Math 7320 @ LSU Spring, 2021 Problem Set 1

1. Prove that $e^{A+B} = e^A e^B$ if AB = BA; and prove that

$$e^{t(A+B)} = e^{tA} e^{tB}$$
 for all $t \in \mathbb{R}$

if and only if AB = BA.

2. Putzer's theorem provides an algorithm for computing the solution of a linear constantcoefficient homogeneous system $\dot{x} = Ax$ without first computing the Jordan normal form for the generator A. Let A be a linear operator in a finite-dimensional complex vector space of dimension n, and let $\{\lambda_i\}_{i=1}^n$ denotes its eigenvalues. For $k = 1, \ldots, n$, define the operators

$$A_k = \prod_{j=1}^k (A - \lambda_j E)$$
 , and $A_0 = F$

and the scalar functions $r_j(t)$ as the solution of the system

$$dr_1/dt = \lambda_1 r_1, \qquad r_1(0) = 1 dr_j/dt = \lambda_j r_j + r_{j-1}, \quad r_j(0) = 0 \text{ for } j \ge 2.$$

Putzer's theorem states that

$$e^{tA} = \sum_{k=0}^{n-1} r_{k+1}(t) A_k$$

Prove Putzer's theorem.

3. Let $\mathcal{A} := \{A(t) : t \in (a, b)\}$ be a commuting <u>invertible</u> family of $n \times n$ matrices with complex entries that is differentiable with respect to t. Define

$$\mathcal{A}^{-1} := \{ A(t)^{-1} : t \in (a, b) \}$$
$$\dot{\mathcal{A}} := \{ \dot{A}(t) : t \in (a, b) \},$$

in which the dot refers to differentiation with respect to t. Prove that the union $\mathcal{A} \cup \mathcal{A}^{-1} \cup \dot{\mathcal{A}}$ is a commuting family of matrices.

4. Let *J* be a finite interval in the real line, and let *B* be the ball $B = \{y \in \mathbb{R}^n \mid |y - x_0| \le \rho\}$, where $x_0 \in \mathbb{R}^n$ and $\rho > 0$ are fixed. Prove that the set of functions

$$X = \left\{ x : J \to B \mid x \text{ is continuous} \right\}$$

endowed with the supremum norm

$$||x_1 - x_2||_{\sup} = \sup_{t \in J} |x_1(t) - x_2(t)|$$

is a complete metric space.

5. Let X be defined as in problem (4), let t_0 be in J, and let $F : B \to \mathbb{R}^n$ be of Lipschitz class. Prove that, for each function $x \in X$, the following two conditions are equivalent. (IVP) x is differentiable at each point of J, $\dot{x} = F(x)$, and $x(t_0) = x_0$. (IE) $x(t) = x_0 + \int_{t_0}^t F(x(s)) ds$.

Math 7320 Spring 2021 Ascionand 1 Solutions
(1)
$$e^{t(A+B)} = \sum_{k=0}^{\infty} \frac{1}{k!} t^{k} (A+B^{k}) (\sum_{k=0}^{\infty} \frac{1}{k!} t^{k} B^{k}) = \sum_{\mu=0}^{\infty} \frac{1}{k!} t^{\mu} A^{\mu} B^{\mu} = \sum_{\mu=0}^{\infty} \frac{1}{k!} t^{\mu} B^{\mu} B^{\mu} = \sum_{\mu=0}^{\infty} \frac{1}{k!} t^{\mu} B^{\mu} B^{\mu} = \sum_{\mu=0}^{\infty} \frac{1}{k!} t^{\mu} B^{\mu} B^{\mu} = E^{\mu} B^{\mu} B^{\mu}$$

(3) Let
$$B = A(t_1)$$
 and $C = A(t_2)$ for one $t_1, t_2 \in (A, b_1)$. Multiplying both side of
 $BC = CB$ by $C'B'$ on the left and by $B'C'$ on the right yields $BC' = CB'$.
so that B' and C' commute. Thus A'' is a commuting family:
Next, $BC' = C'CBC' = C'BCC' = C'B$, so all elevents of ct commute
with all elements of cA'' .
Set $D = A(t_2)$ and let $F \in SB, B'S$. Then
 $BD = B \lim_{h \to 0} \frac{A(t_2 + h) - A(t_2)}{h} = \lim_{h \to 0} \frac{BA(t_2 + h) - BA(t_2)}{h} B = DB$
Thus all elements of cA is a commuting family. Let $F \in A(t_1)$.
 $Latty, we show that cA is a commuting family. Let $F \in A(t_1)$.
 $DF = (\lim_{h \to 0} \frac{A(t_1 + h) - A(t_2)}{h}) = \lim_{h \to 0} (\frac{A(t_1 + h) - A(t_1)}{h}) = \lim_{h \to 0} (\frac{A(t_1 + h) - A(t_1)}{h}) = FD$.
We have show that any two elements of A'' is A'' .$

(a) "The uniform limit of continuous fine time is continuous"
is a standard recret in us advanced calculus
(b) The values x(t) are in B becauce the sequence
$$S_{X_{u}}(t)$$

is from B and B is closed.

(F) Let
$$x \in X$$
 be differentiable with $\dot{x} = F(x)$ and $\pi(t_0) = x_0$.
Since π and F are continuents, So is Fox , so
the PTC yields $\pi(t_0) = \pi_0 + \int_{t_0}^t F(\pi(s)) ds$, which is IE.
Mow let $x \in X$ satisfy IE. Since π and F are continuents,
So is Fox , so $\begin{pmatrix} t \\ F(\pi(s)) ds \\ t_0 \end{pmatrix}$ if derive the $F(\pi(t))$ at each $t \in (a_5b)$. Thus $\dot{x} = F(x)$,
and IE directly gives $\pi(t_0) = \pi_0$.