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Abstract. The article surveys the main topics, techniques, and results of
the theory of periodic operators arising in mathematical physics and other
areas. Close attention is paid to studying analytic properties of Bloch and
Fermi varieties, which significantly influence most spectral features of such
operators.

The approaches described are applicable not only to the standard model
example of Schrödinger operator with periodic electric potential −Δ + V (x),
but to a wide variety of elliptic periodic equations and systems, equations on
graphs, ∂-operator, and other operators on abelian coverings of compact bases.

Important applications are mentioned. However, due to the size restric-
tions, they are not dealt with in detail.
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Introduction

Elliptic PDEs with periodic coefficients, notably the stationary Schrödinger op-
erator −Δ + V (x) with a periodic potential1 V , have been intensively studied
in physics and mathematics literature for close to a century, due to their crucial
role in solid state theory, as well as in other areas (e.g., see the books and sur-
veys [11, 30, 53, 54, 225, 332, 408, 409]). In spite of that, some important questions
have remained unresolved. The interest in periodic elliptic (and sometimes par-
abolic) equations and systems received a strong boost in the last decades, due
to new applications in areas such as photonic crystals and other metamateri-
als [245], fluid dynamics [76, 403], carbon nanostructures [218], inverse scattering

1The potential is usually, but not always, assumed to be real.
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method of solving integrable systems [305, 307], and lately topological insulators
[28]. When the author was preparing his introductory lectures at the Newton
Institute in January 2015 [250], he discovered that there was no comprehensive
source devoted to the theory of periodic elliptic PDEs and their applications. There
are several books and surveys completely or partially devoted to this topic (e.g.,
[6, 25, 27, 56, 117, 167, 173, 213, 239, 244, 332, 358, 385, 389]), but none of them col-
lects most of the useful techniques (e.g., the analytic geometry of Bloch and Fermi
varieties) and is up to date. Thus, the idea was born to expand the lectures to
this survey that would contain the main techniques and results of spectral theory
of periodic operators arising in mathematical physics and other areas. These are
applicable not only to the standard model example of Schrödinger operator with
periodic electric potential −Δ+V (x), but to a wide variety of elliptic periodic equa-
tions and systems, equations on graphs, ∂-operator, and other operators on abelian
coverings of compact bases. Close attention is paid to studying analytic properties
of Bloch and Fermi varieties, which significantly influence most properties of such
operators.

There are many important applications of what is discussed. However, the author
realized at this stage that even a large survey cannot do justice to such applications,
nor even to many details of techniques employed. Thus, several sections (especially
toward the end of the text) contain mostly hints and pointers to the literature.
These choices have been made according to the author’s tastes and might not satisfy
everyone. The task of a more detailed and comprehensive discussion is postponed
until the third iteration of my lectures, which is a monograph in preparation. The
same applies to the bibliography of this survey, which is extensive but far from being
comprehensive, and many references are given through secondary sources (books
and surveys).

1. 1D—A brief sketch

In this section, we survey briefly what is commonly called Floquet (or Floquet–
Lyapunov) theory [153, 273, 274], the main tool in studying periodic linear ODEs
and systems of ODEs. Its basics can be found in many ODE textbooks, e.g., in
[7, 8, 68, 69]. There are also nice books and surveys dedicated to (mostly spectral
theory of) the periodic ODEs of the second order, see, e.g., [10, 104, 117, 275],
[25, Section 2.8], [356, Ch. 5], [385, Ch. XXI], and [332, Section XIII.16] (see also
[105, and the references therein] for the case of singular potentials). We want to
attract the reader’s attention to the not sufficiently well known amazing treatise
[399], which contains an enormous amount of information concerning periodic ODEs
and systems of ODEs, including Hamiltonian and canonical systems, parametric
resonance, stability domains, various applications, etc. Here, we will only touch
upon a few basic things.

1.1. Euler’s theorem. Consider a linear system of ODEs

(1.1)
dx

dt
= Cx, t ∈ R, x ∈ Cn,

with a constant n× n matrix C. Then all its solutions look as follows:

x(t) = eCtx0,

where x0 is the initial value of x(t). One thus obtains the following Euler’s theo-
rem [128], which can be found in any ODE textbook:
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Theorem 1.1. All solutions of (1.1) are linear combinations of the exponential-
polynomial solutions of the form

(1.2) x(t) = eiλt
∑

j∈Z,j≥0

pjt
j ,

where iλ is an eigenvalue of C and the sum is finite.
If C has no Jordan blocks, then only j = 0 is present in (1.2).

Floquet–Lyapunov theory, sketched below, generalizes this result to the case of
systems with periodic coefficients.

1.2. Floquet–Lyapunov theory. Let us consider a linear system of ODEs

(1.3)
dx

dt
= A(t)x, t ∈ R, x ∈ Cn,

with a 1-periodic n×n matrix function A(t). As promised before, we will not dwell
here on imposing weakest conditions on the entries of the matrix [399, Ch. II],
assuming that they are continuous. Let X(t) be the n × n matrix fundamental
solution of (1.3). In other words, if

ej = (0, . . . , 0, 1︸︷︷︸
jth entry

, 0, . . . , 0)

is the standard basis of Cn and xj(t), the solution of (1.3) such that xj(0) = ej ,
then X(t) has each xj(t) as the jth column. One thinks of X(t) as the operator
that shifts by time t along the trajectories. In particular, when the value of t
coincides with the period (i.e., is equal to 1 under our assumption), we introduce
the following

Definition 1.2. The matrix

(1.4) M := X(1)

of the shift by period 1 along the trajectories of the system is said to be the mon-
odromy matrix of equation (1.3).

The main result of the Floquet theory is the following

Theorem 1.3. Floquet theorem. There exists a 1-periodic matrix function P (t)
and a constant matrix C, such that

(1.5) X(t) = P (t)eCt.

Remark 1.4. Notice that

(1.6) M = X(1) = eC .

Corollary 1.5. Any solution of (1.3) is a linear combination of Floquet (or
Floquet–Bloch) solutions

(1.7) x(t) = eikt
∑
j∈Z+

pj(t)t
j ,

where the sum is finite, coefficients pj(t) are 1-periodic, and eik are the eigenvalues
of the monodromy matrix M .

When the monodromy matrix does not have Jordan blocks, only the term with
j = 0 is present. In this case, the solution is x(t) = eiktp(t) with a 1-periodic
function p(t) and is sometimes called a Bloch solution.
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Definition 1.6. The eigenvalues z := eik of the monodromy matrix M are called
Floquet multipliers and numbers k are called quasimomenta or crystal mo-
menta (the latter names coming from solid state physics [11]).

Remark 1.7. One notices that the value of a quasimomentum k is defined only
modulo 2πZ-shifts.2

In fact, the following, stronger than Theorem 1.3, result holds:

Theorem 1.8. Lyapunov reduction theorem. There exists a periodic invertible
matrix-function B(t) such that the substitution x(t) = B(t)y(t) reduces the system
(1.3) to the one with a constant matrix C:

dy

dt
= Cy(t).

1.3. Hill operator. Studying higher-order ODEs with periodic coefficients can be
reduced to the case of first-order systems. It is, however, useful to consider the
special case of the so called Hill operator:

(1.8) H = − d2

dx2
+ V (x)

with a “nice” real 1-periodic potential V on R. Again, we will assume the excessive
condition of continuity of V , although much weaker conditions suffice (see, e.g.,
[104, 117, 275, 332, 399]). The domain of the operator will be, by definition, the
Sobolev space H2(R). Defined this way, the operator is self-adjoint3 [117].

1.3.1. Monodromy, discriminant, and such. We will be interested in the spectral
problem for the Hill operator:

(1.9) −d2u

dx2
+ V (x)u = λu.

In accordance with the general Floquet theory approach, we consider the funda-
mental system of two (analytic in λ) solutions φ(x, λ), ψ(x, λ):

(1.10) φ(0, λ) = ψ′
x(0, λ) = 1, φ′

x(0, λ) = ψ(0, λ) = 0.

This enables us to consider the monodromy matrix

(1.11) M(λ) :=

(
φ(1, λ) ψ(1, λ)
φ′
x(1, λ) ψ′

x(1, λ)

)
.

The determinant detM(λ) is the Wronskian of this fundamental system of solutions,
evaluated at t = 1. Since the Wronskian is constant in time and equal to 1 at t = 0,
we conclude that

(1.12) detM(λ) = 1.

Thus, since we are interested in the eigenvalues of the monodromy matrix, all the
pertinent information is contained in the trace of M :

(1.13) Δ(λ) := TrM(λ) = φ(1, λ) + ψ′
x(1, λ),

which is called the discriminant or the Lyapunov function of the Hill operator
(1.8).

2See the discussion of dual lattices and quasimomenta in Section 2.
3It is not hard to show that if one defines the operator on the space C∞

0 (R), it will be essentially

self-adjoint, with the only self-adjoint extension described above.
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Thus, all Floquet multipliers z, being the eigenvalues of M , can be found from
the secular equation

(1.14) z2 −Δ(λ)z + 1 = 0.

Its roots provide Floquet multipliers and quasimomenta for a given λ:

(1.15) eik = z = 0.5
(
Δ(λ)±

√
Δ(λ)2 − 4

)
.

It is now easy to come up with the following result (a compilation of various state-
ments from standard books, e.g., [117, 399]):

Theorem 1.9.

(1) If |Δ(λ)| < 2, then
• the Floquet multipliers are complex, distinct, of the absolute value 1,
and complex conjugate to each other.

• In particular, the quasimomentum is real and if k is a quasimomentum,
then −k is one.4

• All solutions of Hu = λu are bounded.
• The Lyapunov exponent 5 is equal to zero.

(2) If |Δ(λ)| = 2, then
• The two Floquet multipliers coincide and are equal to 1 or −1.
• Quasimomentum is either k = 0 or k = π (mod 2π).
• All solutions of Hu = λu are bounded or polynomially bounded.
• The Lyapunov exponent is equal to zero.

(3) If |Δ(λ)| > 2, then
• The Floquet multipliers are real, distinct, and reciprocal to each other.
• Quasimomenta are complex.
• Solutions of Hu = λu grow exponentially.
• The Lyapunov exponent is positive and equal to |�k|.

Let us look at the case of the free operator (i.e., with zero potential). A straight-

forward calculation shows then that the free discriminant is Δ0(λ) = 2 cos(
√
λ). In

particular, it is an entire function of exponential order 1/2, i.e.,

|Δ0(λ)| ≤ CeC|λ|1/2

for some C > 0. Its graph looks as shown in Figure 1. The properties of the
discriminant in presence of a periodic potential have also been studied thoroughly
(see, e.g., [117,275,385]). As in the free case, it is an entire function of exponential
order 1/2:

|Δ(λ)| ≤ CeC|λ|1/2 .

Figure 2 gives an idea of its behavior.
Notice that the extrema of the free discriminant are located exactly on the

boundary of the horizontal strip |Δ| ≤ 2. They get shifted in the periodic case
(without any new ones being created) but cannot move into the interior of this strip
(see detailed considerations, e.g., in [117]). In particular, the pieces of the function

4This observation also follows from the fact that, due to the potential being real and for real
λ, the complex conjugate of a solution is a solution as well. In physics terms, this is a reflection
of the time reversibility of the dynamical system with the Hill operator as the Hamiltonian.

5The Lyapunov exponent r characterizes the maximal possible rate ert of the exponential
growth of solutions.
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Figure 1. The graph of the free discriminant.

Figure 2. Discriminant for a periodic Hill equation.

Δ(λ) between its consecutive hits of the lines Δ = ±2, are monotonic. We will
provide a simple explanation of this monotonicity a little bit later. The reader will
see later on that absence of any analog of this monotonicity in higher dimensions is
responsible for significant changes in some spectral properties in comparison with
1D.

Definition 1.10. The closures of the segments where |Δ(λ)| < 2 (shown in red in
Figure 3) are called stability zones or spectral bands. The segments between
the bands are called instability zones or spectral gaps. We will denote by gn ≥ 0
the length of the nth gap, n = 1, 2, . . . .

Remark 1.11. Thus, we conclude that the spectral bands are characterized by the
quasimomentum being real and Lyapunov exponent being equal to zero. Corre-
spondingly, the spectral gaps are characterized by the complex quasimomentum
and positive Lyapunov exponent.

1.3.2. Spectrum of the Hill operator. So far, the name “spectral band” was not
explicitly related to the spectrum of the Hill operator H = −d2/dx2 + V (x). It is
not hard to show (which will be explained later on in the higher dimensions) that
the spectrum σ(H) indeed coincides with the union of all spectral bands. E.g.,
existence of bounded generalized solutions inside the spectral bands allows one to
show that the bands do belong to the spectrum. Indeed, cutting off these solutions
at infinity provides approximate eigenfunctions. On the other hand, one can show
that inside the gaps there is no spectrum.

We now collect some important features of the spectrum:

Theorem 1.12.

(1) There exists a sequence of real numbers

(1.16) a1 < b1 ≤ b2 < a2 ≤ a3 < · · · �→ ∞

shipman
Highlight
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Figure 3. Stability zones (spectral bands), shown in red, are sep-
arated by the instability zones (spectral gaps)

.

(ends of the spectral bands) such that the spectrum σ(H) coincides with the
union of all spectral bands Ij

(1.17) σ(H) =
⋃

j∈Z+

Ij ,

where

(1.18) I1 = [a1, b1], I2 = [b2, a2], I3 = [a3, b3], . . . .

(2) The spectral bands have finite lengths and do not overlap but might touch
(see the proof in Lemma 1.17).

(3) Generically (in the Baire category sense), w.r.t. to the C∞ poten-
tial, all gaps are present (open), i.e., there are no equalities in (1.16),
so the bands do not touch [354].

(4) Finite gap (finite zone) potentials, i.e., those that lead to finitely many
open gaps only, are very special and can be all described [112,113,306,307].
However, they form a dense set in the space of all C∞ potentials [72, 277,
278].

(5) There are no open gaps if and only if the potential is constant (the famous
Borg’s theorem [48]).

(6) The rate of the gaps’ sizes gn decay when n → ∞ determines smoothness
of the potential [103–105, 276]. For instance, C∞ potentials correspond to
the gap size decaying faster than any power of 1/n. See, e.g., [105, pp.
96–97] for detailed history.

(7) There are isospectral potentials. The sets of isospectral finite-zone poten-
tials form tori [282, 283, 306].

1.3.3. Dispersion relation. We will introduce now the important notion of the dis-
persion relation for the Hill operator. It is rarely discussed in mathematics litera-
ture devoted to periodic ODEs, but it is central in solid state physics and crucial
for the higher-dimension considerations (see [151, 152] for the Riemann surface of
quasimomentum techniques in 1D).

