V au der Pol's oscillator

$$
\underbrace{\ddot{x}+\alpha p(x) \dot{x}}+x=\beta p(t)
$$

with $y=\dot{x}+\alpha \Phi(x) \quad\left[\Phi^{\prime}=\phi, \Phi(0)=0\right]$; vegahite r gain

$$
\left.\begin{array}{l}
z\left\{\begin{array}{l}
\dot{x}=y-\alpha \Phi(x) \\
\dot{y}=-x+\beta p(t)
\end{array}\right. \\
\xi(t)=-x(t), \eta(t)=-y(t)
\end{array}\right] \begin{aligned}
& \dot{\xi}=\eta-\alpha(\xi) \\
& \dot{\eta}=-\xi-\beta p(t)
\end{aligned}
$$

Set $E=\frac{1}{2}\left(x^{2}+y^{2}\right)$ in the plane.

$$
\dot{E}=-\alpha x \Phi(x)+\beta y p(t) \text {, so } \dot{E}>0 \text { for }|x|<\sqrt{3}
$$

Unforced system: $\beta=0$
This is an antmomons system in the plane.
Let's first pore that it has a periodic orbit using P-B theorem.
We create a trapping region as flows:
In the region $\left\{|x|<\sqrt{3}, y>\max _{|x|<1} \alpha \Phi(x)+\delta\right\}, E>0$ and $\dot{x}>\delta$, so colutions do cross over from $x=-\sqrt{3}$ to $x=\sqrt{3} \sim \operatorname{see} \gamma_{1}$ in this regin below. γ_{1} continues bacleward in time unkl it hits $\left(-x_{2}, 0\right)$ and forward until it hits $\left(x_{1}, 0\right)$, with $x_{1}<x_{\varepsilon}$. A similar trajectory goes from $\left(-x_{3}, 0\right)$ to $\left(x_{2}, 0\right)$ with $x_{2}<x_{3}$. The curve $\gamma_{2} \cup-\gamma_{1}$ is a trajectory by symmetry. The region bounded by γ_{2}, γ_{1} and $\left[x_{3},-x_{1}\right]$ is a taping.

Weak loss/gain: $0<\alpha \ll 1$
The solution of the simple harmonic oscillator $(\alpha=0)$ is

$$
\gamma_{t}(x, y)=(x, y)\left[\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right]=r\left(\cos \left(\varphi_{0}-t\right), \sin \left(\varphi_{0}-t\right)\right)
$$

Take $\gamma_{-t}(x, y)$ to be a rotating coordinate system for any valine $f \propto$. In the new coordinates

$$
(u, v)=\gamma_{-t}(x, y)=(x, y)\left[\begin{array}{cc}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right]
$$

we detain

$$
\begin{aligned}
& \dot{u}=-\alpha \Phi(u \cos t-v \sin t) \cos t=-\alpha \cos t \Phi(r \cos (\varphi+t)) \\
& \dot{v}=\alpha \Phi(n \cos t-v \sin t) \sin t=\alpha \sin t \Phi(r \cos (\varphi+t))
\end{aligned}
$$

Heurritse: If α is small, pretend that (u, v) is approximately custant over a period of 2π and integrate in t over a period.

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \Phi(r \cos (\varphi+t)) \cos t d t=[\Phi(r \cos (\cdot)) * \cos)(-\varphi) \\
& -\dot{u}+i \dot{y}=\alpha \int_{-\pi}^{\pi} \Phi(r \cos (\varphi+t)) e^{i t} d t=\alpha e^{-i \varphi} \int_{-T}^{\pi} \Phi(r \cos t) e^{i t} d t \\
& \\
& =\alpha e^{-i \varphi} \int_{-\pi}^{\pi} \Phi(\cos t) \cos t d t=\alpha G(r) e^{-i \varphi} \\
& \Rightarrow\left\{\begin{array}{l}
\dot{i}=-\alpha G(r) \cos \varphi+\ldots=\alpha u H(r)+\ldots, \quad H(r)=-\frac{G(r)}{r} \\
\dot{v}=-\alpha G(r) \sin \varphi+\cdots=\alpha V H(r)+\ldots
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
\dot{r}=\alpha r H(r)+\theta\left(\alpha^{2}\right) \longleftarrow \text { From later Heaven } \\
\dot{\theta}=0+v\left(\alpha^{2}\right)
\end{array}\right.
\end{aligned}
$$

This indicates that the periodic trajectory emanates from the circular trajectories for the harmonic oscillator at radii equal to the roots of $H(r)$.

For $\Phi(x)=\frac{x^{3}}{3}-x$, $\quad H(r)=\frac{1}{2}\left(1-\frac{r^{2}}{4}\right)$, so the periodic orbit emanates fran the circular one at $r=2$ for the hormenic oscillator. For large α, we use the time variable αt.

Weak loss/gain: $\alpha \gg 1$

$$
\left\{\begin{array}{rl}
x^{\prime}=\frac{y}{\alpha}-\Phi(x) & z^{\prime} \\
=\frac{d z}{d(\alpha t)} \\
y^{\prime}=-\frac{x}{\alpha} & \hat{y}
\end{array}=x^{\prime}+\Phi(x)\right\} \Rightarrow\left\{\begin{array}{l}
x^{\prime}=\hat{y}-\Phi(x) \\
\\
=\frac{y}{\alpha}
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\hat{y}^{\prime}=-\frac{x}{\alpha^{2}}
\end{array}\right.
$$

