 2E)fIP = (4 — xE)f1* + y*fI* 2 y*IF1P

for each fe D,. Hence, the upper and lower z-half-planes are connected
subsets of the field of regularity of an arbitrary symmetric operator.

The field of regularity of an isometric operator ¥ also contains two
particular connected subsets: the region inside and the region outside of
the unit circle. Indeed, for | {| <1

IV —LE)fIl 2 WVFI =1L If= (1 — | ED SIS

and, analogously, for || > 1

WV —=LEIz 1] 1= VA= L] — DS
91
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TureoREM: If I' is a connected subset of the field of regularity of a
linear operator T, then the dimension of the subspace H © A4.(1) is the same
for each Ae I

Proof: We denote by P, the projection operator on the subspace

N, = HO 4,(0.
If we show that for arbitrary A;, A, € T,
0)) 1P, — Ppli <1,

then it follows from the theorem of Section 34 that the dimensions of the
subspaces N, and N, are equal. In order to prove the inequality (1) for
arbitrary A, A; € T, it is sufficient, by using the Heine-Borel theorem, to
show that for each A, € I' there exists § = 8(},) > 0 such that

| Py — Pyl <1
for | A—Ay| < 8. Thus, let A, be an arbitrary point of the region I" and let
§=238() = %k()‘o)-
Since
Qo) IfIl S (T — ME)f|| £ I(T — AE)S1 + 1A — Aol - ILf 1,
we have, for [A — A,] £ §,
1T —AE)fI 2 k@0 ISl
Let [ A — Ay £ 8. Then, foreach he M, (A = 1),

N(E — P k|| =sup B AT=MEIN | _

fDr “ (T‘ AoE)fH
e BT =2AE}f+ QA =2 )| _
@ et (T — 2B

A=l (B 1
o 1T — Bl - 2
and, for each he %, (i k1l = 1),

?3) [(E—PYh| <%,

By the second definition of the aperture of two linear manifolds

(cf. Section 34) it follows from inequalities (2) and (3) that
Py — Pyl = %.

Thus, the theorem is proved.
From our considerations, it follows that

im|P, — P, =0 (A Ael).
PN
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This relation expresses that as the point X varies in the region I, the sub-
space R, rotates continuously around the point f = 0.

We define the deficiency of a linear manifold as the dimension of its
orthogonal complement ®# = H © M and write

def M = dim N.

The deficiency can be finite or infinite.

The theorem just proved motivates the following definition.

DErFINITION: The deficiency of the linear manifold %, = 41() for an
arbitrary point X of a given connected subset of the field of regularity of the
operator T is called the deficiency number of the operator T with respect to
this subset of the field of regularity. Furthermore, ®%,=H © M, is called
the deficiency subspace of the operator T for the point X and each nonzero
element of the deficiency subspace is called a deficiency element.

Every symmetric operator 4 has two particularly important deficiency
numbers, m and n, corresponding to the lower and upper half-planes:

m (3z<0),
n  (3z>0).

Every isometric operator ¥ has two analogous deficiency numbers, m and
n, corresponding to the regions inside and outside the unit circle:

defd(z) = {

_ [ m (gl <,
ata® = 1 G
These particular deficiency numbers are called the deficiency indices of
the symmetric (respectively, isometric) operator. They are written in the
form of an ordered pair (m, n).
From the theorem proved above immediately follow three proposi-
tions:
1° If a symmetric operator has a real point of regular type, then its
deficiency indices are equal: m = n. The same fact is true for an isometric
operator if it has a point of regular type on the unit circle.
2° If A is a symmetric operator, then each nonreal number z is an
eigenvalue of multiplicity m for the self-adjoint operator A* if 3z >0, and
an eigenvalue of multiplicity n if 3z < 0.
Indeed! if fe D, and g € M;, then

(g, {4 — ZE} f) = 0.

1 Proposition 2° was first discovered by H. Weyl [2], Vol. 1, for differential operators of the
second order. Then T. Carleman proved it for integral operators. For arbitrary symmetric
operators in H the proposition was established first by J. von Neumann. The proof of the
more general theorem given earlier is due to M. G. Krein and M. A. Krasnoselski.
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It follows that
(A*g — 28,f) =0,
so that
A*g = zg.
Thus, z is an eigenvalue of the operator A* with multiplicity dim ;.
3° The deficiency indices of an isometric operator V can be defined by
means of the equations
m = def Dy,

n = def 4,.
It is enough to prove just the first equation. For each { # 0,

AV(§)=(V—§E)DV=(%V—E)D,,=

= (%E~ V") VD, = (V“ —%E) Dy-1= Ay-l(—z—) -

If {{]{>1, then
m = def 4({) = demy-l(%) -
= def 4,,-1(0) = def 4,,-1 = def D,

79. Further Remarks on the Cayley Transform

In Section 67 we introduced the idea of the Cayley transform V of
a closed symmetric operator A with the aid of the formulas

{ (4 —ZE)h =

O (4 —zEyh =V,

where z is any nonreal number and h e D,. We assume in the present
section that 3z > 0. The operator V is expressed by the operator A in the
form

Vf= (A4 — zE)(4 — 2E)"Y,
where the domain D, of the operator V is 4,(7). By formula (1),
h=—-Bf
i~z

ah =& =B
zZ—2Z

@
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and, therefore,
Ah = (ZV — zE)(V — E) 'h.

For what follows, it is very important that the deficiency indices (m, n)
of the operator A are the same as the deficiency indices of the operator V.
According to the definition,

m = def 4,(3).
But
4,2) = Dy,
so that
def D, = m.
On the other hand,
n = def 4,(2)
by definition, and
4,(2) = 4,,
so that
def 4, = n.

It remains to apply proposition 3 of the preceding section.

THEOREM 1: If V is an isometric operator and if the manifold 4,(1)
is dense in H, then the operator A which is defined by formula (2') is symmetric
and the operator V is its Cayley transform.

Proof: Since 4,(1) is dense in H, the inverse operator (V — E)™!
exists. Indeed, if this operator does not exist, then unity is an eigenvalue
of the operator V. But if

Ve=g (e#0)
then, for each fe D,

Vi—-fe9=0he—(f£,e)=Uf,Vg) —(f,8=0

ie., g L 4,(D).
Since the operator (V — E) ™! exists, the operator

A=@EV —zE)(V — E)™!

exists and its domain is dense in H. We shall show that this operator is
symmetric.
Let fand g be arbitrary elements of D, = 4,(1):

szq)_q)y

g=V¢~'¢,

(Cp, ‘ﬁ € DV)
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Then
Af =V —zE) o =2V — z9,
Ag =GV —zE) ¢ =2V — zip.

Therefore,
(Af. 8) = (Vo —zo, Vi — §) =
=@+ (P —Z2(Ve, ¥ —z(a, V)
and
(f,Ag) = (Vo — o, 2V —z¢) =
=+ (o9 —Z(Ve, ¥} —z (e, VY),
so that
(41, & = (f, Ag).
The proof of the relation
_A—2zE
A —ZE

is not difficult. Thus, the operator ¥V is the Cayley transform of the oper-
ator A.

In what follows we apply the name “Cayley transform” to each of the
two operators ¥ and A which are connected by the relations (1) and (2),
i.e., we not only call the operator ¥V the Cayley transform of the operator
A but also we call the operator 4 the Cayley transform of the operator V.

From the propositions proved above immediately follows the next
theorem.

THEOREM 2. Let A, and A, be symmetric operators and let Vy and Vy

be their Cayley transforms. In order that A, be an extension of A, it is
necessary and sufficient that V, be an extension of V,.

By Theorem 2 the question of symmetric extensions of a given oper- '
ator A is reduced to the question of isometric extensions of its Cayley
transform V.

From Section 9 we know that closed linear manifolds F and G can |

1

#
J

be the domain and range, respectively, of an isometric operator if and only |

if their dimensions are equal. In the following manner the isometric exten-
sions of an operator ¥ can be obtained.

In the deficiency subspaces H © D, and H © 4, we choose two sub-
spaces F and G of the same dimensions and we construct an arbltrary
isometric operator ¥’ with domain F and range G. We further define a;
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linear operator ¥ with domain Dy = D, @ F and range 45 =D, ® G
by the formulas

= [ W, feD],
r={ Wrrert

It is evident that ¥ is an isometric extension of ¥, and for all possible
choices of F, G, and ¥V, we get all isometric extensions V of the operator
¥ and each one just once.

In order to find a symmetric extension A of the operator 4 we pass to
the Cayley transform of the operator, find an extension ¥ of the operator
¥ by the method described above and, finally, let 4 be the Cayley transform
of V. The formula which corresponds to this procedure will be given in
the following section.

From the'argument outlined above it follows, in particular, that the
operator A4 is a maximal symmetric (self-adjoint) operator if and only if
its Cayley transform ¥ is a maximal isometric (correspondingly, unitary)
operator. Therefore, we have

THEOREM 3: Inorder that a symmetric operator be maximal, it is neces-
sary and sufficient that one of its deficiency indices equal zero. In order that
a symmetric operator be self-adjoint, it is necessary and sufficient that both
its deficiency indices equal zero.

By the procedure described above, we also obtain

THEOREM 4: Let A be an arbitrary symmetric operator with deficiency
indices (m, n). Then A has a maximal symmetric extension. If m # n,
then none of the extensions is self-adjoint. If m = n< o, then every
maximal extension of the operator A is self-adjoint. If the deficiency indices
mt and n are infinite and equal, then A has maximal self-adjoint extensions
and non-self-adjoint extensions.

80. The Neumann Formulas

We begin with some remarks about linear independence. In the very
beginning of the book we introduced the concept of a linearly independent
set of vectors. Now we introduce two more general concepts.

Let us agree to call the linear manifolds M;, M,, ..., My (n< )
linearly independent if the equation

LA+fitoo.+fa=0 (fieM; k=1,2,...,n)
implies that
fi=h=...=fa=0.
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If the manifolds M;, M,, . . . , M are linearly independent, then it is possible
to form their direct sum
MoM®...0M,

(we defined this in Section 7). _

Further, let M and M be two linear manifolds such that M « M.
The vectors f;, fs, . . . » fx of M are called linearly independent modulo M if
from

afitafet. ...+ aqfieM,

it follows that

d’-1=ﬂ-2=...=ak=0.

It is evident that a set of vectors in M which are linearly independent
modulo M is also linearly independent in the ordinary sense.

The dimension of M modulo M we define as the maximal number m
of vectors in M which are linearly independent modulo M. We write

dmM =m (mod M).
If there are arbitrary many vectors in M which are linearly independent
vectors modulo M, then we write
dmM = o  (mod M).
It is evident that the dimension of M modulo M does not exceed the
ordinary dimension of M.
We express the relation f ¢ M also by
f=0 (mod M) ;
and then the equation
f=g (mod M),
means that f — ge M.
The dimension of M modulo M defined above is the ordinary dimen-

sion of the quotient manifold M/M,

THEOREM: Let A be an arbitrary symmetric operator with domain D
and let R, and R, (3z > 0) be any pair of its deficiency subspaces. Then the
domain D 4. of the operator A* has the following representation as the direct
sum of three linear manifolds:

DAo = DA @ m; @ m,.
Proof: Since the manifold D,. is linear and contains D ,, N;, and R,,
DAo e ] DA @ m}@ mz.
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We show that, conversely, each fe D,. can be represented in the form

¢y f=rf+g +s&
where? f, € D, g, € Iz and gz € N,. Note that (1) yields
1" A* = Afy + zg. + Zg..

Let feD,.. We decompose A* — zf into its components in the
orthogonal subspaces ¢, and R,:

A —zf = (Afo — 2f)) + (¢ — 2) g
But A*g; = Zg; ; therefore
Af—fo— &) =2f—fo — &)

‘We conclude that

f'—f;) _g?egti’
i.e., that

f—f;) — 8 = 82
or

f=r+8& +&.

To complete the proof of the theorem it remains to show that the
representation (1) of each element f € D . is unique. Assuming the con-
trary, let us suppose that

@ So+8 +g=0.
Applying the operator A* to both sides of this equation, we get
29 Afo + 28, + 2g; = 0.

Multiply (2) by z and subtract from (2) to obtain
Afo —zfo + (£ —2)g: = 0.

It follows from the orthogonality of the summands that (f — z) g; = 0.
In the same way we get (Z — z) g, = 0. Hence

f;) =8:=& = 09
and the theorem is proved.
From formulas (1) and (1°) it follows that, for each fe D .,

A ) = (Afo +28. + 285, fo + 8: +8) =
= (Afo, fo) + [(Af0, 8) + 2(8:, SO | + [(Afo, &3) + 2(g5, fo) ] +
+[2(8,,8:) +2(g 8.) 1 + [2(8., 8.) + (g5, 8) 1 =
= (Afofo) + [Z(f0, 8) +2(8: f) 1 + [2(fo. 82) +2(g5 /o) ] +
+ [2(g:,8) +2(88) 1 + [2lig. 1P+ Z gz 12 ]

* We recall (cf. item 2°, Section 78) that R is the eigenmanifold of the operator A * associated
with the eigenvalue z. Therefore, elements from MN; we denote by gz.
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Since the first four summands are real,

&) A S) =Bz (gl — lig:l®).

In correspondence with formula (3), the domain D ,. consists of three
(nonlinear) manifolds: I'* (the set of all elements f for which J (4*f, f)> 0),
I~ (the set of elements f for which I (A*f, 1) < 0) and I (the set of ele-
ments f, for which (4*f, f) is real). The element

S=h+g +&
belongs to I'*, I'", or I'® according as
“gz” > “gE”’ ”gz” < ”g}”, or “gz“ = ”g?”-

We derive next a representation similar to (1) for the domain D3 of
an arbitrary symmetric extension A4 of the operator A.

In order to indicate the dependence on z of the subspaces F and G,
which were introduced in Section 79, we write F, and G,. Thus F, < Ri;
and G, = R,.

From the considerations of Section 79 it follows that

Dj =(V—E)D, =(V - E)(Dy®F,) =

=V-E)D,®(V'—E)F,=D,®(V'—E)F,
and

D;=D,® WV + E)F,
if ¥’ is replaced by ¥ in the previous equation.
From A* > A it follows that if

O] f=fot+g +Ve (gcF),
then

4" Af = Af, + zg, + IV'g..
Formulas (1) and (4) will be called respectively the first and second
Neumann formulas.

Let the deficiency indices of the operator A4 and its symmetric exten-

sion 4 be (m, n) and (m — p, n — p) where m, n< . Then the second
Neumann formula yields

dim Dy=p (modD),)).

We now illustrate the above theory on the differential operator P
which was introduced in Section 49. The equation

P*g =zg
has the form

ag , .
= = 0.
it + izg
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Its formal solution is the function
&) g(1) = Ce .

In the case with — oo < t< 0o, this function belongs to L? only for
C = 0. Hence, the deficiency indices of the differential operator P on the
entire real axis equal (0, 0). In the case of the semi-axis (0 = ¢ < o) the
deficiency indices are (0, 1), since the function (5) belongs to L*0, c0) for
3z < 0 and does not belong to L0, o) for 3z > 0. Finally in the case of
the interval (0 = ¢ < 2n) the deficiency indices are (1, 1), since the func-
tion (5) belongs to L0, 2x) for any z.

If we let in formula (4)

Z=i, gz=e’9 Vlz=og5a
where g; = e*~*and 0 (| 0] = 1) is a fixed constant and let arg 6 vary

in the interval [0, 2], then we obtain all self-adjoint extensions P of the
operator P (for the interval [0, 2] ) in the form

? (1) = o) + a (e + 6™,
Po (1) = igy () + ai (¢ — 6e™).
Here 94(0) = ¢,(27) = 0 and e is an arbitrary constant.
It is easy to verify that this result coincides with the result of Section

49; moreover the relation between the parameter here and the parameter
there is given by

— B—e”

T 1 —em’

81. Simple Symmetric Operators

A symmetric (respectively, isometric) operator A4 is simple if there does
not exist a subspace invariant under A such that the restriction of A4 to this
subspace is self-adjoint (respectively, unitary).

A symmetric operator A is simple if and only if its Cayley transform
V is simple. This fact is a consequence of the following proposition.

THEOREM 1: A subspace G reduces a symmetric operator A if and
only if G reduces its Cayley transform V.

Proof: Choose h € D, arbitrarily. Then

h=(V —E)f, Ah =GV — zE})f (feD)).
Assume that the subspace G reduces ¥ and let P denote the operator of
projection on G. Then
PfeD,, VPf= PV}
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Therefore,
Ph=(V —E)PfeD,
and
APh=A(V — E)Pf=(V — zE)Pf=P(ZV — zE) f = PAh.

Thus, one of the assertions of the theorem is proved.
We now prove the other assertion. Choose f € D, arbitrarily. Then
f=(A—Z2E)h, Vf=(A —zE)h (heD)).
Assume that the subspace G reduces the operator 4. Then
Pf= (A — ZE) Ph € Dy.
It remains to verify that
VPf = PVf.
Since
VPf=V(A —2E)Ph =(A —zE)Ph =P(A — zE) h =PV},
the theorem is proved.

If an isometric operator V is not simple, so that it has unitary restric-
tions, then there exists a maximal unitary restriction of V (which is an ex-
tension of every unitary restriction of V). Indeed, the maximal unitary
restriction of the operator ¥ is the restriction of ¥ to the closed linear
envelope G, of all the subspaces G invariant under ¥ such that the restric-
tion of ¥ to G is unitary.

Analogously, there exists a maximal self-adjoint restriction of a non-
simple symmetric operator.

LeMMA: Let V be an isometric operator with equal deficiency indices,
U, its maximal unitary restriction and U any unitary extension of the operator
V. Then Dy, is the orthogonal complement of the linear envelope L of the
subspaces UHO D) (£ k=0,1,2,...).

Proof: The subspace G = H © L is invariant under both Uand U~
Therefore, by Theorem 3 of Section 42, the subspace G reduces the oper-
ator U. Let U’ be the restriction of U to G. Since G is orthogonal to L,
it is also orthogonal to H © D,. Hence,

G < D,.
By similar reasoning,
G < 4,.
Hence, G reduces ¥ and U’ is a unitary restriction of ¥ to G. Therefore,
m G < Dy,
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But, on the other hand,
DU, < DV'

This implies that Dy, is orthogonal to the subspace H © D,. Since
U"DU. = U,(;DU. = Du.,

U*Dy, is orthogonal to HO Dy for k =0, + 1, + 2,.... Hence, Dy,
is orthogonal to L, so that
@ Dy, < G.

A comparison of (1) and (2) completes the proof of the lemma.

The following result is an immediate consequence of the lemma.

COROLLARY: In a nonseparable space there exists no simple symmetric
operator with equal and finite deficiency numbers.

A further consequence of the lemma is the following.

THEOREM 2: An isometric operator V with equal deficiency numbers is
simple if and only if for each unitary extension U of V the linear envelope
of the subspaces UHO D) (£ k =0, 1,2, ...) is dense in H.?

From this theorem and Theorem 1 of Section 69 it follows that every
unitary (self-adjoint) extension of a simple isometric (symmetric) operator
with deficiency indices (1, 1) has a simple spectrum.

Analogously, one proves the following general result.

THEOREM 3: The multiplicity of the spectrum of a unitary (self-adjoint)
extension of a simple isometric (symmetric) operator with finite deficiency
indices (m, m) does not exceed m.

82. The Structure of Maximal Operators

Let the space H be separable and let {¢,};° be any orthonormal basis

for H. We define linear operators ¥, and ¥ _ by the formulas

V+e,‘ = ek+1 (k = 1, 2, 3, .« .),

V_ek = €x-1 (k =2, 3, 4,...).
It is evident that ¥, and V_ are isometric operators with deficiency indices
(0, 1) and (1, 0) respectively.

Since we wish to use the Cayley transforms A, and A4 _ of the oper-
ators V', and ¥_, we must show that the manifolds 4, (1) and 4, _(1) are
dense in H. We present the proof only for 4,,(1). Letting
r—1

f=ek+ ek+1+...+%ek+,_1 (k=1,2,'3, ...),

* Translator’s Note: In the German edition, there is the following additional statement:
Such an operator ¥ is simple if there exists a unitary operator U with the given properties.
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we find that
1
V. —E)f= (ek+1+ ek+s+--- +79k+r

1
( ek-f-l +. +Tek+r—l) =

—:—(ekﬂ terpst oo teny,) e

But

1 2 1
';‘(ek+l tepat .- Fe)| = —

.
’

whence we conclude that the basis vectors ek = 1, 2,3, ...) are limits
of vectors of 4,,(1). Therefore, the manifold 4, (1) is dense in H.

The symmetric operators A, and A_ are maximal with deficiency
indices (0, 1) and (1, O) respectively.

THEOREM 1: The operators A, and A _ are irreducible.

For the proof it is sufficient to show (cf. Section 81) that the oper-
ators ¥, and V_ are irreducible. We proceed to prove that V_ is irre-
ducible. Assume that the subspace F (and, hence, its orthogonal comple-
ment G) reduces ¥, and let V. F = F, and V.G = G, so that

F,<F G, <G

In the last two relations, simultaneous equality is not possible, for
F, =F and G, = G would imply that ¥, H = H. Let, for example,
Fo F, #0and

feFOF, (f#0)
Since f € F, fis orthogonal to G. Hence,
)] fLF, ®G,.

From (1) it follows that /' | e, (k = 2, 3, .. .). Therefore, f = ze,(a # 0),
whence e, e F© F, and e, € F.
Since F reduces V,, F contains ¢, (k = 2,3, ...) as well as e;. So
F = H and the assertion concerning A, is proved. The proof for 4 _ J‘
quite similar. '}
Thus, the operators 4, and 4 _ are irreducible and, hence, are simple |
symmetric operators, The importance of these operators is indicated by
the following theorem. 5
THEOREM 2: (J. von Neumann) If a simple symmetric operator A in |
the space H has deficiency indices (0, 1) (respectively, (1, 0) ), then the space !
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H is separable and the operator A is isomorphic to the operator A, (respec-
tively, A_).

Proof: Let us assume for definiteness that the deficiency indices of
the operator 4 are (0, 1). Let V" be the Cayley transform of the operator
Aand let e; 1 4, ell=1). We form the closed linear envelope M of
the vectors V*e,= e,,.1 (k =0, 1,2, ...); Mis a subspace with the ortho-
normal basis {e;}1’.

Since M is invariant with respect to ¥ and V-1, M reduces V and,
hence, H © M also reduces V. The restriction of ¥ to M is evidently iso-
morphic to ¥, and, hence, has deficiency indices (0, 1). The restriction of
V to H © M must be unitary since otherwise at least one of the deficiency
indices of ¥ would exceed the corresponding deficiency index of the oper-
ator ¥, and, therefore, of the operator 4.

On the other hand, a simple unitary operator ¥ has no proper unitary
restriction. Thus, H© M = 0 and the operator V is isomorphic to V.
Hence, its Cayley transform 4 is isomorphic to 4.

With the aid of the operator 4, (respectively, 4 _) it is possible to con-
struct a maximal operator with the deficiency indices (0, n), (respectively,
(m, 0) ). For this purpose, it is sufficient to form the direct sum of separable
Hilbert spaces H,, where a runs through a set of cardinality n (respectively,
m), and in each of these to realize the operator 4, (respectively, 4.).

As J. von Neumann first showed, in this way it is possible to get any
simple maximal operator, i.e., the following theorem holds.

TuroreM 3: A simple symmetric operator A with deficiency indices
(0, n) (or (m, 0)) can be decomposed into a direct sum of operators A,
(respectively, A _):

A= ZM @ A4, ,
where cardinality (M) = R ; or, correspondingly
A=Y @4 ,

aeM
where cardinality (M) = m.

Proof: Let V be the Cayley transform of the operator 4, D, = H

and H© D, = M, (dim M, = n). We let
VM, = M, k=0,1,2,..)

and denote by M the closure of the linear envelope of the spaces M, (k=
,2,3,...)

In the) same way as in Theorem 2, we get

M; L M, (i#k; i, k=1,2,3,..),
M =H.
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Letel (k = 1,2,3,...) be a complete orthonormal system in M, and let
H® be the closure of the linear envelope of the vectors e{®, ef®, e , .
The spaces H® and H®? are orthogonal for « 7 o’ and the direct sum of
all these subspaces-is H.

It is evident that each of the subspaces H® reduces V' and that the
restriction of ¥ to H® is isomorphic to V. The proof of the theorem is
completed by means of the Cayley transform.

Theorem 3 provides the answer to the question about the structure of
simple maximal operators.