The dispersion relation describes the spectral parameter λ as a (multiple valued)
function of the crystal momentum k:

Definition 1.13. The dispersion relation (or the Bloch variety BH) of the
Hill operator H is the subset of Rk × Rλ defined as follows:

(1.19)
BH := {(k, λ) ∈ R2 |Hu = λu has a nontrivial Floquet–Bloch
solution u(x) = eikxp(x) with the quasimomentum k}.
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The complex dispersion relation (or complex Bloch variety) BH,C is defined
analogously, only allowing both k and λ to be complex.

One immediately obtains the following statement:

Theorem 1.14.

(1) The dispersion relation is 2π-periodic with respect to k.
(2) The real dispersion relation is even with respect to k. The complex one is

invariant with respect to the mapping (k, λ) �→ (−k, λ). (Indeed, due to the
potential being real, the complex conjugate of a Floquet solution is also a
Floquet solution.)

(3) The spectrum of the operator H coincides with the projection of its (real)
dispersion relation onto the spectral λ-axis.

(4) If the branches of the multiple valued function k ∈ R �→ λ ∈ R are labeled
in increasing order (λ1(k) ≤ λ2(k) ≤ · · · ), then the range of the jth branch
is the jth spectral band of H.

(5) In terms of the discriminant, the dispersion relation (both in the real and
complex incarnations) is described as the set of all (correspondingly real or
complex) solutions (k, λ) of the equation

(1.20) Δ(λ)− 2 cos k = 0.

In other words, it is the graph of the multiple valued function

(1.21) λ = Δ−1(2 cos k).

Formula (1.21) is less useful than (1.20), due to its multiple valued (and branch-
ing) nature. On the other hand, the function F (λ, k) := Δ(λ)− 2 cos k is an entire
function in C2 of a finite exponential order (equal to 1 in Hill’s case). In particu-
lar, one can make the following observation, which gains prominence in the PDE
situation:

Proposition 1.15. The dispersion relation of the Hill operator is a principal (i.e.,
of codimension 1) analytic subset in C2.

Let us look at the case of the free operator. Then the dispersion relation boils
down to cos

√
λ = cos k, or to the union of infinitely many parabolic branches

(1.22) λ = (k + 2nπ)2, n ∈ Z;

see Figure 4. Due to the periodicity with respect to k, it is customary to draw

Figure 4. The dispersion relation (over the whole quasimomen-
tum line) of the free operator.

shipman
Sticky Note
E.M. Chirka, p. 21 for definition of principal analytic subset
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Figure 5. The dispersion relation of the free operator.

the dispersion relation only over the interval [−π, π] (below, this interval will be
called a Brillouin zone). In fact, due to the evenness, one can, without loosing
any information, restrict to [0, π] (reduced Brillouin zone) only (see Figure 5).

One can see that the seeming complexity of the dispersion relation, even in the
free case, is an illusion, since one observes a single period view of a periodic sequence
of parabolas.

Let us see how the picture gets perturbed when a small periodic potential V (x) is
turned on (Figure 6). You see that under this perturbation some gaps are opening.
However, it seems that over [0, π] each branch is still monotonic. Let us see why
this is indeed true.

Figure 6. The dispersion relation in presence of a potential.
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Figure 7. Nonmonotonicity is impossible.

Lemma 1.16.

(1) Each branch λj(k) of the dispersion relation is monotonic over [0, π].
(2) In particular, the spectral band edges occur only at k = 0 and k = π, i.e.,

for periodic or anti-periodic problems for the Hill operator.

Proof. Indeed, if this were not true, taking into account the evenness with respect
to k, one would have a situation such as that sown in Figure 7. If we pick the value
of λ at the level shown, we will find four values of k where this level is reached.
This means that the equation Hu = λu has four independent solutions. The ODE
being of the second order, this is impossible. �

The same argument shows the impossibility of band overlaps, as in Figure 8.
Thus, one concludes:

Lemma 1.17. The spectral bands of the Hill operator do not overlap (although they
might touch).

impossible

λ

π−π k0

Figure 8. No band overlap.
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Remark 1.18. Notice that the conclusions about monotonicity, band edges occurring
at k = 0 and k = π only, and the absence of band overlap were drawn from the
fact that the second-order ODE cannot have more than two independent solutions.
One can wonder whether this is just an artifact of our proof or something deeper.
For instance, this counting cannot be used for PDEs. And indeed, we will see that
for PDEs all these claims are in general incorrect.

We formulate now without proofs some additional spectral properties:

Theorem 1.19.

(1) The pure point and singular continuous spectra of the Hill operator are
empty. Thus, the spectrum is absolutely continuous6 [117, 244, 332].

(2) The dispersion relation, as an analytic set, is irreducible (modulo the 2π
shifts of the quasimomentum). In other words, any open part of the disper-
sion relation uniquely determines the whole of it. To put it still differently,
the smooth part of BH is connected [231]; see also [16]. (See [316] for
additional irreducibility results for periodic ODEs.)

(3) The Bloch variety (which is analytic, as we know), is generically not alge-
braic (e.g., [282, 283]).

2. Lattices in Rn

Switching to the multiperiodic case, we first need to go through some basics
concerning lattices. One can find a nice more detailed introduction in [358].

Definition 2.1. A (Bravais) lattice Γ in Rn is the set of all integer linear combi-
nations of n linearly independent vectors a1, . . . , an (see Figure 9):

(2.1) Γ = {γ ∈ Rn | γ =

n∑
j=1

γjaj , γj ∈ Z}.

We will identify Γ with the corresponding group of shifts of Rn.

Figure 9. A lattice and its fundamental domain (shaded).

Definition 2.2. The dual (reciprocal) lattice to Γ, Γ∗ ⊂ (Rn)∗ (see Figure 10)
is defined as follows:

(2.2) Γ∗ = {k ∈ (Rn)∗ | 〈k, γ〉 ∈ 2πZ for any γ ∈ Γ}.
The original lattice Γ is sometimes called the real lattice.

6We will discus this at length for the PDE case.
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Figure 10. A real and its reciprocal lattices.

In particular, when Γ = Zn and the duality is coming from the standard Eu-
clidean scalar product, then Γ∗ = 2πZn.

Definition 2.3. We fix a connected fundamental domain W (Wigner–Seitz
cell) of the (real) lattice Γ in Rn, i.e., a closed domain such that its Γ-shifts may
intersect only along their boundaries and cover the whole space (see Figure 9).7

We will also fix a fundamental domain B of (the reciprocal lattice) Γ∗ in (Rn)∗,
which we will call the Brillouin zone. One of the options (standard in physics)
is to choose the Voronoi cell, i.e., the set of all points such that the origin is the
closest point to them in Γ∗ (see Figure 11). In this work, we will be choosing a
parallelepiped as the fundamental domain (see (2.3)) and also skip the consideration
of important so-called second, third, etc., Brillouin zones (see, e.g., [71, 358] for
definitions and interesting discussions).

Figure 11. A Brillouin zone of a lattice.

The particular choice of a lattice does not matter in many, and does matter in
some results, but for the sake of simplicity, we will assume, unless noted otherwise,
that

(2.3) Γ = Zn,Γ∗ = 2πZn,W = [0, 1]n,B = [−π, π]n.

We also introduce two tori that correspond to the two lattices

(2.4) T := Rn/Γ and T∗ := (Rn)∗/Γ∗,

equipped with normalized Haar measures on both; e.g., under our standard choice
(2.3), the measures are correspondingly dx and (2π)−ndk.

7A fundamental domain is clearly not defined uniquely.
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Note that under our assumption that Γ = Zn, the torus T∗ can be considered as
the unit torus in Cn:

(2.5) T∗ = {(z1, . . . , zn) ∈ Cn | |z1| = · · · = |zn| = 1}.

As usual, Γ-periodic (resp. Γ∗-periodic) functions on Rn (on (Rn)∗) can be iden-
tified with functions on the torus T (T∗).

Fourier series (FS) identify L2(T) with the l2-space on Γ∗:

(2.6) f(x) �→ {fk :=

∫
T

f(x)e−ik·xdx}k∈Γ∗ .

Analogously with L2(T∗) and l2 on Γ.
One can also consider vector-valued Fourier series. Namely, let H be a Hilbert

space, and let L2(T,H), l2(Γ∗,H) be the spaces of H-valued L2-functions on T and
Γ∗ correspondingly and the Fourier series expansion is defined as in (2.6). The
following theorem restates standard results concerning Fourier series:

Theorem 2.4.

• The FS expansion is an isometry of L2(T,H) onto l2(Γ∗,H).
• A function ∈ L2(T,H) is infinitely differentiable if and only if the norms
‖fk‖ of its Fourier coefficients decay faster than any power of k.

• A function ∈ L2(T,H) allows analytic continuation into a complex neigh-
borhood of T (see (2.5)) if and only if the norms ‖fk‖ of its Fourier coeffi-
cients decay exponentially.

3. Periodic operators

From now on, we will be interested in studying linear elliptic partial different
operators with periodic coefficients. Our main “test” example is the Schrödinger
operator in L2(Rn)

(3.1) H = −Δ+ V (x)

with a “sufficiently nice” real electric potential V , periodic with respect to the
group Γ = Zn (and thus the dual lattice is Γ∗ = 2πZn). The domain of H is the
Sobolev space H2(Rn). In most cases, the reader will not be misled by thinking
just of this operator.

Many other periodic operators of mathematical physics arise in applications and
need to be studied. The techniques described in this survey work (sometimes with
some caveats) for them as well. We will from time to time address some of those,
but so far we just briefly describe some examples worthy of studying (and being
studied):

• Although we assumed above a nice periodic potential V (x) (continuous or
even smooth), this condition is unnecessarily strong (e.g., L2,loc usually suf-
fices). However, the main issues already arise in the smooth case. So, unless
specified otherwise, coefficients in all operators will be assumed suf-
ficiently smooth (e.g., C∞), albeit in practical applications they often
are nonsmooth, even discontinuous.

• The Schrödinger operator (3.1) is self-adjoint, however many of the tech-
niques and results do not require self-adjointness. For instance,
when we discuss in Section 6.3 absolute continuity of the spectrum, we will



AN OVERVIEW OF PERIODIC ELLIPTIC OPERATORS 15

restate it as the absence of the pure point spectrum. In this form, it holds,
without any change in the proof, in the non-self-adjoint setting as well.

• More general Schrödinger operators are also of interest and present more
difficulties in studying them. These are, first of all, the magnetic Schrö-
dinger operator

(
1

i
∇−A(x))2 + V (x)

with periodic magnetic and electric potentials A(x) and V (x) (one assumes
the gauge ∇ ·A = 0).

One encounters even more difficulties in the presence of a periodic
metric

−∇ · g(x)∇+ iA(x) · ∇+ V (x),

where g(x) is a periodic positive definite matrix function.
• Periodic elliptic operators of higher than second order are also of some
interest. Here, one should beware that such operators, unlike the second-
order ones, might not obey even the weakest uniqueness of continuation
laws, which influences the validity of some of the results (e.g., absence of
the pure point spectrum).

• Periodic elliptic systems (including overdetermined ones) can also be con-
sidered, first of all the Maxwell operator (in its second-order incarnation)

(3.2) ∇× ε−1(x)∇×,

where ε(x) is a periodic positively definite scalar function (or tensor) and
∇× is the curl operator. Here one encounters an additional difficulty, since
this operator is not elliptic by itself, but only as a member of an elliptic
complex of operators.

• The natural mapping Rn �→ T is a normal abelian covering of the torus
T. The techniques that we will consider, as well as many results, apply to
periodic operators on coverings

M �→ N,

subject to the following three conditions: (1) The base N is compact; (2)
The deck group Γ of the covering is finitely generated and virtually abelian;8

(3) The operator on M is “elliptic” in the sense that being pushed down to
N , it is a Fredholm operator in appropriate spaces.

In particular, periodic operators on abelian coverings of compact
Riemannian manifolds, analytic manifolds, and even graphs succumb
gladly to the theory.

• Elliptic periodic boundary value problems arise in various applica-
tions (e.g., waveguides and photonic crystals). Here periodicity is imposed
on the shape of the domain, coefficients of the operator, and boundary con-
ditions. Some issues easily resolved for operators in the whole space become
much harder in this new setting (see, e.g., Section 9.4).

• Ellipticity conditions can be weakened to hypoellipticity, e.g., parabol-
icity, although the known results are much weaker here (see Section 9.1
and [244, Ch. 5, and references therein]).

8That is, it contains a finite index abelian subgroup.
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• Nonhypoelliptic periodic equations, e.g., important time periodic hy-
perbolic or nonstationary Schrödinger equations require different
techniques, due to a lack of the Fredholm property (see, e.g., [396–398]
and Section 9.1).

• Some, but not all, studies carry over to periodic elliptic pseudo-differen-
tial operators (ΨDOs) (see, e.g., [244, Section 3.4.C], [323, 367], and ref-
erences therein).

4. Floquet transform and direct integral decomposition

Our main tools in 1D were the spectral analysis of the monodromy operator and
the Lyapunov reduction theorem. Both of them rely upon the propagator along the
solutions of the Cauchy problem. This raises some hopes that an analog of the 1D
Floquet theory might work for time-periodic PDEs of evolution type (parabolic,
hyperbolic, nonstationary Schrödinger), where such propagators are nicely defined.
And indeed, sometimes this does happen, although, surprisingly (and shamefully)
some basic issues still remain unresolved (see some details in Section 9.1). However,
for nonevolution (e.g., elliptic) periodic PDEs using such propagators is all but

impossible . One thus has to resort to a different technique, which we outline
below.

4.1. Floquet transform. As we have recalled above, Fourier series transform
functions of γ ∈ Γ (even with values in a Hilbert space) into functions of z ∈ T∗

{fγ}γ∈Γ �→ f̂(z) :=
∑
γ∈Γ

fγz
γ =

∑
γ∈Γ

fγe
ik·γ ,

with standard L2 isometry and Paley–Wiener type theorems being preserved. Here
k ∈ Rn and z belongs to the unit torus T∗.

Now let f(x) be a function in L2
loc(R

n). We cover Rn by the shifted copies of
the fundamental domain W :

(4.1) Rn =
⋃
γ∈Γ

(W − γ),

cut f into the corresponding pieces f |W−γ and then shift them all back to the
original W

(4.2) fγ(x) := f |W−γ(x− γ).

Here if we restrict x to being in the Wigner–Seitz cell W , we get a function on Γ
with values in the Hilbert space L2(W )

(4.3) γ ∈ Γ �→ fγ ∈ L2(W ).

Now summing the Fourier series, we arrive to our main tool:
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Definition 4.1. The Floquet transform9 UΓ acts as follows:

(4.4) f(x) �→ UΓf(x, k) :=
∑
γ∈Γ

fγ(x)e
ik·γ =

∑
γ∈Γ

fγ(x)z
γ ;

i.e., this is just the sum of the Fourier series, whose coefficients are the pieces of f
over the shifted copies of the fundamental domain.

