Van der Pol's oscillator

$$\ddot{x} + \alpha \not(x) \ddot{x} + x = p p(t)$$

 $exact derivative = \dot{y}$
with $q = \dot{x} + \alpha \not(x)$ [$\not=' = 6$, $\not= for = 0$], vegative $x = gain$
 $p(t)$: "damping" coeff.
 $for = \dot{y} - \alpha \not(x)$
 $for = \dot{y} - \alpha \not(x)$
 $\dot{y} = -x + p(t)$ [$\not=' = 6$, $\not= for = 0$], vegative $x = gain$
 $p(t)$: "scillatory extend
 $for = horse d(x)$
 $for = \dot{y} - \alpha \not= f(x)$
 $for = -x + p(t)$ (Take $d(x) = x^{2} - 1$
 $for = \dot{y} - \alpha \not= f(x)$
 $for = -x + p(t)$ (Take $d(x) = x^{2} - 1$
 $for = \dot{y} - \alpha \not= f(x)$
 $for = -x + p(t)$ (Take $d(x) = x^{2} - 1$
 $for = \dot{y} - \alpha \not= f(x)$
 $for = -x + p(t)$ (Take $d(x) = x^{2} - 1$
 $for = -x + p(t)$ (Take $d(x) = x^{2} - 1$
 $for = \dot{y} - \alpha \not= f(x)$
 $for = -x + p(t)$ ($f(x) = x^{2} - x$
 $f(x) = -x + p(t)$ ($f(x) = x^{2} - x$
 $f(x) = -x + p(t)$ ($f(x) = x^{2} - x$
 $f(x) = -x + p(t)$ ($f(x) = x^{2} - x$
 $f(x) = -x + p(t)$ ($f(x) = x^{2} - x$
 $f(x) = -x + p(t)$ ($f(x) = x^{2} - x$
 $f(x) = -x + p(t)$ ($f(x) = x^{2} - x$
 $f(x) = -x + p(x) + p(y(t))$, $f(x) = x^{2} - x$
 $f(x) = -x + p(x) + p(y(t))$, $f(x) = x^{2} - x$

Unforced system: p=0
This is an antinomous system in the plane.
Let's first poore that it has a periodic orbit using P-B theorem.
We create a trapping region as fillows:
In the region
$$\sum_{|x|, $y > \max_{|x|>J_3} d\overline{g}(x) + ST$, $\overline{E}>0$ and $\dot{x}>S$,
so collitione do crocs oner from $\pi=J_3$ to $\pi=J_3$ - Cree 7, in this organization.
 π , entimes backward in fime anklithits $(\chi_2, 0)$ and forward
unklithits $(\chi_1, 0)$, with $\chi_1 < \chi_2$. A similar diajectory goes from
 $(\pi_3, 0)$ to $(\chi_4, 0)$ with $\chi_2 < \chi_3$. The curve $\gamma_2 \cup \gamma_1$ is a diajectory
by separately. The region bounded by χ_2 , χ_1 and E_{χ_3} , π_1 is a trajectory
region.$$

This indicates that the periodic trajectory emanates from the circular trajectories for the harmonic oscillator at radii equal to the roots of H(r).

For $\overline{\Psi}(x) = \frac{x^3}{3} - x$, $H(r) = \frac{1}{2}(1 - \frac{r^2}{4})$, so the periodic orbit enamates from the circular one at r=2 for the hormenic oscillator. For large α , we use the time variable αt .

Weak loss logain: X>> 1