The operators A, and A_ (respectively, ¥, and V_) will be called
elementary maximal operators.

With the' aid of these elementary maximal operators it is possible to
construct an operator with given deficiency indices (m, n). To accomplish
this, one need only construct, by the described above method, operators
with deficiency indices (m, 0) and (0, n) and then form their direct sum.
However, an arbitrary simple operator with deficiency indices (m, 1) in
general can not be constructed from elementary maximal operators.

As an illustration of the proposition of the present section we consider
again the differential operator P on the positive real semi-axis. This oper-
ator has deficiency indices (0, 1). In order to study the structure of the
operator P we pass to its Cayley transform

V = (P — iE) (P + iE)™"
and form the powers V*g, where g = e~ is a deficiency element of P for

the point —i. Note that e~* is the Tchebysheff-Laguerre function of order
zero with (cf, Section 11) the argument doubled:

e = go(20).

We shall show that
Vi(2t) = ¢,,,(20) k=0,1,2,...).
We represent ¢,(2f) in the form
00 =if'() + if ) = (P +iE)/,
where f(0) = 0. It follows that

f@ = —ie [ w@e) e ds

and, therefore,

Vh(20) = (P — iE)f = — 2™ [29) ¢ ds + 4,20,




83. SPECTRA OF SELF-ADJOINT EXTENSIONS OF SYMMETRIC OPERATORS 107

Thus, we must establish the identity

b a20) = 920 — 27 [0 29) e d,
0

and this presents no difficulty. Since the Tchebysheff-Laguerre functions
form a complete orthonormal system in L0, o), the operator Vis isomor-
phic to ¥V, and hence P is isomorphic to 4, .

Thus, Theorem 2 means that every simple operator with deficiency
indices (0, 1) or (1, 0) is isomorphic to the differential operator P on the
semi-axis (0, ) or, correspondingly, (— oo, 0).

The operator P of differentiation on the axis (— oo, ) is evidently
isomorphic to some self-adjoint extension of the operator 4, @ A_.
Thus, (cf. Section 77) we can prove by-different means the unitary equival-
ence of the differential operator P and the operator of multiplication by
the independent variable.

83. Spectra of Self-Adjoint Extensions of Symmetric Operators

According to the general definition given in Section 43, the spectrum
of a symmetric, but not self-adjoint, operator 4 contains the complement
of the set of all points of regular type of A. However, the spectrum is not
exhausted by this complement. For example, at least one of the open half-
planes 3 z >0 and 3z < 0 belongs to the spectrum. Nevertheless, this
complement forms a particularly important part of the spectrum.

We shall call the complement of the set of all points of regular type
of a symmetric operator the spectral kernel of this operator. In order to
classify the points in the spectral kernel of a symmetric operator 4, we
first denote by A, the restriction of the operator A to the subspace H © G,,
where G, is the eigenmanifold of 4 corresponding to A if A is an eigenvalue
of A and G, is the null manifold otherwise.

In the spectral kernel we single out a particular subset. This is the set
of all eigenvalues of the operator (it is empty if the operator is simple).
We call this set the discrete part of the spectral kernel.

Turning now to the characterization of the remaining part of the
spectral kernel of the operator A, we remark that for each A the operator
A,—AE has an inverse. The set of all A for which the operator (4,—AE) !
is unbounded obviously belongs to the spectral kernel. We call this set
the continuous part of the spectral kernel. Thus, every point of the spectral
kernel belongs either to the discrete part or to the continuous part or to
both simultaneously.
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For a self-adjoint operator the concepts of regular point and point of
regular type coincide. Therefore, the spectral kernel of a self-adjoint oper-
ator coincides with the spectrum of this operator. Hence, the spectral
kernel of a self-adjoint operator cannot be the empty set. For an arbitrary
symmetric operator, such an assertion would be incorrect.

If 4 is a symmetric (in particular, maximal or self-adjoint) extension
of the operator A4, then the spectral kernel of 4 contains the spectral kernel
of A. Moreover, each of the parts (discrete and continuous) of the spectral
kernel of 4 contains the corresponding part of the spectral kernel of A.

We now consider a special case, for which the continuous part of the
spectral kernel of the operator A is invariant for symmetric extensions of
this operator. This happens if the deficiency numbers of the operator 4
are finite. In this case, by the second Neumann formula (cf. Section 80),
the manifold (4, —AE)Dj, where 4 is any symmetric extension of the oper-
ator A, contains the manifold (4,—AE) D,. However, the difference in
dimensions is finite (i.e., the dimension of the first manifold modulo the
second is finite). Therefore, the operator (4, —AE)! is bounded along
with the operator (4,—AE)~ L.

From these remarks follow the simple theorem.

THEOREM 1: All self-adjoint extensions of an operator with equal and
Jinite deficiency indices have the same continuous spectrum.

Concerning the set of eigenvalues in the spectral kernel we have

THEOREM 2: For an arbitrary extension of an operator with finite defi-
ciency indices (m, n) to a self-adjoint operator, the multiplicity of an arbitrary
eigenvalue is increased not more than m (in particular, the multiplicity of a
new eigenvalue is not larger than m).

Proof: Let A be a self-adjoint extension of the operator A4 and let A
be an eigenvalue of multiplicity p of 4. We assume that the multiplicity
of X as eigenvalue of the operator 4 is equal to p + g withg > m, contrary
to the assertion of the theorem. We select a linear independent system of
solutions f3, fa, - - - 5 for fos1s  + - s forg Of the equation Af—Af =0, so
that f, e D, for k < p. Since the dimension of D; modulo D, is equal to
m, there exists constants o, such that

alf;-).x +¢13f;+2 + ... +aqf;a+quA-

This equation implies that the multiplicity of A as eigenvalue of the oper-

ator A is larger than p. Since this is a contradiction, the theorem is proved.
The following theorem is in some sense a converse of Theorem 2.
THEOREM 3: If A is a real point of regular type of a symmetric opera-
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tor A with finite deficiency indices (m, m), then there exists a self-adjoint
extension A of A for which the number X is an eigenvalue of multiplicity m.

Proof: Let M, denote the linear manifold of all solutions of the

equations

A*g — xg = 0.
By the theorem on the invariance of the deficiency numbers in the field of
regularity (cf. Section 78), the dimension of R, is m.

The domain D, of the operator 4 and the linear manifold %, are
linearly independent since, otherwise, the number A would be an eigen-
value of 4. Let

0 D=D,o R,

Let 4 be the operator which coincides with A* on D = Dj. Then A is
an eigenvalue of A of multiplicity m.

We show now that the operator 4 is self-adjoint. For this it is sufficient

to prove that 4 is symmetric, since it follows from (1) that
dim D;=m (mod D).
If fand g are arbitrary elements of D; and

S=h+/s (fieDy, fae M),
=81 18 (&1€Dy, g2 eNy),
then
(41, 8) = (411, 8) + (4%, 8) + (43,89 + (4,80 =
4 = (Af1,81) + N[, 81) + A (f1,82) + A (/3 8),
an
(f; 4g) = (fi, 4g) + (i, A*80) + (f, Ag) + (f2, A*2) =
= (f1, 481) + 2 (f1,89) + A(f2,80) + A (/2. &o)-

It follows that A is symmetric.

In conclusion we give another theorem on the number of solutions of
the equation

A*g —ag =0

for real A,

THEOREM 4: If A is a symmetric operator with finite deficiency indices
(m, m) and X is a real number not belonging to the point spectrum of the
operator A, then the number m (X) of the solutions of the equations

@ A*¢ —x =0
does not exceed the deficiency number m.

Proof: We define the domain Dj; by formula~ (1), where R, is the linear
manifold of the solutions of equation (2). Then A < A*. From the proof
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of the preceding theorem it follows that 4 is a symmetric extension of 4,
so that

m@A) =dimD; £ m (mod D).
We shall refer to this last theorem in Appendix II.

84. The Formula of Krein for the Resolvent of the Self-Adjoint
Extensions of a Symmetric Operator

In this section we consider symmetric operators with equal and finite
deficiency indices.

Let A, and A, be two self-adjoint extensions of an operator A with
finite deficiency indices (m, m):

A, > A, A; > A.
It is natural to call an operator C which satisfies the conditions
1)) A,> C, Ay = C

a common part of the operators A, and A,. It is evident that there exists
an operator C which satisfies conditions (1) and which is an extension of
every common part of 4, and 4,. We call such an operator the maximal
common part of A, and A,. The maximal common part either is an exten-
sion of A4 or coincides with 4 and in the latter case we call the extensions 4,
and A, relatively prime. Two extensions A4, and A, are relatively prime if
and only if the conditions

2 heD,, heD,,

imply that he D ,.

If the maximal number of vectors which are linearly independent
modulo D, and which satisfy conditions (2) is equal to p(0 <p < m), then
the maximal common part A4, of the operators A, and A4, has deficiency
indices (m — p, m — p). In this case the operators 4, and 4, can be con-
sidered as relatively prime self-adjoint extensions of A,.

The problem of the present section is the derivation of a formula
which relates the resolvents of two self-adjoint extensions of an operator
A. Let B be a fixed sclf-adjoint extension, B an arbitrary self-adjoint
extension, and let R, and R, be their resolvents. Further, let A be any com-
mon regular point of the operators B and B (in particular, A can be an arbi-
trary nonreal number).

In order not to exclude the case when B and B are not relatively prime
extensions of A, we shall consider them as relatively prime extensions of
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their maximal common part 4, which has deficiency indices (r, r) where
O<rsm.

We now let M, = 4,()) and R,= H O M,. Then the difference of the
resolvents satisfies the formula

3 L SV I A

This follows from the fact that, for each h e M;,
({Ri— R} £, ) = (f, {R,— R}*h) = (f, {R; — R}h) = (f;,0)=0.

Now we choose any r linearly independent vectors g,(1), gx(%), .. .,
g/(%) from M, and r linearly independent vectors g,(}), g:(A), . .., &}
from R;. It follows from (3) that, for each fe H,

“) (R,\ —~R)f= glckgk()‘)-
By (4), the constants ¢, are linear functionals of /. Hence, there exist vec-
tors h.() such that
a=LmM) (k=12...,r).

Since the vectors g,(2), g«(}), . . ., g&(}) are linearly independent, it follows
from (3) and (4) that, for each f | N,,

(L)) =0 Gk=12,...,0n.
Therefore,
h(d) € N, k=12,...,0),

so that each A,(}) has a representation of the form

® WO =MD k=12...0,
and (4) can be expressed by
© Ry = R)f = 3 pu® (/, 81) 8.

We remark that the matrix function (p(2) ) = P (1), which is defined
on the set of all common regular points of the operators B and B, is non-
singular. Indeed, if the determinant of (p,(A,)) were zero then, by (5), the
vectors A (A (k =1,2,...,r) would be linearly dependent, and this
would imply the existence of a vector 2 7= 0 such that

h1lh), heR, (k=12,...,r.
Then it would follow from (4) that
R, —RY)R=0.
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This would contradict the fact that B and B are relatively prime extensions
of the operator 4,.

In (6) we omit the element f'and consider the expressions (-, g(%) )gi(})
(G, k=1,2,...,r) as operators in order to obtain, for each common
regular point X of the operators B and B, the formula

) Ro= R =3 pu) ¢ 8iH) 2 V.

Until now the choice of the vector functions g,()) and g(1) (i, k =
1,2, ..., r) have been arbitrary. At the same time the left member and,
hence, also the right member of formula (6) is a regular analytic vector
function of A. We show next that g,(\) (k = 1, 2, ..., r) can be defined
as a regular analytic function of A and then we obtain a formula for the
matrix function P (X) which corresponds to this choice.

With this purpose, we choose an arbitrary fixed value A, and introduce
the operator

B—) .
U = 5= =E+0 -2 &

with domain
(B—-AE)Dp =H
and range
(B — A\E)D3 = H.
The operator U, is defined by the formulas
(B -2E)f=h,
(feDy),
(B — ME)f = Unh,
from which it follows that U, determines a one-to-one correspondence
of H to H.
In the special case with A = 1,, the operator U,,, becomes the Cayley

transform of B and it maps the deficiency subspace R;, of 4, into its defi-
ciency subspace N,,. We show that, in general,

Uno Tzo = .

Let g1(Ag), £2(20), - - - » &(A) be an arbitrary basis for N, (the vectors g,(A,)
are not necessarily orthogonal or normalized). Now,

Uno8ilo) € R
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since
AiUnegi%) = A5 {E + (A — M) R} guldo) =
= Aogi(Ao) + (A — Ag) BRg() =
= 2giA) + (A =) (E + A R) g\ =
= ME+ (=2 R} gld)
= A Uppo8x(A0).
Since the operator U,,, is one-to-one, the vectors U, gi(A) form a basis

for N;. Hencg, we may define the vectors g,{A) at each regular point A of
the operator B by the formulas

&) = Unegildo) = 8:Ao) + A —2) Rigade) (k=1,2,..., 1.

With the aid of the functional equation of the resolvent, it is easy to
verify that

® 81 = Ungi® = guX) + (1 — ) R.gu®)

for any two regular points A and  of the operator B.

The value of the matrix function B (A) for any common regular point
X of B and B is determined by its value P (A). In order to find the corre-
sponding formula we make use of the functional equation of the resolvent:

(9) RA = RAo + (A - Ao) RARAQ-
On the other hand, by (7)

Ri=R,— ;'p,k(A) ¢, &) 2,
(10) Lk=1

R = Ry = 3 a0 810 8403

S.ubstitute (10) into (9) and use the functional equation of the resolvent
R, to get

— 3PN 8D 8N = — 3w 80 800)
A =@ =203, 810) Rugah)
— =2 329 (Ruy ,8D) £ )

=293 P @0, 5D 2,81 Y.
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By means of (8), we express the sum of the second and third summands
on the right in the form

‘z’.:gm(ko) (> 8(40)) {8u(R0) — 8V} + z’_)lpm(k) > &(20) — &(D)) gD-
With this substitution, (11) yields

= 3P, &1) 8 + PN (8 8 +

FA=2) 3 pu) (&0, &) 2 83 £Y) = 0.

Since the vectors g,(A) are linear independent,
- i-Elp"‘(AO) (-, &de)) + ;Pik(A) (,&(lo)) +

+@A- Ao)i jz_ lpik()‘) (82), &) 20 (-, 8(A)) = O,
and, further, since the vectors g,(1;) are linearly independent,

~pul) +Pul) + (=N 3200 (€00, 5P =0
or, in matrix form,

BA) — PBRo) + A = 2) BA) (82, £(D)) B = 0.

Multiply this equation on the right by () and on the left by
B ~1(A,) to obtain finally the relations

(12) QA =) + (A~ 1) ( (g,(Ao), gj(l) ) ):,1-1 >

where Q (X) = P-'(1). Itis not difficult to verify by means of (12) that, for
any two common regular points A and p of the operators B and B,

QM) =2+ A —w (g gD)),

85. Semi-Bounded Operators
A symmetric operator A is bounded below if
M “ryzmifiz.  (m> — )
for each fe D, and bounded above if

@ 4. = MIfIF (M < )
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for each f e D,. We shall assume that the numbers m and M in the inequali-
ties (1) and (2) cannot be improved. Thus,

m—inf @D M up WA
repa (£.f) reog (SS)
and we call m the lower bound and M the upper bound of A.

A special case of an operator semi-bounded from below is the positive
operator introduced in Section 41. The study of semi-bounded operators
can be reduced to the study of positive operators. Indeed, the operator 4
has the lower bound m > — oo if and only if the operator 4 — mE is
positive.

If A is a positive operator, then the negative semi-axis belongs to its
field of regularity, since the inequality

(4£,/) 20

implies, for negative A,
(A4 —AE)fI* = | Af® — 2X(4f, ) + A%fI® 2 A%(f112

and, hence,
(A —=AEYfIl 2 [A[-1fI
Therefore, by proposition 1° of Section 78, a semi-bounded operator
has equal deficiency numbers and has self-adjoint extensions. If the nega-
tive semi-axis belongs to the field of regularity of a symmetric operator 4

then it is not necessarily true that A is positive,* unless 4 is self-adjoint. In
the latter case, for each fe D,

Uff) = [@ELN = [dELN 20

The square of any self-adjoint operator is a positive operator. Con-
versely, any positive self-adjoint operator A can be represented in the form
of the square of some self-adjoint operator B. Indeed, if

4= f t dE,
0
then it is possible, for example, to let
B= f /1dE,.
0

4 For example, for the differential operator on a finite interval, the field of regularity is the
cntire plane, but this operator is not semi-bounded.
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If a semi-bounded operator has finite deficiency indices, then all of
its self-adjoint extensions are also semi-bounded. Moreover, the following
theorem holds.

THEOREM 1: If A is a positive operator with the finite deficiency indices
(m, m), then each of its self-adjoint extensions has only a finite number of
negative eigenvalues, and the sum of the multiplicities of these eigenvalues
does not exceed m.

PrOOF: Let 4 be some self-adjoint extension of the operator 4 and

A =ftdE,.

Further, let 4, denote the interval (— w0, —¢). To establish the theorem
it is sufficient to prove that, for each e >0, the dimension of the subspace
E(4,)H does not exceed the deficiency number m.

We assume that for some € >0

3 dim E(4)H > m.
Since
dimD;=m (modD,),
there exists a vector f, which is both in D, and in the subspace E (4,) H.
Then
o = A fo) = [ td(ESofd <O0.
Since this contradicts the fact that A is positive, the theorem is proved.

We present another theorem about self-adjoint extensions of semi-
bounded operators with arbitrary deficiency indices.

THEOREM 2: A semi-bounded operator A with lower bound m has a
self-adjoint extension A with lower bound not smaller than an arbitrarily
Dpre-assigned number m' < m.

Proof: First, we prove the theorem for m =1 and m'= 0. In this
case,

(L) AL S 1411110,
so that

HA4f£1 z 1A
and

NAf —Adgll 2zl f—gl.
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It follows that A ! exists as a bounded operator defined on the subspace
4,. Repeating the argument of item 2° of Section 78, it is easy to see that
mo = H e A A
is the eigenmanifold of the operator A* which belongs to the eigenvalue
A = 0. The subspace N, and the manifold D, are linearly independent
since if an element g belongs to both N, and D, then Ag = 0, which
implies that g = 0.
We define an extension 4 of the operator 4 on the domain
D;=D,® %N,
by the formula
Ah = Af
with
h=f+ga fEDA’ gemo-
It is evident that A4 is a symmetric extension of 4, since if
hyhoeDz (=1 + 8, fi€D4 8€No, i = 1,2),
then

(Ahy, b)) = (Afsfo+8) = W) =
= (i A1) = (fi + 80, Afs) = (hs, 4ho).

Furthermore, it is evident that the subspace M, reduces 4 since
N, « Dyand 4h = 0 for h € N,. Both N, and its orthogonal complement
4, are reduced by the operator 4. Let A’ and A" be the restrictions of
4 to 4, and No.

The range of the operator 4’ is the subspace 4, and, hence, (cf. Sec-
tion 41), 4’ is self-adjoint. Since A" =0, the operator

A=A o4
is also self-adjoint.
Furthermore, for

h=f+g (feD,ge),
we have

(dh, by = (Af,f+) =L 2 IfIF 20,

so that the lower bound of the operator Aisnot negative. Thus, the theorem
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is proved for the case with m = 1 and m’= 0. 1t is easy to see that the
general case is reduced to the case considered by the linear transformation

4=—1 4"

E.
m-—m m—m'

The theorem proved above was established by J. von Neumann. In
this connection J. von Neumann made the conjecture that the theorem is
true with m’= m. Later this conjecture was proved by Stone and Fried-
richs, but these authors left open the question of the uniqueness of the
extension with preservation of the lower bound.

A complete theory of the self-adjoint extensions of semi-bounded
operators with preservation of the lower bound and also the application of
this theory to differential equations is due to Krein.® A presentation of
these results exceeds the scope of this book.

Concluding the present section, we prove a proposition which is a
generalization of the theorem of Section 33. There we introduced the
notion of inequality between projection operators. Now we introduce the
concept of inequality between bounded self-adjoint operators. We write

Bz A
if B—A is a positive operator.

LEMMA: A monotone increasing sequence of positive self-adjoint oper-
ators

0 <A;<d;, < As< ...
with bounded norms
4zl €N (n=1,2,3,..)

converges strongly to some limit operator.

Proof: First we remark that if B is a positive self-adjoint operator
with norm less than or equal to one, then B* < B, i.e.,

(B.S) S BSS).

This fact follows immediately from the spectral representation of the

operator B, but it can be established also without the application of the
spectral representation in the following way. Since | B || £ 1,

Bff) = (S

and, hence,
E—B=z0.

! cf. M. G. Krein {3}, {4], Vol. L.
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Also

(E—BYB(E—B)z0, B(E—B)Bz0,
since

({E—B}B{E —B)f.f) = (B{E—B}f, {E — B}f) 20,

(B{E — B} Bf,f) = ({E — B} Bf, Bf) 2 0.
But, on the other hand,

(E—B)B(E—B)+B(E—B)B=B—B
Hence, we conclude that

B—B =0

Turning now to the proof of the lemma we let N = 1 without loss of
generality. Since the numerical sequence {(4s f, f)}1°, where fis a fixed
element of H, is monotone and bounded, it converges to a finite limit.
Therefore, for sufficiently large p, and for n >m > p,

({A” - Am}f’f) Se
On the other hand the identity

and the positivity of the summands yield
| An — Al S 1.

By the remark which was made in the beginning of the proof, we
obtain

= ( {A” - Am}’f;f) s ({A” - Am}f’.f) Se

and the lemma is proved.

86. Some Remarks about the General Theory of Extensions

The presentation in the present chapter of the theory of extensions is
based essentially on the assumption that the domain of the operator to be
extended is dense in H. This assumption was included in Section 41 for
the definition of the concept of a symmetric operator.

Some questions reduce, however, to the consideration of operators
with domain not dense in H which satisfy the conditions

(4f,8) =(f,48) (f,g<Dy).
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Such operators are also called symmetric. The theory of extensions of
von Neumann does not apply to them. In particular, this theory leaves
open even the question of the existence of self-adjoint extensions for
bounded operators which are symmetric in the extended sense. This last
question was resolved in the affirmative by Krein®, who established the
existence of self-adjoint extensions of a bounded operator with preserva-
tion of the norm, described these extensions and also gave a criterion for
their uniqueness.

Recently Krasnoselski’ considered the question of symmetric exten-
sions of symmetric operators with nondense domain in complete generality.
He showed that every closed symmetric operator has maximal symmetric
extensions. If the deficiency indices of such an operator are equal (and
only in that case) then it has self-adjoint extensions. The self-adjoint exten-
sions are characterized by formulas similar to formulas (4) and (4') of
Section 80.

In conclusion it is necessary to remark that for the construction of
the theory of extensions in such generality one must assume that the oper-
ator has a closure. For operators with nondense domains, the existence
of closure is not a consequence of symmetry.

The extension of a symmetric operator with a nondense domain for
the case when the closure of the domain contains its range was studied
first in a remarkable work of M. A. Naimark in connection with the con-
struction of the theory of generalized spectral functions. The presentation
of the theory of M. A. Naimark forms the main part of Appendix I.

¢cf. M. G. Krein {3], [4], Vol. L.
7¢f. M. A. Krasnoselski [2], Vol. 1.




Appendix I

GENERALIZED EXTENSIONS AND
GENERALIZED SPECTRAL FUNCTIONS OF
SYMMETRIC OPERATORS

1. Generalized Resolution of the Identity. Naimark’s Theorem?

A generalized resolution of the identity is defined as a one parameter
family of operators F, which satisfy the following conditions:

(A) Each difference F,— F,, where t,>t;, is a bounded positive
operator,

B) F_,=F,

(C) F.,=0,F, =E.

In contrast with the definition of the ordinary resolution of the identity
(cf. Section 61) it is not assumed here that the operators F, are projections.
Furthermore, we do not assume here the earlier orthogonality condition,

(1) FF,=F, (s = min {u’ V} ),

since (1) and (A) would imply that F, is a projection operator.

In view of the lemma of Section 85 on monotone sequences of oper-
ators, any family of operators F, which satisfy condition (A) can be modi-
fied or ‘‘normalized” so that condition (B) is also satisfied.

The ordinary resolution of the identity is a special case of the general-
ized one. Sometimes the latter is called simply the resolution of the identity
and the ordinary one is called the orthogonal resolution of the identity.

