Math 7320 @ LSU
Spring, 2021
Problem Set 2

1. Prove the following statement on continuation of bounded solutions of an ODE.

Let K and W be subsets of \mathbb{R}^{n} with K compact and nonempty and W open and $K \subset W$; and let $f: W \rightarrow \mathbb{R}^{n}$ be Lipschitz. Let $x:(a, b) \rightarrow K$ be a solution of $\dot{x}=f(x)$, with $a<b$. Then there are numbers c and d with $c<a<b<d$ such that this solution is extended to a solution $x:(c, d) \rightarrow W$.
2. Prove that the definition of global stable manifold $\left(W^{\mathrm{s}}(\bar{x}, \mathcal{U})\right.$ in the notes) actually does not depend on \mathcal{U} even though \mathcal{U} is used in the definition.
3. Exercise 1.0.3 in Guckenheimer/Holmes. Using the Lyapunov function $V=\left(x^{2}+\sigma y^{2}+\right.$ $\left.\sigma z^{2}\right) / 2$, obtain conditions on $\sigma>0, \rho$, and $\beta>0$ sufficient for global asymptotic stability of the origin $(x, y, z)=(0,0,0)$ in the Lorenz system

$$
\dot{x}=\sigma(y-x), \quad \dot{y}=\rho x-y-x z, \quad \dot{z}=-\beta z+x y
$$

Are these conditions also necessary?
4. Let $g(x, y)$ and $h(x, y)$ be continuously differentiable real-valued functions of $(x, y) \in$ $\mathbb{R}^{d} \times \mathbb{R}^{d}$. Prove that the function g is constant on solutions of the following ODE in $\mathbb{R}^{2 d}$:

$$
(\dot{x}, \dot{y})=h(x, y)\left(D_{y} g(x, y),-D_{x} g(x, y)\right)
$$

Prove that, if $d=1$ and g has an isolated critical point corresponding to a strict local minimum or maximum, then this system has periodic trajectories.
5. [From exercise 1.3.2 in G / H] For the following ODEs
(i) $\ddot{x}+\varepsilon \dot{x}^{2}+\sin x=0$
(ii) $\dot{x}=-x+x^{2}, \dot{y}=x+y+\varepsilon y^{2}$
(iii) $\ddot{x}+\varepsilon\left(x^{2}-1\right) \dot{x}+x=0$
do the following for $\varepsilon=0$ and for small $\varepsilon<0$ and $\varepsilon>0$:
(A) Determine all fixed points and make a careful sketch of the flow about each fixed point.
(B) Make the sketches as accurate as possible by finding eigenvalues and eigenvectors of the linearizations. Make sure the sketches depict all essential interesting features. For (i), prove that, for $\varepsilon=0$, there are periodic orbits about certain fixed points; this is straightforward using the idea of the previous problem. But also for $\varepsilon \neq 0$, there are periodic orbits, and this information will let you know what the stable and unstable manifolds are. See if you can prove this. If you can't, then you may still use the result in doing part (C) for (i).
(C) Determine the local stable and unstable manifolds.
(1) Let to be a point in (a, b). Since f is contimens, the solution $x:(a, b) \rightarrow W$ of $\dot{x}=f(x)$ satisfies

$$
x(t)=x\left(b_{0}\right)+\int_{t_{0}}^{t} f(x(s)) d s \quad \forall t \in(a, b)
$$

Since f is Lipschitz on the bounded set K and $x(t) \in K$ $\forall t \in(a, b)$, the function $s \mapsto f(x(s))$ is bounded on $\left(a_{0} b\right)$, and therefore we obtain the following limit:

$$
\lim _{t \rightarrow b} x(t)=x\left(t_{0}\right)+\int_{t_{0}}^{b} f(x(s)) d s
$$

which is in K since K is compact. Let us extend x to $x:(a, b]$ by continuity, we then can deduce

$$
\lim _{t \rightarrow b}^{\prime} x(t)=\lim _{t \rightarrow b}^{\prime} f(x(t))=f(x(b))
$$

