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Introduction

Let H be the classical upper half plane, and let ' C SLy(Z) be a
subgroup of finite index.

To any such [ we may associate the noncompact modular curve H/T.
If T D>T(N):={yeSLa(Z):v=[}?] mod N} for some N, then we
call T a congruence subgroup. Otherwise, we call I' a noncongruence

subgroup.

Noncongruence subgroups exist! In fact,

Theorem (Lubotsky-Segal, 2003)

! #{noncongruence subgroups of index n}
im =
n—oo  #{congruence subgroups of index n}
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Examples

Recall the classical congruence subgroups

F(N) = {yeSLy(Z):v=1[§9] mod N}
M(N) = {yeSLy(Z):y=[};] mod N}
To(N) = {ye€SLx(Z):v=[§r] mod N}
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Recall the classical congruence subgroups

F(N) = {yeSLy(Z):v=1[§9] mod N}
M(N) = {yeSLy(Z):y=[};] mod N}
To(N) = {ye€SLx(Z):v=[§r] mod N}

(1) Y(N)C)~{(E/C,P.Q): en(P,Q) = &/N}/ =
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Examples

Recall the classical congruence subgroups

F(N) = {yeSLy(Z):7=[§?] mod N}
M(N) = {yeSLa(Z):y=[§;] mod N}
Fo(N) = {y€SLa(Z):v=[5%] mod N}

(1) Y(N)(C) ~{(E/C,P,Q): en(P,Q) = e™/N} | =
(2) Y1(N)(C) ~ {(E/C,P): P € E[N] has order N}/ =
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Examples

Recall the classical congruence subgroups

F(N) = {yeSLy(Z):7=[§?] mod N}
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(1) Y(N)(C)~{(E/C,P,Q): en(P,Q) = &/} =
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(3) Yo(N)(C) ~{(E/C,C): C C E[N] is cyclic of order N}/ =
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Examples

Recall the classical congruence subgroups

F(N) = {yeSLy(Z):7=[§?] mod N}
M(N) = {yeSLa(Z):y=[§;] mod N}
Fo(N) = {y€SLa(Z):v=[5%] mod N}

(1) Y(N)C)~{(E/C,P.Q): en(P,Q) = &/N}/ =

(2) Yi(N)(C) ~ {(E/C,P): P € E[N] has order N}/ =

(3) Yo(N)(C) ~{(E/C,C): C C E[N] is cyclic of order N}/ =
(1) Y(N)(S) ~ {(E/S, P, Q) : en(P, Q) = &2/N}/ = (if N> 3)

)
)
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Examples

Recall the classical congruence subgroups

F(N) = {yeSLy(Z):7=[§?] mod N}
M(N) = {yeSLa(Z):y=[§;] mod N}
Fo(N) = {y€SLa(Z):v=[5%] mod N}

(1) Y(N)C)~{(E/C,P.Q): en(P,Q) = &/N}/ =

(2) Yi(N)(C) ~ {(E/C,P): P € E[N] has order N}/ =

(3) Yo(N)(C) ~{(E/C,C): C C E[N] is cyclic of order N}/ =

(1) Y(N)(S) ~{(E/S.P.Q): en(P,Q) = &™/N}/ = (if N > 3)
(2') Yi(N)(S) ~{(E/S,P): P < E[N] has order N}/ =  (if N > 5)

)
)
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The Question

Do noncongruence modular curves also have a moduli interpretation?
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mY Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves



The Question

Do noncongruence modular curves also have a moduli interpretation?

Bad answer: By Belyi's theorem, every smooth projective irreducible

curve defined over Q is a quotient H /I, often noncongruence, so every
1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

m Y. Chen Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves



The Question

Do noncongruence modular curves also have a moduli interpretation?

Bad answer: By Belyi's theorem, every smooth projective irreducible

curve defined over Q is a quotient H /I, often noncongruence, so every
1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

1. To every finite group G and elliptic curve E/S, we define the set
Homsur-ext(ﬂ_l(Eo/S), G)

of Teichmuller structures of level G on E/S.
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The Question

Do noncongruence modular curves also have a moduli interpretation?