Here, as before, z = (z1, . . . , zn) := (eik1 , . . . , eikn) is the Floquet multiplier cor-
responding to the crystal momentum k = (k1, . . . , kn). We will also abuse notation,
writing

UΓf(x, z) =
∑
γ∈Γ

fγ(x)z
γ .

It will be convenient to extend UΓf(x, k) from x ∈ W to the whole Rn just by
removing the restriction to W − γ in (4.2), which results in

(4.5) f(x) �→ UΓf(x, k) :=
∑
γ∈Γ

f(x− γ)eik·γ =
∑
γ∈Γ

f(x− γ)zγ .

If this is done, then one observes the following useful properties:

UΓf(x+ γ, k) = UΓf(x, k)e
ik·γ , γ ∈ Γ,(4.6)

UΓf(x+ γ, z) = UΓf(x, z)z
γ , γ ∈ Γ,(4.7)

UΓf(x, k + k′) = UΓf(x, k), k
′ ∈ Γ∗.(4.8)

The first two equalities, (4.6) and (4.7), say that, being considered on the whole
space Rn, UΓf(x, k) is Γ-automorphic with respect to x with the character eik·γ

(this is also called cyclic property, quasiperiodicity, or Floquet property).
The last one, (4.8) claims Γ∗-periodicity with respect to k.

It is easy to get an inversion formula for the Floquet transform. Indeed, it is
enough to find the Fourier coefficients of UΓf(x, k) with respect to k and place them
where they belong, i.e., on the shifted copies of the fundamental domain. This leads
to the following inversion formula:

(4.9) f(x) =

∫
T∗

UΓf(x, k)e
−ik·γdk, x ∈ W − γ, for any γ ∈ Γ.

On the other hand, if we consider the Fourier coefficients fγ as the shifted copies of
f in the whole space Rn, then just the zero’s coefficient recovers the whole function

(4.10) f(x) =

∫
T∗

UΓf(x, k)dk, x ∈ Rn.

9Neither the name “Floquet transform” is commonly accepted nor did Floquet introduce this
transform. Various other names have been suggested: Bloch transform, Gelfand transform (due
to [166]), Zak transform, and probably some others. Here we see an instance of the so-called
Arnold’s principle: If a notion bears a personal name, then this name is not the name of
the discoverer [9]. (See also Berry’s principle: Arnold’s principle is applicable to itself and
Stigler’s law of eponymy [369].) However, it is handy to use a name, rather than point a finger
to a formula. Thus, the author chose Floquet, since this transform is very natural for Floquet
theory.
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4.2. Plancherel and Paley–Wiener type theorems. Now, application of The-
orem 2.4 to H = L2(W ) leads to the following range theorems for the Floquet
transform.

Theorem 4.2.

• UΓ is isometry from L2(Rn) onto L2(T∗, L2(W )).
• UΓf(·, k) is infinitely differentiable on T∗ as a function with values in
L2(W ) iff the norms ‖f‖L2(W+γ) decay when |γ| �→ ∞ faster than any
power of |γ|.

• UΓf(·, k) is analytic in a complex neighborhood of T∗ as a function with
values in L2(W ) iff the norms ‖f‖L2(W+γ) decay exponentially fast when
|γ| �→ ∞.

Dealing with differential operators, we will also be interested in the behavior of
Sobolev spaces Hs(Rn) under the Floquet transform. This seems to be a “piece of
cake”, just replacing everywhere L2 with Hs. Well, not so fast:

Proposition 4.3. UΓ is an isometry from Hs(Rn) onto a proper subspace of
L2(T∗, Hs(W )).

Oops! What is wrong with Sobolev spaces? The answer is not hard to figure out.
Indeed, if one takes an arbitrary function F (x, k) in L2(T∗, Hs(W )), its alleged pre-
image under the Floquet transform can be, as we have figured out before, recovered
by taking Fourier coefficients of F and distributing them to the appropriate shifts
of the fundamental domain W . The resulting function is, by construction, in Hs

inside of each of the shifted copies of W . Moreover, the sum of squares of their
Hs-norms is finite. The problem is that there is nothing enforcing the smoothness
across the boundary between two adjacent cells.

Fortunately, it is not hard to fix this and to describe the range of the transform
explicitly. Clearly, some boundary conditions are needed to glue the pieces together.
And indeed these are easy to establish, for instance, when s = 2 (or any s ∈ Z+). It
is, however, easier to avoid this and to adopt a much more telling (and applicable
for any s ≥ 0) view. The clue on how to do this comes from the automorphicity
property (4.6, 4.7). We introduce the following

Definition 4.4. For any k ∈ Cn, the space Hs
k(W ) is the space of restrictions to

W of the Hs
loc-function on Rn that is automorphic with the given k:

(4.11) Hs
k(W ) := {f |W | f ∈ Hs

loc(R
n), f(x+ γ) = eik·γf(x) a.e., ∀γ ∈ Γ}.

Another useful object is a k-dependent smooth line bundle over T. Let us fix
k ∈ Cn and consider first the trivial line bundle E := Rn × C over Rn. We define
a (k-dependent) Γ-action on E as follows:

(4.12) for any γ ∈ Γ and (x, c) ∈ E, τk(γ)(x, c) := (x+ γ, eik·xc).

Definition 4.5. We denote by Ek the line bundle over the torus T obtained
by factoring out the action τk of Γ on the bundle E.

Now the following claims are immediate to obtain:

Proposition 4.6. Let s ≥ 0. Then, for any k,

(1) Hs
k is a closed subspace in Hs(W ).

(2) H0
k = L2

k = L2(W ).
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(3) Hs
k+k′ = Hs

k for any k′ ∈ Γ∗.
(4) A function u belongs to Hs

k iff

(4.13) u(x) = eik·xv(x) with v(x) being Γ-periodic, i.e., v ∈ Hs(T).

(5) Moreover, Hs :=
⋃

k H
s(k) is an analytic Banach vector subbundle of the

trivial bundle Cn ×Hs(W ) over Cn.
(6) There is a natural correspondence between Γ-automorphic functions on Rn

with a quasimomentum k and sections of the linear bundle Ek over T.
(7) Under this correspondence, elements of Hs

k correspond to Hs-sections of
the bundle Ek.

(8) The operator H preserves the Γ-automorphicity. In particular, H defines
an elliptic operator H(k) on sections of the bundle Ek.

Remark 4.7.

• In the particular case when H is the Laplacian −Δ, the operators −Δ(k)
are called twisted Laplacians. We call H(k) twisted Schrödinger op-
erators, or (more commonly) Bloch Hamiltonians.

• The advantage of dealing with the family of operators H(k) rather than the
single operator H is that each H(k), being an elliptic operator in sections of
a bundle over a compact manifold T, has purely discrete spectrum, unlike
the operator H, whose spectrum is continuous.

• For the operator H = −Δ + V (x), the corresponding H(k) acts by the
same differential expression on W with the domain H2

k , i.e., with the cyclic
boundary conditions. In this view, the domain of the operator analytically
rotates with k, while the differential expression of H stays the same. One
of its advantages is that the domain Hs

k of the operator is Γ∗-periodic with
respect to k, so it can be considered as depending on the Floquet multiplier
z = (eik1 , . . . , eikn) only.

• Alternatively, according to (4.13), the operator H(k) can be considered as
acting, for all k, on periodic functions on T. This is achieved by commuting
with an exponential function

(4.14) e−ik·x ◦ (−Δ+ V (x)) ◦ eik·x.

This leads to the following differential expression for H(k)

(4.15) −Δ− 2ik · ∇+ k2 + V (x)

acting on the torus T, i.e., on Γ-periodic functions. The advantage of
this representation is the explicit polynomial dependence of the differential
expression on the quasimomentum and the domain being fixed. On the
other hand, explicit periodicity in k is lost.

There are advantages and disadvantages of both representations. It is
thus recommended to choose them judiciously, depending on the problem.

• The latter representation can be generalized to any periodic differential

operator L(x,D), where D :=
1

i

∂

∂x
:

(4.16) L(k) = L(x,D + k).

We can now formulate the exact range theorem for the Floquet transform in
Sobolev spaces:



20 PETER KUCHMENT

Theorem 4.8.

• UΓ is an isometry from Hs(Rn) onto the space L2(T∗,Hs) of the L2-sections
of the bundle Hs.

• The section UΓf(·, k) is infinitely differentiable on T∗ iff the norms
‖f‖Hs(W+γ) decay when ‖γ‖ �→ ∞ faster than any power of ‖γ‖.

• The section UΓf(·, k) is analytic in a complex neighborhood of T∗ iff the
norms ‖f‖Hs(W+γ) decay exponentially fast when ‖γ‖ �→ ∞.

4.3. Direct integral decomposition. We can summarize the results of previous
sections as the following direct integral decompositions of functional spaces
and of the operator H:

(4.17) L2(Rn) =

⊕∫
T∗

L2(W ), Hs(Rn) =

⊕∫
T∗

Hs
k , H =

⊕∫
T∗

H(k).

We will not get into any deeper discussions of the direct integral technique (see,
e.g., [79, 102, 154, 303, 332, 338]).

5. Dispersion relation and all that

As there is in general no analog of the 1D discriminant in higher dimensions, the
dispersion relation takes the lead. Its definition and many properties are analogous
to the ones in 1D, although some important distinctions do arise.

5.1. Dispersion relation = Bloch variety.

Definition 5.1. The (real) dispersion relation (or the (real) Bloch variety
BH) of the periodic Schrödinger operator10 H is the subset of Rn

k × Rλ defined as
follows:

(5.1)
BH := {(k, λ) ∈ Rn+1 |Hu = λu has a nontrivial Bloch–Floquet
solution u(x) = eik·xp(x) with the quasimomentum k}.

The complex dispersion relation (or complex Bloch variety) is defined anal-
ogously, only allowing both k and λ to be complex, i.e., BH,C ⊂ Cn+1. As we will
see later on, the ability of considering the complex Bloch variety turns out to be
very important.

5.2. Dispersion relation and the spectrum. Let us assume that k ∈ Rn. The
operator H(k) being a self-adjoint elliptic operator in sections of a linear bundle on
the torus, implies:

Lemma 5.2. For any k ∈ Rn, the operator H(k) is bounded below and has a
discrete (real) spectrum

(5.2) σ(H(k)) = {λj(k)|λ1(k) ≤ λ2(k) ≤ · · · ≤ λd(k) ≤ · · · �→ ∞}.

Definition 5.3. The function λj(k) is called the jth band function.

Remark 5.4. Notice that for complex quasimomenta k, the spectrum of H =
−Δ(k) + V is also discrete [4, pp. 180-190], although labeling the band functions
becomes an issue.

10The definition stays the same for other periodic operators.
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The following statements hold, due to the direct integral expansion (4.17) of the
operator, perturbation theory [217], and standard properties of analytic Fredholm
operator functions (e.g., [244, 394, 404]):

Theorem 5.5.

(1) The band functions are continuous and piecewise analytic.
(2) The graph of the multiple valued mapping

(5.3) k ∈ Rn �→ σ(H(k))

coincides with the dispersion relation (Bloch variety) BH of H.
(3) The latter claim also holds in the complex case, i.e., the graph of the multiple

valued mapping

(5.4) k ∈ Cn �→ σ(H(k))

coincides with the complex dispersion relation (complex Bloch variety) of
H.

(4) The dispersion relation is Γ∗-periodic with respect to k and thus it is suffi-
cient to consider it only over the Brillouin zone B.

(5) The dispersion relation is symmetric (even) with respect to the mapping
k �→ −k. (This fails if the potential is not real.)

(6) The spectrum σ(H) is the range of the (real) dispersion relation, i.e.,

σ(H) =
⋃
k∈B

σ(H(k))(5.5)

= {λ ∈ R | ∃k ∈ Rn, such that λ ∈ σ(H(k))}(5.6)

= {λ ∈ R | ∃k ∈ Rn, j ∈ Z+, such that λ = λj(k)}.(5.7)

The last statement of the theorem is a very general claim about spectra of direct
integrals of operators (see, e.g., [244, 332]).

In Figure 12 one finds an example of the dispersion relation for a nonzero po-
tential.

Figure 12. The dispersion relation of a nonfree operator, drawn
over a Brillouin zone.
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The following lemma is often very useful:

Lemma 5.6. Let S be a dense subset of the Brillouin zone B. Then

(5.8) σ(H) =
⋃
k∈S

σ(H(k)).

In other words, if for some reason one wants to avoid some exceptional values
of k (e.g., k = 0 causes troubles for the Maxwell operator), one can avoid them by
choosing an appropriate dense subset of quasimomenta.

We can now define the spectral bands of the operator H:

Definition 5.7. The segment

(5.9) Ij := range(λj) = {λ ∈ R | ∃k ∈ Rn such that λ = λj(k)}
is the jth band of the spectrum σ(H).

Due to Γ∗-periodicity with respect to k, one can also write

(5.10) Ij = {λ ∈ R | ∃k ∈ B such that λ = λj(k)}.

Corollary 5.8.

(1) Each band Ij is a finite closed interval, both of whose endpoints tend to
infinity when j → ∞.

(2) The bands cover the whole spectrum:

(5.11) σ(H) =
⋃

j∈Z+

Ij .

(3) The bands can11 overlap.

As it was in 1D, it is easy to check that for the free operator H = −Δ, BH is the
union of the paraboloid λ = k2 and its Γ∗-shifts. One can deduce from this (which
requires highly nontrivial work involving number theory (e.g., [317, 323, 358])) the
following two theorems:

Theorem 5.9. Consecutive spectral bands of the free operator overlap,
and thus the spectrum of the free operator has no gaps.

This is in a stark contrast with 1D, where the bands do not overlap (touching
in the worst case).

To quantify the overlap of the bands Ij , Skriganov (see, e.g., [358]) introduced
the following continuous overlap function on R:

Definition 5.10.

(5.12) ζ(λ) :=

{
max

j
max{t ≥ 0 | [λ− t, λ+ t] ⊂ Ij}, λ ∈ σ(H)

0, λ /∈ σ(H)
.

Theorem 5.11.

(1) In dimension n = 2, one has

(5.13) lim
λ→∞

ζ(λ) = ∞.

11And, as we will see, usually do.
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(2) When n = 3,

(5.14) lim sup
λ→∞

ζ(λ) ≥ c > 0.

(3) In dimensions n ≥ 4, the lower bounds for the overlap functions are given
by negative powers of λ (see [323] for details and further references).

