Math 7320 @ LSU
Spring, 2021
Problem Set 1

1. Prove that $e^{A+B}=e^{A} e^{B}$ if $A B=B A$, and prove that

$$
e^{t(A+B)}=e^{t A} e^{t B} \quad \text { for all } t \in \mathbb{R}
$$

if and only if $A B=B A$.
2. Putzer's theorem provides an algorithm for computing the solution of a linear constantcoefficient homogeneous system $\dot{x}=A x$ without first computing the Jordan normal form for the generator $A$. Let $A$ be a linear operator in a finite-dimensional complex vector space of dimension $n$, and let $\left\{\lambda_{i}\right\}_{i=1}^{n}$ denotes its eigenvalues. For $k=1, \ldots, n$, define the operators

$$
A_{k}=\prod_{j=1}^{k}\left(A-\lambda_{j} E\right), \quad \text { and } \quad A_{0}=E
$$

and the scalar functions $r_{j}(t)$ as the solution of the system

$$
\begin{array}{ll}
d r_{1} / d t=\lambda_{1} r_{1}, & r_{1}(0)=1 \\
d r_{j} / d t=\lambda_{j} r_{j}+r_{j-1}, & r_{j}(0)=0
\end{array} \quad \text { for } j \geq 2 .
$$

Putzer's theorem states that

$$
e^{t A}=\sum_{k=0}^{n-1} r_{k+1}(t) A_{k}
$$

Prove Putzer's theorem.
3. Let $\mathcal{A}:=\{A(t): t \in(a, b)\}$ be a commuting invertible family of $n \times n$ matrices with complex entries that is differentiable with respect to $t$. Define
are

$$
\begin{aligned}
\mathcal{A}^{-1} & :=\left\{A(t)^{-1}: t \in(a, b)\right\} \\
\dot{\mathcal{A}} & :=\{\dot{A}(t): t \in(a, b)\},
\end{aligned}
$$

in which the dot refers to differentiation with respect to $t$. Prove that the union $\mathcal{A} \cup \mathcal{A}^{-1} \cup \dot{\mathcal{A}}$ is a commuting family of matrices.
4. Let $J$ be a finite interval in the real line, and let $B$ be the ball $B=\left\{y \in \mathbb{R}^{n}| | y-x_{0} \mid \leq \rho\right\}$, where $x_{0} \in \mathbb{R}^{n}$ and $\rho>0$ are fixed. Prove that the set of functions

$$
X=\{x: J \rightarrow B \mid x \text { is continuous }\}
$$

endowed with the supremum norm

$$
\left\|x_{1}-x_{2}\right\|_{\text {sup }}=\sup _{t \in J}\left|x_{1}(t)-x_{2}(t)\right|
$$

is a complete metric space.
5. Let $X$ be defined as in problem (4), let $t_{0}$ be in $J$, and let $F: B \rightarrow \mathbb{R}^{n}$ be of Lipschitz class. Prove that, for each function $x \in X$, the following two conditions are equivalent.
(IVP) $x$ is differentiable at each point of $J, \dot{x}=F(x)$, and $x\left(t_{0}\right)=x_{0}$.
(IE) $x(t)=x_{0}+\int_{t_{0}}^{t} F(x(s)) d s$.

Math 7320 Spring 2021 Assignment 1 Solutions
(1) $e^{t(A+B)}=\sum_{k=0}^{\infty} \frac{1}{k} t^{k}(A+B)^{k}$; the $t^{2}$ coefficient is $\frac{1}{2}\left(A^{2}+B^{2}+A B+B A\right)$

$$
\begin{aligned}
& e^{t A} e^{t B}=\left(\sum_{k=0}^{\infty} \frac{1}{k} t^{k} A^{k}\right)\left(\sum_{k=0}^{\infty} \frac{1}{2}!^{l} B^{l}\right)=\sum_{k=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{k \cdot l^{l}} t^{k+\ell} A^{k} B^{l} \\
& =\sum_{n=0}^{\infty} t^{n} \sum_{m=0}^{n} \frac{1}{(m))^{1} \cdot m} A^{n-m} B^{m}=\sum_{n=0}^{\infty} \frac{1}{n} t^{n} \sum_{m=0}^{n}\binom{n}{m} A^{n+\cdots} B^{m} \text {. }
\end{aligned}
$$