Therefore the equation $\dot{x}(t)=f(x(t))$ is valid on (a, b).
The existence theorem provides a solution to $y=f(y)$ with $y(b)=x(b)$ an some interval (a^{\prime}, d) with $a<a^{\prime}<b<d$

Notrie that the function

$$
z(t)=\left\{\begin{array}{lll}
x(t) & \text { for } & a^{\prime}<t \leq b \\
y(t) & \text { for } & b \leq t<d
\end{array}\right.
$$

also satisfies $\dot{z}=f(z)$ and $z(b)=y(b)$. The uniqueness theorem implies that $z=x_{1}$, so that y does extend
the solution x in W to a larger interval (a, d).
An analogare argument allows one to extend the left endpoint of the solentinis domain.
(2) $W_{l o c}^{s}(\bar{x}, x)=\left\{x \in \mathcal{M}: \phi_{t}(x)+\mathcal{U} \forall t \geq 0\right.$ and $\phi_{t}(x) \rightarrow \bar{x}$ as $\left.t \rightarrow \infty\right\}$

$$
W^{s}(\bar{x}, u)=\bigcup_{t \in \mathbb{R}} \phi_{t}\left(W_{l o c}^{s}(\bar{x}, u)\right)
$$

Let U and V be open salts abm \bar{x}.
Let $x \in \omega^{s}(\bar{x}, U)$ be giver. So $\exists t_{1} \in \mathbb{R}$ and $y \in \omega_{10 c}^{s}(\bar{x}, u)$ s.th. $x=\phi_{t}(y)$. Since $\phi_{s}(y) \rightarrow \bar{x}, \exists s_{0}: s>s_{0} \Rightarrow \phi_{s}(y) \in \mathcal{V}$.

Narc, $s>s_{0}-t_{1} \Rightarrow \phi_{s}(x)=\phi_{s}\left(\phi_{t}(y)\right)=\phi_{s+t_{1}}(y) \in V$.
Let $s_{1}>s_{0}-t_{1}$ be given, and pit $z=\phi_{s_{1}}(x)$. The $z \in V$ and $\forall t \geq 0, s_{1}+t \geq s_{0}-t_{1}$, so $\phi_{t}(z)=\phi_{t+s_{1}}(x) \in V$.

Furthermore, $\lim _{t \rightarrow \infty} \phi_{t}(z)=\lim _{t \rightarrow \infty} \phi_{t}(x)=\bar{x}$. We've shown that $z \in W_{\text {loc }}^{s}(\bar{x}, \nu)$. It follows that $x=\oint_{-s_{1}}(z) \in W(\bar{x}, \gamma)$
Sans, $W^{s}(\bar{x}, u) \subset W^{s}(\bar{x}, V)$, and, reciprocally, one obtains $>$.
(3) $\dot{x}=\sigma(y-x), \quad \dot{y}=\rho x-y-x z, \quad \dot{z}=-\beta z+x y \quad \sigma, \beta>0$

Set $V(x, y, z)=\frac{1}{2}\left(\alpha x^{2}+\sigma y^{2}+\sigma z^{2}\right)$, with $\alpha>0$.
Thew $\dot{V}(x, y, z)=\nabla V \cdot\langle\hat{x}, \dot{y}, \dot{z}\rangle=\langle\alpha x, \sigma y, \sigma z\rangle \cdot\langle\dot{x}, \hat{y}, \dot{z}\rangle$

$$
\begin{aligned}
& =\sigma \alpha x(y-x)+\sigma y(\rho x-y-x z)+\sigma z(-\beta z+x y) \\
& =-\sigma \alpha x^{2}-\sigma y^{2}-\sigma \beta z^{2}+\sigma(\rho+\alpha) x y \\
& =-\sigma \beta z^{2}-\sigma\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{cc}
\alpha & \frac{1}{2}(\rho+\alpha) \\
\frac{1}{2}(\rho+\alpha) & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