5.3. Periodic operators as perturbations of the free ones. If one understands
the free operator well, there is a temptation to consider the periodic potential as
a perturbation term, at least at high energies λ → ∞. This happens to be a
highly valuable approach in many instances (e.g., in establishing the finiteness of the
number of spectral gaps and various spectral asymptotics, topics addressed later in
this text). However, it is also challenging and technically difficult. Even moderately
comprehensive exposition alone might take a book (and in fact such books have been
written [213, 389]). Thus we will just indicate some of the difficulties and send the
reader to the original texts for the details of various techniques employed.

It has been noticed (e.g., [137,138,157,158]) that the Floquet eigenvalues λj(k)
can be split into the sets of nice stable and much more complicated unstable or
resonant ones. The perturbation approach works more easily in the stable region
and requires a lot of ingenuity when working with the unstable one (in particular,
showing that the resonant values are sufficiently rare). The reader is directed to
[213, 323] and the references therein for technical details and further references.

Looking back at Theorem 5.11, one can expect the difficulties growing with
the dimension, which indeed does happen. It is also much harder to handle the
higher-order perturbations, e.g., periodic magnetic potential terms of Schrödinger
operator. Again, the paper [323] is a good reference to look into for contemporary
results and techniques.

5.4. Born–Karman approximation. A very useful way of obtaining the disper-
sion relation (and thus the spectrum) of a periodic operator is due to Born and Von
Karman (see, e.g., [11]).

We will assume, as before, that Γ = Zn (although the approach works for any
lattice).

Theorem 5.12. Consider for an integer N the cube QN := [−N,N ]n ∈ Rn and
define the operator H(N) acting as the differential expression of H on QN with
periodic boundary conditions (i.e., on the cube QN folded onto a large torus). Then

(5.15) σ(H) = lim
N→∞

σ(H(N)) =
⋃

N∈Z+

σ(H(N)),

where the limit is taken with respect to the Hausdorff distance on any bounded part
of the real axis.

Indeed, let us denote by QB the subset of the Brillouin zone consisting of all
quasimomenta with components that are rational multiples of π. Then, it is a
rather straightforward exercise to see that⋃

N∈Z+

σ(H(N)) =
⋃

k∈QB
σ(H(k)).

Now, using Lemma 5.6, one proves Theorem 5.12.
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Remark 5.13. Another important observation is that this theorem is more than just
the claim about Hausdorff convergence of spectra, or density of states convergence.
Indeed, such claims hold also for other reasonable choices of boundary conditions
(e.g., Dirichlet), or other choices of large domains instead of large cubes assembled
from the fundamental unit cubes [352]. In those cases, however, one can often see
spurious spectra appearing outside σ(H), but disappearing in the limit. In the
Born–Karman case, though, this does not happen, since σ(H(N)) ⊂ σ(H) for any
N .

5.5. Analytic properties of the dispersion relation BH . We will now explore
analytic properties of the dispersion relation of the operator H. Consider the
complex Bloch variety

(5.16) BH,C ⊂ Cn+1.

Theorem 5.14 ([240, Lemma 8 of §4], [244, Theorem 4.4.2], see also [229]).

(1) There exists an entire function f(k, λ) on Cn+1, such that
(a)

(5.17) |f(k, λ)| ≤ Cpe
(|k|+|λ|)p

for any p > n. (A similar statement holds for more general elliptic
periodic operators, with the exponent p depending on the dimension
and order of the operator [244].)

(b)

(5.18) BH,C = {(k, λ) ∈ Cn+1 | f(k, λ) = 0}.

(2) If we only allow p > n+1 as the exponential order, one can make sure that
f is Γ∗-periodic w.r.t. k.

In particular, BH,C is a Γ∗-periodic complex analytic subvariety of Cn+1 of
codimension 1.

An easier statement, without estimates on growth of the function f , can be
obtained from the analytic Fredholm theory (e.g., [244,394,404]). The proof of the
theorem as stated uses the theory of regularized determinants in Shatten–von
Neumann classes, presented in, e.g., [114, 175, 355].

5.6. Floquet variety. It is natural to reduce BH with respect to its Γ∗-periodicity
(i.e., using Floquet multipliers z = eik instead of crystal momenta k). We thus
introduce the following (not commonly adopted) notion:

Definition 5.15. The Floquet variety FH of H is defined as follows:

(5.19) FH := {(z, λ) ∈ (C∗)n ×C | z = eik = (eik1 , . . . , eikn), with (k, λ) ∈ BH,C}.

Here C∗ is the punctured complex plane C∗ := C \ {0}.

In other words, (z, λ) ∈ FH , iff there exists a nonzero Floquet solution of Hu =
λu with the Floquet multiplier z.
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5.7. Nonalgebraicity. As we have seen already in the free case, BH is the union
of Γ∗-shifts of a single paraboloid. Thus, we get

Proposition 5.16. In the free case,

(1) All irreducible components of the Bloch variety BH are algebraic (shifted
paraboloids). In particular, the Bloch variety BH is irreducible modulo Γ∗-
shifts.

(2) The Floquet variety FH is irreducible.

It is thus interesting to ask what to expect in terms of algebraicity and irre-
ducibility in the nonfree periodic case.

In general, the irreducible components of neither Bloch nor Floquet variety are
algebraic [139]. There exist, however, examples of non-self-adjoint periodic
operators H with algebraic components of BH (see [239, Theorem 11] and
[244, Theorem 4.1.2]).

In discrete problems, the Floquet varieties are algebraic [27, 243], since
the corresponding operators H(z) are finite Laurent series with respect to z:∑

j∈Zn

Hjz
j ,

where the sum is finite and Hj are matrices of a finite size.
An impressive detailed study of the structure the Bloch variety for discrete pe-

riodic Schrödinger operators on Z2 was done in [172, 173].
Another important question is about irreducibility of the Bloch variety in higher

dimensions, which is addressed in the next subsection.

5.8. Irreducibility. It is conjectured that the analog of the statement (2) of
Proposition 5.16 holds in higher dimensions:

Conjecture 5.17. The Bloch variety of the self-adjoint periodic Schrödinger op-
erator H = −Δ+ V (x) is irreducible modulo Γ∗.

A stronger version conjectures the same for more general periodic self-adjoint
second-order elliptic operators.

Proving this conjecture seems to be extremely hard. It has been proven in
dimension 2 by a tour de force in the paper [229], as well as in the 2D discrete case
in [172, 173].

A much weaker conjecture formulated below is already nontrivial:

Conjecture 5.18. The Bloch variety BH for a periodic elliptic second-order
operator H with sufficiently decent coefficients does not have any flat components
λ=const.

We will see later on, how important is the resolution of this conjecture for spectral
theory. That is why it has attracted the attention of many mathematicians and has
been proven in many cases (albeit still not in its full generality); see Section 6.3.

We provide here an easy to complete sketch of the proof of the following well-
known result, due to Thomas [382], although he did not formulate the statement
in this form (see also [332, Section VIII.16]):

Theorem 5.19 ([382]). Let V ∈ L∞(Rn) be periodic. Then the Bloch variety of
the Schrödinger operator −Δ+ V (x) has no flat components λ = λ0. (Notice that
it is not assumed that the potential V is real.)
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Proof. Suppose that this is incorrect, i.e., there exists λ0 ∈ C such that the equa-
tion −Δ(k)u + V u = λ0u has a nontrivial 1-periodic solution u for any k ∈ Cn.
Absorbing the spectral parameter into the potential, we can assume that λ0 = 0.
Thus, we conclude that

Δ(k)u = V u has a nontrivial solution u for any k ∈ Cn.

Let M := ‖V ‖L∞ . Then ‖V u‖L2(T) ≤ M‖u‖L2(T) and thus

‖Δ(k)u‖L2(T) ≤ M‖u‖L2(T)

for any k (with a nontrivial u depending on k).
Let us now pick quasimomentum with a large imaginary part and judiciously

chosen real part. Namely, assuming that Γ = Zn (analogous consideration works
for any lattice), let

k = (π + i2a, 0, . . . , 0), a ∈ R.

Expansion of the periodic function u into a Fourier series easily leads to the estimate

‖Δ(k)u‖L2(T) ≥ |a|‖u‖L2(T).

If a > M , we get a contradiction, unless ‖u‖ = 0, which we assumed does not
happen. �

The assumption of boundedness of the potential is way too strong (see, e.g.,
[332, Section VIII.16]).

In fact, a stronger statement holds:

Theorem 5.20. Under the same conditions as in Theorem 5.19, for any λ0 ∈ R,
the level set of the dispersion relation (isoenergy surface, or Fermi surface, see
Section 5.11)

(5.20) Fλ0
= {k ∈ Rn |H(k)u = λ0u has a nonzero solution}

has measure zero in Rn.

We will see later that this leads to the absolute continuity of the spectra of peri-
odic Schrödinger operators, which was the main goal in [382]. Due to this relation,
the statements of Theorems 5.19 and 5.20 have been extended in the last three
decades to a large variety of scalar and matrix periodic operators of mathematical
physics (e.g., Pauli, Dirac, magnetic Schrödinger, Maxwell, and elasticity operators,
see Section 6.3 and references therein), although the proof of the full Conjecture
5.18 remains elusive.

Remark 5.21.

(1) The consideration of the proof of Theorem 5.19 can be carried over to a
variety of (probably not too interesting) periodic operators L(D) + V (x),
where L(D) is a constant coefficient operator; see [239, p. 28] and the
references therein.

(2) An often overlooked interesting observation was made in [115,116] that the
Fermi surface contains not only no flat parts but also no open pieces of
some nonflat rational curves.

We need first the following auxiliary statement:

Lemma 5.22. Let a(k) be a real analytic function on (a connected open domain
of) Rn. If the measure of the zero set of a is positive, then the function vanishes
identically.
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Remark 5.23. This claim has several elementary proofs, but for some reason it is
hard to find it even stated in most texts on real analytic geometry ([236] is an
exception). Due to article size limitations, let me just indicate three approaches,
each of which can be easily completed by a graduate student: using Fubini’s theorem
(as suggested in [25, Corollary 5.2]); by induction with respect to the dimension
(suggested in [236, begginning of Section 4.1]); by covering the set with a countable
set of smooth submanifolds, obtained using implicit function theorem [293]. It can
also be derived from the Weierstrass Preparatory Theorem (e.g., [189]). It is also a
direct corollary of the Lojasiewicz’s result on existence of Whitney stratification of
real analytic sets [271,272], as well as of the desingularization theorems by Bierstone
and Milman [31, 32], which seem to be quite an overkill in both cases. Another
nontrivial derivation can be found in Federer’s book [131, Section 3.1.24, p. 240].

Now Theorem 5.20 becomes a simple corollary of Theorem 5.19. Indeed, the level
set of the dispersion relation is the set of real zeros of an entire function f(k, λ0)
(see Theorem 5.14 for its definition). Thus, if this set has positive measure, then,
according to Lemma 5.22, the function vanishes identically, and thus f(k, λ0) = 0
for all k ∈ Cn. This is impossible according to Theorem 5.19.

One should notice that for periodic elliptic operators of orders higher than 2
neither of these conjectures holds true; e.g., there are examples of such operators
of the fourth order whose Bloch variety is reducible and, moreover, has a flat
irreducible component [244, pp. 135–136].

Let us address another issue related to irreducibility. We have seen that in
the free case any nonzero Γ∗-shift of an irreducible component Σ of BH produces
another component, different from Σ. In other words, irreducible components are
not invariant with respect to any nonzero Γ∗-shifts. It seems that in the presence
of a generic periodic potential the situation is different.

Conjecture 5.24. For a generic potential, unless an irreducible component Σ ⊂
BH is algebraic, there exists a nonzero Γ∗-shift that leaves it invariant.

If this is correct, then perturbation of the free operator by a periodic potential
not only deforms the paraboloids, but also glues them together.

5.9. Extrema. Since, according to (5.5)–(5.7) the edges of the spectrum occur at
extrema of the band functions, studying these extrema is an important task.

5.9.1. Location. In 1D, the extrema of the dispersion relation λ(k) occur only at
k = 0 and k = π in the Brillouin zone, due to the monotonicity (Lemma 1.16) of
band functions on the reduced Brillouin zone.

Let us try to look at the points k = 0 and k = π in a different light. The
reciprocal lattice Γ∗ is invariant with respect to the symmetry group generated
by its shifts and “time reversion” k �→ −k. One discovers then that the points
k = 0, π are exactly the fixed points of some of these symmetries inside of the
reduced Brillouin zone.

In higher dimensions, the symmetry group can be larger [51]. If one looks at the
free case, one discovers that critical points of these overlapping paraboloids do occur
at some symmetry points as well. Most computations for periodic Schrödinger and
Maxwell operators also showed this effect. This has led to the following:
Formerly popular belief. For −Δ+V (x), the extrema of dispersion relation are
attained at fixed points k ∈ B of some symmetries (probably at the highest symmetry
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points); i.e., computing the dispersion only around the symmetry points gives the
correct spectrum as a set.

No monotonicity (or any other) reason for this claim exists. Some numerical
evidence against it has been around, but is not widely known and/or believed.
This claim was discussed and disproved analytically in [130, 190] (see also
simpler waveguide examples in papers [49, 50] and a physics paper [82]). It is also
discussed in [190] why in practice the extrema are indeed often located at the
symmetry points.

5.9.2. Generic structure of spectral edges. After discussing the possible locations of
the extrema, we move to the probably more important question of their structure.
The following complications can (and do) occur at a spectral edge value λ = c:

A: The extremal value c is attained by more than one band function.
B: The extremum c of a single band function λj is nonisolated (i.e., a “Mexican

hat” type picture occurs).
C: The extremum is isolated, but degenerate (i.e., the Hessian of λj(k) at the

extremum point is degenerate).

Although all of the above can occur (e.g., [146, 349]), the general belief is that
generically they do not (see, e.g., [71]).

Conjecture 5.25. Generically (with respect to the potentials and other free pa-
rameters of the operator), the extrema of band functions

(1) are attained by a single band;
(2) are isolated;
(3) are nondegenerate, i.e., have nondegenerate Hessians.

In other words, one conjectures that generically near a spectral edge the dis-
persion relation looks like a single parabolic shape, i.e., it resembles the dispersion
relation at the bottom of the spectrum of −Δ. As we will see later (Section 7),
then various analogs of the properties of the Laplacian would be applicable to a
generic periodic elliptic operator.

Why would one conjecture this? Well, existence of a degenerate extremum of
the dispersion relation is an analytic equality type restriction. Then it is natural
to think that it should either hold almost never, or for (almost) all operators. It is
hard to believe that such a restriction for all periodic potentials exists.

The common idea is that generically, the dispersion relation probably behaves
like the spectrum of a “generic” family of self-adjoint matrices. This has been
conjectured in various (explicit or implicit) forms by several authors; see [16, 71,
304, 305]).

Although the validity of conditions (1)–(3) of Conjecture 5.25 is often assumed
in mathematics and physics literature (it is involved with the definition of effective
masses in solid state physics, homogenization, Green’s function asymptotics, Liou-
ville type theorems, impurity spectra in lacunas, Anderson localization, etc., see
Section 7), the conjecture remains largely unproven.