the $t^{2}$ coefficient is $\frac{1}{2}\left(A^{2}+B^{2}+2 A B\right)$
If $e^{t(A+B)}=e^{t A} e^{t B}$ for all $t$, thew all coefficients as powerseries in $t$ are equal. For the $t^{2}$ coefficient, we obtain $A B+B A=2 A B$, ie., $A B=B A$, If $A B=B A$, then, for all $k,(A+B)^{k}=\sum_{l=0}^{k}\binom{k}{l} A^{1-1} B^{l}$, and therefore all the $t$-coefficients of $e^{t(A+B)}$ and $e^{t A} e^{t B}$ coincide. This $e^{t(A+B)}=e^{t A} e^{t B}$. Particularly, for $t=1$, we obtain $e^{A+B}=e^{A} e^{B}$.
(2) Set $r_{0} \equiv 0$ and $A_{0}=$.

$$
\begin{aligned}
& \text { Set } r_{0} \equiv 0 \text { and } A_{0}=1 \\
& \frac{d}{d t}\left(\sum_{k=0}^{n-1} r_{k+1}(t) A_{k}\right)=\sum_{k=0}^{n-1} \frac{d r_{k+1}(t)}{d t} A_{k}=\sum_{k=0}^{n-1}\left(\lambda_{k+1} r_{k+1}+r_{k}\right) A_{k}=\sum_{k=0}^{n-1} \lambda_{k+1} r_{k+1} A_{k}+\sum_{k=0}^{n-1} r_{k} A_{k} \\
& A\left(\sum_{k=0}^{n-1} r_{k+1} A_{k}\right)=\sum_{k=0}^{n-1} r_{k+1}\left(A-\lambda_{k+1} F_{k}\right) A_{k}+\sum_{k=0}^{n-1} \lambda_{k+1} r_{k+1} A_{k}=\sum_{k=0}^{n-1} r_{k+1} A_{k+1}+\sum_{k=0}^{n-1} \lambda_{k+1} r_{k+1} A_{k}
\end{aligned}
$$

By the Cayley-familton Theorem, the characteristic polynomial of $A$ annihilates $A$, which is to say that $A_{n}=0$. Using this and $r_{0}=0$, we obtain $\sum_{k=0}^{n-1} r_{k+1} A_{k+1}=\sum_{k=0}^{n-1} r_{k} A_{k}$ and from this,

$$
\frac{d}{d t}\left(\sum_{k=0}^{n-1} r_{k+1}(t) A_{k}\right)=A\left(\sum_{k=0}^{n-1} r_{k+1}(t) A_{k}\right)
$$

$A\left(c o, \sum_{k=0}^{n-1} r_{k+1}(0) A_{k}=E\right.$ fran the initial condition for the functions $r_{k}$.
It follows that $\sum_{k=0}^{n-1} r_{k+1}(t) A_{k}=e^{t A}$, as $e^{t A}$ is the unique solution to $\{\dot{X}=A X, X(0)=E\}$.
(3) Let $B=A\left(t_{1}\right)$ and $C=A\left(t_{2}\right)$ for cove $t_{1}, t_{2} \in(a, b)$. Multiplying both sides of $B C=C B$ by $C^{-1} B^{-1}$ on the left and by $B^{-1} C^{-1}$ on the right yields $B^{-1} C^{-1}=C^{-1} B^{-1}$. so that $B^{-1}$ and $C^{-1}$ commute. Thus $A^{-1}$ is a commentivey family. Next, $B C^{-1}=C^{-1} C B C^{-1}=C^{-1} B C C^{-1}=C^{-1} B$, so all elevens $f A$ commute with all elements of $A^{-1}$.
Set $D=\dot{A}\left(t_{2}\right)$ and let $F \in\left\{B, B^{-1}\right\}$. Then

