(11) My condensation of Galas theory from the text hook
§ 10.1 Galois groups and field) polynomial separability

- Given a field exturian E of F, its Galois group is

$$
G(E / F)=\operatorname{gal}(E: F):=\{\sigma \in \operatorname{Aut}(E): \sigma(a)=a \not \forall a \in F\},
$$

withielosore and we hove $G(E / F) \subset$ tut $(\mathbb{E}) \subset S_{E}$ with closure under composition. So $G(E / F)<S_{E}$. $\tau_{\text {salgrap }}$

- Galois graps act on coots of polynomials:

Let $E \supset F$ be a field extension, $p \in F[x]$,

$$
x:=\{x \in E: p(u)=0\}
$$

Fact $\forall \sigma \in G(F / F)$ and $v \in X, \sigma(x) \in X$.
Pf $p(\sigma(v))=\sum_{i=0}^{n} a_{i}(\sigma(v))^{i}=\sigma \sum_{i=0}^{n} a_{i} v^{i}=p(\omega)=0$
This implies that $\left.G(E / F)\right|_{X}=\left\{\left.\sigma\right|_{X}: \sigma \in G(E / F)\right\} \subset S_{X}$.
The map $\rho: G\left(E(F) \rightarrow S_{x}:\left.\sigma \mapsto \sigma\right|_{x}\right.$ is a hancinpllime

- Case $E=F(u)$, u algisiacomer $F, \quad m=$ minpolju of u over F

$$
x=\{x \in F(u): m(v)=0\}
$$

fact $\forall v \in X, \exists!\cdot \sigma \in G(F(u) / F): \sigma(u)=v$.

* existence atuduk The iso simerphosm
$F(u) \rightarrow F[x] /\langle m(x)\rangle \rightarrow F(v)$ is onto $F(u)$ since $F(v)<F(u)$ and this is a linear map of vector spaces of finite dimension.
* uniqueress. Recall hat $F(a)=\left\{f(u):\right.$ 数 $\left.f \in F \mathbb{L x}_{x}\right\}$.

Given $\sigma \in G a l(F u) / F)$ such that $\sigma(u)=v$,
$\sigma(f(u))=f(\sigma(\omega))=f(v)$, so σ is (unisuebydeleduried
Lisscu: existence is due to irreducdullty of m,
unisueness is dure to minimalyy of $F(a)$ (sudlest fld $u F \& a$)

- Consequences:
* $\rho: G\left(P(n)(F) \rightarrow S_{x}\right.$ rs injective, so G acts as a surgrapp of permatitions of X
* If m splits ir $F(n)$, then $|G(R(n) / F)|=\operatorname{deg} m=[(n): F]$
- Ex

$$
\mathbb{Q}\left(\sqrt[3]{5}, s_{3}\right)=\text { spl Pdd } f x^{3}-5 \text { anew } Q
$$

Degres of field extensions are slive integars
Galu's gromps are \approx red.

$$
\sigma \tau \sigma=\tau
$$

- $G\left(Q\left(S_{p}\right) / \mathbb{Q}\right)=C_{p-1}, \quad S_{p}=e^{2 \pi i / p}, p$ prime.

Steps of the proof:
$* x^{p-1}+x^{p-2}+\cdots+x+1$ is irreducible over \mathbb{Q}, and its roots are $\rho_{p}, S_{p}^{2}, \ldots, \rho_{p}^{p-1}$, all in $\mathbb{Q}\left(\zeta_{p}\right)$.

* \mathbb{Z}_{p}^{*} is cyclic since it is a find te toubyrou f) the group of units of a field.
* Let $m \in \mathbb{R}$ be with. $\bar{m} \in \mathbb{R}_{p}$ is a generator of \mathbb{R}_{p}^{*}.
$* \exists \sigma \in G\left(Q\left(s_{p}\right) / Q.\right)$ s. th. $\sigma\left(S_{p}\right)=\zeta_{p}^{m}$.
$* \sigma^{*}\left(\zeta_{p}\right)=S_{p}^{{ }^{k}}$, so

$$
\begin{aligned}
& \quad \sigma^{k}\left(\zeta_{p}\right)=\sigma^{l}\left(S_{p}\right) \\
& \Leftrightarrow \rho^{m^{k}}=\rho^{m^{l}} \\
& \Leftrightarrow \rho^{m^{k}-m^{l}}=1 \\
& \Leftrightarrow m^{k}-m^{l}=0 \text { in } \mathbb{Z}_{p} \\
& \Leftrightarrow \bar{m}^{k}\left(1-\bar{m}^{l-k}\right)=0 \text { in } \mathbb{Z}_{p} \\
& \Leftrightarrow \bar{m}^{l k}=1 \\
& \Leftrightarrow l-k \equiv 0 \text { (mall }\left(\text { or in } \partial_{p}^{*} \cong C_{p-1}\right)
\end{aligned}
$$