In terms of F, we define a positive additive operator function

F(d)=F,=F,—F,
of an interval 4 = (¢,, ¢,), where £, < f,.

A simple example of a generalized resolution of the identity is given
by

F, = I"lE:m + I‘zE;(Z)s

. M. A. Naimark [1], [4}, Vol. 1.
121
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where E® and E® are arbitrary orthogonal resolutions of the identity and
¢, and p, are any positive numbers, such that u; + p = 1.

A more instructive example is given by the operator function F, which
is obtained by the following construction. Let E, be an orthogonal resolu-
tion of the identity of the space H, let G be a subspace of H, and let P be
the operator of projection of H onto G. We define

E=PE”

and consider F, as restricted to G. Itis easy to see that F, satisfies conditions
(A), (B), and (C) and, hence, is a resolution of the identity (not necessarily
orthogonal) of the space G.

Naimark proved that every generalized resolution of the identity of
the space H can be obtained by the method described above if one imbeds
H in a particular space H*. For the proof of the theorem of M. A. Naimark
we need a certain important method for the construction of Hilbert spaces.
We first present this method. For this purpose we introduce the concept
of a positive-definite function. A scalar function @ ( f, g) which is defined
for each pair f, g of elements of some set R is called positive-definite if

(.0 =21

for all f, g in R and if for arbitrary f;, fs, . . . , fa (n < 0) in R the quadratic
form

PITIRATT

is non-negative.
An example of a positive-definite function of a vector pair in Hilbert
space is the scalar product, since

(f,8)=(Sf)

and
:g,(ﬁ’f") 68 = “iz_‘: AL

On the other hand, if a positive-definite function of a pair of elements
of an arbitrary set R (no algebraic operations are defined in R) is given,
then this set can be made into a Hilbert space. To be precise, R can be
imbedded in a Hilbert space H* such that the scalar product of f and g in
R is defined by

(f,9) =2(f,9).

To construct H* we complete R to a linear space R, in which we introduce
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formally the finite sums
f = 21 ¢ fi

for arbitrary f,e R and arbitrary numbers &(i=1,2,...,n). For
elements

fA = ; &fi s é = ,‘_El"lkgk
in R we define a scalar product by the formula
(. ) =3 @ (F 00 &

The scalar product thus defined has all the properties listed in Section
2, Chapter 1, with the exception of perhaps one; namely, it is possible that

() (f,)=0 for f~0.

If we retrace the proof of the Cauchy-Bunyakovski inequality in
Section 2, we see that this proof is valid for the scalar product defined above
(strictly speaking, we should call it a quasiscalar product). Thus,

©) 1G9 1 =(.DG 9.
From this inequality it follows that the set t of all elements f for which
(f, ) = Ois a linear manifold.

In order to remove the defect indicated by (2), we introduce the
quotient space

R+ = /9.

Elements of the space R* are the sets in @ < R such that if Afo € @, then
A& consists of all the elements

% = }0 + ,é’
where & is an arbitrary element of 9. Multiplication of an element @ of
R+ by a scalar ) is defined such that the product A§ consists of all the
elements Xf where { € §. The sum in R* is defined analogously.

The scalar product of two elements & and ® in R* is defined by the
equation

@ & 6) =G0 (& ged)
Using (3), it is easy to conclude that the scalar product (&, @) does not

depend on the choice of the representatives f and f; and, hence, that defini-
tion (4) is unambiguous. The scalar product (%, ®) now has without
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exception all the properties listed in Section 2. The completion (cf. Section
3) of the inner product space R* is a Hilbert space which we denote by
H*. This space H* is the one sought.

Now we come to the theorem of Naimark.

THEOREM: Let F, be an arbitrary resolution of the identity for the space
H. Then there exists a Hilbert space H* which contains H as a subspace
and there exists an orthogonal resolution of the identity E} for the space
H such that

Ff=P'Ef f
Jor each f € H where P* is the operator of projection on H.
Proof: Consider the set R of all pairs p of the form
={4,1},
where 4 is an arbitrary real interval and f'is an arbitrary vector of H. On

R we define a function @ (p,, p,) such thatif p, = {4,, i} and p, = {4,, fo},
then

? (pls pz) = (FA, . A,.fla.f2)'
We show that the function @ (p,, p,) is positive-definite. Indeed,
D (P1,P2) = (Fy,- 4, /100 = (f1, Fay- 0, f) = (Fa, .4, J2 1) = P (P2 P1)

and, on the other hand,

® En P (P PR & & = i (Fay- a3 Js SO & —fk-
Lk=1 Lh=1

If the intervals 4, (i = 1, 2, . .., n) are pairwise disjoint, then
(6) I;l(FAi.Akﬁ’f;‘) fi Ek =I-El (Fdjﬁ’f;)|£i|2 g 0.

If the intervals 4,(i = 1, 2, ..., n) are pairwise disjoint and the intervals
4, and 4, coincide, then the sums in the right member of (5) fall into two §
parts. One part, with indices from 3 to n, is of the form (6), and the other |}
part, with indices 1 and 2, satisfies

2 — -
PN CAN NI =£§ Fafiuf b = (Fd,iil 8 3 65 2 0.

The case with arbitrary intervals 4,(i = 1, 2, ..., n) can be reduced, [
with the aid of additional partitions, to the cases already considered. Hence,
lf Al 8] Ag == 0, then

(Fatan- 0,8 =Fa,-s,20,-,1:8) =Fa,. 0,1, 8) + (Fa,. 4,1, 8)
Thus, @ (p;, p) is a positive-definite function on R.
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Using the method described earlier we imbed R in a Hilbert space
H*.

Not desiring to introduce new notations for those elements P of the
space H* which are subsets of R by the construction described earlier,
we agree on the following: if an element p of R belongs to P then we write
p instead of P.

We indicate the scalar product in the space H* by the symbol ,, and

have
(Pn p2)+ = ¢ (pl’ pi)'

We now consider elements of H* of the form {I, f}, I = [— o, ®].
By means of the equation

(L1}, {Lgh)s = (Fif.8) = (£, 8),
we can identify the pair {I, f} with the element f from H. The element

; &4, £} of the space H* is identified with the element ; & fi of the

space H. Thus, H can be considered as a subspace of the space H*.

We now solve the following problem: find the projection of the element
{4, f} of the space H* on the subspace H. We denote the projection to
be found by {I, g}. For each 4 of H,

({a,f} —{Lgh {LH), =0,
or
({A’f}a {I’h} )+ - ({I,g}, {I’h} )+ = (FAf’h) —(g,h) =(Fdf'—g’h) =0,
so that
. g=F.f,
1.C.

M P4, f} = {L, Faf}.
The theorem will be proved if it is established that the operator func-
tion EF, which is defined by

® Ej{4',f} ={4n 4, f}
for each element of the form {4, f} € H* is an orthogonal resolution of
the identity for the space H*, since then (7) can be expressed in the form
PYEf f=PYEf{Lf} =P *{4nLf} =P {4,f} ={l,F,f} =F.f
for each fe H.

It is evident that EJ is an additive operator function of an interval.
Furthermore, the two equations

(EN{A, f} =Ef{dnd f} ={dnan 4’ f} =EF{4',f},
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and

(EJ{A"f}’ {A”7 g} )+ =( {A N A"f}: {A",g} )+ =
=Faaut8)=EFsasfg) =4 .1}, Ei {4",8})s,
imply that E} is a projection operator. Finally, itis evidentthat E/f {4',f} =
{41}

Since the family of all elements of the form {4’,f} is dense in H™,
the extension to H* by continuity of the operator E; defined by formula
(8) is an orthogonal resolution of the identity for the space H*. The
theorem is proved.

2. Self-Adjoint Extensions to Larger Spaces and Spectral Functions of
Symmetric Operators?

In the present section we apply the concept of the orthogonal sum of
the spaces H, ® H,. A special case (H, @ H,) of this concept occurred
in the definition of the graph of an operator (cf. Section 46). The orthogonal
sum

(1) H+ e H1 @ Hg.

of two arbitrary Hilbert spaces H, and H. s the set of all pairs f+ ={ f;, fa}
with f; € H, and f, € H,. The algebraic operations and the metric are defined
analogously to those introduced in Section 46.

It is evident that H* is a Hilbert space. If H, and H, are identified
with the sets of all pairs { f;, 0} and {0, f;} with f; € H, and f; € H,, then
H, and H, can be regarded as mutually orthogonal subspaces of H*.
After the construction of H*, formula (1) can be considered as a decomposi-
tion of H* into an orthogonal sum.

A generalization of the concept of a symmetric extension is basic for
our further considerations. Let A be a symmetric operator which is defined
in a space H and let H* be a Hilbert space which contains H. In supple-
ment to the definition in Section 41, we shall call each symmetric (in
particular, self-adjoint) operator B* which is defined in H* and is an exten-
sion of the operator 4, a symmetric (in particular, self-adjoint) extension
of the operator 4.

The concept of an isometric (in particular, unitary) extension of an
isometric operator is generalized analogously. It is evident that the Cayley
transform of a symmetric extension B* of an operator 4 is an isometric

*Cf. M. A. Naimark [2], [1], Vol. 1. Before Naimark constructed the general theory which
is presented in this and the following section, separate results were obtained by different
methods by A. 1. Plesner [4], Vol. 1, and N. 1. Akhiezer [4], Vol. I.
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(respectively, unitary) extension of the Cayley transform of the operator 4.
Conversely, the Cayley transform of an isometric (unitary) extension of
an isometric operator is a symmetric (respectively, self-adjoint) extension
of the Cayley transform of this operator.

For H* = H we obtain the ordinary symmetric and isometric exten-
sions which have been considered heretofore.

Let B* be an arbitrary symmetric extension of the operator 4. Then
the following relation holds:

DA [ DB+hH < DB+'

It is convenient to classify the symmetric extensions B* of an operator 4
by the following scheme.

Extension of type I: D, 3£ Dgy " H = Dy,; this extension
coincides with the ordinary one.

Extension of type II: D, = Dy, N H 7 Dy,
Extension of type IIll. D, 54 Dy N H £ Dp,.

Thus, the ordinary symmetric extensions (i.e., those which do not extend
beyond the space) are extensions of the first type, and symmetric extensions
which do go beyond the space are of types Il and III. It is evident that a
maximal operator has only symmetric extensions of type II.

If a symmetric extension B* of an operator A is reduced by a subspace
G* < HY © H, then we shall always exclude G* from H* (i.e., we replace
the space H* by the space H* © G* and the operator B* by its restriction
to H* © G*). Under this condition, a self-adjoint operator admits no
symmetric extensions.

We now turn to the fundamental theorem of the present section.

THEOREM 1: Every symmetric operator A defined in a Hilbert space
with arbitrary deficiency indices (m, n) can be extended to a self-adjoint
operator Bt which is defined in a space H* > H.

Proof: In some space H’ of sufficiently large dimension we construct
a symmetric operator A’ with deficiency indices (n, m). (One can, for
example, choose H’ isomorphic to H and A4’ isomorphic to (—1) 4). We
now construct the space

H* =H® H',
and we introduce in this space the symmetric operator
AT =AD A

It is evident that A* is a symmetric extension of 4 of type II. For
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the proof of the theorem it is sufficient to establish that the operator A™
can be extended to a self-adjoint operator. Hence, we must verify that 4*
has equal deficiency indices. For J z =40,

M =(4* —zE*)D,y =(4* —2E")(D,®D,) =
=(4 —zE)D,® (4’ —2E)D, = M, @ M.,

or, passing to the orthogonal complement of the corresponding manifolds
M}, M, and M, in the spaces HY, H and H',

N =N, 0N,
It follows that the deficiency indices of the operator A* are (m + n,
m + n). Thus, the theorem is proved.

If we choose the space H' and the operator A’ in a different manner,
then we obtain different self-adjoint extensions of 4.

The operator BY constructed in the proof of Theorem 1 is, generally
speaking, an extension of type III of the initial symmetric operator A.
However, it is always possible to require that B* be an extension of type II
of the operator A. For this, it is sufficient to construct a unitary operator
U+ such that

UtR, = %,
and to define B* as the Cayley transform of U*. 1

By the theorem just proved, we show now that an arbitrary symmetric
operator has an integral representation similar to the one for self-adjoint
operators which was derived in Chapter VI. Thus, let 4 be a symmetric
operator in H. We extend® it to a self-adjoint operator B™ and we pass
from the space H to a larger space H*. Let E*(4) be the spectral function -
of the operator B* and P* the operator of projection of H* on H. Finally,
let

F(4) = P*E*(4).
For arbitrary elements fe D, and g e H',

(B,9) = [ 1 (E} £, 8),

| B2 = f td (E*f, f).

~ 00

In particular, if fe D, and g € H, then these formulas can be written in

We do not assume here that the extension is defined by the special procedure used in the
proof of Theorein 1.
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the form
@ e = [1dF L),
) | 4f 12 = [ pd F.1,1).

Thus, we obtain an integral representation of an arbitrary symmetric oper- |
ator which is similar to the integral representation of a self-adjoint oper-
ator.

In view of similarity of the formulas (2) and (3) to the representation
obtained in Section 66 for a self-adjoint operator, we now give the follow-
ing definition which generalizes the concept of the spectral function.

DEFINITION: If A is a symmetric operator and F, is a resolution of the
identity such that formulas (2) and (3) hold for arbitrary fe D, and g€ H,
then F, is a spectral function of the operator A.

Before we compare formulas (2) and (3) with the integral representa-
tion of a self-adjoint operator obtained earlier, we show that the method
used in the derivation of these formulas is general. Namely, the following
theorem holds.

THEOREM 2: Every spectral function of a symmetric operator A which
is defined in H has the form

F,=P'E{,
where E; is the spectral function of some self-adjoint extension B* of the
operator A, obtained with the aid of an extension of H to H* > H, and P*
is the projection operator of H* on H.

Proof: By means of the theorem of Naimark we construct the space
H* and, in it, an orthogonal resolution of the identity E;" such that

C) F,=P*E}.
We show that the operator B*, defined by

J.tdE:“f

for all fe H* which satisfy the inequality

[ra@:fh) < =,
is a self-adjoint extension of the operator 4. From Theorem 1 of Section
66 it follows that the operator B* is self-adjoint.
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If feD,, then fe Dg,, since

w© w©

[raE: 1.9 = [Pa@E10) = 14717 < .
Furthermor(;,wfor feD, and g—: H, it follows from the equation
9= [uF L0 = [1dEl £.9)= (B 0)
that — )
) Af=P'B*f  (feD,).

But, for fe D,

w© o

© 4= [rd L) = [ #dEL LN =1 BT
From (5) and (6) it follows that
Af =B*f (feDy.

It can be shown that the operator B* is reduced by no subspace of
H* © H. Indeed, if a subspace G of H* © H reduces the operator B*
then it also reduces the resolution of the identity E;}' and the exclusion of
G from H* will reduce to the exclusion of the restriction of the operator
E; to G. This does not affect formula (4). Thus, the theorem is proved.

If a spectral function F, of a symmetric operator is represented in the
form (4), where E;" is the spectral function of a self-adjoint extension B*
of the operator 4, then the spectral function F, is generated by the self-
adjoint extension B*. Thus, every self-adjoint extension of the operator 4
generates some spectral function of this operator, and conversely, every
spectral function of the operator 4 is generated by one of its self-adjoint
extensions.

We present now several facts which will clarify the interrelation
between the new and old definitions of a spectral function and which
indicate to what extent there is an analogy between the representation (2),
(3) and the spectral representation of a self-adjoint operator.

1° The spectral function of a self-adjoint operator defined in Chapter
Vlis its unique spectral function in the sense of the definition of the present
section. A self-adjoint operator does not have other spectral functions
since, by our theorem, every such spectral function must be generated by

a self-adjoint extension and a self-adjoint operator does not have such
extensions.
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2° From formula (3) it follows that the integral

w©

@ [ra@r0)
converges for each f € D,. The converse statement, generally speaking, is
not correct. It is possible to assert only that if the integral (7) converges
for some f e H then

®) J' td (E} f,f) < .

Thus the vector f belongs to the manifold D, N H. This coincides with
D, if and only if B* is an extension of type II of the operator 4.

Thus, only those spectral functions of the operator 4 which are gener-
ated by self-adjoint extensions of type II of 4 characterize the domain D,
as the set of vectors for which the integral (7) converges. In particular,
the domains of maximal operators are characterized by the'spectral func-
tions and by inequality (8), since such operators admit only extensions of
type IL

In the general case the spectral function F, of the operator A4, generated
by a self-adjoint extension B*, characterizes the domain of the operator
C = P*B*P*. This is a symmetric extension of type I of A with a maximal
domain D, which satisfies the condition

(9) DA < DC < DB+'

With this point of view it would be natural to consider the resolution
of the identity F, not as a spectral function of 4 but of C and, in correspond-
ence with this, to include in the definition the requirement that the resolu-
tion of the identity F,, apart from the representations (2), (3), define still
the domain D, by the inequality (8). However, it seems impractical to
include in the definition an additional requirement concerning the charac-
terization of the domain D,. Thus, the definition admits that a single
resolution of the identity may be the spectral function of two different
operators (for example, the operators 4 and C = P*B*P*). In particular,
the spectral function of a self-adjoint extension of type I of a given operator
A with equal deficiency numbers is the spectral function of the same oper-
ator A and of each operator C such that C < B.

3° From the preceding it follows that every symmetric operator
corresponds to some set of spectral functions and that one and the same
spectral function corresponds to some set of symmetric operators.
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In connection with this, there arises the question: is every resolution
of the identity the spectral function of a symmetric operator? In the case
of the orthogonal resolution of the identity a positive answer to this ques-
tion was given by Theorem 1, Section 66.

If, however, F, is a nonorthogonal resolution of the identity then it
is impossible to assert that the set of vectors for which the integral on the
right side of equation (3) exists will be dense in the space H. In fact, as
Naimark observed, there exist resolutions of the identity such that the
integral on the right side of equation (3) does not converge for any vector
S # 0. As such an example,* we consider the operator function defined on
the space H by the equations

0 t=0
E=

1
eTE >0,

It is evident, the operator function F, satisfies conditions A, B, C in section
1° and, hénce, is a resolution of the identity. However this resolution of
the identity is not a spectral function of any symmetric operator, since the
integral

fw‘”d ELD =D fw" = (41 f =

diverges for each vector f 4 0.

4° 1In Chapter VI it was shown that for a self-adjoint operator the
representation (2) holds in the “strong” sense. In the case of the non-
orthogonal resolution of the identity the transition from the “weak”.
representation (2) to the “strong’ representation

(10) af = [wr.f

is impossible. Therefore, we regard equation (10) only as a symbolic entry
of the formulas (2) and (3). The concept of the integral in the strong sense
in the case of nonorthogonal resolutions of the identity is not introduced.

5° From the property of the orthogonality of the spectral function
E, of a self-adjoint operator, it follows that for each finite real interval 4,
the vector E (4) f with fe H belongs to D, and

UE@)f9) = [1d(E S8

4

‘For this example we thank M. A. Krasnoselski.
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for each g € H. Thisimportant fact which we applied repeatedly in Chapter
VI does not hold for the integral representation of symmetric operator
considered here (even if we restricted ourselves to spectral functions gener-
ated by extensions of type II).

However the following proposition is correct: if 4 is a symmetric
operator, if F, is its spectral function, if 4 is a finite real interval, and if g
is an arbitrary vector in H, then for each 4 € H,

F(4)geD*
and

A F e h = [1dFg h).

4

Indeed, if B* is the extension which generates F, and if P* is the operator
of projection of H* on H, then for eachfe D,

A 4, F(4)9) = (B, P*E*()g) = (B, E*(@)g) =
—[1aErf9) = [t 1,Pre) = [0

4 4

But the integral
[ra@hg
a4

is a bilinear functional of # and g on H and, therefore, has a representation
(h, Cg) where C is a bounded operator. It follows that

(Af, F(4)g) = (£, g%
and, hence,
F(4)geD,.
Therefore, (11) yields

(A F @ = [tdF 1, 8).

4

Since D, is dense in H, this equation holds for an arbitrary vector 4 € H.

3. Spectral Functions of Symmetric Operators and
Generalized Resolvents

We now consider an operator function R,, which is related to the spec-
tral function of a symmetric operator in the same way that the resolvent
of a self-adjoint operator is related to its spectral function.
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DEFINITION: Let A be a symmetric (but not self-adjoint) operator.
Let Bt be a self-adjoint extension of A such that B* is defined in a space
H* > H. Let R} be the resolvent of B*. Finally, let P* be the operator of
projection of H* on H. The operator R, defined on H by

R, = P*R}

for each nonreal z, is called a generalized resolvent of the operator A.

If the operator B* and R, are related as indicated in the definition,
then we say that the generalized resolvent R, is generated by the self-
adjoint extension B*.

The generalized resolvents of an operator 4 (with equal deficiency
numbers) generated by its self-adjoint extensions of type I are called ortho-
gonal; these generalized resolvents are also the ordinary resolvents of the
self-adjoint extensions which generate them.

The following theorem establishes an integral representation for a
generalized resolvent, analogous to the one obtained in Chapter VI for an
ordinary resolvent of a self-adjoint operator.

THEOREM 1: In order that the operator function R, (3 z #0) be a gener-
alized resolvent of the symmetric operator A, it is necessary and sufficient
that it have the representation

o ®fg) = [2ELD (fgem,

where F, is some spectral function of the operator A.

Proof: For the necessity of the representation (1) we may take the .
spectral function F, corresponding to that self-adjoint extension B* which
generates the generalized resolvent R,. For the sufficiency we may take the
generalized resolvent R, generated by that self-adjoint extension B*
corresponding to the spectral function F,.

If the generalized resolvent R, and the spectral function F, are related
by formula (1), then it is said that they correspond to each other. The
well known inversion formula between the set of the spectral functions of
a given symmetric operator and the set of its generalized resolvents deter-
mines a one-to-one correspondence.

We remark that for every vector of the subspace

M =4, ([z#0),
the values of all generalized resolvents of the operator A coincide. Indeed, if
2 (A4 —zE)f =g,




“
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then 1
(3) Rg—R(d—zE)f = P*RF(B* — zE*)f = P*f=f. J |

If the generalized resolvent R, is generated by an extension Bt with
the resolvent R}, thenforf, g e H 1

f
(R.f,8) = (PR} /,8) =(R? £,8) = (f: R g) = (fiP* R¥g) = (£, Reg), I
and this yields

@ R; =R J f
If A is a maximal symmetric operator and 1‘ ‘/

M, = H I
for 3z >0, then its generalized resolvents coincide for Jz >0, since by I
(2) and (3), f}
Rg=(4—-zE)'g [

for 3z >0 and g € H. According to (4), the coincidence of the operators J
R, for 3z >0 implies that they coincide for Jz< 0. Thus, a maximal i
operator has a unique generalized resolvent and hence possesses a unique |
spectral function. f

On the other hand, a generalized resolvent of a non-maximal symmetric J
operator A is not uniquely defined. In order to ascertain this, it is sufficient |
to take two different maximal symmetric extensions C’' and C" of 4 of ‘
type I and to extend them to self-adjoint operators B'* and B"*. It is “
evident that the generalized resolvents R; and R; of the operator 4 gener-
ated by the extensions B't and B"* do not coincide. I

Since a non-maximal symmetric operator has different generalized
resolvents, its spectral function is not defined uniquely. 1”

In view of an earlier fact (Section 88, 1°) about spectral functions of }o
self-adjoint operator, the following proposition is valid. |

THEOREM 2: A symmetric operator has a unique spectral function if I
and only if it is maximal. This unique spectral function is orthogonal if and |
only if the operator is self-adjoint.

It is easy to see that the set of all spectral functions (respectively, }
generalized resolvents) of a symmetric operator A4 is convex. This means
that if F, and F, (R; and R;) are two spectral functions (respectively,
generalized resolvents) of the operator A4, then for ¢’ 4+ " =1,2'> 0,
a” >0 the operator function o'F, + o"F (respectively, 'R, 4 a” R}) is also
a spectral function (respectively, generalized resolvent) of A.

In connection with this we indicate one method of construction of
generalized resolvents (spectral functions) which are generated by self-
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adjoint extensions of type II by means of operations inside the space H.
Let A be a symmetric operator defined in H, and let A’ and A” be any two
of its maximal extensions of type I. For definiteness we assume that

4,2)=4,()=H

for 3z > 0.
We define the operators R, and R; by the equations

R — { (A'—zE)™'  (3z>0),

: R)* 3z <0),
R — { (4"—zE)! Bz>0),

o (R)* (3z < 0).
The operators R, and R; are the generalized resolvents of the maximal
symmetric operators A’ and A" respectively. By means of R, and R; we
determine the spectral functions F; and F; of A’ and A", respectively, and
form the operator function

F,=a'F,+d"F; (e’+a"=1,a">0,a">0).
Since the set of the spectral functions is convex, F, is a spectral function
of A.