Let us mention what is known in this regard.
The following classical result of [224] establishes the conjecture (in a stronger

form) at the bottom of the spectrum of a Schrödinger operator with periodic electric
potential.
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Theorem 5.26 ([224]). Let

H = −Δ+ V (x)

be a periodic Schrödinger operator in Rn. Then the bottom of the spectrum of H
is attained by the nondegenerate minimum at k = 0 of the lowest eigenfunction λ1

only.

An analogous result was obtained for the periodic 2D Pauli operator in [45]. An
improvement to Theorem 5.26, under an additional symmetry assumption on the
potential, was obtained in [193]. Regretfully, the arguments of [45, 224] are not
applicable in the case of an internal spectral edge.

The conjecture was not only stated, but also proven for “small” potentials in 2D
[71]:

Theorem 5.27 ([71]). For given lattice Γ ⊂ R2 and natural number N , there exists
a residual set R in a neighborhood of zero in C∞(T,R), such that for any potential
V ∈ R and all j ≤ N , the Floquet eigenvalues λj(k) are simple and λj(k) is a
Morse function on the torus T.

The following partial result was proven in [228]:

Theorem 5.28 ([228]). Claim (1) of Conjecture 5.25 holds for a generic Schrö-
dinger operator with periodic electric potential.

The second claim of the conjecture was recently proven for Schrödinger operators
in 2D in [146].

It was shown in [349, 350] that the presence of a magnetic potential can create
degeneracies even at the bottom of the spectrum.

The conjecture makes sense also in the discrete case and was proven for
periodic Schrödinger operators on Z2 (see the overview [172] for the results
and exact references).

For more general Z2-periodic graphs there is the following partial result:

Proposition 5.29 ([109]). Let H be the periodic Laplace–Beltrami type operator12

on a Z2-periodic graph Γ, having just two vertices (atoms) per a fundamental do-
main, with all possible edges between adjacent copies of fundamental domain being
allowed. Then the set of parameters (vertex and edge weights) for which the disper-
sion relation has a degenerate extremum is a (semi-)algebraic subset of codimension
1 in the space of all parameters.

However, as an example [146] of a stable nonisolated extremum shows, one has
to be careful, allowing for a sufficiently large space of perturbation parameters
(analogs of potentials).

In principle, if the conjecture were proven for the discrete case, one could attempt
to bootstrap the result to the continuous case (such a procedure was used for a
different purpose in [190]). A direct approach to the continuous case, skipping the
discrete one, would be desirable.

Allowing change of the lattice of periods to a sublattice, possibility of removing
degenerate edges by perturbation of the potential was shown in 2D in [324].

12See [27,67] for the explicit form of such operators.
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Figure 13. Dirac cones for the tight-binding model of graphene.

5.10. Dirac cones. When two branches of the dispersion relation meet, they often
form a conical junction point, called a Dirac cone or sometimes a diabolic point [29].
The former name reflects the fact that the conical structure resembles the one for
the dispersion of a 2D massless Dirac equation [218].

Such conical structures are usually unstable under perturbation of parameters
(e.g., the potential) of the operator. However, it has been noticed that if the struc-
ture has honeycomb lattice symmetry, preserved under perturbation, this protects
the cone from splitting. Thus, in particular, such a cone mandatorily arises in the
dispersion relation of the famous graphene, which explains its amazing electric
properties (see, e.g., [218]).

Figure 14. Dirac cones for the honeycomb structure.

The observation of the mandatory appearance of Dirac cones in honeycomb-
symmetric structures was first made (way before the graphene came into play) for
the tight-binding model of the discrete honeycomb lattice [392], which provides
an approximate picture of the graphene’s first two dispersion bands. An infinite-
band quantum graph model, which has an infinite-dimensional freedom of choosing
honeycomb-symmetric potentials was considered in [255], where the detailed struc-
ture of the spectrum and dispersion relation, including in particular the presence
of Dirac cones, was described.13 For 2D Schrödinger operators with honeycomb-
symmetric potentials, existence and stability of Dirac cones was established, ex-
plained, and studied [26,132–136,186]. The Schrödinger operator with honeycomb
lattice of point scatterers was considered in [263]. Carbon nanotubes as folded
sheets of graphene have been studied in various papers, see, e.g., [106,234,255] and
references therein.

13The article [255] also contained the detailed spectral analysis of quantum graph models of
all possible types of carbon nanotubes.
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One can say, however, that the story does not end here, since the presence of
stable Dirac cones (including very interesting nonisotropic ones) has been observed
for more general 2D (graphyne) structures, which lack honeycomb symmetry; see,
e.g., [122] for physics discussion and [106, 107] for quantum graph studies of a
simplest graphyne. So far, there is no complete understanding of this phenomenon
(analogous to the one provided in [26, 135, 186] for the honeycomb case).

5.11. Fermi surfaces. The notion of the Fermi surface is among the central ones in
solid state theory as one can see from any solid state textbook, e.g., [11,63,225,409].
There are plenty of books and databases dedicated to the Fermi surfaces of various
crystals, e.g., [80,81,140,191,408–410]. The reason is that many physical properties
of, e.g., metals depend upon the geometry of its Fermi surface. We will try to show
that questions about the analytic geometry of Fermi surfaces are intimately related
to some basic spectral and other properties of the relevant operator. Answering
these questions is usually extremely hard (see, e.g., [173] and a shorter survey [172]
devoted solely to the case of a discrete periodic Schrödinger operator on Z2).

To define a Fermi surface, let us consider the (real or complex) dispersion relation
BH as the graph of the multiple valued function

k ∈ Cn �→ σ(H(k)).

Definition 5.30. The Fermi surface14 Fλ,H of H at a scalar value λ is the λ-level
set of the dispersion relation. I.e.,

Complex Fermi surface is:

Fλ,H,C := {k ∈ Cn | (k, λ) ∈ BH,C}
= {k ∈ Cn |H(k)u = λu has a nonzero solution}.

Real Fermi surface for a real λ is:

Fλ,H := {k ∈ Rn | (k, λ) ∈ BH}
= {k ∈ Rn |H(k)u = λu has a nonzero solution}.

An obvious statement is:

Lemma 5.31. The Fermi surface is Γ∗-periodic.

The following result follows from its analog for the Bloch variety BH :

Theorem 5.32. Fλ,H is the zero set of an entire function f(k) of the same expo-
nential order as for BH (see Theorem 5.14).

The following result, which holds in a very general setting of elliptic periodic
operators (compare with Theorem 5.20) is useful:

Theorem 5.33. At any energy level λ ∈ R, the real Fermi surface either has
measure zero in Rn, or it coincides with the whole Rn (and thus the complex Fermi
surface at this level is Cn).

14Also called isoenergy surface.
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Figure 15. The Fermi surface of Niobium (Nb). The picture is
borrowed from the URL [140], where one can find many more (often
more complex) pictures of Fermi surfaces.

Remark 5.34.

(1) In physics, the name Fermi surface is used only for a specific real level of the
energy λ, the so-called Fermi level λF [11, 63, 225, 409]. It is convenient
for us, though, to consider Fermi surfaces at arbitrary levels.

(2) The definition of the Fermi surface seems to be rather innocuous. Just
to impress upon the reader its possible complexity, Figure 15 presents the
Fermi surface of Niobium (Nb).

Conjecture 5.35. The Fermi surface for H = −Δ+ V (x) is irreducible (modulo
Γ∗) for λ ∈ R, possibly except for a discrete set of values of λ.

This conjecture has been proven for discrete Schrödinger operator on Z2 [172,173]
and in the case of a continuous Schrödinger operator with periodic electric potential
in dimensions n = 2, 3 and separable potential V (x) =

∑
Vj(xj), as well as in 3D

for potential U(x1, x2) + V (x3), where the axis xj are oriented along the basis
vectors of Γ [258].

As we will see in Section 6.6, the “esoteric” question of irreducibility of the
Fermi surface is closely related to the question of absence of impurity eigenvalues
embedded into the continuous spectrum.

5.12. Bloch bundles. Let S ⊂ σ(H) be a subset consisting of m spectral bands
and surrounded by spectral gaps. We will call such a subset a composite band
(see Figure 16). Let us surround S with a contour Γ (Figure 16) and introduce the
corresponding m-dimensional spectral projector for H(k)

P (k) :=
1

2πi

∮
Γ

(ζ −H(k))−1dζ.

The projector P (k) depends analytically on k in a complex neighborhood of T∗ in
Cn. Its range forms the so-called Bloch bundle over this neighborhood, which
corresponds to the composite band S. Sections of this bundle form the invariant
subspace for H that corresponds to S ⊂ σ(H).

This bundle over the torus T∗ can be topologically nontrivial (e.g., in the presence
of a magnetic potential (Thouless [383]) or in the case of topological insulators [28]).

As we have seen, the bundle is defined and analytic in a complex neighborhood
of the torus. We are sometimes interested in its analytic triviality. The question
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Figure 16. A composite band composed of three spectral bands.

arises whether there are additional analytic obstructions to this. The following
result is a simple incarnation of the so-called Oka’s principle [180, 189]:

Theorem 5.36 (e.g., [249]). Topological triviality of the Bloch bundle over T∗ is
equivalent to its analytic triviality in a complex neighborhood.

Indeed, there is a neighborhood of the torus that is the product of 1D complex
domains. Then it is a Stein manifold [180], and the above result is a part of the
famous Grauert’s theorem [179] for such manifolds.

A variety of results on sufficient conditions of triviality of Bloch bundles is known;
see, e.g., [249,313] and references therein (see also [404] for the survey of techniques
of Banach bundles).

5.13. Analyticity in the space of parameters. An often very useful thing to do
is to add to the spectral parameter λ and quasimomenta k an infinite-dimensional
space P of parameters of the periodic operator (i.e., an appropriate Banach space of
periodic electric and/or magnetic potentials). Then the Fermi and Bloch varieties
can be defined in this extended space. When the space of parameters is defined
properly, it is usually straightforward to prove the following:

Meta-Theorem 5.37. Bloch and Fermi surfaces are analytic subsets in the en-
larged space Cn+1 × P (respectively Cn × P ).

5.14. Inverse problems. Inverse spectral problems are known to arise frequently
and have been much studied for periodic ODEs (e.g., [1, 113,163,164,262,282,307]
and references therein).

The periodic PDEs in this regard are much trickier, and there are not that many
results available. We look here at a few examples.

5.14.1. Borg’s theorem. The famous Borg’s uniqueness theorem for the Hill

operator − d2

dx2 + q(x) with periodic potential q says:

Theorem 5.38 ([48]). The following claims are equivalent:

(1) The potential is constant.
(2) There are no spectral gaps.
(3) There exists an entire function, whose graph λ = f(k) belongs to the dis-

persion relation ([16]).



34 PETER KUCHMENT

The equivalence (1) ⇔ (2) fails miserably in dimensions n > 1! In fact, as we
will see later, for any sufficiently small bounded periodic potential V (x) in R2 and
R3, the Schrödinger operator −Δ+ V (x) has no gaps in the spectrum. Moreover,
when the gaps do appear, there are only finitely many of them. Thus, they clearly
carry insufficient information for recovery of the potential. Spectral gaps in higher
dimensions do not provide nearly as much information as in the ODE case. However,
the equivalence (1) ⇔ (3) probably still holds:

Conjecture 5.39. The following claims are equivalent:

(1) The potential is constant.
(2) There exists an entire function, whose graph λ = f(k) belongs to the dis-

persion relation.

In 2D, the conjecture was proven in [229].

5.14.2. Floquet rigidity. Let us consider the Schrödinger operator H = −Δ+ V (x)
with the potential periodic with respect to a lattice Γ and the corresponding Bloch
operators H(k), which have, as we know, discrete spectra.

Definition 5.40.

• The periodic spectrum is defined as follows:

(5.21) σ0(H) := σ(H(0)) = spectrum of H on Γ-periodic functions.

• The k-spectrum is defined as follows:

σk(H) := σ(H(k))

= spectrum on Bloch functions with quasimomentum k.
(5.22)

Clearly, the union over all k of the graphs of these spectra forms the Bloch variety
for H.

Definition 5.41.

• The Γ-periodic potentials V and W are isospectral if

(5.23) σ0(−Δ+ V ) = σ0(−Δ+W ).

• The Γ-periodic potentials V and W are Floquet isospectral if

(5.24) σk(−Δ+ V ) = σk(−Δ+W ), ∀k ∈ Rn.

One is interested in understanding when two potentials are isospectral, or even
Floquet isospectral. These questions have been understood well in 1D (see, e.g.,
[282]), while for n ≥ 2, the problems are far from being resolved.

There are simple examples of isospectral potentials. For instance, one observes:

Lemma 5.42.

(1) Potentials V (x) and W (x) = V (±x + a), for any a ∈ Rn, are Floquet
isospectral.

(2) If the lattice Γ is invariant with respect to an orthogonal transformation O
of Rn, then the potentials V (x) and V (Ox) are isospectral.

Imposing the following condition on the lattice Γ, one eliminates the second
option in the lemma above:
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Definition 5.43. A lattice Γ has a simple length spectrum, if the following
holds:

(5.25) if γ1, γ2 ∈ Γ and |γ1| = |γ2|, then γ2 = ±γ1.

One other option is to use the well known results on 1D isospectrality. Indeed,
let v(s) and w(s) be smooth 1-periodic functions of one variable, and let δ be a
vector such that

(5.26) {δ · γ | γ ∈ Γ} = Z.

It is easy to establish [125,127] that if 1D potentials v and w are isospectral,
then the “ridge” n-dimensional potentials v(δ ·x) and w(δ ·x) are isospec-
tral. One wonders whether there are any other options for isospectrality (Floquet
isospectrality).15

Many significant results on multidimensional isospectrality were obtained in [125,
127] (see also an overview in [126]), mostly under conditions of analyticity of the
potentials and the simplicity of the length spectrum (5.25). See also preceding and
following works of various authors with additional results and related discussions
in [21, 123–125,176–178,187, 188, 209–211,386, 393].

We present below a few results of [125, 127].16

Theorem 5.44. Suppose that the length spectrum of Γ is simple and Γ-periodic
potentials V and W are analytic, then

• If V and W are isospectral, then they are Floquet isospectral.
• Let k0 ∈ Rn be such that cos(2πk0 · γ) �= 0 for all γ ∈ Γ. If σk0

(−Δ+V ) =
σk0

(−Δ+W ), then V and W are Floquet isospectral.

This result shows that (under appropriate conditions) the whole Floquet spec-
trum (i.e., the whole Bloch variety) has overdetermined information, and the fiber
of BH over an appropriate quasimomentum k0 carries as much information as the
whole BH .