This is negative for all $(x, y, z) \neq(0,0,0)$ whaler the determinant is positive, re, whenever

$$
4 \alpha-(\rho+\alpha)^{2}>0
$$

or wherever $-\alpha-2 \sqrt{\alpha}<\rho<-\alpha+2 \sqrt{\alpha}$. The value $\alpha=1$ was proposed in the problen, and the Aconditran for pathol stability is therefore $-3<\rho<1$. It is net necessary because, by allowing a to run over all positive numbers, and taking the union over all g-inverbals $(-\alpha-2 \sqrt{\alpha},-\alpha+2 \sqrt{\alpha})$ one dituchs global acepptotic stability for all $\rho \in(-\infty, 1)$.
(4)

$$
\begin{aligned}
& (\dot{x}, \dot{y})=h(x, y)\left(D_{y} g(x, y),-D_{x} g(x, y)\right) \\
& \dot{g}(x, y)=\nabla_{g} \cdot\langle\dot{x}, \dot{y}\rangle=\left\langle D_{x} g_{,} D_{y} g\right\rangle \cdot\left\langle h D_{y} g_{,}-h D_{x} g\right\rangle=0
\end{aligned}
$$

Thus g is constant along trajectories.
In \mathbb{R}^{2}, let \bar{x} be a strict local minimum for g.
Because of is C^{\prime}, its level sets are closed curves near \bar{x}, and these must therefore be the trajectires.
[This can be mode vigerins...]

45 (i) $\ddot{x}+\varepsilon \dot{x}^{2}+\sin x=0$
(ii) $\dot{x}=-x+x^{2}, \dot{y}=x+y+\varepsilon y^{2}$
(iii) $\ddot{x}+\varepsilon\left(x^{2}-1\right) \dot{x}+x=0$
(i) $\dot{x}=y$

The fixed paints are $(x, y)=(\pi k, 0), x \in \mathbb{I}$.

$$
\dot{y}=-\varepsilon y^{2}-\sin x
$$

$$
J(\pi k, 0)=\left[\begin{array}{cc}
0 & 1 \\
(-1)^{k+1} & 0
\end{array}\right]
$$

For $k \in 2 \mathbb{L}, 1, \quad J=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, and the eigenvalues an e.vecsore

$$
\lambda_{+}=1, \quad v_{+}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \quad \lambda_{-}=-1, v_{-}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

The local stable mamifled are, 1 y the SMT, smooth and taught to $\left[\begin{array}{c}1 \\ -1\end{array}\right]$, and the leal unstable is tangent to $[1]$.
This is the approximate local proactive for all ε. The global pietrere
for $\varepsilon \neq 0$ is qualitatively different from the glebal pretme for $a=0$ because closed orbits for $\varepsilon=0$ become o scilla jor trajectuwes for $\varepsilon>0$ that cmuerge to the closest stable fixed point.]
For $k \in 2 \mathbb{R}, J=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, with eighvabes $\pm i$. This is independent of ε, but the SMT tells as nothing about W^{\prime} or $W^{\prime \prime}$.
For $\varepsilon=0$, the siltation of problem 4 applies with $g(x, y)=\frac{1}{2} y^{2}-\cos x$ and $h(x, y)=1$, and thumb trajectarses are closed orbits. Since $\exp (t J)=\left[\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$, the trajectaies are clockonise:

For $\varepsilon>0$ ($\varepsilon<0$ is similar).
In this case, we obtain $\frac{d}{d t} g(x(t), y(t))=-\varepsilon y^{3}$. Using this, one can show, with some technical effort, that the trajectory starting at an initial condstin $(k \pi-\delta, 0)$ with δ^{20} small enarh will reach a point $\left(k \pi+\delta^{\prime}, 0\right)$ with $0<\delta^{\prime}<\delta$ at some $t>0$.
Then observe the following symmetry of the system:
set $\xi(t)=x(-t)$ and $\eta(t)=-y(-t)$. Then $\dot{\xi}(t)=-\dot{x}(-t)=-y(-t)=\eta(t)$ and $\eta^{\prime}(t)=\dot{y}(-t)=-\varepsilon y(-t)^{2}-\sin x(-t)=-\varepsilon \eta(t)^{2}-\sin \xi(t)$.
Thus $(\xi(t), \eta(t))$ is also a solution to the ODE. These solutions can be "pieced together" (you do the easy technical details) to obtain a closed trajectory about $(k \pi, 0)$. The approximate picture is like this:

In the case $\varepsilon<0$ set $\xi(t)=-x(t)$
 and $y(t)=-y(t)$, so that

$$
\begin{aligned}
\dot{\xi}(t)=-\dot{x}(t) & =-y(t)=\eta(t) \text { and } \\
\dot{q}(t)=-\dot{y}(t) & =\varepsilon y(t)^{2}+\sin x(t) \\
& =\varepsilon \eta(t)^{2}-\sin \xi(t)
\end{aligned}
$$

This rotation by 180° converts solutrues
 of the system with parameter ε to the system with ε replaced by y $-\varepsilon$. The picture is thus this
Directly from the definitions of w^{s} and W^{\prime}, we find that each consists of only the fired point itself. This bods for all ε.

$$
\begin{gathered}
\frac{-2}{2-2 \varepsilon}=\frac{-1}{1-\varepsilon} \\
=-(1+c) d-
\end{gathered}
$$

(ii)

$$
\dot{x}=-x+x^{2} \quad \text { fixed points: }(0,0)
$$

$$
\begin{aligned}
& \dot{y}=x+y+\varepsilon y^{2} \\
& J=\left[\begin{array}{cc}
2 x-1 & 0 \\
1 & 2 \varepsilon y+1
\end{array}\right]
\end{aligned}
$$

$$
\left(0,-\varepsilon^{-1}\right) \text { only for } \varepsilon \neq 0 \text { (far down) }
$$

$$
\left(1,-2(\sqrt{1-4 c}+1)^{-1}\right)=\left(1,-1-\varepsilon+\theta\left(c^{2}\right)\right)
$$

$$
J(0,0)=\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right] \text { e.vals } \pm 1 \quad \forall \varepsilon
$$

execs $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ for +1 and $\left[\begin{array}{c}2 \\ -1\end{array}\right]$ for -1

$$
J\left(0,-\varepsilon^{-1}\right)=\left[\begin{array}{cc}
-1 & 0 \\
1 & -1
\end{array}\right] \quad \text { equals }-1 \quad \forall \varepsilon \neq 0
$$

$\left[\right.$ Jordan chain: $\left[\begin{array}{l}1 \\ 0\end{array}\right] \rightarrow\left[\begin{array}{l}0 \\ 1\end{array}\right]$, ie $\left.(J+1)\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right] ;(J+1)\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right]$ $\exp (t J)=e^{-t}\left[\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right]$
linear flow \approx natives flow by H-G them.

$$
\begin{aligned}
x_{1} & =a e^{-t} \\
x_{2} & =e^{-t}(a t+b) \\
& \longrightarrow x_{2}=-x_{1} \log \alpha x_{1}+\beta x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& J\left(1,-2\left(1+\sqrt{\left.1-\alpha_{c}\right)^{-1}}\right)=\left[\begin{array}{cc}
1 & 0 \\
1 & \sqrt{1-4 a}
\end{array}\right] \text { evals } 1 \text { and } \sqrt{1-4 \varepsilon}\right. \\
& \varepsilon=0: J=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right] ; \exp (t J)=e^{t}\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right] \\
& x_{1}=a e^{t} \\
& x_{2}=e^{t}(a t+b) \\
& \longrightarrow x_{2}=x_{1} \log d x_{1}+\beta x_{1}
\end{aligned}
$$