Bad answer: By Belyi's theorem, every smooth projective irreducible

curve defined over Q is a quotient H /I, often noncongruence, so every
1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

1. To every finite group G and elliptic curve E/S, we define the set
Homsur-ext(ﬂ_l(Eo/S), G)

of Teichmuller structures of level G on E/S.

2. We show that SLy(Z) acts on Hom®""®*(71(E°/S), G), and the
associated moduli spaces are H /I, where T is the stabilizer of some
level structure via the SLy(Z)-action.
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The Question

Do noncongruence modular curves also have a moduli interpretation?

Bad answer: By Belyi's theorem, every smooth projective irreducible

curve defined over Q is a quotient H /I, often noncongruence, so every
1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

1. To every finite group G and elliptic curve E/S, we define the set
Homsur-ext(ﬂ_l(Eo/S), G)

of Teichmuller structures of level G on E/S.

2. We show that SLy(Z) acts on Hom®""®*(71(E°/S), G), and the
associated moduli spaces are H /I, where T is the stabilizer of some
level structure via the SLy(Z)-action.

3. T is congruence if G is abelian.
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Reinterpreting the Classical Congruence Level Structures
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Reinterpreting the Classical Congruence Level Structures

Congruence level structures from another point of view:

{Fo(N)-structures on E} ~ {cyclic N-isogenies E' — E}
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Reinterpreting the Classical Congruence Level Structures
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Congruence level structures from another point of view:

{Fo(N)-structures on E} ~ {cyclic N-isogenies E' — E}

-+ ~ {galois covers of E with galois group isomorphic to Z/NZ}/ =

Similarly, we have

{T'1(N)-structures on E} ~ {Connected principal Z/NZ-bundles on E}/ =
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Reinterpreting the Classical Congruence Level Structures

Congruence level structures from another point of view:

{Fo(N)-structures on E} ~ {cyclic N-isogenies E' — E}

-+ ~ {galois covers of E with galois group isomorphic to Z/NZ}/ =

Similarly, we have

{T'1(N)-structures on E} ~ {Connected principal Z/NZ-bundles on E}/ =

and

{T(N)-structures on E} ~ {Connected principal (Z/NZ)?-bundles on E}/ =
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Idea: Considering level structures given by nonabelian covers should give
rise to noncongruence modular curves.
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Idea: Considering level structures given by nonabelian covers should give
rise to noncongruence modular curves.

Problem: 7(E) =2 Z? is abelian, so there are no nonabelian covers of
elliptic curves.
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Idea: Considering level structures given by nonabelian covers should give
rise to noncongruence modular curves.

Problem: 7(E) =2 Z? is abelian, so there are no nonabelian covers of
elliptic curves.

Solution: Allow for ramification at co. l.e., consider covers of punctured
elliptic curves E — co.
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Idea: Considering level structures given by nonabelian covers should give
rise to noncongruence modular curves.

Problem: 7(E) =2 Z? is abelian, so there are no nonabelian covers of
elliptic curves.

Solution: Allow for ramification at co. l.e., consider covers of punctured
elliptic curves E — co.

Why? Because 71 (E — 00) & F, (free group of rank 2) which has plenty
of nonabelian quotients!
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The Relative Fundamental Group (SGA 1)

Let f : E — S be an elliptic curve and E° := E — co.
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The Relative Fundamental Group (SGA 1)

Let f : E — S be an elliptic curve and E° := E —co. Let g: S — E° be
a section.
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The Relative Fundamental Group (SGA 1)

Let f : E — S be an elliptic curve and E° := E —co. Let g: S — E° be
a section. Let s € S be a geometric point, and IL the set of primes
invertible on S.
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The Relative Fundamental Group (SGA 1)

Let f : E — S be an elliptic curve and E° := E —co. Let g: S — E° be
a section. Let s € S be a geometric point, and IL the set of primes
invertible on S. Then we have a split exact sequence

