Math 7320 @ LSU Spring, 2018 Problem Set 5

Textbook problems refer to section number, subsection number, and problem number in V.I. Arnold's book "Ordinary Differential Equations".

1. The Van der Pol oscillator is the ODE system

$$\ddot{x} - \mu (1 - x^2) \dot{x} + x = 0.$$

Prove the following. For $\mu > 0$, $x \equiv 0$ is an unstable equilibrium solution and there exists a periodic solution; and for $\mu < 0$, all solutions converge to the stable equilibrium solution $x \equiv 0$.

2. Consider the discrete dynamical system in the interval [0, 1] defined by iterating the "tent-map"

$$F(x) = 1 - |2x - 1|,$$

that is, with $x_0 \in [0, 1]$ given, a sequence $\{x_n\}_{n=0}^{\infty}$ in [0, 1] is determined by

$$x_{n+1} = F(x_n) \,.$$

For each positive integer q, determine how many cycles (periodic orbits) of period q this system has. Prove that periodic orbits are dense in [0, 1].