We show now how to choose the maximal extensions A’ and A" in
order that the spectral function F, is generated by an extension of type II or,
equivalently, in order that the spectral function F, and the inequality

® [ra@E.rs) <o
determine the domain D,. It is easy to see that a vector f € H satisfies the
condition (5) if and only if

feD, nD,.

It remains to prove that the maximal extensions 4’ and A” of the
operator A can be chosen such that the intersection of the domains D, and
D, is the domain D,. By the second Neumann formula (Section 80)

D, =D, + I,
D,.=D,+I",
where I" is the set of all vectors of the form
g+Ug (gey,

and U’ is an isometric operator which maps %; into U'R;, « N,(3z > 0,
if it is assumed for definiteness that m £ n); I is defined analogously.
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Note that D,. "D, o> D,. Let us assume that D, is a proper subset
of D, n D, and choose a vector # ¢ D, which belongs to both D ,. and
D,.. Then J

h=f +g + Ug',
h=f+g¢g +U%, |
where f',f" e D, and g’, g" € M;. These representations of 4 yield
" =fH+@E —-g)+Ug —Ug)=0.
The summands in the left member of the equation belong to the manifolds !
D,, 9 and RN, respectively. Since these manifolds are linearly independent, (

then the isometric operators U’ and U” must be defined such that equation

(6) holds for no vector of N; which is different from zero. This condition

can always be achieved, for example, by choosing U’ arbitrarily and letting
U= -U.

Thus, the constructed operator functions

F, = o'F, + 'F, |

and i

R, = o'R] + o'R; [’1

|

© ff=r, g=¢=g I
Ug=U"g. H

From the last equation it follows that if |
D,AD, =D, J |

I

for arbitrary o', a"(a’ + o” =1, &’ >0, a" >0) are spectral functions and
generalized resolvents, respectively, of the operator 4, which are generated
in the sense of Section 2 by a self-adjoint extension B* of type II of A.

However, it is not true that such a method yields all spectral functions
of a symmetric operator.®

From the given method of construction of spectral functions it follows,
among other things, that Theorem 2 remains correct even if the spectral
functions are required to be generated by self-adjoint extensions of type
II of the operator 4. In order to prove this it is necessary to show that a
non-maximal symmetric operator 4 has different spectral functions which
are generated by self-adjoint extensions of type II of 4. But this is a con-
sequence of the fact that the generalized resolvents

o R, + BR;

*In this connection, see M. A. Naimark [5], Vol. 1, and 1. M. Glazman [2], Vol. 1.
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and

BR; + aR;
for the indicated selections of the maximal extensions 4’ and A" coincide
only for vectors in 4,(z) and, therefore, generate different spectral func-
tions.

In conclusion, in this and the following section, we illustrate facts and
methods with a differential operator. Let P, be the operator of differ-
entiation which acts in L¥0, o). The deficiency indices of the operator
P, are (0, 1).

To obtain a generalized self-adjoint extension of the operator P, by
the method of Theorem 1, we introduce the operator P’ of differentiation
in L} — oo, 0) which is defined by the formula

_.d
=l
for each absolutely continuous function ¢ (¢) such that ¢ (¢) and its deriva-
tive ¢'(¢) belong to L% — oo, 0) and such that ¢ (¢) satisfies the boundary
condition ¢ (0) = 0. It is evident that the deficiency indices of the operator
P, are (1, 0).
We form the orthogonal sums
LY — o0, ) = LY — o0, 0) @ L0, ),
P}y =P, ® P,
Qbviously, the operator Py is defined by the formula

P

Pt ;2
se=izge()

for each function ¢ (f) which is absolutely continuous in the intervals
(—0, 0) and (0, o) such that ¢ (¢) and ¢’(¢) belong to L} — co, o) and
such that ¢ () satisfies the boundary condition ¢ (0) = 0.

It is easy to see that one obtains the domain D3y of the adjoint
operator (Pg)* if one omits the boundary condition ¢ (0) = 0. Therefore,
each of the equations

(P3)*s +ig =0,

(Ps)*g ~—ig=0
has a unique solution. These solutions are defined, respectively, by the
formulas

_ {0 (<0 e (1<0
&)= { et (t20) &) = { 0 ((tZO;.
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The operator P of differentiation on the entire axis (— o, o) considered
in Section 49 is evidently a self-adjoint extension of the operator Pi. Thus,
the operator of differentiation on the entire axis is a generalized self- &
adjoint extension of the operator of differentiation on the semi-axis. |

Thus, the deficiency indices of the operator P§ are (1, 1). 1‘/
|

4. The Formula of Krein for Generalized Resolvents R

In connection with the results of the preceding section, there is the !
problem of describing the set of all spectral functions of a given symmetric
operator. Since the set of all spectral functions and the set of all resolvents I
of a symmetric operator have a one-to-one correspondence determined by g
the formula }

®.f9) = [2ELD), |

' |
this problem is equivalent to the problem of describing all resolvents. The
latter problem was solved by Krein® for the case of equal and finite defi-
ciency numbers. We present here the result of Krein for the case of deficiency
indices (1, 1).

Let A be a symmetric operator with deficiency indices (1, 1), let A be
a fixed self-adjoint extension of type I of A, let R, be the resolvent of the
operator 4, and finally let R, be an arbitrary generalized resolvent of the
operator A such that

= P*R}.
Here R} is the orthogonal resolvent of some self-adjoint extension A+ of
the operator A which is defined in a space H* > H and P* is the operator )
of projection of H+ on H.
We let as usual
M, = 4, (3)\ #* 0),
N.HoMm,

In the case considered the dimension of the subspace R, is one.
For the difference of the resolvents we have, as in Section 84,

) { (ﬁA—RA)fzo for feM,
(R, —R)feN; for feMN,

¢Cf. M. G. Krein {1], Vol. I. A formula for generalized resolvents of an operator with
deficiency indices (1, 1) was obtained by Naimark {1), Vol. 1. A further generalization of the
formulas of Naimark and Krein was given by Strauss {1], Vol. I.
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The last relation follows from the fact that for f'e R, and h € M;
(R —R)f,h) =Rof; 1) — (RY L) = ‘
=(f, Rsh) — (f RSk = (fs (R — R h) = (/,0) = 0.
From (1), repeating the argument of Section 84, we get

R R’ (/,8(0))gM®
2 AS T LX) ’
@) f 4 oM
where
29 g =8R) +(A—2) kxg (A0)-

Here g () is a vector in M, with norm one. We assume for definiteness
that the fixed point A, lies in the upper half-plane (it is possible to choose
A = i). However, generally speaking, the function Q (X) does not satisfy
the relation

&) oM = Q) + (A — ) (g (), (D),

which we obtained in Section 84 for the case of orthogonal resolvents.

Let us turn to the clarification of the nature of the function Q (A).
First, we find Q (), for which we let A = A, in (2) and pass from the
resolvent to the Cayley transform

. A1 A+ — 1E*
UA, — _LE , U;.- — % .
A— ME AT — ME
After an elementary calculation, we get

PrULf=Upf— Aé’ (,\3" (,2(7)) g ().
In this formula, we let f = g (4,). Then we have
Ao — 2o
2 (%)
Now, since the element ¢ = Uj ¢ belongs to My, if and only if ¢ belongs to
M,

0=(g(0), ) = (2 g (%), UI 9) = (UI g(Io), $) = (Pt U/\‘tg (Zo), ¥);
which implies that
) P*U; g () = 6g (A).

In (5), 6 is a constant which does not exceed one in absolute value, and

which is determined by the extension 4*; and 6 equals one in absolute
value if and only if A+ is an extension of type I.

O] Pt Uit g() =g (%) — g ().
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Our considerations yield an important consequence: if
R,\ = k,\

JSor any one nonreal value X = A,, then the equation holds for all nonreal A.
Indeed, replacing A, in formulas (2) and (2") by A, (I, > 0) we find from
formula (4) that Q (A,) = oo, which implies that the parameter 8 in formula
(5) equals one. Therefore, R, is an orthogonal resolvent; and two ortho-
gonal resolvents of one and the same operator which coincide at one point
are obviously identical.

Comparing (4) and (5), we find that

. Al‘) _ Il‘)
Q0 =252,
or
© Q (R) =i3% + 7.
Here 7 is a new parameter which is related to 8 by the formula
, 1+6
"= i) g

which maps the unit circle of the 8-plane into the upper half ~-plane.
If R, runs through the set of orthogonal resolvents, then, since (3) is
valid in this case, formula (2) takes the form

> (8 (I) )g®
7 A A iy
@) R.f=R.f— )
where
™) 01D =iIng + (A —A) (8(Ro), & (I) ).

The parameter = is real (— 0 < 7 £ ). Formula (7) defines a one-to-one
correspondence between the set of all orthogonal resolvents and the
values of the parameter 7.

In the general case where R, is an arbitrary resolvent, we let in formula
2

QM =7 + M.

Then

3 Rrf—pf_rg@))e®

®) of = Rf =S

We show that the function = (3) is holomorphic and has a non-negative
imaginary part in the upper half-plane. With this aim, we remark first
that the equation

Rig (7)) = Rg (D),
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and also the equation

Rg (D, g M) = @g D, 2(N)
hold at no nonreal point. Therefore, we let / = g (1) in (8) and form the
inner product of both sides with g (). We obtain

1 .
0+ om = (R—R)gDg(M).

But, since Q,(2) and the right member are holomorphic and the latter is
different from zero, the function = (A) is holomorphic for all nonreal values
A. We prove next that if 3 7 (A") = 0 at any one point of the upper half-
plane then = (d) = constant. It follows, in particular, that the inequality
3 + (M) < 0 is impossible at any point of the upper half-plane. Thus, let
Jr(A) = 0 (3A' >0). We choose A = A’ in both formulas (7) and (8) and
take in formula (7) the number = (A’) as the constant 7. Then the right mem-
bers of these formulas will be identical for each f. Hence, at the point
A = X’ the generalized resolvent R, coincides with an orthogonal resolvent
R, and as we showed above, these resolvents must coincide.

We form the inner product of both sides of equation (8) with f and
obtain the formula

_ )+
RSS) = "0 + a7 () °

For fixed f and A the functions p4(X), p1(}), go(A), ¢,(A) will have completely
determined values, not depending on the choice of the resolvent R,, which
are determined by the function = (A). Since orthogonal resolvents are ob-
tained when = () is a real constant and also when = () runs through a
particular set of holomorphic functions with non-negative imaginary part,
the point w = (R, f, f) belongs to some circular region. The boundary of
this region, the circle C (f; }) is generated by the point w, when R, is an
orthogonal resolvent. In other words, the circle C (f; A) is described by
the point

= 2 P
M + ) 7’
when = runs through the real axis.

Since the set of all resolvents of a given operator is convex, the point

w = (R,f,f) runs through the region K (f; A) with boundary C (f; A),
when R, runs through the set of all resolvents of the operator A.
By our considerations we have now established that: every resolvent
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R, of a symmetric operator A with the deficiency indices (1, 1) is represent-
able in the form
(,g))gM
T+

where r (X) belongs to the class N of all functions which are defined in the
half-plane I A >0 and are holomorphic and in this half-plane have a non-
negative imaginary part.

We now prove the converse proposition: each function = (X) of the class
N generates by means of formula (9) a resolvent of the operator A. Let
+(A) € N and let S, be an operator defined by the equation

_¢.e@)e®
T+ 0N’

Since the circle C(f; A) lies in the upper half-plane, but the point
(S £, /) lies in the circular region K (f; X), the scalar product (S, f, ) is a
holomorphic function in the half-plane I A >0 which ev1dent1y belongs
to the class N.

Furthermore, since, for orthogonal resolvents R,, the scalar product
(R.\J, f) satisfies the inequality

(9) R, = ﬁx -

(9 I) SA = ﬁx

695
IRAS S50 (R>0),
the scalar product (S, £, /), which lies in the circular region K (f; X), satisfies
the inequality
(f f )
[ (i /)] = .
Using this inequality and repeating the argument of Section 65, we
obtain a representation of the scalar product (S, f, f) in the form
{ du (1,1)
(10) fif) = [ S8
Here o (¢; A) = w (¢) is a nondecreasing left-continuous function which
tends to zero as £ — — oo and satisfies the condition

w ;) 2(Sf) (- o<tz x)

From formula (10), repeating the calculation of Section 65, we obtain
a representation of the operator S, in the form

(d(F.f,
ssg) = [FELE.
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Here F, is a nondecreasing left-continuous operator function which tends
to zero as t — — oo and satisfies the condition

(11) FELN (L) (- o<t s o).

In contrast with Section 65, the operator function S, does not satisfy the
Hilbert functional equation. Hence, we cannot derive the orthogonality
relation

(12) F,F, = F, (s=mjn{u, V}).
Therefore, we fail to have the relation used in the end of Section 65 in the
proof of the property

(13 im Ff=f (feH).

=0

In order to prove that the operator function F, is a generalized resolution
of the identity, we must prove property (13), without the aid of (12).

According to the lemma on monotone increasing sequences of oper-
ators (Section 85), the limit on the left side of equation (13) exists. Hence,
it is sufficient to show that as ¢ — oo the operator F, tends weakly to E
from the left, i.e., that

lim (F fg) = (/.8
for all f, g € H. Evidently this relation holds if and only if
(4) lim (F.A.f) = (£.f)
forall f € H. Since, by (11), the norm of the operator function F, is bounded
(I FJl £ 1), it is sufficient to verify equation (14) for some dense set of

vectors in H. As such a set we take the domain D, of the operator 4.
By (10), equation (14) is equivalent to the equation

(15) Lim in (Spfof) = = (£))

for all fe H. Since the point (S, 1, /) lies inside the circle C (f; A) it is
evident that

|in(Safi) + ()| S max | in(Ro o) + (A1)

Here R; denotes the resolvent of type I which corresponds to the para-
meter =. It remains to prove that

lin (RS, + (L)

tends to zero uniformly with respect to 7 (— o< = £ ). This is true
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since, for fe D, and o >0,

m

|lin (Rl ) + (S = | f, o dELS) + f AELT) l -

= ,_jottt;? d(E:fsf)l = A/—ftzaV(E,’f,f) A/_flzlh;_ﬁd(E:ﬁD <

<Lyarn.
n

Thus, relation (13) is proved so that the operator function F, is indeed
a generalized resolution of the identity and according to the theorem of
Naimark it has the representation
F, = P*E}.
Let us introduce the self-adjoint operator

A+f=_"sz,+f.

Evidently
S, = PR},
where R; is the resolvent of the operator A*. To complete the proof of
the theorem it remains to show that A% is an extension of 4:
At o5 A,
or that
RY f= RAf
for feM,.
From formula (9°) it follows that
P*Rf f=S,f=R.f
for f € M,. Therefore,
Rif=RSf+h
where h | H. We show that 2 = 0. For fe I,,
AR, f=f+AR\f,
AT (RS +hB) =f+AR S+ Ah.
Letting g = R, f we obtain
(A" (g + h).g +h) =(Ag + M, g +h) = (Ag,8) + A(h,h),
which is possible only for 4 = 0, since Jx £ 0.
Hence, the theorem is completely proved.
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5. Quasi-Self-Adjoint Extensions and the Characteristic Function
of a Symmetric Operator

In the present section we consider another class of extensions of sym-
metric operators with finite and equal deficiency numbers which was intro-
duced by Lifschitz.”

A quasi-self-adjoint extension of a symmetric operator A with the
deficiency indices (m, m) (m < ) is an arbitrary linear operator B which
satisfies the conditions

1) A < B c A%,
2) dim Dy =m (mod D)),

but is not a self-adjoint extension of the operator A.

For simplicity we restrict ourselves to the case of operators with
deficiency indices (1, 1). In this case condition (2) is a consequence of
condition (1) and can be omitted. We shall assume that the operator A is
simple (Section 81).

Next we present an example of a quasi-self-adjoint extension of a
symmetric operator. Let P be the operator of differentiation in the space
L¥0, @) with the boundary condition

¢(0) =9(a@ =0.

In Chapter IV we proved that the domain of an arbitrary self-adjoint
extension P, of the operator P is determined by the boundary condition

3 p@=090) (l6]=1),
and, conversely, each such condition with | 8 | = 1 determines the domain
of a self-adjoint extension of the operator P.

If in equation (3) 8 is replaced by an arbitrary complex number p such
that | p | # 1, then the operator P, (P, c P*) which is defined on se¢t of the
functions ¢ (#) which satisfy the condition

@ e@=re(@ (pi#D

is a quasi-self-adjoint extension of the operator P. It is evident that each
quasi-self-adjoint extension of the operator P is given by condition (4)
(one of them with p = o).

For quasi-self-adjoint extensions B of an operator A it is possible to
introduce the Cayley transform .S which is defined on the manifold

D.v = AB(A)

’Cf. M. S. Lifschitz [2], [3], Vol. L.

RE N

} _
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by the formulas
®) ?=(B—E)f
(feDg IA#0)
©6) Se=(B-1E)/

This definition is ambiguous if the vector f, which is defined by the
vector o, is not unique, i.e., if A is an eigenvalue of the operator B. But if
Ais an eigenvalue of the operator B, then 1 is not an eigenvalue, since other-
wise

8 €Dy, gDy
and
B = A*,

which would contradict condition (1).

Therefore, we can assume in formula (5) that A is not an eigenvalue
of the operator B. For definiteness we choose A=— i and then write
formulas (5) and (6) in the form

(39 ¢ =(B+IiE)S
(feDp)
(6 Se = (B —iE) /.

It is evident that the operator S is defined in the whole space and is an
extension of the Cayley transform V of the operator 4. However, in con-
trast with the case of self-adjoint extensions, the operator S is not unitary.

We show that the orthogonal complement of the manifold

Dy =M_, = 4,(-i)

is transformed by the operator S either into the orthogonal complement
of the manifold

4y =M = AA(i)’
or into the zero manifold. Indeed, if
gLM,
and
g=(B+iE)h (heDy),
then for each fe D,
((B +iEYh,(4 +iE)f) = 0.
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On the other hand, using the inclusion B = 4*, we get for each fe D,
(S8,(4 —iE)f) = ((B—iE)h, (A —iE)f) =
= (Bh, Af) —i(Bh,f) +i(h, Af) + (h.f) =
= ((B+iE)h, (4 +iE)f) =0,
so that Sg | 9% (in particular, it is possible that Sg = 0).
If g, denotes a vector orthogonal to the manifold 9%, such that
Il g.ll = Il g I, then, on the basis of the proof,
M Sg = gy,
where the nupxber x does not have absolute value one, since otherwise the
operator B, which obviously is expressed in terms of .S by means of the

formulas
® f=%5E~-9S0,
(¢ €H)
® Bf=3(E+S)e

would be self-adjoint.

The operator S = S, is called a quasi-unitary extension of the isometric
operator V. It is easy to verify that S, = S;.

In general, we define a quasi-unitary extension of a given isometric
operator V with deficiency indices (m, m) (m < o) as an arbitrary linear
but not unitary operator S o ¥ which is defined in the whole space and
which transforms the orthogonal complement of the manifold D, into a
sub-space orthogonal to 4, (or into the null element).

It is evident that each quasi-unitary extension S of the operator V
generates by formulas (8) and (9) a quasi-self-adjoint extension B of the
operator A.

For the case of deficiency indices (1, 1) there exists a one-to-one
correspondence between the set of all self-adjoint extensions B of the
operator A (respectively of quasi-unitary extensions S of the operator V)
and the set of all complex numbers « not equal to one in absolute value.
In view of this relation, we denote the corresponding extension by B,
(respectively, S,).

We turn now to the study of the spectrum of a quasi-self-adjoint
extension B of the operator 4 with deficiency indices (1, 1). We recall that
by the general definition of Section 43, the number A is called a regular
point of the linear operator T'if the operators (7" — AE) ! exists, is bounded,
and is defined in the whole space. The spectrum of the operator T is defined
as the complement of the set of its regular points.

i
b
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THEOREM 1: The spectrum of a quasi-self-adjoint extension B of a ‘
simple operator A with deficiency indices (1, 1) consists of the spectral kernel ‘
(¢f. Section 83) of the operator A and the eigenvalues. The set of the eigen- ‘
values lies in its entirety either in the upper or in the lower half-plane. We
omit the special case® when the whole half-plane (upper or lower) consists !
of eigenvalues, and, as a consequence, the set of eigenvalues can have only |
real limit points in addition to the eigenvalues themselves.

Proof: We denote the spectral kernel of the operator 4 by 4. For ‘
each A €4, the operator (4 —AE) ~! is unbounded and hence itis not possible
for the operator (B—AE)~! to be bounded. Hence 4 is contained in the
spectrum of the operator B.

We assume now that A ¢ A. If the operator (B — AE) ! doés not exist,
then A is an eigenvalue of the operator B. If the operator (B — AE)~!
exists then A is a regular point of the operator B. Indeed the operator
(B — AE) ! cannot be unbounded, since the operator (4 — AE) ! is bounded
and 4,()) differs from 4,(2) by not more than one dimension. It remains
to show that 45(3) = H. Assuming the contrary, we find that 45(3) =
4,X). Now if fis a vector in D, which does not belong to D, then the
vector

(B—2E)f=S*,
which belongs to 45(X) = 4(2), can be represented in the form

f*=(A - 2E)f'=(B—AE)f" (f'eDy. |

Hence |
(B—-AE)(f—-f") =0, ‘

which contradicts the existence of the operator (B — A E)~!. Thus, it is
proved that A is a regular point, and the spectrum of the operator B con- ‘
sists of the spectral kernel 4 of the operator 4 and the eigenvalues.

We introduce the Cayley transform S, of the operator B = B,, and
then we notice without difficulty that the point A runs through the spectrum
of the operator B as the point

A—7

(10 L=

runs through the spectrum of the operator S,, and conversely. Moreover,
formula (10) establishes a one-to-one correspondence between the eigen-
values of the operator B and of the operator S,.

On the basis of what has been said, it is sufficient to determine the

*This case will be treated later (cf. the corollary of Theorem 3).
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cigenvalues of the operator S,. Since the absolute values of the eigen-
values of the operators S, are greater or less than one according as | « | > 1
or | x| <1, all eigenvalues of the operator B lie in the upper half-plane
(if | « | <1) or in the lower half-plane (if | « | > 1).

We assume for definiteness that | « | <1. In what follows g denotes
a unit vector orthogonal to the manifold I, U denotes a unitary extension
of U and g* is the vector defined by

g* = (°Jg.
We represent the eigenvector of the operator S, which corresponds to
the number {, in the form ¢ + ag with ¢ € D,. Thus,

Sd® + ag) = L (9 + ag).

Then
Sc¢ + axg* = {o + alg,
or
Up — Ly = a(ig — xg*),
and this yields
1 . .
an ;?=C(U—CE)"g—K(U—CE)"g‘-

We form the scalar product of both members of (11) with g and obtain an
equation satisfied by the eigenvalues of the operator S,:

(12)  {((U—LE)g,g) — «((U—LE) 'g* g) =0.

Reversing the order of calculations we find that every root of equation
(12) is an eigenvalue of the operator S,.

Since the left member of equation (12) is a regular function for | {| =0,
the assertion of the theorem concerning the limit points of the discrete
spectrum of the operator B is proved with the exception of the case when
the left side of equation (12) becomes zero for | { | <1.

In this last case each point { inside the unit circle is an eigenvalue of
the operator S,.

We show now that the special case mentioned in the formulation of
the theorem can occur. Let H be a separable Hilbert space with an ortho-
normal basis {e,} * ., and let U be the unitary operator defined by the formulas

Uek = €k-1.