It is natural to look in the horizontal, i.e., along quasimomenta, direction. In
particular,

Does the knowledge of a single band function λj(k) determine
the whole dispersion relation (Bloch variety)?

In fact, the Conjecture 5.17 (proven in 1D and 2D) implies, if correct, that even
any open part of a single branch λj(k) uniquely determines the dispersion
relation.

Now let V be a C∞ Γ-periodic potential with the Fourier series expansion

(5.27) V (x) =
∑
δ∈Γ∗

aδe
iδ·x.

Definition 5.45. Let γ ∈ Γ. The reduced potential Vγ(x) is defined as follows:

(5.28) Vγ(x) =

1∫
0

V (x+ sγ)ds =
∑
δ·γ=0

aδe
iδ·x.

15One can easily achieve Floquet isospectrality by allowing complex potentials [244, Theorem
4.1.2].

16The sophisticated techniques used in [125, 127] to prove the results involved, in particular,
the spectral invariants extracted from the heat and wave kernel asymptotics.
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Another important observation in [125–127] concerns the relations between the
Floquet spectra of the original and reduced potentials:

Theorem 5.46. For any γ ∈ Γ, the Floquet spectrum σk(−Δ + V ) determines
uniquely σk(−Δ+ Vγ) .

Now let δ ∈ Γ∗ be such that there exists γ0 ∈ Γ for which δ · γ0 = 2π. Then one
can introduce the 1D directional potential

(5.29) Vδ(s) :=
∞∑

n=−∞
anδe

ins.

Theorem 5.47. The Floquet spectrum σk(−Δ+V ) determines uniquely the Floquet
spectra of the 1D spectral problems

(5.30)

(
−|δ|2 d2

ds2
+ Vδ(s)

)
u(s) = λu(s)

for any directional potential Vδ.

The isospectrality of potentials V (±x + a) suggests a question whether under
some conditions one can prove that, modulo shifts, the number of isospectrality
classes is finite. A variety of important results of this type can be found in the
paper [127]. See also [172, 173] for inverse spectral results for discrete periodic
operators on Z2.

An alternative approach to the inverse spectral problem for periodic potentials
was provided in [389, Ch. 4].

6. Spectral structure of periodic elliptic operators

As we have seen, both in 1D and in higher dimensions, periodic elliptic operators
have band-gap structure of their spectra. There are, however, significant differences
between ODE and PDE cases. We make the comparison in Table 1.

The rest of this section is devoted to discussing various spectral properties of
periodic operators, such as the band-gap structure of the spectrum, the qualitative
structure of the spectrum, eigenfunction expansions, etc.

6.1. Spectral gaps. We start with considerations of spectral gaps: their existence,
number, and ways of creating them.

Table 1

n = 1 n > 1
band overlaps none frequent

gaps generically all open many gapless potentials
no gaps constant potential all small potentials

free operator bands touch to cover R+ overlap to cover R+
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6.1.1. Existence of gaps. As we have discussed already, according to Borg’s the-
orem, in 1D every nonconstant periodic potential creates spectral gaps. This is
manifestly incorrect in higher dimensions, e.g.:

Theorem 6.1. If n = 2, 3 and the L∞(Rn)-norm of a periodic potential V (x) is
sufficiently small, the Schrödinger operator H = −Δ + V (x) in L2(Rn) has no
spectral gaps.

This is an immediate consequence of the first two claims of Theorem 5.11, if one
considers H as a perturbation of the free operator −Δ.

6.1.2. Maximal abelian coverings and Sunada’s no gap conjecture. Consider the
standard covering Rn �→ T (= Rn/Zn). Its deck group is Zn, which coincides with
H1(T,Z). It can also be understood as the quotient of the universal cover of the
torus by the commutator subgroup of the fundamental group π1(T).

Definition 6.2. The maximal abelian covering of a compact manifold X is the
covering Y �→ X with the deck group H1(X,Z), obtained as the quotient of the
universal cover of X by the commutator subgroup of the fundamental group π1(X).

The following monotonicity result holds [370]:

Theorem 6.3. Let Y �→ X be a Riemannian covering with an amenable deck
group. Then

σ(−ΔX) ⊂ σ(−ΔY ),

where ΔM denotes the Laplace–Beltrami operator on a Riemannian manifold M .

Thus, the spectrum of the Laplacian on the maximal abelian covering is the
largest (and thus has the fewest gaps) among all abelian coverings of the same
base. The following, still not proven, no gap conjecture has been formulated by
Sunada [372, 374]:

Conjecture 6.4. Let Y �→ X be the maximal abelian covering of a compact Rie-
mannian manifold X of a constant negative curvature. Then the spectrum of the
Laplace–Beltrami operator −ΔY on Y has no gaps.

An analogous conjecture has been formulated in the graph case, where the base
graph X is assumed to be regular (i.e., degrees of all its vertices are the same). The
graph version of the conjecture was proven for all regular graphs of even degree
[199] and for various examples of regular graphs of odd degree [199, 248], e.g., the
so called K4 graph X.

6.1.3. Number of gaps. Bethe–Sommerfeld conjecture. What about the possible
number of spectral gaps, if they exist at all? In 1D, statement (3) of Theorem 1.12
shows that generically the number of gaps is infinite [224].

The situation is quite different in dimensions n > 1, as the following old Bethe–
Sommerfeld Conjecture (BSC) [30] shows:

Conjecture 6.5. When n > 1, there can only be a finite number of gaps in the
spectrum of any periodic Schrödinger operator

−Δ+ V (x)

in Rn.
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By now, after several decades of effort, the conjecture has been proven in its
full generality. The story started with the works by Popov and Skriganov [330]
and Dahlberg and Trubowitz [84] for n = 2 and by Skriganov [359] for n = 3.
Theorem 5.11 shows that the issue should become much harder after that, and it
does. For n ≥ 4, the conjecture was established for the case of rational lattices
[358, 360]. For n = 4, the conjecture was proven for arbitrary lattices by Helffer
and Mohamed [194]. Finally, in Parnovski’s paper [317], the proof is provided
in any dimension n ≥ 2 and arbitrary lattice, under smoothness conditions on the
potential (an alternative approach was offered by Veliev [387–389]). Predictably, the
case of presence of magnetic potential turned out to be even harder. The result was
established in the two-dimensional case by Mohamed [294] and Karpeshina [215].
A major advance both in techniques and results (allowing pseudo-differential lower-
order terms) was made by Parnovski and Sobolev in [323] (this paper also contains a
nice review and bibliography of the topic). Other related results on BSC (including,
e.g., Maxwell operator) can be found in [20,121,261,296,318,321,322,342,366,391]
and in the historical survey in [323].

Remark 6.6.

(1) A stronger version of BSC for any second-order periodic elliptic oper-
ator is still not proven.

(2) The Maxwell operator case is mostly unresolved, except in a very special
case considered in [391].

(3) The validity of BSC for periodic waveguide systems has not been established
and is sometimes questioned.

(4) For periodic graphs/quantum graphs the statement of BSC does not hold
[27].

6.1.4. Gap creation. Presence of gaps is necessary in many instances. E.g., they
are responsible for properties of semi-conductors. Fortunately, such materials exist
already in nature. The situation is different, for instance, when one tries to create
the so-called photonic crystals, where the operator of interest is Maxwell in
a periodic medium and one needs to create such a medium with spectral gaps
[206, 245]. We know by now that periodicity, although leading to the band-gap
structure of the spectrum, does not guarantee existence of gaps. We thus address
here briefly how spectral gaps can be “engineered”.

Let us start with the Schrödinger operator −Δ + V (x). As we have just said,
engineering gaps are not such a hot issue in this case. It also happens to be rather
easy to create spectral gaps. Indeed, the following procedure can be easily made
precise: Creating a local potential well, one can create a bound state (eigenvalue)
below the spectrum of the Laplacian. Now, periodically repeating copies of the
well at large distances from each other will lead to spreading the eigenvalue into a
thin spectral band at a distance from the spectrum of the free operator, and thus
it creates a periodic medium with a spectral gap.

This potential well technique fails for Maxwell and some other operators when
local perturbation cannot lower the bottom of the spectrum. Another deficiency
here is that the resulting gaps are rather hard to manipulate.

Another approach is creating very high contrast media, which succeeds in cre-
ating spectral gaps for periodic Maxwell operators [141–143, 145] as well as for
Laplace–Beltrami operators on abelian coverings of compact Riemannian mani-
folds [197, and references therein; 331]. A two-scale homogenization approach has
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Figure 17. A decorated graph (left). An antenna implementing
the concept (right).

been developed in [407]. An interesting series of papers on the predesigned gap
opening is [221–223].

The high contrast approach also has its deficiencies. First of all, it is still hard
to manipulate the locations and sizes of spectral gaps. Besides, the high contrast
approach frequently requires nonphysical values of material parameters.

The moral is that in higher dimensions, it often is hard to create and manipulate
the spectral gaps arising due to Bragg scattering (i.e., due to the periodicity of the
medium).

A different promising mechanism of opening resonant gaps exists. The author
learned about it first from [325]. The idea is that spreading infinitely many small
identical resonators throughout the medium tends to create spectral gaps around
the eigenvalues of the resonator. Regretfully, in the continuous case, this idea
apparently has never been made precise. It has been implemented (as the so-called
decoration procedure) in its simplest incarnations in the discrete situation [339],
as well as in the quantum graph case [27, 246]. In practice, more involved spider
decoration procedures are desirable, where some internal structure is inserted into
each vertex (see discussion in [27, 246]). One can compare this with the more
elaborate zig-zag decoration procedure, used to create expander graphs (which
boils down to controlling the size of the principal spectral gap [333]).

Recent developments in this direction can be found in [108].
Resonant gaps can also be used to create “slowing down light” optical media

(e.g., [192, 251, 361, 400]).

6.2. Eigenfunction expansion. Let us recall that

(6.1) λ1(k) ≤ λ2(k) ≤ λ3(k) ≤ · · ·

is the sequence of eigenvalues of the operator H(k), listed for k ∈ Rn (with their
multiplicity) in a nondecreasing order.

Standard perturbation theory (e.g., [217]) implies that

each λj(k) is a continuous, piecewise analytic function of k.

By definition, for each λj(k) the operatorH has a generalized (since it is not square-
summable) Bloch eigenfunction ψ(x) with the quasimomentum k (i.e., ψ(x) =
eik·xp(x) with a Γ-periodic function p(x)):

(6.2) Hψ = λj(k)ψ.

The question is whether the eigenfunction ψ (and thus the corresponding periodic
function p) can be chosen with a nice dependence of k. Whenever the multiplicity
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of the eigenvalue λj(k) stays constant near a point k0, one can choose the Bloch
eigenfunction analytically depending on k. See, e.g., [244, 404] for this standard
fact. Whenever the band functions collide and thus the multiplicity changes, one
cannot extend the Bloch eigenfunction even continuously w.r.t. k. However, cutting
along these thin bad sets of quasimomenta, one can establish the following:

Lemma 6.7 (Wilcox [394]). There exists a null-set Z ⊂ T∗ and a sequence ψj(k)
of Bloch eigenfunctions, analytic on T∗\Z, such that {ψj(k)} form an orthonormal
basis in L2(W ) for k ∈ T∗ \ Z.

This immediately leads to the eigenfunction expansion of any function f(x) ∈
L2(Rn) into Bloch eigenfunctions:

Theorem 6.8 ([166], see also [268]). Let f ∈ L2(Rn) and

(6.3) UΓf(·, k) =
∑
j

fj(k)ψj(·, k)

be the expansion of its Floquet transform into the basis ψj. Then

(6.4) ‖f‖2L2 =
∑
j

‖fj‖2L2(T∗).

In other words,

Theorem 6.9. The operator H is unitarily equivalent to the orthogonal direct sum
of operators of multiplication by piecewise analytic continuous scalar functions λj(k)
in L2(T∗).

Somewhat weaker results were obtained earlier in [308].

6.3. Absolutely continuous, pure point, and singular continuous parts of
the spectrum. According to Theorem 6.9, one needs to understand the spectrum
of the operator A acting in L2(T∗) as multiplication by a continuous piecewise
analytic scalar function a(k)

(6.5) (Af)(k) = a(k)f(k).

Theorem 6.10. The following holds:

(1) The singular continuous spectrum of the operator A is empty:

(6.6) σsc(A) = ∅.
(2) The pure point spectrum consists of all values λ such that the λ-level set of

a(k) has positive measure. In particular, if there is no positive measure flat
piece a = const, then σpp(A) = ∅, and thus the whole spectrum is absolutely
continuous:

σ(A) = σac(A).

(3) For each λ ∈ σpp(A), the function a(k) is constant on an open set.

We thus get the following result:

Corollary 6.11. For any periodic self-adjoint elliptic operator H, one has:

(1) The singular continuous spectrum is empty, σsc(A) = ∅.
(2) The pure point spectrum consists of all values λ such that the λ-level set of

some of λj(k) has positive measure.
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(3) If the pure point spectrum is nonempty, then at least one of the band func-
tions λj is constant on an open set.

(4) The pure point spectrum consists of all values λ0, such that the complex
Bloch variety BH,C contains the flat component λ = λ0.

The last statement of this theorem follows from analyticity of the Bloch variety
(Theorem 5.14), which forces any small piece of a constant branch to extend to
the whole flat component. Since Theorem 5.19 prohibits such a situation for the
Schrödinger operator −Δ+ V (x), one reaches the following conclusion:

Theorem 6.12 (Thomas [382]). Under the conditions of Theorem 5.19, the spec-
trum of the Schrödinger operator with periodic potential is absolutely continuous.

As was the case with Theorem 5.19, here the condition of boundedness of the peri-
odic potential is significantly stronger than needed (see, e.g., [332, Section VIII.16]).
One, however, should not get overexcited about dropping conditions on the coeffi-
cients in the highest-order terms, since when they are going below those guarantee-
ing weak uniqueness of continuation property, one can get point spectrum, as was
shown in [144]. We will return to this discussion a little bit further in the text.

Since the famous work by L. Thomas [382], all proofs of the absolute continuity of
the spectra of periodic elliptic operators followed the same scheme: proving absence
of flat components in the dispersion relation (Bloch variety). Due to the usually
hard technical work of many researchers, absolute continuity of the spectrum has
been proven for many (but still not all) second-order scalar elliptic periodic opera-
tors, as well as periodic Pauli, Dirac, elasticity theory, and in some cases Maxwell
operators; see [38, 43, 44, 46, 47, 86–96, 150, 160, 169, 170, 195, 216, 227, 237, 244, 252,
332, 340, 341, 343, 347, 362, 382, 384] and references therein. However, the following
conjecture still remains unproven, even under assumption of infinite differentiability
of the coefficients of the operator:

Conjecture 6.13. The spectrum of any self-adjoint second-order periodic elliptic
scalar operator with nice (e.g., smooth) coefficients is absolutely continuous.

