Math 7320 @ LSU
Spring, 2021
Problem Set 5

1. Let the transfer matrix for the ordinary differential equation

$$
\frac{d}{d t} x(t)=\left(A_{0}(t)+\sigma A_{1}(t)\right) x(t)
$$

be denoted by $X_{\sigma}\left(t, t_{0}\right)$. This means that the solutions satisfy

$$
x(t)=X_{\sigma}\left(t, t_{0}\right) x\left(t_{0}\right)
$$

Prove that

$$
X_{\sigma}\left(t, t_{0}\right)=X_{0}\left(t, t_{0}\right)+\sigma \int_{t_{0}}^{t} X_{0}(t, s) A_{1}(s) X_{0}\left(s, t_{0}\right) d s+O\left(\sigma^{2}\right) \quad(\sigma \rightarrow 0)
$$

Prove this rigorously, paying attention to the precise definition of the "big O " symbol $O(\sigma)$.
2. Consider the initial-value problem

$$
\begin{align*}
& -u^{\prime \prime}+q(x) u=f(x), \\
& u(0)=a, \quad u^{\prime}(0)=b, \tag{1}
\end{align*}
$$

in which $f \in L^{1}(I)$ and $q \in L^{2}(I)$. Prove that this problem has a unique absolutely continuous solution that satisfies

$$
u(x)-\int_{0}^{x}(x-y) q(y) u(y) d y=a+b x-\int_{0}^{x}(x-y) f(y) d y
$$

Prove that, given $C>0$, there exist real numbers M and N such that, for all $q \in L^{2}(I)$,

$$
\|q\|_{2}<C \Longrightarrow\|u\|_{2}<M
$$

and

$$
\|q\|_{2}<C \Longrightarrow \max _{x \in I}|u(x)|<N .
$$

3. Consider the initial-value problem

$$
\begin{aligned}
& -u_{\epsilon}^{\prime \prime}+(q(x)+\epsilon) u_{\epsilon}=0, \\
& u_{\epsilon}(0)=a, \quad u_{\epsilon}^{\prime}(0)=b,
\end{aligned} \quad x \in I=[0, \pi],
$$

in which a and b are fixed complex numbers and ϵ is a complex variable.
a. Prove that, for each $\rho>0$, there are numbers M and N such that, for all $\epsilon \in \mathbb{C}$,

$$
|\epsilon|<\rho \Longrightarrow\left\|u_{\epsilon}\right\|_{2}<M
$$

and

$$
|\epsilon|<\rho \Longrightarrow \max _{x \in I}\left|u_{\epsilon}(x)\right|<N
$$

b. By deriving an initial-value problem of the form (1) for the function $u_{\epsilon}-u_{0}$, prove that the map $\epsilon \mapsto u_{\epsilon} \in L^{2}(I)$ is a continuous function.
c. By deriving an initial-value problem of the form (1) for the function $\left(u_{\epsilon}-u_{0}\right) / \epsilon$, use the causal Green function for the operator $-d^{2} / d x^{2}+q(x)$ to prove that, for each $x \in I$, $u_{\epsilon}(x)$ is differentiable with respect to the complex variable ϵ at $\epsilon=0$.
4. Note. (This is not part of the assignment.) One can prove that, for the solution $u_{\epsilon}(x)$ of the previous initial-value problem, the derivatives $u_{\epsilon}^{\prime}(x)$ are analytic in ϵ at $\epsilon=0$.
Here is one way to do this. Using the DE, write an integral expression for $u^{\prime}(x)$ that involves u. Using the results of previous problem, this will allow you to bound $u^{\prime}(x)$ pointwise, even over all ϵ in any bounded set. Then use the analyticity of $u_{\epsilon}(x)$ (for all ϵ) and a theorem from complex analysis, etc.