Further, let ¥ ¢ U and Dy | e, and, hence, 45 | e_,. The operator ¥
is an isometric operator with deficiency indices (1, 1).
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Now let S, be the quasi-unitary extension of the operator ¥V defined
by the condition

Soeo = 0.
It is easy to verify that for each { inside the unit circle, the vector
E l“ek
k=0

is an eigenvector of the operator S which corresponds to the eigenvalue .
Later, we shall see that this special case is unique in the following
sense. A simple symmetric operator with deficiency indices (1, 1) having
a quasi-self-adjoint extension with a point spectrum which forms an entire
half-plane is isomorphic to the Cayley transform of the operator V.
We turn now to the transformation of equation (12). If F, is the spec-
tral function of the operator U, then

., C 1.
(13 2:((U—cE)-1g,g)=2cfe,,—_~§d(f:g,g)=

(et
= el: d(E, ’g)

and

(19  2((U—E) 'g*g)=2((U—LE)"Ug,g)=
20 20

e . &+t .
=2fer—“=_;d(ﬂ ,g)=fe,,—_—;d(p,g,g)+1_

From the last formulas it follows in particular that the scalar product

((U — LE)~'g*,g) does not vanish for ] {]< 1. Hence, equation (12) can
be represented in the form

w() — =0,
where
(U —tE)'g, 9) ,
15 = * — .
(1 o ((U—iE) g% 9) *=Ug)

On the basis of formulas (13) and (14) the function w ({) can be repre-
sented in the form

2 -1

(153) W(c)= W’




152 APPENDIX I. EXTENSIONS AND SPECTRAL FUNCTIONS
where
27
et
(155) 0@ = [ S0,
[

From these representations it follows (Section 59) that the function
w({) is regular in the unit circle, maps it into itself and satisfies the norma-
lization condition w(0) = 0.

Following Lifschitz we call the function w ({) the characteristic function
of the isometric operator V and the function

(15¢) w() =w (i—;:)

the characteristic function of the symmetric operator A.

The function  (3) is regular in the upper half-plane, maps it into a
subset of the unit circle, and satisfies the normalization condition o (i) = 0.

In order to justify the above definitions, it is necessary to show that
the function w ({) is defined in principle by the operator } although (cf,
formula (15)) it depends formally on the choice of the unitary extension U.
With this aim we express the operator U in formula (15) in terms of its
Cayley transform:

U= (4 —iE)(d +iE)™".

After an elementary calculation we obtain for the characteristic function
@ () the formula

_A—i ({E+Q—DR}ge%
(16) “O=37 (E+o—dRigs

Here R, is the resolvent of the operator A.
In Section 84 it was established that the vector

{E+Q-DR)g
belongs to the deficiency subspace R;, which is one-dimensional in the case
under consideration. Hence, for another choice of the extension A this
vector is replaced by a scalar multiple of itself. And this does not alter
w (X). As far as the vector g* is concerned, it is multiplied by a number with
absolute value one.

Thus, the characteristic function of a symmetric (isometric) operator
is determined by this operator to within a multiplicative constant with
absolute value one. We do not distinguish between two characteristic
functions which differ from one another by such a factor.
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Now formula (16) can be written in the form

A—i (8»8%
M=
(17) w( ) A+i (g g) ’
where g, is an arbitrary solution of the equation
A*h — M = 0.

As an example, we calculate the characteristic function of the operator
P of differentiation on the interval [0, a] with the boundary conditions
?©0) =¢(a)=0.
In this case
2 2 _
g =—*-—¢e;,\(:_—le‘, g* =\_/%{ae_" a=e",
and, by formula (17),

e — e—lm\
(18) o) =T ggia -
In addition to w ({) and w (A) we introduce the functions
w(l) — «
w(l;n) = WO =1
. w(A) —«
e = =1

and call them the characteristic functions of the quasi-unitary extension S
of the operator ¥V and, correspondingly, of the quasi-self-adjoint extension
B, of the operator 4. The characteristic functions w ({; «) and  (}; «)
are normed by the conditions

wO;0) =x, w(i;rK)=nrx

With the aid of the characteristic function w (1) the spectral kernel of
the operator A is defined, as shown in the following proposition.
THEOREM 2: In order that the real number A, be a point of regular type

of a simple symmetric operator A with deficiency indices (1, 1) it is necessary

and sufficient that both of the following conditions be satisfied:
1°  the function w (}) is regular in a neighborhood of Ay;
2° |w(X)|=1in some interval , —e <A<}y +e.
Proof: Let A, be a point of regular type of the operator 4 and ¥V the
Cayley transform of 4. It is evident that there exists a self-adjoint exten-
sion A > A for which the point A, is regular, because if two self-adjoint
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extensions A, and A, have the same eigenvalue A,, then

lilfl =X Jis Jizfz =XAfs (fl:fz ¢D,).

Then
A‘fx = )‘ofh A‘fz = )‘ofz,

and hence

fl = a‘f2’
so that

D; =Dy,
and

Iil = Iig.

In formula (15)let U be the Cayley transform of 4. Then from formulas
(15a), (15b), (15¢) it follows that the function « () has properties 1° and 2°.

Conversely, let « (X) have properties 1° and 2°. Then choosing the
extension U in formula (15) such that

w@ L (6=

the function

1
60 =1 on

is regular in a neighborhood of the point {,= €**. Furthermore, on some
arc of the unit circle containing the point £y, | P () | = 1. Therefore, after
the application of the inversion formula to the representation (15b) it
follows that £, is a point of constancy of the function (F.g, g) and, since
the vector g generates the operator U, {, is a regular point of this operator
(cf. Section 69). Thus, A, is a regular point of the operator 4 and, hence,
does not belong to the spectral kernel of A.

From the proof of Theorem 2 we obtain the following refinement of
Theorem 1: all finite limit points of the set of eigenvalues of any quasi-self-
adjoint extension B, of the given operator A belongs (with the exception of
the case mentioned in Theorem 1) to the spectral kernel of the operator A.

If {(k=1,2,3,...) are the roots of the characteristic function
w({; «) of a quasi-unitary extension S, of the operator ¥ for « 5 0, then
w ({; «) can be represented in the form

w

—{
v —eos] [R5 81

k=1

. ;{W«GW— AR
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where G ({) is a regular function with non-negative real part for | { [ < 1.
If we represent the function G ({) in the form (Section 69)

Gm—f S db(s) + 1B

where p(s) is a nondecreasmg function of bounded variation then we
obtain

J'c+ J z_1- C
(19) w(ln =

(ICl=0.

fl

From Theorems 1 and 2, it follows that the point spectrum of a
quasi-unitary extension S, of the operator ¥ consists of the points {, and
the rest of the spectrum consists of points of increase of the function p (s)
and limit points of the set of roots {;.°

If the spectral kernel of the operator is empty, then: the eigenvalues
of an arbitrary quasi-self-adjoint extension B, of the operator 4 have no
finite limit points.

In particular, it can happen that the spectrum of some quasi-self-
adjoint extension of the operator A4 is void. An example is the quasi-self-
adjoint extension of the differential operator P with the boundary condition

?(0) =
Later (cf. Theorem 4) we see that this special case is unique if one does not
consider isomorphic operators as distinct.

We prove now a general theorem which shows that the characteristic
function determines an operator up to an isomorphism.

THEOREM 3: In order that simple symmetric (isometric) operators with
deficiency indices (1, 1) be unitary equivalent, it is necessary and sufficient
that their characteristic functions coincide.

Proof: We give the proof for isometric operators. Let the operators
¥V and ¥ which are defined in the spaces H and H respectively be unitary
equivalent, i.e., let

V=uru,
where U is an isometric operator which maps H on H. Taking some unitary
extension U of the operator ¥ we construct a unitary extension U of the

. "Starting from the representation (19) for the characteristic function w({; x) M. S. Lifschitz
a\;/%n%agd the question of the invariant subspaces of the operators S, (cf. M. S. Lifschitz
, Vol. I).
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operator ¥ by the formula

U=uvu-t
Furthermore, we choose a unit vector g € H orthogonal to the mani-
fold D, and we let
g =Ug

For these choices of the vector g and of the operator U, the formulas

(20 wO=w= B ‘Ug, Dn’

21 = — —

@h O = (T—® Tzoa
imply that

w () =w().

Conversely, let the characteristic functions w ({) and w ({) of the
operators ¥ and ¥, which are defined by formulas (20) and (21), coincide.
Let {

l + W (C) 1+w( “
¢ ¢ sy Py

and apply the inversion formula to the representations of the functions °
& (¢) and @ ({) to obtain

(Et~’ E)E = (Et s g)H-

t

On the other hand, the simplicity of the operators _ ¥ and V implies ;
the simplicity of the spectra of their unitary extensions U and U; here the ;
deficiency vectors g and g are the generating elements for Uand U (Section é
81).

Thus, the operators U and U are reduced to the same canonical form— |
to the operator of multiplication by ¢” in the space L2 with the distribution
function A

o(f) = (EZ, O = (Eg On- ‘
and, hence, are isomorphic (Section 69). From the isomorphism of the
operators [/ and U it immediately follows that the operators ¥ and ¥ are
isomorphic. Thus, the theorem is proved. ‘

ReMark: Each simple symmetric operator with deficiency indices
(1, 1) which has a quasi-self-adjoint extension with point spectrum which |
covers an entire half-plane is isomorphic to the Cayley transform of the |
operator ¥ defined on page 151.
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Indeed the characteristic function of such an operator must be identi-
cally zero, so that all such operators are isomorphic.

The following theorem gives us an interesting abstract characterization
of the operator of differentiation on a finite interval.

THEOREM 4: Each simple symmetric operator with deficiency indices
(1, 1) which admits a quasi-self-adjoint extension without spectrum is iso-
morphic to the operator of differentiation on a finite interval.

Proof: Let A be an operator with the property indicated in the formu-
lation of the theorem, let B, be a self-adjoint extension without spectrum
and let « ({; «) be the characteristic function of the operator B,. Further-
more, let ¥V be the Cayley transform of the operator 4 and let w ({; ) be
the characteristic function of the Cayley transform S, of the operator B,.

Since B, has no eigenvalues, the function w ({; «), which maps the
unit circle on a subset of itself, never vanishes. Therefore,

w (L %) = e %0,
where the function G ({) is regular in the unit circle and has there a non-
negative real part. Replace { by
A—i
At

to obtain
w (A; k) = 5P,

Here H (1) is a function which is regular in the upper half-plane and maps
itinto a subset of itself.

According to Section 59, the function H (A) can be represented in the
form

o

H(A)=a+p)«+fl+

iA
PR do(t),

where o is real, p = 0 and o (¢) is a nondecreasing function of bounded
variation.

Since the spectral kernel of the operator A is empty, the function
H (%) is also regular and real on the entire real axis. Therefore, by the
Stieltjes inversion formula (Section 59)

o (f) = const.,
and
H@®) = a + pA
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Thus, except possibly for a constant factor of absolute value one,
w(A; k) = ¥,
This yields
k —w(A; k) x — e
w(A) = 1 ——I_cw(A;K) = 1 — e

But since
w(i) =0,

we have
#o__ e—iu}\
O = [

Comparing this formula with formula (18) we see that the character-
istic function of the operator A coincides with the characteristic function
of the operator of differentiation on the interval [0, x]. By Theorem 3 the
operator A is unitarily equivalent to the operator of differentiation, which
was to be proved.

In connection with Theorem 3, there arises the question of the exist-
ence of a symmetric (isometric) operator with given characteristic function.
For isometric operators this question can be answered in the affirmative:

THEOREM 5: Let w ({) be a function which is regular in the unit circle,
maps it in a subset of itself and satisfies the normalization condition w (0)=0.
Then there exists an isometric operator V for which w ({) is the characteristic
Junction.

Proof: We define a function ¢ ({) by means of the equation

_o() -1
w@)—¢(£)+1'

By Section 59, @ ({) can be represented in the form

27
e +¢
() = f . do (),
© = [SE1do
0

where o (s5) is a nondecreasing function with total variation one.

We introduce the space L0, 2«) and define in it the unitary operator
of multiplication by €*:

Ur@ =e'f@.
Let ¥ be the isometric operator which coincides with the operator U on the

hyperplane D, orthogonal to the function g (f) = 1. It is easy to verify
that V satisfies the conditions of the theorem.
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Indeed, since the spectral function E, of the operator U is defined
by the equation

f,f(s) — { f( (=9,

0 (s> 1),
we have
27
s - do(s)
U-LE 1’ = ’
(U —tE)'g,0) =
2"ei.1d()
U—LE)-'Ug,g) = ols
(U~ tE)~'Ug. ) ofe"—l'
and

{(U—LE)"'g,8) _P(H—1_ w(D)
((U—-LE)"'Ug8) 2()+1 ’
which proves the theorem (cf. formula (15) ).

If, for an isometric operator ¥ with a given characteristic function
w({), the manifold 4,(1) is not dense in H, then it is impossible to pass from
V to its Cayley transform A. Therefore, in this case there exists no sym-
metric operator with characteristic function

A—i

22) w(d) w()‘ . i) .

In order that the manifold 4,(1) be dense in H it is necessary to impose
an additional restriction on the function (22). This matter is resolved in
the following theorem.

THEOREM 6: Let w (1) be any function which is regular in the upper half-
plane, maps it into the interior of the unit circle and satisfies the normalization
condition w (i) = 0. Then  (}) is the characteristic function of some simple
symmetric operator if and only if

limMw(d) —e} =0 @O<egargAsnm—e
A0

for each o such that 0 £ o < 2m,

Proof: We show that the manifold 4,(1) is not dense in H if and only
if there exists a unitary extension of the operator V with an eigenvalue
equal to one.

The sufficiency of the conditon is evident since U is a unitary extension
of the operator Vand Uy = ¢ (¢ 7 0), so that for each ¢ € D,,

((V=E)o,#) =((U—E)o,) =(2,(U™' —E)¥) =0.
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For the proof of the necessity of the condition we assume that

((V=E)e,§) =0 (¥ #0)

for each ¢ € D,. We represent each vector f € H in the form f = ¢ + g,
and obtain for an arbitrary quasi-unitary extension S, of the operator V'
the equation

(23) ((Sc—E)f¥) =(Vo — ¢ + yeg*— v8, ¥) = y{x(g*¥) — (&:¥)}-
Note that (g*, ) £ 0, since otherwise the vector ¥ would have the
representation ¥ = Vo,(9, € D}, ¢, 7 0) so that

((WV—E)o, V) =0 (peDy),
and, consequently,

(9, (E— V) o) =0.
It follows that
Vo, — 91 = 78,
or
Ve, = 91 + 78
But the orthogonality of the summands on the right side of the last equation
and the condition || V,|| = ||¢,]| imply that Ve, = ¢,(¢;, 7% 0), which con-

tradicts the fact that the operator V is simple. Thus (g*, #) # 0 and we
can substitute

- &P
(g% ¥)
in (23). It follows that, for each fe H,
((S. —E),$) =0,
or
(£, (8¢ —E)y) =0.

Since S} = S;, this equation implies that S;¢ = ¢ (¢ 5 0) which is
possible only for | x| = 1. Hence S is the desired unitary extension of the
operators V with an eigenvalue equal to one. |

Now the proof of the theorem is reduced to the determination of |
necessary and sufficient conditions which the characteristic function of an
isometric operator ¥ must satisfy in order that none of its unitary exten-
sions has an eigenvalue equal to one.

Let U be the unitary extension of the operator ¥ which appears in |
formula (15) and let U be an arbitrary unitary extension of the same
operator such that U“)g = ¢”g*. The deficiency element g is a generating
element for each of the operators U. Hence, the operator U (0 £ a <27) |
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does not have an eigenvalue equal to one if and only if the distribution
function (F{®g, g) has no jump at ¢ = 0, where F( is the spectral function
of the operator U® (0 £ a<2n).

1¥0n the other hand it follows from the formulas (15a), (15b), (15¢) for
the characteristic function w () that

_[_¢ o,
e'“—w({)_-!e“—ld(ﬂ 2, 8) -

This equation yields the value x of the jump of the function (F®™g, g) at
the point # = 0, namely
1—ye°
lim (L = 0€"
1 e —w())

Using the indicated derivations, it is not difficult to complete the proof
of the theorem. This task is left to the reader.

no==

*Translator’s Note: This sentence and the one following do not appear in the original
(Russian) edition. They are taken from the authorized German edition.
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Appendix II
DIFFERENTIAL OPERATORS

1. Self-Adjoint Differential Expressions

We begin with the presentation of some facts concerning real differ-
ential expressions (or, let us agree to call them differential operations) which
are self-adjoint in the sense of Lagrange.

In analysis courses it is established that a self-adjoint differential
operation of the second order

ke
LD+ LD + ,DP (lk — (), D = %)

under the assumption of the k-fold differentiability of the coefficients
I(?) can be represented in the form

— DpyD + D%, D",

where p(¢) is differentiable. However, it is possible to consider such oper-
ations without the assumption of the differentiability of the function p(?).
In this case the operator can be applied only to differentiable functions
¢ () such that the product p,¢’ is absolutely continuous.

We turn now to self-adjoint differential expressions of order 2n. We
assume as the canonical form of such an operation the expression

(1) I=paD*—D{p,.,D—D[p,.sD*—... —D(p, D""'—Dp,D".. .]}.

If the coefficient p,_(¢f) is k times (k=0, 1, . . ., n) differentiable, then this
is a self-adjoint ordinary differential operation, as may be verified immedi-
ately. Since we do not assume the differentiability of the coefficients, we
call operation (1) a quasi-differential operation.

Let (a, b) be an open finite or infinite interval in which the differential
operation (1) is considered. We assume that the coefficients p(r) are
measurable in this interval and satisfy the conditions

B

dt
J1po)]
in each closed subinterval [a, B] of (a, b).
162

B
@) <oo,f}pk(t)ldt<oo,(k=l,2,...,n)
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If the interval (g, b) is finite and if condition (2) is satisfied for a=a,
B=b, then the operation (1) is called regular. If the interval (a, b) is infinite,
or it is finite but conditions (2) are not satisfied for a=a or f=>b, then the
operation (1) is called singular. The left end point q is called singular if
a=—o0 or a > — w, but (2) fails with a=aq. Singularity of the right end
point b is defined analogously. If an end point is not singular, then it is
called regular. Without loss of generality, we consider singular differential
operations with one singular end point on the semi-axis (0, ©) and with
two singular end points on the entire axis (— o, o).

For convenience we introduce, in place of the derivative D¥p = ¢®,
the so-called quasi-derivative Dl = ¢!¥ which is defined by the following
formulas:

D" = D* k=01,2,...,n-1),
D ] = pt)D’l >
D8l = p P~k . pDI+k-1 (b =1,2,...,n).
Now operation (1) can be expressed in the form
1 = D,

Let D* denote the class of all functions ¢ (¢} € L¥a, b) for which each
quasi-derivative ¢¥(¢) (k =0,1,...,2n — 1) is absolutely continuous
and the quasi-derivative ¢!*" (f) belongs to L¥a, b). It is evident that D*
is the maximal linear manifold in L*a, b), on which the operation / has a
natural meaning and can be considered as an operator in L%a, ). We
denote this operator by L*, so that D*= D,.. We shall see later the pur-
pose of this notation.

From (1) it is easy to obtain for each pair of functions ¢, € D* the
so-called Lagrange identity

- - d
lHeld—ol¥) = o {e, ¥1s
where {9, 4], is the bilinear form

[p. 41, = 3 (6% O FIE — 94 (1) 0 .

We shall use the Lagrange identity in the form

8 8
Jre@W® - [ o) T = o918
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where [q, B] is an arbitrary closed subinterval of (a, b) and

[9,¢1 = [, ¥1s — [0, ¥L.
Since each of the integrals

8 8
[1e0 1D, [0 1®1a

exists for « = g and B = b, the bilinear form [p, ], has a finite value at
the end points of the interval (a, b), whether these end points are regular
or singular; for the value of the bilinear form at a singular point we take
the limit [o, 4], as ¢ tends to this point.

Let ! be a quasi-differential operation, regular or singular in the
interval (g, b), and let g () be a complex-valued measurable function
defined in this interval. It is natural to define a solution of the quasi-
differential equation

G) Il-w=¢@®

for a given value of the parameter A as any function ¢ (¢) such that ¢ (¢) and
its quasi-derivatives up to the (2n—1)th order are absolutely continuous
and such that this equation is satisfied almost everywhere in (a, b).

The following existence theorem holds for quasi-differential equations
and can be proved easily by using Picard’s method of successive approxima-
tions.

THEOREM: The quasi-differential equation (3) has a solution. Moreover,
it has only one solution which satisfies the Cauchy conditions

?[k](to) = o (k = 0, 19 2’ veey 2n — 1)’

where t, is an arbitrary interior point of the interval (a, b) or a regular end
point.

We note that if the operation / is regular in the interval (a, b), then the
solution of equation (3) belongs to L¥a, b). If, in addition, g (¢) € L%, b)
then, by equation (3) itself, this solution belongs to D*.

From the existence theorem it follows, in particular, that the linear
manifold of solutions of the homogeneous equation

G Iul] — =0

has dimension 2n. Solutions u,, u,, . . ., u,, of equation (4) are linearly
independent if and only if the Wronskian determinant

w [uls Uy, oo vy u!n] = Det (ul[k_u (t))




1. SELF-ADJOINT DIFFERENTIAL EXPRESSIONS 165

does not vanish. An arbitrary system of 2# linearly independent solutions
of equation (4) is called findamental.
If the functions

(%) (1), us(t), - . ., ug,(0)

form a fundamental system of solutions of the equation (4), then any
solution of the non-homogeneous equation (3) can be represented in the
form

o) =) [ )86 ds + Foam(d.

This result can be easily verified if one modifies properly the classical
method of variation of parameters. Here, as in the classical case, it is
established that the functions

(6) vl(t)9 Va(t)’ R v!n(t)

form a fundamental system of solutions of equation (4). It is called the
adjoint system of the system (5).

For what follows we shall need the following simple

LEMMA: If the operation l is regular in the interval (a, b), then equation
(3) under the boundary conditions

y¥(@) = y¥B) =0 (k=0,1,2,...,2n — 1)

has a solution if and only if the right member g () is orthogonal to the 2n-
dimensional manifold of solutions of the homogeneous equation (4).
Proof: Let ¢ (t) be the solution of (3) which satisfies the conditions

o™Mb) =0 (k=0,1,2,...,2n—1).
Applying the Lagrange identity to the function ¢ (f) and some function

u(t) of a fundamental system for equation (4), we obtain

b
M 0@ @ — @) o @)} = [ue) g6 ds.

a

Imposing the fundamental system to the initial conditions

o[ 8 42h
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we obtain

b
— [un-A9g@ds (¢ =0,1,...,n—1),
® D=

b

J'uz,,_,(s)ﬁ)ds r=nmn+1,...,20—1),

a

which yields the assertion of the lemma.

2. Regular Differential Operators

Let / be a regular quasi-differential operation defined on the interval
(a, b). If ¢ and ¢ are arbitrary functions of D*, then the difference

(L*s, $) — (9, L*) = [, 41}
in general is not equal to zero and hence L* is not a symmetric operator.
In order that the right member of the above relation vanish, it is necessary
to impose an additional condition on ¢ and ¢ and, moreover, to replace
the domain D by a subset of D. In any case it is sufficient to require that
each of the functions ¢ and i satisfy the relations

4] @) =y®(b) =0 (k=0,1,...,2n—1).

We denote by D the set of all functions in D* which satisfy the 4n condi-
tions (1).

It is natural to expect that the operator L, with domain D, = D, and
which coincides with L* in this domain, is a symmetric operator. Since

(Lo, ¥) = (9, L¥)

for all functions ¢, ¢ € D, it is necessary only to establish that the manifold
D is dense in L¥a, b). This fact is obvious if / is a differential operation;
since in that case the manifold D contains, for example, all polynomials.

For the proof that D is dense in L*(a, b) in the case of a quasi-differential
operation /, we note that, by the lemma of Section 1, one can decompose
L¥a, b) into an orthogonal sum

2 L¥a,b) = 4, @ N,,

where N, is the 2n-dimensional manifold of solutions of the homogeneous
equation

I[u] =0.
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Let us assume that (h, ¢) = O for all p e D. We must show that 4 = 0.
With this aim, we denote by ¢ an arbitrary solution of the equation
1[$]=h.
By the Lagrange identity,
(b, l[e]) = (Il¥), 9) = (h, 9) = 0.
Since /[¢) == L*¢ = Lo € 4,, then by (2) ¢ € N,, i.e.,
Iy] = 0.

Hence, & = 0, which was to be proved.

We now prove that the operator L* is adjoint to L, which justifies the
relation used. For the moment we denote the operator adjoint to L by
M. Let 4 e Dy and let

My =y
Let i, denote any solution of the equation
Iy] =x.

By the Lagrange identity,
(¢) X) = (¢’ I[¢.]) = (l[q’]’ ‘l‘.) = (chs ‘l‘o)-
for each ¢ € D. On the other hand, by the definition of the adjoint operator,

(9, x) = (9, M) = (Lo, ¥),

and, hence,
(Lo, ¥ — o) = 0.
Now, since ¢ € D, is arbitrary, it follows from the decomposition (2) that
¥ — o€ Ns.