In all works, except [160] and a few papers based upon it (e.g., [384]), the proof
goes analogously to that of Theorem 5.19: dominating in the Fourier domain the
lower-order terms by the principal part, which gets increasingly hard in the presence
of variable coefficients in the first-order terms (magnetic potential), and it does
not look feasible at all to treat variable coefficients in the principal part of the
operator. The least technical approach, which beautifully avoids these domination
estimates and thus allows for variable coefficients in the second-order terms, was
due to Friedlander [160]. Regretfully, it requires some symmetry condition on the
operator, which seems to be superfluous, but no one has succeeded in removing it.

There are also quite a few, often even more demanding, results on absolute
continuity for operators in periodic waveguides, on periodic systems of curves and
surfaces, etc. [23, 98, 129, 147–149,161, 207, 208, 239, 351, 368, 375, 376, 379].

Remark 6.14. Absolute continuity of the spectrum fails for some periodic el-
liptic operators of higher order.

Indeed, the Plís example [329] of a fourth-order elliptic operator which fails
unique continuation property, i.e., has a compactly supported eigenfunction, can
be easily massaged to produce a periodic example, where σpp �= ∅ [244].
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This relation to the uniqueness of continuation theorems does not seem acci-
dental. As we have already mentioned, Filonov [144] constructed an example of a
second-order periodic elliptic operator with nonempty pure point spectrum, with
the leading coefficients falling just below what is needed for the weak uniqueness
of continuation to hold. Another evidence of this is the following result:

Theorem 6.15 ([244, Theorems 4.1.5 and 4.1.6]). Existence of an L2-eigenfunction
for a periodic elliptic operator is equivalent to existence of a (different) super-
exponentially decaying eigenfunction, i.e., such that

(6.7) |u(x)| ≤ Ce−|x|γ ,

with some γ > 1 (depending on the order of the operator and dimension; see details
in [244, proof of Theorem 4.1.6]).

Conjecture 6.16. Existence of such a solution must violate some unique continu-
ity at infinity property.

Regretfully, the only such result known that would apply to periodic operators
[162, 284], is not strong enough to lead to new absolute continuity theorems; e.g.,
it does not allow variable coefficients in the terms of the first and second orders.

Another confirmation of the relation with the uniqueness of continuation comes
from equations on discrete or quantum graphs, where the uniqueness of continuation
does not hold. And sure enough, one can find compactly supported eigenfunctions
for second-order elliptic periodic operators on such graphs (see [27, and references
therein] and Figure 18).

6.3.1. Density of states. An important object in spectral theory and solid state
physics is the so-called density of states of a self-adjoint periodic elliptic operator
H. Here is the idea: consider an “appropriate” sequence of expanding whenN → ∞
domains VN ⊂ Rn, eventually covering the whole space. After imposing appropriate
boundary conditions on these domains, one can consider the counting function of
eigenvalues λj of the resulting operator with discrete spectrum

(6.8) #{λj < λ}.

Figure 18. A compactly supported eigenfunction on a quantum graph.
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Now one normalizes this function by the volume of the domain VN and takes the
limit when N → ∞:

Definition 6.17. The integrated density of states (IDS) of the operator H is

(6.9) ρ(λ) := lim
N→∞

1

|VN |#{λj < λ}.

One certainly wonders whether the limit exists and is independent of the choice
of the expanding domains VN and boundary conditions imposed. Under appropriate
conditions on those, the answer is “yes” to both questions (see [352], where this is
done even for almost periodic coefficients, and [2] for a more general discussion).

Without listing the conditions, we just acknowledge that, assuming that the
lattice is transformed to Zn, this is true when one picks VN as the sequence of cubes
{x ∈ Rn ||xj | ≤ N, j = 1, . . . , n} for N ∈ Z+ and one imposes periodic boundary
conditions on those (recall our previous discussion of Born–Karman conditions).

Then a simple calculation shows that the integrated density of states can be
described in terms of the dispersion relation λj(k) as follows:

Theorem 6.18.

(6.10) ρ(λ) =
∑
j

μ{k ∈ T∗ |λj(k) < λ},

where μ is the previously defined Haar measure on the torus T∗.

Due to the analytic nature of the band functions we have studied, one gets:

Corollary 6.19.

(1) The IDS is a piecewise analytic function of λ.
(2) Unless a flat band function λ = const is present, the IDS is continuous.
(3) Singularities of the IDS can arise if λ is a singular or critical value of the

dispersion relation (Van Hove singularities).

Definition 6.20. The density of states (DS) is the Radon–Nikodim derivative
of the IDS with respect to the Lebesque measure

(6.11) g(λ) :=
dρ

dλ
.

Theorem 6.21.

(6.12) g(λ) = (2π)−n
∑
j

∫
λj=λ

ds

|∇kλj |
.

Noticing that in (6.12) one encounters the integral of a holomorphic form over a
real cycle on the Fermi surface Fλ allows one to use powerful techniques of several
complex variables (see [167] and [172, 173]), which we are unable to address here.

6.4. Spectral asymptotics. Another important and active area of research that
we cannot discuss in any detail is high energy spectral asymptotics (e.g., asymptotic
of density of states). The reader is referred to the following (incomplete) literature
list and references provided there: in 1D [212, 344, 363, 365]; in higher dimensions
[52, 159, 194, 214, 235, 264, 265, 294, 297, 298, 318–320,357, 364], with the paper [320]
being probably the most advanced and up to date.
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6.5. Wannier functions. Bloch functions clearly are analogs for the periodic case
of plane waves eiξ·x, which are localized in the Fourier domain. The standard
Fourier transform converts the plane waves into delta functions, which are localized
in physical space. One wonders whether there is an analog of the delta function
basis for the periodic situation, and if yes, whether such functions are useful. The
answer is “yes” for both questions, although new nontrivial issues arise here.

The functions in question are called Wannier functions, which are used fre-
quently in numerical computations in solid state physics and photonic crystal theory
[61,62,279] since they lead to nice discretizations, close to the tight-binding models.
One expects (in analogy with the plane waves and delta functions) that they could
arise as inverse Floquet transforms w.r.t. the crystal momentum of Bloch functions.

Let us try to be more precise.

Definition 6.22. Suppose that we have a Bloch function φk(x) (see (6.2)) that de-
pends “sufficiently nicely” on the quasimomentum k. The corresponding Wannier
function is defined as

(6.13) w(x) :=

∫
T∗

φk(x)dk.

The standard Fourier series argument shows that smoothness of φk with re-
spect to k translates into decay of w(x). For instance, infinite differentiability
implies that the L2-norm of w(x) on a cube decays faster than algebraically with
the shift of the cube to infinity. Analogously, analyticity of φk would produce
exponential decay of the Wannier function.

Suppose now that one has a multiple band S consisting of m bands of the spec-
trum, which is separated from the rest of the spectrum by gaps. As discussed
in Section 5.12, one obtains an m-dimensional analytic Bloch bundle over T∗.
If this bundle is analytically trivial, it has an analytic basis of Bloch functions:
φk,1, . . . ., φk,m. It is a simple exercise to see (e.g., [249]) that the corresponding
exponentially decaying Wannier functions wj =

∫
T∗ φk,jdk and all their Γ-shifts

form a basis (which can also be made orthonormal under the appropriate choice
of Bloch functions) in the spectral subspace of the operator H that corresponds to
the isolated part of the spectrum S.

This construction does not work, if the Bloch bundle is not analytically triv-
ial. An incarnation of Oka’s principle, due to Grauert [179], shows that the only
obstacle is topological: if the Bloch bundle is topologically trivial, then it is auto-
matically analytically trivial (see also [404] for the related discussions). For a while
this issue had not been understood and there was a belief that nice Wannier bases
always exist, until Thouless showed [383] that in the presence of magnetic terms in
a periodic Schrödinger operator, the Bloch bundle can be nontrivial (such nontrivi-
ality also arises in topological insulators [28]). Many efforts have been concentrated
on establishing sufficient conditions of the triviality, as well as on efficiently finding
the Wannier bases (see, e.g., [249; 279; 280; 302; 313, and references therein; 314]).

In the presence of the topological obstacle, however, no basis of (even slowly
decaying) Wannier functions exists [249]. However, it was shown that instead of the
(nonexisting) analytic basis of the bundle, one can always find a nice Parseval frame
(i.e., a nice overdetermined system) of exponentially decaying Wannier functions
[249]. Rather crude estimates on the number of extra functions needed is also
provided in [249]. However, in physical dimensions, instead ofm families of Wannier
functions, one only needs (m+ 1) of these [12].
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Figure 19. Impurity eigenvalues on a band-gap structured spectrum.

6.6. Impurity spectra. Let us return now to the periodic Schrödinger operator
H = −Δ + V (x). An important and frequently studied issue is the existence
and properties of the impurity spectrum arising when a localized (compactly
supported or sufficiently fast decaying) perturbationW (x) is added to the potential.
The well known theorem claims that only eigenvalues of finite multiplicity can
appear, leaving the otherwise absolutely continuous spectrum unchanged (see, e.g.
[174, Section 18 and references therein]).

Since V is periodic and thus has band-gap structure of the spectrum, these
eigenvalues have two options: to appear in the spectral gaps or to embed into the
AC spectrum (embedded eigenvalues); see Figure 19.

The general wisdom is that when the perturbation decays sufficiently fast, em-
bedded eigenvalues cannot arise, while if the decay is not fast enough, one can
indeed have them. In the case when the background potential V is equal to zero,
starting with the famous work by von Neumann and Wigner [390], many results of
this nature have been obtained; see, e.g., a nice survey in [118].

If, however, the background periodic potential is present, the issue is far from
being resolved. The results confirming the “general wisdom” were obtained in the
ODE case [334–337].

Although similar answers are expected in the higher dimensions, proving them
happens to be difficult. Some results were obtained in [257–259]. E.g.,

Theorem 6.23 ([257, 258]). Let n ≤ 4 and let the perturbation W (x) decay ex-
ponentially. If for a given λ ∈ σ(H) the Fermi surface at that level is irreducible
(modulo periodicity), then λ /∈ σpp(H +W ). In particular, if all Fermi surfaces are
irreducible, no embedded eigenvalues can arise.

Remark 6.24. Notice that irreducibility of the Fermi surface at a level does not
depend on the impurity potential W .

As our previous discussion has indicated, it is hard to establish irreducibility
of the Fermi surface, although for a second-order periodic ODE it is automatic.
One wonders whether the irreducibility condition of this theorem is just an artifact
of the techniques used in the proof. It is possible, but does not seem to be very
likely. The proof indicated that reducibility could in principle lead to a situation
similar to the waveguide theory, where impurity eigenvalues can get embedded. And
indeed, there are examples of a periodic fourth-order ODE [315] and of second-order
multiperiodic quantum graph operators [345], where reducible Fermi surfaces arise
and impurity eigenvalues can be embedded.

In the graph case, due to nontrivial topology, embedded eigenvalues can and do
arise. However,
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Theorem 6.25 ([259]). In the graph case, embedded eigenvalues might arise, but
if the relevant Fermi surface is irreducible, the corresponding eigenfunction must be
supported close to the support of the perturbation; (see details in [259]).

It is interesting to note that in the reducible case, eigenfunctions can spread and
indeed have unbounded support [345].

7. Threshold effects

The name threshold effects (as coined by Birman and Suslina) is used here
for the features that depend upon the infinitesimal structure, or maybe just on a
finite jet,17 of the dispersion at a spectral edge. An example popular nowadays
is of graphene, where the Dirac cones lead to conductance as if governed by the
massless Dirac equation [135,136,218]. We will not dwell on this particular example,
but rather list a number of other important relations.

Regretfully, in order to keep the (already excessive) length of the text in check,
the author can afford only brief pointers rather than any detailed discussion or
formulation of the results.

7.1. Homogenization. Homogenization is an effective medium theory for (long)
waves in a highly oscillating periodic (or even random) medium. It is probably the
best known threshold effect. Indeed, finding the homogenized (effective medium)
operator is, roughly, equivalent to determining the second-order jet of the dispersion
relation at the bottom of the spectrum (see, e.g., [5,22,39,40,74,75,77,78,205] and
references therein). It is sometimes a highly nontrivial procedure (e.g., for the
Maxwell operator).

While the usual homogenization leads to a homogeneous medium (which gave the
name to the area), and so cannot address finite spectral gaps, more sophisticated
approaches (see, e.g., [159, 196, 407]) can achieve this and more.

It is natural to ask whether there is a version of homogenization that occurs near
the spectral edges of the internal gaps, where the parabolic shape of the dispersion
relation might resemble the one at the bottom of the spectrum. This indeed happens
to be the case, as was shown in [37, 41]; see also [377, 378].

7.2. Liouville theorems. The classical Liouville theorem says:

Theorem 7.1. Any harmonic function in Rn of polynomial growth of order N is
a polynomial of degree N . The dimension of this space is

(7.1)

(
n+N
N

)
−
(

n+N − 2
N − 2

)
.

S. T. Yau posed a problem [401] of generalizing this theorem to harmonic func-
tions on noncompact manifolds of nonnegative curvature, which was resolved in [70]
(there were also partial contributions from various researchers; see the references
in [266, 267]). Thus, finite dimensionality of the spaces of harmonic functions of
a given polynomial growth, as well as estimates (rather than exact formulas) for
their dimensions, were obtained.

On the other hand, a wonderful observation was made in [15, 299]: the spaces
of polynomially growing solutions of periodic divergence type second-order elliptic
equations in Rn are finite dimensional. Moreover, their dimensions are given by

17I.e., truncated Taylor polynomial; see https://en.wikipedia.org/wiki/Jet (mathematics).
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(7.1). Homogenization techniques were used in both cases, which restricted the
consideration to the bottom of the spectrum only. In [253, 254], a wide-range
generalization of this result was obtained: for an elliptic periodic operator on an
abelian covering of a compact manifold (or graph) it was shown that validity of the
Liouville theorem at some energy level λ is equivalent to the corresponding Fermi
surface consisting of finitely many points (i.e., essentially λ being at a spectral
edge). Moreover, dimensions of the spaces of polynomially growing solutions were
explicitly computed in terms of the lowest order of a nontrivial Taylor expansion
term of the dispersion relation at the corresponding spectral edge.

