Math 7320 @ LSU
Spring, 2021
Problem Set 1

1. Prove that $e^{A+B}=e^{A} e^{B}$ if $A B=B A$; and prove that

$$
e^{t(A+B)}=e^{t A} e^{t B} \quad \text { for all } t \in \mathbb{R}
$$

if and only if $A B=B A$.
2. Putzer's theorem provides an algorithm for computing the solution of a linear constantcoefficient homogeneous system $\dot{x}=A x$ without first computing the Jordan normal form for the generator A. Let A be a linear operator in a finite-dimensional complex vector space of dimension n, and let $\left\{\lambda_{i}\right\}_{i=1}^{n}$ denotes its eigenvalues. For $k=1, \ldots, n$, define the operators

$$
A_{k}=\prod_{j=1}^{k}\left(A-\lambda_{j} E\right)
$$

and the scalar functions $r_{j}(t)$ as the solution of the system

$$
\begin{array}{lll}
d r_{1} / d t=\lambda_{1} r_{1}, & r_{1}(0)=1 \\
d r_{j} / d t=\lambda_{j} r_{j}+r_{j-1}, & r_{j}(0)=0 & \text { for } j \geq 2 .
\end{array}
$$

Putzer's theorem states that

$$
e^{t A}=\sum_{k=0}^{n-1} r_{k+1}(t) A_{k}
$$

Prove Putzer's theorem.
3. Let $\mathcal{A}:=\{A(t): t \in(a, b)\}$ be a commuting invertible family of $n \times n$ matrices with complex entries that is differentiable with respect to t. Define

$$
\begin{aligned}
\mathcal{A}^{-1} & :=\left\{A(t)^{-1}: t \in(a, b)\right\} \\
\dot{\mathcal{A}} & :=\{\dot{A}(t): t \in(a, b)\},
\end{aligned}
$$

in which the dot refers to differentiation with respect to t. Prove that the union $\mathcal{A} \cup \mathcal{A}^{-1} \cup \dot{\mathcal{A}}$ is a commuting family of matrices.
4. Let J be a finite interval in the real line, and let B be the ball $B=\left\{y \in \mathbb{R}^{n}| | y-x_{0} \mid \leq \rho\right\}$, where $x_{0} \in \mathbb{R}^{n}$ and $\rho>0$ are fixed. Prove that the set of functions

$$
X=\{x: J \rightarrow B \mid x \text { is continuous }\}
$$

endowed with the supremum norm

$$
\left\|x_{1}-x_{2}\right\|_{\text {sup }}=\sup _{t \in J}\left|x_{1}(t)-x_{2}(t)\right|
$$

is a complete metric space.
5. Let X be defined as in problem (4), let t_{0} be in J, and let $F: B \rightarrow \mathbb{R}^{n}$ be of Lipschitz class. Prove that, for each function $x \in X$, the following two conditions are equivalent.
(IVP) x is differentiable at each point of $J, \dot{x}=F(x)$, and $x\left(t_{0}\right)=x_{0}$.
(IE) $x(t)=x_{0}+\int_{t_{0}}^{t} F(x(s)) d s$.