This relation shows that ¢ € D* and, therefore, that
My = x = I[o] = I[$].

And so we have also shown that

M c L*,
On the other hand, for arbitrary ¢ € D and ¢ € D*,

(L?, 'I’) - (¢’ L*‘/‘) = [?’ ‘l‘]g =0.

Hence,

L* < M,
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which implies that
M =L*,

Hence, our assertion is proved.

The reader can easily verify that L** coincides with L, whence it
follows that the operator L is closed.

Since the equation

LY — & =0

has (for each A) 2n linearly independent solutions, the deficiency indices of
the operator L are (2n,2n). Every symmetric operator generated by the
operation / is an extension of L. Therefore, it is natural to call L a regular
quasi-differential operator of order 2n with minimal domain.

3. Self-Adjoint Extensions’ of a Regular Differential Operator

To describe all self-adjoint extensions of an operator L, itis sufficient to
indicate the domains of all these extensions. We show that the domain of
each self-adjoint extension of the operator L can be defined with the aid of
certain boundary conditions, and we characterize all such conditions.

Let L denote some self-adjoint extension of L. In order that a function
¢ in D;. also belong to Dy it is necessary and sufficient that

(L*9, ) = (9, Ly),
or, by the Lagrange identity, that
0] [, 41 =0
for all ¢ € D;. Since
dimD; =2n (mod Dp),

there exists 2n functions wy, w,, . .., Wy, in Dj such that each function
¢ € Dy can be represented in the form

2
¥ =1 +Z:lakwk (¥ € D).
By condition (1) of section (2),
[?s ‘l‘o]ﬁ = 0

for each function ¢ in D;.. Therefore, condition (1), which contains an
“arbitrary” function ¥, is equivalent to the set of 2»n conditions

¢) [ewml=0 (=12...,2n),

In the present and following sections, self-adjoint extensions are always of the first kind.
For the general form of boundary conditions which characterize self-adjoint extensions of
differential operators cf. M. G. Krein [4], Vol. I, and also A. A. Graff [1], VoL L.
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where the functions w,, w,, . . ., w,, belong to D and satisfy the conditions
3 Wwowib =0 (i,k=12,...,2n).

Equation (2) can be considered as a system of boundary conditions and
equation (3) as a property of the coefficients of these conditions. The
boundary conditions (2) can be written in the form of 2n linearly independent
equations

2n 2n
2" E“tk?[k—”(a) +kE Bik?[k_”(b) =0 (i=12,...,2n),
k=1 =1

where
(4) Qg == W[ n—k](a)’ a’l ntk = _w[n— ](a)’ (k 1 2 )
=12,...,n).
B = — Wtzn B(b), Binik = w1 (b). (b),

Then equation (3) takes the form

Eal,rak,Zn—r+l —z:la'i,Zn—r+lEk,r =
3) - - (k=1,2,...,2n).
=ZIBI,er,zn—r+l_z_:lﬁi,zn-r+lﬁk,r

Thus, the domain of each self-adjoint extension L of L consists of all
the functions ¢ € D;. which satisfy the 2n boundary conditions of the
form (2’) with coefficients having the properties (3").

We assume now a system of 2n boundary conditions of the form (2')
with coeflicients which satisfy conditions (3’) and we prove that such a sys-
tem determines in the sense mentioned above the domain of a self-adjomt
extension of the operator L.

Let us assume for the moment that there exists 2n functions w,, w,,

. s Wy, in D;. which satisfy conditions (4). Then condition (2") and equa-
tion (3’) take the forms (2) and (3), respectively. We must show that condi-
tion (2), with the functions w, € D;. which satisfy relations (3), determine
a self-adjoint extension of L. With this aim we denote by D the set of all
functions ¢ € D;. which satisfy conditions (2) and by D’ the set of all
functions of the form

2n
¥ = +’;akwk’

where ¢, € D, and a4, a,, ..., oy, are arbitrary constants. Condition (2)
is equivalent to

) [o,9L =0

for every e D’. Since every function in D’ satisfies this condition, relation

ﬁ‘\
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(3) holds. Hence, D’ = D. But since both manifolds D and D’ are
2n-dimensional modulo D;, D = D’. Therefore, D (D, = D = D,.) is
the set of all functions ¢ € D,. for which equation (5) is satisfied for all
¢ € D. By the lemma in Section 41, the operator L < L* with domain D
is a self-adjoint extension of L.

It remains to show that there exist functions in D;. which, together
with their quasi-derivatives up to and including the (22—1)th order,
assume prescribed values at both end points of the interval [a, b]. Let
g.(¢) be any function which is orthogonal to the manifold of solutions of the
homogeneous equation (5) of Section 1. Let w,(f) denote the solution
of the equation

: Iyl = = g0),
which satisfies the given conditions at the point a. By formula (8) of Section
1, o5b) =0 (k =0,1,2,...,2n—1). We construct an analogous func-
tion wy(f) which satisfies the given conditions at the right end point. Then
the sum o,(¢) + w4(?) is a function in D, . which satisfies all of the required
conditions.

Thus, we have proved the following theorem.

THEOREM: A system of linearly independent boundary conditions (2')
determines a self-adjoint extension of L if and only if there are 2n boundary
conditions and the coefficients in (2') have property (3").

By means of well-known calculations, it is easy to construct the Green’s
function G (¢, 5) of an arbitrary self-adjoint extension I of L. The function
G (¢, 5) is a Hilbert-Schmidt kernel and the integral operator X determined
by this kernel is related to the operator L by the formula

L=K"1
1t follows that the spectrum of the operator L consists only of eigenvalues
with the unique limit point infinity.

In conclusion, we note that if one omits equation (3") then the boundary
conditions (2') determine a quasi-self-adjoint extension of the operator L
in the sense of Section 5 of Appendix I.

4. Singular Differential Operators?

We begin with the case in which the interval is (0, ), i.e., the right
end point of the interval is singular. We assume the left end point to be
regular.

2Sections 4, 5, and 6 of the present appendix are excerpts of the dissertation of 1. M.
Glazman {1], [3], Vol. L

. oot i i o TN
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Let us define the operator L’ by the equation
L'e = (o]

on the manifold D;. of all functions in D* which vanish outside a finite
interval and which satisfy the conditions

(1) 9(0) = 9M(0) =... = ¢P~10) =0.

Since the operator L’ is obviously symmetric, it has a closure, which
we denote by L and call the singular quasi-differential operator, with
minimal domain generated by the operation /. The following theorem justi-
fies this designation.

THEOREM 1: The operator L* is adjoint to the operator L.

Proof: As in Section 2, we denote by M the operator adjoint to L.
The relation

D;. < Dy
and the equation
My = I1ly]
for ¢ € D;. are obvious. Hence, it remains only to prove that
Dy < D;a.
With this aim, as in Section 2, we choose a function ¢ € D,, and let
M¢ = x.
Furthermore, let ¢, denote some solution of the equation
IIy] =x.

Now it remains to prove that
¥ (1) = do(O) +u (1),

where u () is some solution of the equation

@ Ily] =0.
Now we choose a function g () € L¥0, o) which vanishes for ¢ 2 a and is
orthogonal to the 2» dimensional manifold of solutions of equation (2) in
the interval 0 £ ¢ < a. Then, by Section 1, there exists a function ¢ (f)
which equals zero for ¢ 2 a and satisfies the equation

o]l =¢
and also condition (1). Obviously, ¢ € D;. = D, and, hence,
(g, ¥) = (Lo, ¥) = (9, M) = (9, %)-

But, on the other hand,

(& $0) = U}, $o) = (o, U] = (o, x)-

i
| \J‘/‘

1
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Therefore,

(& ¢ — ¢) =0.
Since g (¢) is arbitrary,
(1) — do(t) = u (1),
where u (?) is a solution of equation (2).

Remark: FEach function in D, satisfies condition (1). Indeed, let ¢ (¢)
be a function in D;. which vanishes for ¢ 2 a. Then, for ¢ € D, the
equations

(Lo, $) = (9, L*),
(Tel ¥) = [, 418 + (o, I[¥D
imply that
[, 415 =0

and, hence,

[q)’ '/’]o =0.

Since the values ¢*~(0) (k = 1,2, ..., 2n) are arbitrary, this means that
the function ¢ (¢) satisfies condition (1).
We come now to the question about deficiency numbers of the operator
L. They are identical since the coefficients of the operator / are real.
THEOREM 2: The deficiency number m of a quasi-differential operator
of order 2n on an interval with a singular end point satisfies the inequality

3) n<ms2n

Proof: The right inequality follows immediately from Theorem 1.
For the proof of the left inequality we use the first Neumann formula
(Section 80)

DLo = DL® m,\® m}-

By the equality of the dimensions of the subspaces R, and N; it is
sufficient to prove that

dim D;. 2 2 (mod D).

With this aim, we prove the existence of 2n linearly independent functions

which, together with their linear envelope, lie in D, , but (with the exception

of the function zero) outside of D;. Itis not difficuit to see that it is possible

to take as such functions any linearly independent functions ;,(f), ¥(?),
.. s ¥ o4(t) from D;. which satisfy the condition

Det (4]~ (0) ) # 0.
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Then from the assumption

pi3
Y= 2_; o €Dy
follows (cf. the remark to Theorem 1) the equation
$(0) = p0) = ... = $#*~1(0) = 0,
and, hence
() =0.
From Theorems 1 and 2 it follows that the number of solutions of the

quasi-differential equation

ul — =0 (Jxs£0),
which belong to L0, ) does not depend on A and is not less than half of
the order of the operation /.
The integer m in inequality (3) can be chosen arbitrarily between 7 and
2n. Itisinteresting to note thatforl; = —i(1+¢f) D (1 +and ;= D?—1
the operation
I=1017""2""7""(n<m £ 2n)

generates an operator of order 2n, on the interval (0, c0), with minimal
domain and with deficiency indices (m, m). The verification of this fact is
left to the reader.?

The investigations relating to the case of the interval (— co, o) with
two singular end points is similar to the one given above.

The operator L with minimal domain in this case is defined as the
closure of the operator L', but it is necessary to omit condition (1). Theorem
1, which characterizes the operator L*, is preserved. Theorem 2 is replaced
by the following theorem.

THEOREM 3: Let L™ and L'* be two singular quasi-differential oper-
ators with minimal domains, generated by the operator | on the intervals
(—c0, 0) and (0, ), respectively. Under these conditions the deficiency
number m of the operator L is defined by the formula

m=m" + m* — 2n,
where m'=) and m*) are the deficiency numbers of the operators L*~? and L+’
respectively.

Proof: Let D, denote the linear manifold of functions ¢ € D;. such
that

20 =910 =... = 10) =0,

*In this connection cf. 1. Glazman [1], Vol. I.
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and let L; denote the restriction of the operator L’ to D,. Let L, be the
closure of Ly, Obviously

dimD, =2n (mod D).
But, by a remark in Section 80 (page 100), dim D, (mod D, ) equals the
difference of the deficiency numbers of L, and L. Hence, the deficiency
number of the operator L, equals

myg=m + 2n.

On the other hand, the operator L, is reduced by the subspaces L¥ — o, 0)
and L¥0, o). Hence,

Ly = L ® L(+)’
so that
my = m + m
and
m=m" + m*) — 2n,
which was to be proved.

5. Self-Adjoint Extensions of a Singular Differential Operator

Self-adjoint extensions of a singular operator, analogous to self-
adjoint extensions of a regular operator, can be characterized by means of
a system of boundary conditions that have a structure more complicated
than the corresponding conditions of Section 3. Let us consider the case
when only one end point of the interval is singular.

The general theory of extensions (cf. Section 80) yields

THEOREM 1: Let the deficiency indices of the operator L be (m, m)
(n £ m £ 2n) and let the functions

uk(t;A)EL’(O: (D) (k=1’21--"m)
Jorm an orthonormal system of solutions of the equation
ul] — =0

Jor some fixed non-real value \. Under these conditions there exists a one-
to-one correspondence between the class of all self-adjoint extensions Ly of
the operator L and the class of all unitary matrices 0 = (8,) of order m.
This correspondence is defined by the formula

(1) DL,=DL®FO,

where T, is the linear envelope of the functions

Wit ) = (15 3) +§1 O D).
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Proof: 1t is sufficient to note that the functions #(¢; A) form an ortho-

normal system of solutions of the equation
L*¢ — 1g =0.

We now concern ourselves with the clarification of the boundary
conditions which characterize the functions in D,,.

THEOREM 2: Let L, be a self-adjoint extension of the operator L with
deficiency indices (m, m), defined in the sense of Theorem 1 by a unitary
matrix 6. Furthermore, let the functions w®(t;3) (i =1,2, ..., m) have
the same meaning as in Theorem 1. Then the domain D,, of the operator
L, consists of all the functions ¢ (f) in Dy, which satisfy the m conditions

2 [, WPl =0 (=12,...,m).

Proof: By the Lagrange identity, the functions ¢ () € D.. belong to
Dy, if and only if the condition

3 [p,¥)0 =0

is satisfied for all ¢ (¢) in D;,. It remains to show that the system of condi-
tions (3), which contain the arbitrary functions ¢ (¢) € D.. is reduced for
@ (#) € Dy to a system of m conditions (2).

By formula (1), the function ¢ (7) has the representation

§0) = 4l) + S emP(: ) (eult) €Dy

Therefore,

[e, ¥15° = [, 2ok’ +§_‘1, cle, Wk
Since ¢4f) € Dy, _
. [‘P, ?0]30 =0
for ¢ () € D... Since the constants ¢i = 1, 2, ..., m) are arbitrary, con-
ditions (3) and (2) are equivalent.
We call equations (2), which involve passage to a limit, boundary

conditions. The following theorem gives a case for which the boundary
conditions involve no passage to a limit.

THEOREM 3: If the deficiency indices of the operator L are (n, n), then

the system of boundary conditions which define the self-adjoint extension
L, of the operator L has the form

C)) [e, WPl =0 (=12,...,n).
Proof: 1t suffices to show that, under the conditions of the theorem,
[¢, 4] =0

f

M"]
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for all ¢ (¥), ¢ (1) € D... With this aim, we choose in D,. the functions
b (i=12,...,2n), () =0fort>a> 0,
s0 that
Det (4f*-1(0)) #0.

The linear envelope of the functions ¢,(f) and D, have only the zero ele-
ments in common. On the other hand, by the assumption on the deficiency
indices of L,

dim D;. = 2n (mod D,).

Hence, for each function ¢ (?) € D,. there exists constants ay, a,, ..., ay,
such that

o () — z ath(t) = oolt) € Dz,

Therefore, since the functions ¢,(1) (( = 1,2, ..., 2n) vanish for > g and
0 =0k =1,2,...,2n),

2n
[?’ d’]w = [?0 +l=21 a; J’b d’]w = [?0’ lJ’]::t:- = [?0’ '/‘]80 =0.

We must note here that, in the general case, the boundary condition
(2) depends essentially on the functions w®(i=1, 2, . .., m), so that it is
not defined until the operator L is given. However, if the deficiency indices
of the operator L are (n, n), then the boundary condition (4) can be freed
from dependence on the functions w{”(¢; X) by the method of Section 3
and then (4) does not depend on L.

In the case of the deficiency indices (2n, 2n) the number of boundary
conditions which determine a self-adjoint extension of a singular operator
is equal to 2n as in the case of a regular operator. In view of this circum-
stance and some other considerations (cf. Theorem 2 of the following
section) we call a singular operator with the deficiency indices (2n, 2n)
quasi-regular.

For the differential operator of the second order, the only possible
cases are m=2 and m=1. This was first observed by Weyl who called
m=2 the case of the limit circle, and m=1, the case of the limit point. We
shall clarify the meaning of this terminology in Section 9.

Since the construction of the boundary conditions for the case of an
interval with two singular end points can be reduced without difficulty
to the method used in the present section, it is omitted.

In conclusion, we consider briefly the question of self-adjoint exten-
sions L, which are real with respect to the operator of complex-conjugation
in L¥0, o) (cf. Section 45). The operator L* is real with respect to the

i
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operator of complex conjugation, since the coefficients which generate the
quasi-differential operators are real. So L, is real if and only if the manifold
D,, contains the conjugate ¢ (7) of each function ¢ (7) in D;,. By means
of this fact and formula (1), it is easy to establish that the operator L, is
real if and only if the unitary matrix § = (6,) is symmetric,* i.e.,
0”(:0’“ (i,k=1,2,...,m).

In the following section we shall need the existence of only one real

extension. This follows from formula (1) if we choose for 8 the unit matrix.

6. The Resolvents of Self-Adjoint Extensions

In the present section we show that the resolvents of self-adjoint ex-
tensions of a quasi-differential operator L are integral operators and we
characterize the class of the kernels of these integral operators for distinct
deficiency indices of the operator L. We begin with two lemmas.

LEMMA 1: The resolvent of a self-adjoint operator which is defined in
L¥0, co) and real with respect to the operation of complex conjugation on
all functions g (t) € L¥0, o) which vanish outside of a finite interval, has the
Jorm

Rg =fK(t,s;A)g(s)ds.
0

The kernel K (t, s; A) is continuous in s and t for
t>0,s>0 (t£59),
and
K(t,s;0) = K(s, t; A).

The proof follows immediately from the relation R} = IR,I (cf.
Section 45) and the fact that the function g (¢) is arbitrary.

LeMMA 2: Let L be a homogeneous and additive (but not necessarily
bounded) functional defined for all functions g (1) of L0, o) which vanish
outside of a finite interval. Suppose that L is bounded on L¥0, a) for each
finite a >0. Then L has the representation

0 L@ = [¢©)FG)ds
0

Here h (t) is a function determined by the functional L and belongs to L¥0, a)
Jor each finite a > 0.

¢In particular, it follows that in the case with the deficiency indices (1, 1) every self-adjoint
extension is real.
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The proof follows from the theorem of Riesz on the representation of
a linear functional (cf. Section 16), according to which

©) L@ = [¢@hDds (h(9)e[X0,0))

[
foreachg (¢) € L¥0, a). Thefunctions h,(¢) which appears in this representa-
tion have the following property. If a, < a, then

ha(t) = h,(2)

for almost all t < @,. This follows from the fact that for each function
g (1) in L¥(0, a,), there are the two representations

L@ - [s@hOds,
0

L@ = [s@0hOds = [ A ds.
¢ 0

Hence,

a@

[ he® = b Tg @ ds = 0.
0
The fact just proved permits us to write formula (2) in the form (1).

THEOREM 1: The resolvent R, of each self-adjoint extension L of a
quasi-differential operator L with deficiency indices (m, m) at the points X of
regular type, is an integral operator.

Proof: First we give the proof for an arbitrary real self-adjoint exten-
sion, after which we show that if the theorem is valid for one of the self-
adjoint extensions, then it is valid for all self-adjoint extensions. Let L, be
a real self-adjoint extension of L and let RS be the corresponding resolvent
(where X is a fixed point of regular type of the operator L).

Note that the element Rg (for g (¢) € L¥0, ) ) must be in the mani-
fold of solutions of the inhomogeneous quasi-differential equation

6) 1) - =g
Consider the corresponding homogeneous equation,
@ Iu) — du=0.

We choose a fundamental system of solutions wu(¢; ) i =1, 2, ..., 2n)
such that the first m of these functions belong to L¥0, ). (Then the solu-
tions u,,,.(f; A), . . ., us,(¢; A) together with their non-trivial linear com-
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binations lie outside of L*0, o) ). Here we do not assume as we did in the
preceding section, that the solutions w(f; A) (i=1, 2, ..., m) be ortho-
normal.

By Section 1 of Appendix II, the general solution of equation (3) has
the form

t
2n 2n
(9 o) =2ult; ) [ vis: DE(5)ds + 3 cumlts )

0
Here the system v,(¢; A) (k=1, 2, ..., 2n) is the adjoint to the fundamental
system u,(¢; A) (k=1,2, ..., 2n) of solutions of equation (4). The con-
stants c,(k=1, 2, ..., 2n) in formula (5) are uniquely determined if we
require that ¢ (f) = Rlg. We now determine the values of the constants

for which this condition is satisfied under the assumption that g (¢) vanish
outside of a finite interval.

First, we must make sure that ¢ (f) belongs to L*0, ). Fort z g,
g (1) = 0 and, hence,
2 bg
v () = ult; ) of (s D () ds + X eunlt; V).
Then ¢ (7) belongs to L¥0, oo) if and only if
&= ——ka(s;)\)g(s)ds= —ka(s;)\)g(s)ds (k=m+1,m+2,...,2n).
0 [

For this choice of these constants R{ has the representation

R = St [nis0g@ds +
0

+ Sean(d — 35 ules) [ wisi D@ ds =
0

-+

= Suts®) [ s Vg (o) ds —
0

k=m+1

3wt [ wiss Dg6)ds + et ),

or

© Rg ~ [ K(t,5:08(6)ds + 3 comtt; ),
0
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where

; w3 (=9
K(ts; ) = o

= 2 wBINsY) (5> 0.

-m+ 1

In representation (6) g (¢) is any function of L%, <) which vanishes
outside of some finite interval and the ¢,(k = 1, 2, ..., m) are the con-
stants which correspond to it. From this representation it follows immedi-
ately that the constants c.(k = 1, 2, . . ., m) are homogeneous and additive
functionals defined on all such functions in L0, o). We show now that
these functionals ¢, = c(g) (k = 1,2,..., m) satisfy the conditions of
lemma 2, i.e., that they are bounded in L¥0, q) for each a <. We apply
to both members of equation (6) the operator P, of projection on the sub-
space L¥0, a) and then form the scalar products with w,(¢; ») (i=1,2,...,m)
to obtain

(7) (Paﬁgg’ ui) = (Kag’ ul) +l§._:lck(Pauk’ ui) (l = 1, 2a LIS m)’
where

Kg =P, [ K508 ds.
0

In the system (7) of m equations with m unknowns ¢, (k=1, 2, ..., m),
the norms of the operators P,R? are bounded for all positive a< o by a
number which does not depend on a, the norms of the integral operators
K, in L¥0, o) with Hilbert-Schmidt kernel are bounded for all a < o by
a number which depends on 4 and, finally, the Gram determinant

Det ( (Pai, ;) )

is different from zero by the linear independence of the solutions u,(#; A)
(k=1,2,...,m). It follows that the ci(k=1, 2, . .., m) are functionals
which are bounded in L¥0, a) for each a < so that, by Lemma 2, they
can be represented in the form

o) = [N k=1,2....m),
0

where the functions y,(s; A) (k=1, 2, ..., m) belong to L¥0, a) for each
a<. Now the representation (6) assumes the form

e = [ K508 ds + 3 [ 80 hits: D s,
0 0
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or
® Rg = [ Kt 508 () s,
0

where

m

;uk(t; N [vs; ) +u(s; )1 (52 9),
(9) Ko(t, S, A) = m-l 2n
25 X) (s %) - > udt; vls; D) (s> ).

=m+1

Formula (8) shows that the resolvent R? is an integral operator on all
functions g (¢) in L*0, o) which vanish outside of a finite interval.

From these considerations it still does not follow that R} is an integral
operator. By the boundedness of the operator R¢ it follows from formula
(8) only that, for each function in L0, o0),

(10) Rig =1im. | K,(t,5;)) g (s) ds.
n—o °

In order to derive from this the desired representation of the resolvent in
the form

an  Re=[KisVg6ds (0L, <)),
0

it is sufficient to prove that the integral

| Kt 598 @ ds

exists for each function g () € L¥0, ). For this, in turn, it is sufficient
that

(12) flKu(t,s;A) fds <o (0 <1< <o),
[}

or, equivalently, that the kernel K(¢, s; A) belongs to L0, <o) as a function
of s for each ¢.
From formula (9) it follows that the kernel K, s; A) belongs to
L*Q0, oo) as a function of ¢ for each s since u,(¢; A) € L¥0, o) for k=1, 2,
..,m. By Lemma 1, the function K(¢, s; X), which corresponds to the
resolvent of a real self-adjoint extension, is symmetric with respect to the
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arguments s and ¢. Therefore, the integral (12) exists and the representation
(11) is established.®

To complete the proof of the theorem it remains for us to generalize
representation (11) to the case of the resolvent R, of an arbitrary (not
necessarily real) extension L of the operator L.