7.3. Green’s function. Another threshold effect is the behavior of Green’s func-
tion (the Schwartz kernel of the resolvent) near and at spectral edges. There are
well known general resolvent exponential decay estimates with the exponential rate
depending upon the distance to the spectrum, e.g., the Combes–Thomas estimates
[19,73]. However, being applied to self-adjoint periodic elliptic operators, these esti-
mates are not very precise. Indeed, first of all, one expects the exponential decay to
be direction dependent, while the operator estimates mentioned above would pro-
vide only an isotropic estimate. Secondly, the off-the-spectrum exponential decay
must be accompanied by an additional power decaying factor, which the abstract
theorems do not provide. On the other hand, at the bottom of the spectrum the
dispersion relation of periodic nonmagnetic Schrödinger operator has, as has been
mentioned before, a nondegenerate (parabolic) extremum [224], i.e., it resembles
the one for the Laplace operator. Thus, one can hope that at least near the spec-
trum the decay should resemble the one for the Laplacian case, i.e., involving an
additional algebraically decaying factor. Moreover, at the edge of the spectrum one
expects (in dimensions three and higher) some algebraic decay. And indeed, prin-
cipal terms were found for the asymptotics of Green’s functions of such operators
below the spectrum [17, 18, 300] (see also a simplified derivation for the discrete
case at the end of the book [395]). These results confirm the expectation.

One can ask the same question near and at the edges of the internal gaps of
the spectrum, as long as the dispersion relation has a nondegenerate (parabolic)
extremum there. Results of this type were obtained in the recent works [219, 220,
256].

Going inside the spectral bands, it is also natural to mention here the results
on the limiting absorption principle for periodic elliptic operators, see, e.g., [42,
167–169,301].

7.4. Impurity spectra in gaps. The local structure of the dispersion relation
at a spectral gap edge is also important for understanding the appearance and
counting of the impurity eigenvalues that arise due to a localized perturbation of
the potential. See [33–36] and references therein.

8. Solutions

In this section we provide a very brief overview with pointers to the literature of
various results concerning solutions of homogeneous and inhomogeneous periodic
elliptic equations.

8.1. Floquet–Bloch expansions. Euler’s theorem [128], mentioned in Section
1.1, claims that all solutions of homogeneous constant coefficient linear ODEs (or
systems of those) are linear combinations of exponential-polynomial solutions. This
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classical theorem has an extremely nontrivial generalization to the case of con-
stant coefficient systems of PDEs (sometimes called Ehrenpreis’s Fundamental
Principle) due to works by Ehrenpreis, Malgrange, and Palamodov; see the books
[120, 310, 311] devoted to its proof and applications. Here instead of finite linear
combinations of exponential-polynomial solutions, one needs to involve the integrals
over the characteristic variety of the operator, which in turn relies upon commuta-
tive algebra, algebraic geometry, and several complex variable techniques. One can
ask the natural question whether there is an analog of this result for periodic ellip-
tic PDEs, providing expansions into Bloch–Floquet solutions. If yes, one expects it
to be harder to prove, due to the nonalgebraic nature of the situation (i.e., of the
Fermi surface, which replaces the characteristic variety). Nevertheless, somewhat
more restrictive than in the constant coefficient case, such results have been ob-
tained in [240,244,247,260,312]. Most of the book [244] is devoted to their proofs.
Regretfully, probably due to a more restricted nature of these results, they do not
seem to have much of consequence. Thus, we do not address them in any detail
here.

8.2. Generalized eigenfunctions and Shnol′–Bloch theorems. One of the
consequences of the Floquet theory is that for periodic elliptic operatorsH detecting
whether λ is in the spectrum is equivalent to existence of a nontrivial Bloch solution
u with a real quasimomentum k of the equation Hu = λu. Since the solution is not
square integrable, we would call it a generalized eigenfunction. Since one can
easily come up with a generalized eigenfunction (just an exponent) of a Laplace
operator for arbitrary λ ∈ C, it is clear that existence of a growing generalized
eigenfunction does not necessarily mean being on the spectrum. However, since
Bloch solutions with real quasimomenta are bounded, one can ask whether presence
of a bounded generalized eigenfunction detects the spectrum. This is indeed the
case and the following Bloch theorem (probably never proven by Bloch) holds:

Theorem 8.1 ([244, Section 4.3]). Existence of a nontrivial bounded solution of a
periodic elliptic equation Hu = λu implies existence of a Bloch solution with a real
quasimomentum, and thus λ ∈ σ(H).

Indeed, a stronger type of result is known—the so called Shnol′ Theorem
[83, 174, 244, 346, 353]—which holds also in nonperiodic case. Its simplest version
is:

Theorem 8.2. If for any ε > 0 there exists a nontrivial generalized eigenfunction
uε with the estimate

(8.1) |uε(x)| ≤ eε|x|,

then λ ∈ σ(H).

Moreover, the following stronger version holds:

Theorem 8.3. If for some a > 0 there exists a nontrivial generalized eigenfunction
u with the estimate

(8.2) |u(x)| ≤ ea|x|,

then dist (λ, σ(H)) ≤ C
√
e2a − 1, where C depends only on the operator H.
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A detailed (although somewhat outdated) discussion of the Shnol′ theorem can
be found in [174, Section 54].

In the periodic elliptic case one can formulate a stronger version [244, Theorem
4.3.1]:

Theorem 8.4. Let L(x,D) be a scalar periodic elliptic operator with smooth coef-
ficients in Rn. If Lu = 0 has a nonzero solution satisfying the inequality

(8.3) |f(x)| ≤ Cea
∑

|xj |

for some a > o, then it also has a Bloch solution with a quasimomentum k such
that �kj ≤ a for all j = l, . . . , n, that is, a Bloch solution that also satisfies (8.3).

In other words, there is a complex quasimomentum vector, whose distance to
the unit torus (and thus dist (λ, σ(H))) can be estimated from above.

Remark 8.5. The Shnol′ theorem stated with pointwise estimates like in (8.3) fails in
non-Euclidean situation; e.g., the hyperbolic Laplacian has a bounded generalized
eigenfunction for λ = 0, although 0 is not in the spectrum. An analogous situation
occurs for operator on trees. However, analysis of the proof (e.g., in [174]) shows
that in fact only an integrated (L2) estimate of growth is used, which implicitly
incorporates the rate of the ball volume growth. Thus, there is an L2-version that
holds even when the volume of the ball grows exponentially (see [27, Section 3.2]
for the graph case).

For further discussions of generalized eigenfunction expansions, the reader can
refer to [24, 25, 226] and references therein.

8.3. Positive solutions. It was shown in [3] that positive solutions of a periodic
elliptic second-order equation in Rn (or on a cocompact abelian covering) allow
integral expansions into positive Bloch solutions. See also [244, Section 4.6] for
the description of this result, as well as [269] for the case of nilpotent cocompact
covering, and [327, 328] for related discussions.

8.4. Inhomogeneous equations. It is well known in the theory of periodic ODEs
(e.g., [10, 399]) that unique solvability of inhomogeneous equations in L2 or in the
space of bounded functions is equivalent to the absence of Floquet multipliers of
absolute value one (equivalently, absence of Bloch solutions with real quasimo-
menta). A simple PDE analog of this result (as well as solvability in the spaces of
exponentially decaying functions) also holds [244, Section 4.2].

9. Miscellany

9.1. Parabolic time-periodic equations. Fluid dynamics problems of stability
of periodic flows [402, 403] lead naturally to the task of developing an analog of
Floquet theory (e.g., completeness of and expansion into Floquet solutions) for
parabolic time periodic problems in Banach and Hilbert spaces:

(9.1)
dx

dt
= A(t)x, x(0) = x0, A(t+ 1) = A(t).

The simplest, albeit already important and nontrivial, example is the heat equation

(9.2)
du

dt
= Δxu+ b(x, t)u
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with time periodic function b(x, t) in an infinite cylinder, with Dirichlet or Neumann
boundary conditions. Embarrassingly, there is no general result guaranteeing ex-
istence of at least one Floquet solution of (9.2), much less completeness of such
solutions. Forget the Lyaponov theorem!

Only in one spatial dimension in an impressive result of this kind for (9.2)
achieved in beautiful works [64, 65], where the inverse scattering method is used.
Nothing comparable is available in higher dimensions, unless severe restrictions are
imposed on the periodic term [244, Ch. 5 and references therein]. What seems
to be the problem? After all, these equations are hypoelliptic, and the general
Floquet theory techniques to a large extent applies to such equations [244, Ch.
3]! The thing is that the general operator theory approach to parabolic periodic
equations does not work nearly as nicely as it does for the elliptic case. Namely,
as it was discovered by Miloslavskíı (see [285–292] as well as [244, Ch. 5] for the
results and discussion), there are extremely nice abstract periodic equations (9.1)
with constant highest-order terms, which have no Floquet solutions at all. The
positive results known ([285–292] and [244, Ch. 5 and references therein]) require
very strong restrictions on periodic terms, such as b(x, t) in (9.2). The author hopes
that the “pathological” nonexistence of Floquet solutions does not hold for (9.2) (all
known counterexamples are abstract parabolic equations). A similar difficulty is
also encountered in the Floquet theory for evolution equations (9.1) with a bounded
operator coefficient A(t) (see [85]).

Some results on positive solutions of periodic parabolic equations have been
obtained (see, e.g., [171, 198, 326]).

Time periodic hyperbolic and Schrödinger type equations have also been
attracting much attention in physics (e.g., [66, 165, 406]). However, most of the
analytic theory described above fails here and other techniques are required and
are being developed. See, e.g. the survey [398] and references therein, as well as,
e.g., [201–204,380, 381, 396, 397].

9.2. Semi-crystals. So far, we have considered infinite periodic structures. The
case of the semi-crystal, where a periodic medium occupies a half-space with an-
other (homogeneous or periodic) medium taking the rest of the space, is extremely
important. Here one is interested in scattering on and transmission through the
semi-crystal, existence of surface (edge) states, etc. One is referred, for instance,
to Ch. 5 in the book [213] and references therein (e.g., to Chuburin’s work). See
also somewhat related works [97,134,155,156,361]. It seems to the author that this
topic has not been sufficiently studied yet.

9.3. Photonic crystals. Photonic crystals are artificial periodic optical media
that are optical analogs of semi-conductors, which bring about major technological
advances (see [111, 206, 245] for a nice physics introduction and bibliography, as
well as [110,245] for mathematics surveys). The main equation to study here is the
Maxwell operator with periodic coefficients. Floquet theory for this operator works
in many regards in parallel with the elliptic equations considered in this article,
with some notable analytic and numerical quirks (see, e.g., [141–143, 245, 295] for
details and references).

9.4. Waveguides. Periodic waveguides form one of the important applications of
Floquet theory. Here one considers boundary value problems in periodically shaped
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domains, where the boundary conditions and the governing equations are also peri-
odic. In some applications, such as quantum waveguides or photonic crystal waveg-
uides, one has to deal also with problems on zero-width surface or curve systems, or
where the waves, rather than being confined to the interior of a waveguide, leak (be-
ing evanescent) into the surrounding space. Many spectral problems (e.g., absolute
continuity of the spectrum or Bethe–Sommerfeld conjecture) happen to be signifi-
cantly harder in waveguide situations and are not completely understood, in spite
of significant progress achieved [57,98–100,161,200,244,348,351,368,375,376,379].

9.5. Coverings and noncommutative versions. As we have mentioned before,
one can consider periodic elliptic operators on a normal cocompact Riemannian18

covering X �→ M with a deck group Γ. If Γ is a finitely generated virtually abelian
group, the techniques and results of Floquet–Bloch theory described in this text
mostly apply (e.g., [3,58,253,254,372]), with some caveats such as possible appear-
ance of point spectrum.

Getting rid of the commutativity condition has proven to be hard, due to the
difficulties of harmonic analysis on Γ. And indeed, many techniques fail (after
all, the Floquet transform belongs to commutative harmonic analysis) and results
do change. There is probably no overarching analog of Floquet theory for all co-
compact non-abelian coverings.

Some results do translate to the nilpotent case [269], albeit apparently much
more should be possible (e.g., some Liouville type theorems).

In the presence of a periodic magnetic field (but not necessarily periodic magnetic
potential), the Schrödinger operator is not periodic anymore, but it commutes with
the so-called Zak transformations (magnetic translations), which combine
spatial shifts with phase shifts [13,14,264,305,405]. Here one deals with the action
of the (nilpotent) discrete Heisenberg group Γ. This case has been intensively
studied, due to its physics importance (e.g., [101; 305, and references therein; 357]),
but we cannot cover it here.

In more general situations, many issues of spectral theory of periodic Lapla-
cians (and more general operators) on cocompact coverings have been studied,
such as relations to the amenability of Γ [55], existence of a band-gap structure
[60, 373], density of states [2, 119], Shnol′–Bloch theorems [230], presence of pure
point spectrum [230], gaps creation [181,182,232,233,270,281], absence of a singu-
lar continuous spectrum [184], representation of solutions [238, 241, 242], etc. See
also [55, 59, 183, 185, 371] for related considerations. The reader is reminded that
the references in this section are especially far from being comprehensive.
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vol. 78, Birkhäuser, Basel, 1995, pp. 175–184. MR1365330 (97d:35158)

[196] R. Hempel and K. Lienau, Spectral properties of periodic media in the large cou-
pling limit, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1445–1470, DOI
10.1080/03605300008821555. MR1765136 (2001h:47074)

[197] R. Hempel and O. Post, Spectral gaps for periodic elliptic operators with high contrast: an
overview, Progress in analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ,
2003, pp. 577–587. MR2032728 (2004k:35281)

[198] P. Hess, Positive solutions of periodic-parabolic problems and stability, Nonlinear parabolic
equations: qualitative properties of solutions (Rome, 1985), Pitman Res. Notes Math. Ser.
vol. 149, Longman Sci. Tech., Harlow, 1987, pp. 129–136. MR901101

[199] Y. Higuchi and T. Shirai, Some spectral and geometric properties for infinite graphs, Dis-
crete geometric analysis, Contemp. Math. vol. 347, Amer. Math. Soc., Providence, RI, 2004,
pp. 29–56, DOI 10.1090/conm/347/06265. MR2077029 (2006f:47040)

[200] V. Hoang and M. Radosz, Absence of bound states for waveguides in two-dimensional pe-
riodic structures, J. Math. Phys. 55 (2014), no. 3, 033506, 20, DOI 10.1063/1.4868480.
MR3221271

[201] J. S. Howland, Scattering theory for Hamiltonians periodic in time, Indiana Univ. Math. J.
28 (1979), no. 3, 471–494, DOI 10.1512/iumj.1979.28.28033. MR529679 (80e:47008)

[202] J. S. Howland, Floquet operators with singular spectrum. I, II (English, with French sum-
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[207] I. Kachkovskĭı and N. Filonov, Absolute continuity of the spectrum of a periodic Schrödinger
operator in a multidimensional cylinder (Russian, with Russian summary), Algebra i Analiz
21 (2009), no. 1, 133–152, DOI 10.1090/S1061-0022-09-01087-5; English transl., St. Peters-
burg Math. J. 21 (2010), no. 1, 95–109. MR2553054 (2010i:35054)
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[292] A. I. Miloslavskĭı, An abstract integro-differential equation with a periodic coefficient.
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