$$
\begin{aligned}
B D & =B \lim _{h \rightarrow 0} \frac{A\left(t_{2}+h\right)-A\left(t_{2}\right)}{h}=\lim _{h \rightarrow 0} \frac{B A\left(t_{2}+h\right)-B A\left(t_{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{A\left(t_{2}+h\right) B-A\left(t_{2}\right) B}{h}=\left(\lim _{h \rightarrow 0} \frac{A\left(t_{2}+h\right)-A\left(t_{2}\right)}{h}\right) B=D B
\end{aligned}
$$

Thus all elements of $A \in$ commute with all elements of $\mathcal{A} \cup \mathcal{A}^{-1}$.
Lastly, we show that $\dot{A}$ is a commenting family. Set $F=\dot{A}\left(t_{1}\right)$.

$$
\begin{gathered}
D F=\left(\lim _{h \rightarrow 0} \frac{A\left(t_{2}+h\right)-A\left(t_{2}\right)}{h}\right)\left(\lim _{h \rightarrow 0} \frac{A\left(t_{1}+h\right)-A\left(t_{1}\right)}{h}\right) \\
=\lim _{h \rightarrow 0}\left(\frac{A\left(t_{2}+h\right)-A\left(t_{2}\right)}{h} \frac{A\left(t_{1}+h\right)-A\left(t_{1}\right)}{h}\right)=\lim _{h \rightarrow 0}\left(\frac{A\left(t_{1}+h\right)-A\left(t_{1}\right)}{h} \frac{A\left(t_{2}+h\right)-A\left(t_{2}\right)}{h}\right) \\
=\left(\lim _{h \rightarrow 0} \frac{A\left(t_{1}+h\right)-A\left(t_{1}\right)}{h}\right)\left(\lim _{h \rightarrow 0} \frac{A\left(t_{2}+h\right)-A\left(t_{2}\right)}{h}\right)=F D .
\end{gathered}
$$

We have shown that any two elements of $A \cup \mathcal{A} \cup A^{-1}$ commute with each other.
(4) Let $\left\{x_{n} \xi_{n=1}^{\infty}\right.$ be a cauchy sequence from $X$. You have to prove that $\lambda x \in X$ s.th. $x_{n} \rightarrow x$ as $n \rightarrow \infty$ in $X$,
Briefly, these are the steps:
(1) $\forall t \in J,\left\{x_{n}(t)\right\}_{n}^{\infty}$ is Cauchy in $\mathbb{R}^{n}$ because $X$ has the sup normcaplatener of $\mathbb{R}^{n}$ prodinees a limit $x(t)$.
(2) Prove that the paintuice-in- $J$ limit $x_{n}(t) \rightarrow x(t)$ is actually uniform, so that $x_{n} \rightarrow x$ in the sup norm.
(3) Prove that $x \in X$ :
(a) "The uniform limit of continuous fine ions is continuous" is a standard recuet in $U G$ advanced calculus (b) The values $x(t)$ are in $B$ becance the segrence $\left.\left\{x_{n} \mid t\right)\right\}$ is from $B$ and $B$ is cloced.
(5) Let $x \in X$ he differentiable with $\dot{x}=F(x)$ and $x\left(t_{0}\right)=x_{0}$. Since $x$ and $F$ are continnemes, so is $F \circ x$, so the PTC yields $x(t)=x_{0}+\int_{t_{0}}^{t} F(x(s)) d s$, which is IE. Now let $x \in X$ satisfy $\mid E$. Since $x$ and $F$ are continnens, So is $f \circ x$, so $\int_{t_{0}}^{t} F(x(s)) d s$ is differentiable (by the "other" FTC) with devivaline $F(x(t))$ at each $t \in(a, b)$. Tuns $\dot{x}=F(x)$, and $I E$ directly gives $x\left(t_{0}\right)=x_{0}$.