Since the element R, g (g (¢) € L¥0, «)) belongs to the solution mani-
fold of equation (3), we can represent it in the form

- - 25
13) Ryg = Rf\)g +;Ckuk,

where R? is the resolvent of a real self-adjoint extension. From this repre-
sentation, in correspondence with the choice of the fundamental system
u(t; M) (k=1,2,...,2n), it follows that for k <m the ¢, vanish and for
k >m the ¢, are linear (i.e., homogeneous, additive, and bounded) func-
tionals defined on L0, o) and, hence, have the representation

(14) o = cug) = [ £ xls; ) ds,
0

where the functions x,(s; ) (k=1, 2, ..., m) belong to L:(O, 00).
Substituting (14) into (13) and defining the kernel K(#, s; A) by the
equation

(15) Kt 5,0 = Kift, 53 %) + kiuk(t; NX(5; ),
-1

we finally obtain the integral representation of the resolvent in the form

Rg=[Rtsig@)ds (L0, ).

Thus, Theorem 1 is completely proved.

THEOREM 2: The kernel K (s, t; X) of the resolvent R, of an arbitrary
self-adjoint extension L of the operator L with deficiency indices (m, m)
satisfies the conditions

(16) [1G.s:9pas< o, [ 1RG50 < o,
() ()

*In the above considerations the symmetry of Ko(s, #; A) is essential in the transition from
(10) to (11) in order to avoid the question of the behavior of the functions v,(s; X) (k=m+1,
m+2, ..., 2n) and y(s; A) (k=1, 2, ..., /n) as s - oo. Furthermore, the symmetry of the
kerne} sf)o(t, s; A) implies certain properties of these functions at infinity (cf. Theorem 3
page .
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and if the operator is quasi-regular (m=2n) also satisfies the condition
an ff[K(t,s; X) |2 dsdt < oo
0 0

Proof: Property (16) follows immediately from formula (15), since
the function K(#, 5; A) (in each of the variables s and 7) and the functions
x(s; M) (k=1,2,..., m)belong to L0, ).

‘We come now to property (17). We establish first that for any deficiency
indices (m, m) (n<m =2n) of the operator L, the functions #(¢; A) (k=
1,2,...,myand w(t; A) (k=m+1,m+2, ..., 2n) which appears in formu-
la (9) for K¢, s; A) belong to L%0, o). With this aim we again use the
symmetry of the function K(, s; A), which implies that

19) Sl D) — 3wl it ) =

m+

= élvk(s; A) + ¢ils; A) Ju(t; 2).

We choose numbers $,, S, - . . , Sa, Such that the determinant
Det (u(s;;2) ) #0

(this is possible since the functions u,(s; A) are linearly independent) and
we let s=s5, (i=1,2,...,2n) in equation (18). Solving the resulting
system of 2n equations in terms of the 2»n functions ¢,(z; A) (k=1,2,..., m)
and »(z; A) (k=m+1,m+2, ..., 2n) we find that each of these functions
is some linear combination of the functions wuy(z; A), ..., u,(t; A) and,
hence, belongs to L0, o).

‘We now establish property (17). In the case of a quasi-regular operator
(m=2n) all summands in the first part of formula (9) belong to the space L*
of functions of two variables in the quadrant 7 >0, s > 0 and, hence,

(19) _[ f | Kit, 53 %) |dsdt < oo
00

Property (17) follows from (19) by means of (15).

From the proof of the theorem it follows that, in the case of a quasi-
regular operator L, the resolvent of an arbitrary self-adjoint extension L
of L is defined in terms of a Hilbert-Schmidt kernel and therefore is a com-
pletely continuous operator.

From Theorem 2 it follows that the real and imaginary parts of the




184 APPENDIX II. DIFFERENTIAL OPERATORS

kernel of the resolvent of any self-adjoint extension of the operator are
Carleman kernels.®

We note that the arguments in the proof of Theorem 2 yield the follow-
ing theorem.

THEOREM 3: Let m denote the maximal number of linearly independent
solutions of equation (&) which belong to L¥0, ). If the first m functions in
the fundamental system of solutions of equation (4) belong to L¥0, ), then
the last 2n-m functions in the adjoint fundamental system of this equation
also belong to L¥0, ).

The following theorem is concerned with a case when it is possible to
deduce the deficiency indices of the operator L from the number of func-
tions in L*0, co) which satisfy equation (4) with A real.

THEOREM 4: In order that an operator L of order 2n have deficiency
indices (2n, 2n) it is necessary that the equation

Mul] —Au=0
have 2n solutions in L¥0, ) for each real A and sufficient that this equation
have 2n solutions in L0, ) for at least one real A.

Proof: For the proof of the necessity, we recall that in the case of a
quasi-regular operator, the resolvent of its self-adjoint extension L is a
completely continuous operator and, hence, the spectrum of L consists only
of eigenvalues A(r=1,2,3,...) with the unique limit point A=0c0. It
follows that all points of the plane are of regular type with respect to L
except perhaps for the points A(r = 1,2, 3,...). If A, is not of regular
type, then A, is an eigenvalue of L. This is impossible, since the equation

Lo — Ao =0
is equivalent to

Ie] —Xe =0
under the conditions

9(0) =¢"0) =...=¢>"1(0) =0
and, by the existence theorem of Section 1 (Appendix II), has only the solu-
tion ¢ (£) = 0.

SA Carleman kernel is a measurable (in general, complex valued) function

K(s, 0 (—oo<;<oo) for which:

1° K(s, 1) = K(@,5)
almost everywhere in the (s, t)-plane;

w
2° [ 1K@, plrdr<oo
-

almost everywhere on the s-axis.
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Thus, in the case of deficiency indices (2n, 2n), the whole A-plane is
the field of regularity of the operator L. By the theorem on the invariance
of the deficiency indices (Section 78) every solution of equation (4) with
arbitrary A (real or not real) belongs to L0, ).

The sufficiency of the theorem follows immediately from Theorem 4 of
Section 83.

It is not difficult to transfer the results obtained in the present section
to the case of an interval with two singular end points. We sketch the proof
of the fundamental Theorem 1 for this case. Here, as in the case of one
singular end point, it is sufficient to consider the resolvent of an arbitrary
real self-adjoint extension. Let (cf. the proof of Theorem 3, Section 4,
Appendix II) the deficiency numbers of the operators L, L) and L+’ be
m, m~) and m*), respectively. By Theorem 3 of Section 4,

m? =n+p,

m*Y =n+m—p.

We choose a fundamental system of solutions of equation (4) such that
the first m solutions #,(¢; A) belong to L¥(— co, c0). In the (2n—m) dimen-
sional linear envelope of the remaining solutions of this system there
exist n—p—m linearly independent solutions in L — oo, o), which we
denote by u,,.,(#; ), . . ., #,,,(t; A), and n—p linearly independent solu-
tions in L%*0, ), which we denote by u,,,,(;A), ..., us(t; A). We
remark that the functions

um+l(t; A)’ L ] un+p(t; A), un+p+l(t;A)9 AL} uZn(t; A)
are linearly independent. Otherwise a linear combination of them would
belong to L¥ — co, o), which would imply, contrary to assumption, that
the deficiency numbers of the operator L exceed m. With the aid of the
chosen fundamental system u,(¢; A) (k=1, 2, .. ., 2n) each solution of the

equation

IbI-v=g
(where g (?) is a function which vanishes outside of a finite interval) can be
represented in the form

2n p 2n
?() = Xuts M) [ nlss N () ds + 35 cun(t; Y.

For suitable choice of the constants c,, this function coincides with Rdg.

An argument similar to that for the case of one singular end point
yields a complete proof of Theorem 1 and Theorem 2 for the case of two
singular end points.
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7. Inversion Formulas Related to Differential Operators
of the Second Order

In Section 69 it was proved that every self-adjoint operator 4 with a
simple spectrum determines an isometric mapping V of the space H onto
some space L. Under this mapping the operator A goes into the operator
of the multiplication by the independent variable. If E, is the spectral
function and g is any generating element of the operator A4, then ¢ ()
=(E,g, g) and the indicated isometric correspondence is defined by the
formulas

) JOR7s
@ s=viem = [o@dbeg,

where the element f and the function @ (2) are in H and L2, respectively.
If fe D, then instead of formula (2) the following equation holds:

Af = f @ (X) dE,g.
We call formulas (1) and (2) the inversion formulas related to the self-
adjoint operator A.

In Example C of Section 77 we obtained as the inversion formulas
related to the operator of differentiation on the entire real axis, the mutu-
ally inverse Fourier-Plancherel transformations of the space L% — o, <o)
onto itself

I T S
() =Li.m. \/_2_"[' f@yevar,

—11 1 T -t
f(t)——l.l.m.\72:ﬂ_J;¢(A)e dr,

Here any improper element may be taken as a generating element.

Operators with multiple spectrum also generate inversion formulas
which are analogous to formulas (1), (2).

The problem of the present and the following section is to obtain in-
version formulas connected with singular quasi-differential operators on
the semi-axis. This problem was solved first for the operator of second
order by Weyl.” We begin also by considering operators of the second

'Cf. H. Weyl [2], Vol. 1. The results of Weyl were obtained recently by B. M. Levitan [2],
Vol. I, by another method.
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order but we use a very general and powerful method recently discovered
by Krein.? This method was called by its author the method of the direction
Sfunctionals. Tt permits us to obtain inversion formulas for quasi-differential
operators of any order (cf. the following section).

Thus, let L be a quasi-differential operator with minimal domain,
generated by the operation

d d
=% 5%
dtpdt tq

on the interval (0, o) with one singular end point. We assume that the
deficiency indices of L are (1, 1).® As we shall see, in this case the spectrum
of each of the self-adjoint extensions of L is simple.

Let L be a self-adjoint extension of the operator L which is determined
by the boundary conditions!®

POID o =02(0) (I¢=0),
and let u,(z; A) and uy(z; A) be the solutions of the equation
ul —2u=0 (3r=0),
which satisfy the initial conditions
wm(0; ) =1, p@Out; M |-0=0,
uf(0; ) =0, p(®) w(t; %) |ro = 1.

We denote the set of all functions £ (¢) in L0, o) which vanish outside
of a finite interval by D and we define on D a homogeneous and additive
functional

o(£i0 = [fOu
0

where
u(t; ) = uy(1; 2) + uy(t; A).
Following M. G. Krein, we call @ (f; A) a direction functional.

8Cf. M. G. Krein [2], [5], Vol. I; M. S. Lifschitz [1], Vol. I, and A. J. Povzner [1], Vol. 1.

If the deficiency indices of the operator L are (2, 2), then each self-adjoint extension of this
operator has a discrete spectrum. In this case the question of the structure of the inversion
formulas does not arise since the role of formula (2) is played by the expansion of the function
into orthogonal eigenfunctions, and the role of formula (1) is played by the expressions for
the coefficients in the Fourier expansion of the function.

_ MThus, there remains to consider only one extension, that which is determined by the condi-
tion ¢(0)=0; it corresponds to #=oco. The inversion formula established below is extended
to this case by means of a passage to a limit.
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The direction functional @ ( f; A) has the following three properties
which are essential for what follows.
1° @ (f; A) is an analytic function of A (— o < A < ) for each fixed

function f&D.
2° If for some function f € D and some real A
®(f;0) =0,
then the equation
(L—2AE)o =f

has a solution in the class of functions which vanish outside a finite interval.
3° If fis a function in Dy which vanishes outside a finite interval,
then for each real A
S (ILf; ) =20 (3 ).
We prove only properties 2° and 3°. We establish 2° first. Let f(1)=0
for t > a and assume that

3 P(f;2) =0.
We denote by ¢ (1) (0 = < o0) the solution of the equation
lle] — A9 =/,

which satisfies the condition
?(@ =p(a) ¢'(a) =0,

(by the uniqueness theorem ¢ (f) = Ofor¢ = @). Using the Lagrange
identity, we get

-

0(£:29) = [ {lle] —Mowbu(e:39) dt = [, ule = [, ulo =

0

_ [ p(u%2 - o%) ].-f PO — 8 -0,

which in combination with (3) yields
PO (@) -0 = 09 (0),

so that ¢ (Y) € D;. Thus, property 2° is established.
The validity of 3° follows from the equations

ALA ) = [ILf1u(es Nt = L ule + A [0y ule; Dkt = 2073 .
0 [\]

The direction functional @ (f; A) generates a mapping of the linear
manifold D of functions 7(#) onto some linear manifold D’ of functions
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@ (X) = P (f; ). If a function £ (¢) belongs to Dy then by 3° this mapping
takes If into the function A® (X). This fact permits us to assume that the
spectrum of the operator L is simple and that for a proper choice of the
generating function the first of the inversion formulas connected with the
operator L will have the form

oW = [F@uNar
[\]

for f(¢r) e ®. This formula is analogous to the Fourier-Plancherel trans-
form.

We now leave these considerations and proceed to the solution of the
problem which was stated above. We shall need two propositions due to
Krein.1*

LemMa: For each finite interval 4, of the X axis there exists a function
¥ (t) € D such that the function  (\) = @ (4; X) does not vanish in the interval
Ao-

Proof: Let A, be a fixed point of the interval 4, and let x,(7) be a func-
tion in D such that

P (xos %) #O0.
If @ (x,4; A) 7% 0 in the whole interval, then for the proof of the lemma it is
sufficient to choose ¢ = x,. If at some point A, € 4,
? (Xo§ A1) = Os
then by property 2° there exists a function x; € D; such that
zX1 = A1 = Xo-
Applying to both sides of this equation the direction functional and using
property 3° we obtain
AP (x15 1) — AP (x15 D) = P (xo; A),
which yields
® (xo3 )
¢ s A = ____0’_ .
(XIQ ) A _ Al

Thus, replacing x, by x; we see that the function ®(x,; A) does not
vanish at A=}, and at A=A, it has a zero of multiplicity one less than that
of the function @ (x,; A). Since the analytic function @ (x,; A) has only a
finite number of zeros in the finite interval 4,, each of finite multiplicity, a
finite number of repetitions of the above procedure yields a function
¢ € D for which the functional @ (4; A) vanishes for no A € 4,.

UCf. M. G. Krein [5], Vol. L.
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THEOREM 1: Let 4, be a finite interval and let ¢ be a function in D
such that

P(4;0) #0
if X 4y. Furthermore, let E, be the spectral function of L and let

o
g® —Af YUY, dEyy.

Then for each function fe D and each interval 4 < 4,,

@ E@f = [ o5 naEe

Proof: If we define the functional F(f; 2) in terms of the direction
functional @ ( f; A) by the relation

(0 = 38

oWy’
then the formula to be proved is equivalent to the equation ;
@) EWf= [ F(f; N dEw.
4

We proceed to the proof of this equation. Assume that the left end points
of the intervals 4, and 4 coincide and let the point « be the common left
end point of these intervals.

Consider the element w, = w,(r) of the space L¥0, c) which is
defined by the equation

Wy = deaf— fF(f; ) dExy

as a function of the parameter u in the interval 4,. To establish equation
(4')itis necessary to prove that w, = Ofor u € 4,and, for this, itis obviously
sufficient to show that
—_—w, =0,

du *
This equation must be understood in the sense of strong convergence in
L0, «), i.e.,

lim%ll Wyss — W, = limlf [ Wyolt) — wy (D) 2dt = 0.
200 80 0% :
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We introduce the projection operator
E(Au,d) = Eu+d - E“,

and estimate [|w,,, — w,l{. We have

u+8

1Wass =Wl =1 E@y0)f = [ F(AN B 5

) SIE@) I —F(fim ]I+

n+8

HIE@DF5 04— [ FUNEW.

We estimate the first and second summands on the right side of this inequal-
ity. Since

S(f—F(fiwg;w) =P(fin) —F(f; ) P(¥;0) =0,

it follows by 2° that the difference f— F( f; 1) ¢ can be represented in the
form

© f—F(fiw)¢=Lo — pe,
and, hence,

VE@,) Lf— F(f; ) ¢112 = E(4,,) [Lo — poll2 =

u+d

= [1A = hPdEw ) S IE @0l
)

As 8 — 0, the element E (4, ;) ¢ tends to the element E (4, o) ¢ which either
is zero or is an eigenfunction of the operator L corresponding to the eigen-
value p. In the latter case, formula (6) yields the equation

E(4.0f—F(fiw)E(4,0) ¢ =0.

This shows that formula (4') is valid for 4 = 4,,,. Therefore, it was possible
to assume from the beginning that E (4, ) ¢ = 0 which means that

™ lim L E(4,0) [f — F(f; ) $11 = 0.
250 0

For the second summand on the right side of the inequality (5), we
obtain
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|E@)F(imy — [ PN B =

[

2
= =
=

[F(f;w) — F(f; ) 1dEx

(8) Bn+8
s [IFGs0 = F(5) 1B, ) =

n+8

=I \ an({ 2 :-,(A_")'d(Ea-/« ) = MP8(E(4,,,)4, ¥),
where *

p< é<p+ 8.
In (8), M denotes the maximum of the absolute value of the derivative

M‘%) in the interval 4,

We remark that if » is an eigenvalue of the operator L, then ¢ is not an
eigenfunction of this operator corresponding to . Otherwise,
1, = A
S(4; 0 = P(Li; Y =;¢’('I’; ),

which implies that @ (¢; A) = 0 for A # g, and this contradicts the choice
of the function .

Thus, from inequality (8) it follows that

© lim. ~0.
240 &

E@)F(fiw b~ [ FU)dE

From (5), (7) and (9) we conclude that w, = 0. This yields equation (4),
which was to be proved.

Now we come to the fundamental theorem of the present section.

THEOREM 2: IfL,Landu (t; X) have the meanings given in the beginning
of the present section, then the inversion formulas which are related to the
operator L have the forms

(10 oM = [rOu N,
0

(11) ) = j @ () u(t; X) do (V).
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Here o () is some nondecreasing function determined by the operator L;
® (X) and f (¢) run through the spaces L}(— o, ) and L¥0, ) respectively.
If one of the functions @ (A) and f (¢) vanishes outside of a finite interval, then
the integral on the right side of the corresponding formula can be understood
in the ordinary sense. In the case of arbitrary functions ® (A) and f(t) the
integrals must be understood as limits in the norms of L2 and L*0, ),
respectively, of the proper integrals

[rouena,

f @ (N u (t; ) do ().
A

Proof: We note first that in formula (4) it is possible to take the
element g, = E (4,)g instead of the element g. We subdivide the A-axis
into finite intervals 4,(+k = 0, 1, 2, . . .) and we choose for each interval
4, an element g, in the same way as we choose the element g, for the interval
4, We let

g =k_Z;wgk,

and in case the orthogonal series on the right side diverges, we understand
g to be an improper element!? (cf. Section 77) such that, for each finite
interval 4,

E)g =L E@gwn

where the series on the right side contains only a finite number of summands,
If f is an arbitrary function in ® and 4 is an arbitrary finite interval
of the A-axis then

n-1
A=8+ 35 b+ 8 (4 4y 81 < 4,

-+

and
n-1
EA)f=E4})f +k_EHE(Ak)f+ E(4: ).
Therefore, for each finite interval 4 of the A-axis,

E@)f= [ o(f;)dBeg.

134 J. Povzner and W. A. Martschenko communicated to us a proof of the fact that for
p(f)=1, this element is always improper.
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Let 4 [— o0, ] to obtain the equation

(12) s =[ondEe

Since the manifold D is dense in L*0, o), this formula implies that the
operator L has a simple spectrum and the functiong = g (f) is its generating
element.

From the theorem of Section 69 on the canonical representation of a
self-adjoint operator with simple spectrum it follows that there exists an
isometric mapping

s@=[omadkg

of the space L2 where o (A) = (E,g, g) onto the space L0, «). Under this
mapping, an arbitrary function f(¢) in D corresponds to the direction
functional @ (f;A) = @ (A). Thus, the operator L, is isomorphic to the
operator of multiplication by A in the space L2, so that

Itf=f)«d5()«)dEAg

for (1) e D;.
We turn now to the derivation of formulas (10) and (11). If f(¢) is
an arbitrary function in L%*0, o) and

o= (7O esm

(t 2 n),
then, by (12)
(13) () = f P (fa; V) dE,g.
Let h
(14) () = @ (fa; ) = ff OFIGRIY: (8
5

Since the sequence of functions { fa(f)} converges in the norm of L0, )
to the function f(f), the isometric correspondence between the spaces
L¥0, «) and L? implies that the sequence {® (1) } converges in the norm
of L2 to some function @ (A). Passing to the limit in the sense of the indicated
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norm in equations (13) and (14), we obtain the formulas

1@ = [omare,
15) -
® () — J'f(t) u (13 %) dr.

The second of these formulas coincides with (10) and, therefore, it remains
only to prove formula (11).

Obviously, it is sufficient to prove that formula (11) is the inversion of
formula (10) if @ (1) runs through the manifold % of functions in L2 which
vanish outside of a finite interval. Thus, let the function @ (}) belong to
9 and let f(7) be the function of L¥0, ) corresponding to it, which is
defined by formula (15). We introduce the function

_ [l 6=,
"Ir(s) = { 0 (>0,

and use the fact that the correspondence between L*0, o) and L2 is iso-
metric to obtain the equation

[fOnsds = [o® @i 0do,
0 -

or
J:f(s)ds =J:°¢(A){J:u(s;)«)ds}da(t).
0 -© 0

The left member has the derivative f(¢) almost everywhere and the right
integral in A may be expressed with finite limits since @ (A) € M. Therefore,
the derivative with respect to ¢t of the right member is

[emuandm,

and the proof is complete.

Our result concerning the inversion formula would be incomplete if
we did not show how to actually find the nondecreasing function o (X).
We now concern ourselves with this question; with this aim we denote by
u (t; A) that solution of the equation

Iyl — &y =0,
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which for ¢ = 0 satisfies the conditions which characterize the given

extension L of the operator L. As was indicated above; this condition has
the form '

PO 2'() |0 = 62 (0).
The real parameter 8 we take as finite so that #(0, A) 7 0 and we can let
u(@0;3) =1.

Furthermore, we denote by v (¢; A) a second solution of the homogeneous
equation which is normalized by means of the equations

vO0;0)=0,pO)V'(t;) -0 = —1.

The kernel K (¢, s; X) of the integral operator which is the resolvent
of the operator L, i.e., the Green’s function, has the form

o [us; D At 2) +mDu(t;2)] (s,
(16) K52 = {1 3 s I mRusiD] o,

The function m (z) is uniquely defined by the condition
v{t;2) + m(z) u(t; z) € L¥0, ).

We now let ¢ (#) run through the set of all functions in Dz which vanish
outside of a finite interval. Let

(L —zE)o =,

where z (3z > 0) is fixed. The set 9t through which the function f (f) runs
obviously is dense in L¥0, ). If g (¢) is an arbitrary function in D, then

[z>0).

[e0e@dr= [ 2N @D o).
0 - ®

But since
v = [ K595 ds
0

and, by property 3° of the direction functional,
S(f;A
P (9; %) =———A(f’ ),
-z

we have

K(t, 5;2)/(5) g0 dsdt = f ‘3(_1:’_"_)_‘_5&__5") do (3.

-

Ot——38
Oty 8




7. INVERSION FORMULAS . DIFFERENTIAL OPERATORS OF THE SECOND ORDER 197

This equation is valid for all £, g € D, since R is dense in L¥0, ). Let

£O=5® = {‘f°‘°-’-8

0 for t> 4.
Then our equation takes the form

an s—l,f fK(t,s;z)dtds =f wy(}) __(_)‘)
where " c )
wy(A).= [ 5“ u(t; ) dt]

As 8 — 0, the left member of (17) tends to the limit
K©,0;2) =m(2).
Therefore,

do (?t)

lim J' w2 — m ),

which yields

L de () e
h‘_rg -J;w,(/\) 1= 3Im ().

It is easy to conclude that the integral

¢ do (%)
Je
exists and equals Im (i). Therefore,
r(1 1
j (= —rm) @ =m@ ~m@.
It follows that
F1 1422 do(d)
1
(8) m@ =A@+ | T2 ST

Applying the Stieltjes inversion formula (cf. Section 59), we obtain

A
v("'o)-;o(“o) const. + lim = [ Sm (x + ).
y—0
0
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Itis possible to show that this formula is valid in the case when the boundary
condition has the form ¢ (0) = 0.

Completing the present section, we make several remarks concerning
the case when the deficiency indices of the operator are (2, 2). A class of
self-adjoint extensions of such an operator which was first studied by Weyl
in the paper quoted on page 186 will be discussed.