Thus $\sigma^{k}\left(\zeta_{p}\right) \neq \sigma^{l}\left(\xi_{p}\right)$ for $k \neq l$ and $0 \leq k, d<p-1$ and so σ^{k} for $k=0,1, \ldots, p-1$ are distinct.
Un Thus $\langle\sigma\rangle$ has archer $p-1$, to erich

* Since $\left|G\left(\mathbb{Q}\left(\Omega_{p}\right) / Q\right)\right|=p-1$ and $\langle\sigma\rangle \subset G\left(\mathbb{Q}\left(S_{Q}\right) / \mathbb{Q}\right)$, $G\left(\mathbb{Q}\left(S_{p}\right)(\mathbb{2})\right.$ is apclue of wider $p-1$.
- $G\left(G F\left(p^{2}\right) / \mathbb{Z}_{p}\right) \cong C_{n}$

Steps of proof:

* The Frobemins antomappliom $\sigma: w r \omega^{P}$ is in the Gal ign d G
$*\left|G\left(G F(p) / \mathbb{Z}_{p}\right)\right| \leq n$ so $\langle\sigma\rangle<G$
$*$ Fr $k \in \mathbb{N}_{0}, \sigma^{k}=\varepsilon \rightarrow \omega^{p^{k}}-\omega=0 \forall w \in G F\left(p^{n}\right)$ $\rightarrow p^{k} \geq p^{n}$, so $k \geq n$. Thus $\langle\langle\alpha\rangle \geq n$.
$\left.* G\left(G P_{p} \mu\right) / \Lambda_{p}\right)=\langle\sigma\rangle \cong C_{n}$
- Let E be a splitting field of f over F + $G(E / F)$ is isomarplre to a subgromp of S_{Y}, wher $X=\{u \in E: f(u)=0\}$.
* cothoer f irred oned $F \rightarrow G$ acts transívively on X
* Gacts transifively on X and fhas norppeated orids \rightarrow firral over F
- Def A pulyminial $p(x) \in F[x]$ is separalle (over F) f eich of its irreducible factors has only simgle roots Ein any field extension of F.
E is a suparate extension of F. f the minimal plypaial of u over F is seponable.
- Let $p(x) \in F[x]$ be irredualle (avir F).
p is separatile if and only if $p^{\prime} \neq 0$ in $F[x]$.
- Let f be irredicible over F
$*$ chai $F=0 \Rightarrow f$ is seponable.
* char $F=p \Rightarrow$ (f seponable $\Leftrightarrow \exists g: f(x)=g\left(x^{p}\right)$)
- Let E be a splitting field of a sepanathe pilynanial $f \in F[x]$. Then
(*)

$$
|G(E / F)|=[E: F] \text {. }
$$

Sheps of the proof:

* Let p be an imeduratle factor of $f w$ dig $p \geq 2$, and let $u \in E$ be a root of P :
* To proceed by induction, cunsider $F \subset F(w) \subset E$: $[F(w): F]=k ;[E: F(u)]=[E: F] / k$ induct $\llbracket \in(E /(F W)$
$\left\{\begin{array}{l}* \text { Sut } X:=\{x \in E: p(u)=0\} ; \quad|X|=k \geq 2 \\ * \forall \sigma \in G(E / F),\{\tau \in G(E \mid F): \tau(u)=\sigma(u)\}=\sigma G(E / \mathcal{C}()) \\ * \forall v \in X, \exists \sigma \in G(E / F): \sigma(u)=v\end{array}\right.$
$* \forall v \in X, \exists \sigma \in G(E / F): \sigma(u)=v$

(5)

separable extension of F with $|F|=\infty$.
$E=F(a) \quad \Rightarrow E$ is a simple alyehraic extension of F.
Prof Let's do the case that $E=F(x, w)$ (and then use induction).
$p=$ mi polyp of v over $F ; V=$ rots of p in E $q=$ mimpolipo of w over $F ; W=\operatorname{roots}$ of q in E candidate for linear cont For any $a \in F$, set $u=v+a w$.
$\Gamma^{i} \quad m=m i n$ poling f o w over $F(u), m \in F(u)[x]$.
dits using Set $g(x):=p(u-a x), g \in F(u)[x]$.
since $g(w)=p(v)=0$ and $q(w)=0$, m / q and m / g.
$* \rightarrow$ Thus each root of m is a root of q and a root of g But - we can choose a so that g has only the root w in comminwith q. To wit:
$\forall \omega^{\prime} \in W^{\prime}=\omega \backslash\{\omega\}$,

$$
\begin{aligned}
& \quad g\left(w^{\prime}\right)=p\left(u-a w^{\prime}\right)=0 \\
& \Leftrightarrow \quad u-a w^{\prime} \in V \\
& \Leftrightarrow \quad v+a\left(w-w^{\prime}\right) \in V \\
& \Leftrightarrow a \in\left(w-w^{\prime}\right)^{-1}(V-v)
\end{aligned}
$$

So $g\left(w^{\prime}\right) \neq 0 \quad \forall w^{\prime} \in w^{\prime}$ $\Leftrightarrow a \notin\left(w-W^{\prime}\right)^{-1}(V-i)$, which is a fordo set Since F rs infinite, such a exists.