$\varepsilon \neq 0$: e.vec for 1 is $\left[\begin{array}{c}1-\sqrt{1-4 \varepsilon} \\ 1\end{array}\right]=\left[\begin{array}{c}2 \varepsilon+\theta\left(\varepsilon^{2}\right) \\ 1\end{array}\right]$
exec for $\sqrt{1-4 c}=1-2 \varepsilon+U\left(\varepsilon^{2}\right)$ is $\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\begin{aligned}
& x_{1}=a\left(2 \varepsilon+\theta\left(\varepsilon_{2}\right)\right) e^{t} \\
& x_{2}=a e^{t}+b e^{t(1-2 \varepsilon+\theta(2)))}=e^{t}\left(a+b e^{t(-2 \varepsilon+\theta(2)))}\right)
\end{aligned}
$$

The eigevecters and eigenvalues are 2ε-close to each other

$$
\begin{aligned}
& W^{n}=R^{2} \\
& W^{s}=\{0\}
\end{aligned}
$$

$$
J\left(1, \varepsilon^{-1} \frac{1}{2}(1+\sqrt{1-4 \alpha})\right)=\left[\begin{array}{cc}
1 & 0 \\
1 & -\sqrt{1-4 \varepsilon}
\end{array}\right] \text { e.vals } 1 \text { ad }-\sqrt{1-4 \varepsilon}
$$

evec for $1:\left[\begin{array}{c}1+\sqrt{1-4_{2}} \\ 1\end{array}\right]=\left[\begin{array}{c}\left.2-2 c+k_{k} c_{c}\right) \\ 1\end{array}\right]$ evec for $-\sqrt{1-4 \varepsilon}:\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(iii)

$$
\text { a) } \begin{aligned}
& \dot{x}=y \\
& \dot{y}=-x+\varepsilon\left(1-x^{2}\right) \\
& J=\left[\begin{array}{cc}
0 & 1 \\
-1-2 \varepsilon x & 0
\end{array}\right]
\end{aligned}
$$

fixed pants: $\left(x_{0}, 0\right),\left(x_{\infty}, 0\right)$

$$
\begin{aligned}
& \left.x_{0}=\frac{2 \varepsilon}{1+\sqrt{1+4 \varepsilon^{2}}}=\frac{\varepsilon}{1+\varepsilon^{2}+O\left(\varepsilon^{2}\right)}=\varepsilon\left(1-\varepsilon^{2}+O \varepsilon^{4}\right)^{4}\right) \\
& x_{\infty}=-\frac{1+\sqrt{1+4 \varepsilon^{2}}}{2 \varepsilon}=-\varepsilon^{-1}\left(1+\varepsilon^{2}+O\left(\varepsilon^{4}\right]\right)
\end{aligned}
$$

$E(x, y)=\frac{1}{2}\left(y^{2}+x^{2}\right)+\varepsilon\left(\frac{x^{3}}{3}-x\right)$ is conetant on the trajectaties.
$J\left(x_{0,0}\right)=\left[\begin{array}{cc}0 & 1 \\ -\sqrt{1+4 c^{2}} & 0\end{array}\right]$; purely inay evals and closed trajectives $\forall \varepsilon$ $\rightarrow \omega^{s}$ 末 $\omega^{\prime n}$ are $\{0 \xi$.
$J\left(x_{\infty}, 0\right)=\left[\begin{array}{cc}0 & 1 \\ \sqrt{1+\varepsilon^{2}} & 0\end{array}\right]$; exals satisfor $\lambda^{2}=\sqrt{1+\sqrt{\varepsilon^{2}}}$

$$
\left.\begin{array}{l}
\sqrt{1+\varepsilon_{2}^{2}} \quad 0
\end{array}\right] \begin{aligned}
& E^{3}=\text { spar }\left\{\varepsilon_{-}\right\} \\
& \text {tans, to } w^{s}
\end{aligned} \text { so } \lambda_{ \pm}= \pm \sqrt[4]{1+4 \varepsilon^{2}}= \pm\left(1+\varepsilon^{2}+\theta\left(\varepsilon^{v}\right)\right)
$$