Let L have the deficiency indices (1, 1) or (2,2). Let L, denote an
extension of L determined by the boundary condition

(19) P 2'® -0 = 62 (0),

so that Dy, consists of all the functions ¢ (¢) € D.. which satisfy condition
(19). Obviously L, is a symmetric extension of L. If the deficiency indices
of the operator L are (1, 1), then the operator L, is self-adjoint. Letting 6
vary from — oo to o, we obtain all self-adjoint extensions of L. If the defi-
ciency indices of the operator L are (2, 2), then the deficiency indices of the
operator L, will be (1, 1). Each self-adjoint extension L, of the operator L,
is an extension of L. Varying @ in the interval (— o0, ) and taking for
each value 6 all possible extensions L,, we obtain a class of self-adjoint
extensions of L. This class is characterized by the fact that one of the two
boundary conditions (2) of Section 5 which define the self-adjoint extension
has the form (19); obviously, the second of these conditions involves only
the singular end point ¢ = oo, Thus, the class of self-adjoint extensions
obtained are characterized by reduced conditions.

The assumption made in the beginning of this section that the defi-
ciency indices of the operator L are (1, 1) was used only once, namely, in the
proof of property 2° of the direction functional. However, it is easy to see
that this property 2° is maintained in the case of the deficiency indices
(2, 2), if only those self-adjoint extensions L are considered which are
characterized by the reduced conditions. We denote such extensions by L.

Thus, all of the above propositions remain valid for extensions L, of
the operator L with the deficiency indices (2,2). In particular, from
Theorem 2 it follows that the self-adjoint extensions L, have simple spectra.

It is not difficult to see that as in the case of the deficiency indices
(1, 1), the kernel of the resolvent R, of the operator L, (for 8 £ ) is
defined by the formula (16) where the function m (2) is uniquely determined
by the choice of the self-adjoint extension L, of L, In particular, K(0,
0; 2) = m(2). Reasoning further as in the case of the deficiency indices
(1, 1) we obtain formula (18). Since, by Theorem 2 of Section 6, the
operator L, has a pure point spectrum with the unique limit point at
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infinity, the function o () is piecewise constant and formula (18) shows that
m (z) is a meromorphic function of z.

In correspondence with the results of Section 4 of Appendix 1, the
scalar product (R, f, f) for fixed f (f) € L¥0, ) and z (3z > 0) runs through
a circle C(f; z) as R, runs through the set of all orthogonal resolvents of
the operator L,. But from formula (16) it follows that the scalar product
(R./,f) has the form a + Bm (z), where the constants « and 8 do not
depend on the choice of the resolvents. Therefore, as the point (R, f, f)
runs through the circle C ( f; z), the point w=m (2) also runs through a
certain circle which is called the Weyl limit circle. In the case of the defi-
ciency indices (1, 1) (and only in that case) the Weyl limit circle degenerates
to a point. Now we clarify the meaning of the terms “/imir circle” and
“limit point”” mentioned in the end of Section 5 of Appendix II. We do
not present here the method by which Weyl arrived at the limit circle.'?

We remark that although the circle C (f; z) depends on the choice of
fand z, the corresponding limit circle C depends only on z but does not
depend on £, because the function m (z) does not depend on f. We shall
find the equation of the limit circle. With this aim, following Krein, we
use the Hilbert functional equation for the resolvent of the operator L,
which yields, without difficulty,

K(t,5:2) — K(t,53%) = (z — sz'K(t, £ 2) K (¢, 5:2) de.
0
Let: =s = 0 and use formula (16) to obtain
m(z) —m@) = (z —E)f |v(£;2) + m(z) u(t; 2) Pde.
0

Hence, the equation of the limit circle has the form

w

f |v(£;2) + wu(t;2) fdf = — .
0

zZ—2

The case 8§ = oo involves a modification of the above arguments and
leads to a similar result. We shall not go into this further.

13 Cf. B. M. Levitan {2}, Vol. L.
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8. Generalization to Differential Operators of Arbitrary Order

In Section 72 we saw that every self-adjoint operator A with a spec-
trum of multiplicity r < co determines an isometric mapping of H onto the
space of vector functions L. Under this mapping the operator A goes into
the operator of multiplication by the independent variable. We recall that
the matrix distribution function S () is determined by the spectral function
E, of the operator A if one chooses some generating basis gy, g3, . . ., 8,
(r Sp < o) of this operator and lets

S = ((Bxgi> &) N k=1-
The indicated isometric mapping is defined by the formulas

) o0 =V,
) f=vio®=tLim [ 3o0dBs,
-N

where the element f and the vector function ® (3) = {®,(%), ..., $,(3)} run
through the spaces H and L% respectively.

Formulas (1) and (2) we call the inversion formulas related to the self-
adjoint operator A. We remark that this definition is more general than
the definition given in the preceding section for the case of operators with
a simple spectrum since it does not require that the basis which generates
the distribution function S (1) be minimal. In particular, by the definition
of the present section, an operator with a simple spectrum has related in-
version formulas which define an isometric correspondence between H
and L%, where the order of the matrix S (2) is larger than one.

We now derive the inversion formulas for quasi-differential operators
of arbitrary order. Let L be a quasi-differential operator with minimal
domain, generated by the operation / of order 2n on the interval (0, c0)
with a singular end point and let L be an arbitrary self-adjoint extension
of the operator L. We make no assumptions now about the deficiency
indices of the operator L.

We introduce on the manifold D of functions of the space L0, <o)
which vanish outside a finite interval, the 2n direction functionals

@ %ALY = [fOuEDdE (G=12...,20),
0
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where {u(t; A) }i*, is the fundamental system of solutions of the equation
I{u] — =0,
which satisfy the initial conditions

o ={ g Y28 Gk=12...,m.
It is easy to verify that each of the functionals @,( f; ) has properties
1° and 3° of Section 7. As far as property 2° is concerned, it is now formu-
lated in the following form.
2° If for some function f € D and some real value A the 2n equations

o(f;iN=0 (=12,...,2n)
hold, then the equation
(L—-AE)p =f
has a solution in the class of functions which vanish outside a finite interval.,

LEMMA 1: For each finite interval 4, of the M-axis there exists a
system of functions P\(f), Pa(2), . . . » ¥a,(t) in D such that the determinant

D () = Det (2(¢; X )1

does not vanish in the interval 4,.

The proof of the lemma is easy to outline by the pattern of the proof
of the corresponding lemma of Section 7 which is based on the analyticity
of the determinant D (A).

THEOREM 1: Let 4, be a finite interval and let gy, s, . . ., s, be a
system of functions in D such that

Det (&(#: D) #0 (e 4y).

Furthermore, let E, be the spectral function of the operator L and let g,, g,,
.. . » 89, be a system of functions defined by the equations

80 = [ 32.0) B,

where 2,(2) are the elements of the matrix which is the inverse of the matrix

(P(d5 ) Nt -1
Then for each function f € D and each interval 4 < 4,,
2
@ E@)f=[ X o(/i0dEs.
4

14 This and the following proposition are due to M. G. Krein (cf. the work cited in the
beginning of Section 7).




202 APPENDIX II. DIFFERENTIAL OPERATORS

The proof of this theorem is completely analogous to the proof of
Theorem 1 of Section 7. In the same way as there, we replace the condition
(4) to be proved by the equation

2n
E@)f = [ SE(NdEY,
4
where
2n
F(f;N) = kzlf-?jk(?‘) 2 f3 ),
and we introduce the element
u u .
wo=[dES — [ SESNE Y,
Jj=1
Inequality (5) of Section 7 now has the form

E@.0 |- EEf0]

il Witrs — Wu” =

-+
ut+d
2n 2n .
+[E@0 S EG 08— [ EEGYdEY)
~ -
"3
The first summand on the right side of the inequality is estimated in
the same way as in Section 7. As far as the second summand is concerned,

B+8

® X E@oES0y -] B dEmnz <

J

2n
< 3 MINE,0 b0,

where M; denotes the maximum of the absolute value of the derivative %—I;’

in the interval 4,. If p is an eigenvalue of the operator L, then the function
¥ is not an eigenfunction belonging to this operator since, otherwise, by
property (3),

| 2
¢j("’k’A) =:¢I(L¢kyh) =-; ¢/('l‘lnA) (J= 1’ 23' LI} 2”):

which would imply that @(4,; A)=0 for As£x and, hence, D (A)=0 for
Asp. This contradicts the choice of the system ¢y, i, . . . , ¥y,

Thus, the right side of inequality (5) has magnitude greater than 82,
which yields the validity of the theorem.
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THEOREM 2: If L, L and u(t; ) (j=1,2,...,2n) have the meanings
given in the beginning of the present section, then there exists a matrix
distribution function S(3) = (ou{}) );. c -1 for which the formulas

N

o,0) =1.i.m.ff(t)u,(t;)\)dt G=1,2,...,2),

N i
s® =Lim. | 3 P13 do()

establish an isometric mapping of the space L*0, o) onto the space of vector
Sfunctions L%

Proof: Wesubstitute 4 = 4,in formula (4) and we replace the system
of elements {g;};", by the system g®= E (4,) g (j=1,2, ..., 2n). Then
we subdivide the A-axis into finite intervals 4,(+ k=0, 1,2,...) and we
choose for each of these a system of elements {g/*}2; in the same way as
the system {g”}/"; was chosen for the interval 4,.

Let

a= 2 g» =12, ...,2n).

k= -

Then, as in Section 7, we obtain a system of elements (proper or improper)
g1, 83, - - - » £a» Which satisfy the condition

E(d)g = ; E (4)g®

for each finite interval 4. (The series on the right contains only a finite
number of summands.) Furthermore, for each finite interval 4 of the
A-axis we obtain the formula

p1]
E@f =[5 9(/; ) dEisy
4
and for 4 = [— o0, o] we obtain
N
. 2n
f=1lim. jjz_:ldi,(f; NdEg,.
-N

Since the manifold D is dense in L*0, o), the ~last formula implies
that the multiplicity of the spectrum of the operator L does not exceed 2n
and that g, g, . . ., g2, is @ generating basis.
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The closure relation for f'€ D has the form

f |yt = f DLVRLIGDENO)

All further calculatmns mentxoned in the end of the preceding section
are carried over without difficulty to the case now under consideration.
Hence, Theorem 2 is established.

9. Examples
1. The Trigonometric Functions. The differential operator:

d2
l=—zt'; 0=t < w)

The deficiency indices of the operator L are (1, 1). The boundary condi-
tion which characterizes a self-adjoint extension of the operator are

y'(0) = 6y (0).
The fundamental system of solutions:

w(t; ) = cos (V) + \—% sin (v/X £),

v(t; ) = — ;/17\ sin (4/ 1).

The determination of the function m (2) (Jz > 0):
v(t;2) + m(Dult;z) =

=m(z){cos(\/7\t) +\/L5sin(\/7\t)} _\/_1;, sin(y/zt) =

= ‘m(z) [2 2:/2] + 2i_.\l/;}e-l\/it +

é
\/ #,
+ ‘m(z) [2 21\/2] 21\/2}
the condition that this belongs to L0, co) yields

1 8 1
m(2) [5 T vz ] eIV

so that
1

m(z) = 0—:}\7;.
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The determination of o (A):

o (A) = const. + limij
y—0 11'0

l\/ x—|—zy
if ¢ = 0, then
\/X
o'(A) = ,,()H_oz) 2z0),
o(d) = (A< 0);
if # < 0, then
2
0y =Y >
0= (A 2 0),
and at the point
do = — 62

there is a jump
o(dg +0) —o(}) = — 26,
The inversion formulas:

@@ z0

o) = j f(t){cos(f H+-2 sm(f t)}dt (20),

VA

) = = as(t){cos W)+ 7sm (/X t)} A‘J/r’:’zdx,

(®) (6<0)

of 50| cos (/1) + Vofsin WD)z o,

H(A) =< %
[ ryenar a=-o,
0

L 0 (A — 02,X < 0),

= —29<p(—92)e°'+—11;6[ di()\){cos(\/Xf)-F \%sin(\/ft)} %},d’\-
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If the boundary condition is of the form
y(©0) =0,
then the inversion formulas are obtained by letting 6§ — co:

o0 = [ 10 s‘“i/—-—‘/xx—’) a,

£ = % j ® (V) sin (/X7) d\.
[\]

In this case as for & = 0, we obtain the ordinary Fourier-Plancherel trans-
formation for the semi-axis.

II. The Legendre functions. The differential operation:
d d
l=—— (1 —-8)— —l<t<).
dt( ) & ( )

Both endpoints of the interval are singular.
An orthonormal system of solutions of the equation
L*—AE)u=0
for nonreal A has the form
u(t; ) = A,{P,() + P(—1)},

(4, B, > 0),
ul(t; ) = B{P (1) — P(—1D)},

where p is any root of the equation
ple+ 1) =2

and P,(?) is a Legendre function of the first kind which can be defined by
means of the following serjes!®

Py =
R E+EDE42). . (p k) (=) (—p+1). .. (—p+k=1) (L_t_)"
& ki 2 2/°

It converges for tin thecircle| t — 1 | < 2. This series is the hypergeometric
function

co 1=t
F( 1, - ,1;———).
b+l —n 7

18 Cf. E. T. Whittaker and N. G. Watson [1], Vol. L.
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Furthermore,

+ 1—¢

P, —F(# ) (# +2,—p+1, 2;—“2—)-
Therefore, as t— — 1 + 0,
(t) sin T
mi=t o
1+¢
2si
1 — AP >—F,

It follows that both solutions belong to L%(—1, 1), i.e., the deficiency indices
of the operator L are (2, 2).
We fet
1 1+¢
*O) =) — 5O T,
where the quasi-derivative ¢/(¢) equals

(I =) e'0,

and then we can express the Lagrange bilinear form by

[e, ¥ = 0D $*(1) — o*() ¥
For every function ¢ (#) € D,. there exist the finite limits
lim o7, lim ¢*(9).
t—>+1

t—+1

The manifold D, is the set of all those functions ¢(¢) € D.. for which these
four limits equal zero. These two results follow from the fact that for each
function f(¢) € L¥ —1, 1), the general integral of the equation

Ibl=s(®

has the form
y(t)—{c1+ jf(s)l 1+sdv} {c,—_ff(s)ds}m”’.

In order to obtam a self-adjoint extension of the operator L it is
necessary, by the general theory, to choose some A in the upper half-
plane (we take A=u(p-+1), where u is purely imaginary) and, choosing a
unitary matrix (6,); x -1, to let

wi(t; D) = u () + 00, (25 0) + 01w (25 2),
wa(t; N) = Uy (t;2) + O uy (25 2) + O us (25 2).
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Furthermore, it is necessary to find the values
w152, wil(£1; 3) (k=1,2),
and, in terms of them, to express the boundary conditions
[o, wi -1 =0 k=12

which distinguish the domain Dy, from the domain D, .

Using the formulas mentioned it is not difficult to establish the follow-
ing table:

witl(£1) = {:FA (1—46y;) — B,6,,},

wii(£1) = {:I:A 05,4+ B,(1—0z)},

wi(£1) = A,{[1 + 7]+ 0u[l +y (W] £61,B,[1 —HW)]
wa(£1) = 0,4, [1 + 7 ()] £ B{[1 —y()] + 62 [1 —H(W)]}.

We do not calculate the value of y (i), but from what follows it will be
clear that y (u) % +1.

We obtain the simplest and most important self-adjoint extension by
letting

B, = Opp=1, B,3=0,,= 0.
Then

wii(£1) =0, wii(£]) =0,
and

wi(£]) = 4,247 + r(W),

wa(£1) = £B,[2 — Ww) — v(W}

Since neither w;(f) nor wy(f) belong to Dy, the last expressions are distinct
from zero, which implies that () # +1.

The boundary conditions which characterize the extension considered
have the form

M (1) = $(—1) = 0.
It is possible to express them differently. First, they are equivalent to the
condition

1
Vi-F () eL¥—1, 1).
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Second, they are equivalent to the following requirement:
3 ¢ (#) tends to finite limits as ¢t - + 1.

We now show that these conditions are equivalent. It is sufficient to
consider the case of real functions. Then

[}
—[e@10-meo)a-
@

(—l<a<B<l),

B
= —U-DeOe@ L+ [ - Mo

the left side of which has finite limits for a—>-—1 and g1, for each func-
‘tion ¢ (£) € Dze. On the other hand,

#H0) = o= 1) — [ 1[0 1ds = ¢°(D) + [ 1o (@)1
-1 1

Therefore, condition (1) is satisfied, so that
[eM()) | s vT L2l L* |,
and, consequently,

1+t
lim ¢t4/() In T = 0.
t—+1 —t
It follows that, as t -+ 1, ¢ (¢) tends to finite limits, i.e., condition (3) is
satisfied. From the identity (4) follows also the existence of the integral'®

1
) 1) = [ 1 —mear
-1

so that condition (2) is satisfied. Thus, (1) - (3) and (1) — (2). It remains
to prove that (2) — (1). But if the integral (5) exists, then ¢'!! (1) cannot
be different from zero, since otherwise the finiteness of ¢*(1) would imply
that ¢ (¢) has an infinite limit as t - 1. This would contradict identity (4).

The self-adjoint extension characterized by any one of the conditions
(1), (2), and (3) reduces to the classical expansion in terms of Legendre
polynomials. Since the boundary conditions (1) are reduced in the sense
defined earlier, the spectrum of the extension is simple. The spectrum is

18 We remark that the equation / [¢]=0 coincides with the Euler equation for the integral
I(p). In this connection cf. Friedrichs [2], Vol. I.
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discrete and the inverse operator is completely continuous. The Legendre
polynomials

1 a1y
Py(t) = o am n=0,12..)

satisfy the equations
d du
- Q1 —t“)E—n(n +Du=90

and, in addition, they satisfy condition (3). But, since the set of all poly-
nomials Py(?) form a complete orthogonal system in L% —1, 1), the spec-
trum of the extension considered consists of the points

np+1) (n=0,1,2,..),

and the inversion formulas corresponding to this case follow from the
expansion in the series of Legendre polynomials.

III. The Tchebysheff-Hermite functions are connected with the dif-
ferential operation

42
(6) l=—d72+t“ (— 0 <t < ),

which, in particular, is very important in the theory of so-called linear
oscillators.

For the deficiency indices of the operator L we use Theorem 4 of
Section 6, applying this theorem to an operation of the more general form

2

M —2p t40
where g (£) 2 0.
We apply the method of successive approximations to the equation
W=qu O =t < o),

and this shows that the solution u () which equals one for ¢ = O satisfies
the inequality

u@®z1

forall ¢ 2 0, and hence does not befong to L*0, co).
Thus, the equation

—u+q@u—2u=0
has for A = 0 a solution which does not belong to L2 (0, ). By Theorem
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4 of Section 6, the operator with minimal domain which is generated by
the operator (7) on the semi-axis (0, o) has deficiency indices (1,1). Obvi-
ously, the operator with minimal domain generated by the operator (7) on
the negative semi-axis also has deficiency indices (1, 1). Applying Theorem
3 of Section 4, we find that the operator with minimal domain which is
generated by operation (7) on the whole axis has deficiency indices (0, 0).

Obviously we would obtain the same result if we had replaced the
requirement of the non-negativity of the function ¢ (¢) by the condition of
its semi-boundedness from below.

In particular, the operator L which is generated by the operation (6)
is a self-adjoint operator. It is easy to verify that the equation

" +@—-Nu=0
with
A=2n+1 (n=0,1,2,..)

is satisfied by the sequence of Tchebysheff-Hermite functions (cf. Section
11) which form a complete system in L¥ — oo, ). Therefore, the operator
L has a pure point spectrum with the unique limit point at infinity. Thus,
the inversion formulas connected with the operator L are indicated by
the expansion in Tchebysheff-Hermite functions.

The example considered is particularly instructive. It shows that the
property that the resolvent is a completely continuous operator, which,
by Theorem 2 of Section 6 of Appendix II, always holds in the quasi-
regular case, also can hold in other cases (even in case of minimal deficiency
indices, as in the above example).

IV. The Bessel functions. * Among the various differential operations
which lead to Bessel functions the most important one has the form

42 Y2 — i
(8) l= - dt2 + 12

We consider this operation with the parameter v = 0. As far as the inter-
val is concerned it is natural to study the following three cases:

(e 0<t21 one singular end point,
B 12t<o one singular end point,
(v) 0<t< two singular end points.

The general integral of the equation
€] Iful] — =0
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with A = 0 has the form
(10) u(t;N) = A8J,(14/X) + BAY (/).

Here A and B are arbitrary constants and J{z) and Y,(z) are the Bessel
functions of the first and second kind, respectively. They are defined by

the formulas
(_ 1)k (i)v+2k
et 2

L@ =20 T(v+k+1)
J(z)cos mv—J_,(2)
sin 7y '

We assume that 3 A >0 and ¢ >0. Then the value z = t4/X satisfies the
inequality

Y(2) =

T
O<argz< >

For |argz | < wand | z| - oo the following asymptotic formulas hold:

J(2) +iY,(2) = HY@) ~ , | "ize’ ¢-3-D,

I(2) —iY(2) = HO@) ~ [ "ize-*('-%'-%).

We substitute these formulas in (10) and find that equation (9) has not
more than one solution which belongs to L*(1, ). But one such solution
must exist. Hence, this solution is the function

w(t; ) = AHO(t/%).

The deficiency indices of the operator L in case (8) are (1, 1).
We shall find the deficiency indices of the operator L in case a. Since,

asz—0,
zv+ ‘}
2’rv+1y
and, on the other hand, z*Y,(z) does not belong to L¥0, 1) for vz 1 and

belongs to L*(0, 1) for 0 £ v< 1; in the case a the deficiency indices of L
are

z%J,(z) ~

2,2)for0sv<l,
(1, 1) forvz1.
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Therefore, in case y the deficiency indices of L are

(1,1)for 0 = v<l,
0,0) for v 2 1.

In each of the enumerated cases the differential operation (8) generates
certain inversion formulas.

We obtain a unique pair of formulas for the interval (0, ) if v = 1.
These formulas have the form

g = [ VRIQ0S @) i,
(11) °
1@ = [VEL0)g M)
1]

‘We have here not only a unitary but a self-adjoint operator in L*0, o).
It is called the Hankel transform. To derive the inversion formulas (11)
rather simply, we can apply one of the methods indicated for obtaining
the Fourier-Plancherel inversion formulas. It turns out that formulas (11)
hold also for v = O but, for 0 £ v <1, are not the pair of unique inver-
sion formulas on the semi-axis'’ generated by formula (8).

We consider the case of the interval (0, 1] for v = 1 and we assume
that the boundary condition at the regular end point has the form

e (1) =0.
Hence, we can let
u(5:0) = 5 VIGEVD Y0/ — Y vDI/D}.
Furthermore, let

V(0 = VA GV /D) — Y0y DT/},
Then

K(t,532) = u(t;2) [(s;2) + m(z) u(s;2)1 (1 £9)
T Vu(s Mt 2) +m@) u(t;z)] (> 9).
The function m (z) is defined with the aid of the condition that the solution

v(t;2) + m(2) u(t; 2)

17 The formulas (11) are valid also for v2 -} and also in a slightly different form for com-
plex v such that v> -}.
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belongs to the space L0, 1). This means that the function
TV WZ Y (/2) + m@ YD) —

—ZVHYLVD) WD) + m@ D 1}
should reduce to the first term. Thus,

g
m(z) = \/‘Jgﬁ) .

This function can be represented in the form

m(z) = —22

n-lz—

where the A, are the nonzero roots of the function J,(1/z). It follows that
o (A) is a piecewise constant function and that the sequence A;, Ay, A, . . .
forms the spectrum. The eigenfunctions are

The inversion formulas reduce to the expansion formula

2 J, ”n
sy =5 2L f VE L5y RS ) ds,

which is known as the Fourier-Bessel series.

If at the regular end point the general condition

'() = —09(1)

was assumed, then we would arrive at the so-called Fourier-Dienes series.

We do not consider the case of the interval (0,1) for 0 £ v < 1.
We remark only that in this case the method that we used in connection
with the Legendre operation can be adapted.

In addition, we leave to the reader the considerations of the case of
the interval (1, o) and the deficiency indices (1, 1). If we assume at the
regular end point the condition

¢ (1) =0,
then we find, by the method used repeatedly,

Ji\z) +iY \/2)
m@) = =V 7O T iYWz
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and we obtain the Weber inversion formulas

o) = [V UV YWD = YovD Iy DI (O e,

f(t) — f\/t— Jv(t'\/x) Yv(’\/x) —Yv(t'\/x)-’v('\/x) (P(A) d\.

DR Y
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