1—— 7l (E2, g(s)) —— 7 (E°, g(s)) —— m1(S,5) — 1
K_/
8x
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The Relative Fundamental Group (SGA 1)

Let f : E — S be an elliptic curve and E° := E —co. Let g: S — E° be
a section. Let s € S be a geometric point, and IL the set of primes
invertible on S. Then we have a split exact sequence

1—— 7l (E2, g(s)) —— 7 (E°, g(s)) —— m1(S,5) — 1
K_/
8x

m1(S, s) acting on 7rH1“(Es°,g(s))
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The Relative Fundamental Group (SGA 1)

Let f : E — S be an elliptic curve and E° := E —co. Let g: S — E° be
a section. Let s € S be a geometric point, and IL the set of primes
invertible on S. Then we have a split exact sequence

1—— 7l (E2, g(s)) —— 7 (E°, g(s)) —— m1(S,5) — 1
K_/
8x

71(S, s) acting on 77 (E2, g(s)) ~» a pro-etale group scheme 7-(E°/S, g, s)
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The Relative Fundamental Group (SGA 1)

Let f : E — S be an elliptic curve and E° := E —co. Let g: S — E° be
a section. Let s € S be a geometric point, and IL the set of primes
invertible on S. Then we have a split exact sequence

1—— 7l (E2, g(s)) —— 7 (E°, g(s)) —— m1(S,5) — 1
K_/
8x

71(S, s) acting on 77 (E2, g(s)) ~» a pro-etale group scheme 7-(E°/S, g, s)

The construction of 7(E°/S, g,s) is independent of g,s (up to inner
automorphisms), and commutes with arbitrary base change.
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Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N.
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Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N. Assume N is
invertible on S, and L the set of primes dividing N.
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Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N. Assume N is
invertible on S, and L the set of primes dividing N.

For any E/S, there is a scheme
HomZ"*(w1(E°/S), G) := HomZ" (71 (E°/S), G)/Inn(G)

finite etale over S whose formation commutes with base change.
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Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N. Assume N is
invertible on S, and L the set of primes dividing N.

For any E/S, there is a scheme
HomZ"*(w1(E°/S), G) := HomZ" (71 (E°/S), G)/Inn(G)

finite etale over S whose formation commutes with base change.

We will call a global section of Hom3"**(71(E°/S), G) a Teichmuller
structure of level G on E/S.
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Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N. Assume N is
invertible on S, and L the set of primes dividing N.

For any E/S, there is a scheme
HomZ"*(w1(E°/S), G) := HomZ" (71 (E°/S), G)/Inn(G)
finite etale over S whose formation commutes with base change.

We will call a global section of Hom3"**(71(E°/S), G) a Teichmuller
structure of level G on E/S.

If S = Spec k for an algebraically closed field k, then
Hom" (w1 (E°/k),G)(k) ~ Hom®™'(F, G)/Inn(G)
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Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N. Assume N is
invertible on S, and L the set of primes dividing N.

For any E/S, there is a scheme
HomZ"*(w1(E°/S), G) := HomZ" (71 (E°/S), G)/Inn(G)
finite etale over S whose formation commutes with base change.
We will call a global section of Hom3"**(71(E°/S), G) a Teichmuller
structure of level G on E/S.
If S = Spec k for an algebraically closed field k, then
Hom" (w1 (E°/k),G)(k) ~ Hom®™'(F, G)/Inn(G)
In general
Hom¥" (w1 (E°/S),G)(S) C Hom™(F, G)/Inn(G)
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Suppose E°/S admits a section g : S — E°,
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Suppose E°/S admits a section g : S — E°, then for any covering space
X° — E°, we may consider g*X°.

g*XO XO

|

S— % yF°
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Suppose E°/S admits a section g : S — E°, then for any covering space
X° — E°, we may consider g*X°.

g*XO XO

|, |

S— % yF°

Theorem

There is a canonical bijection

Hom&" (w1 (E°/S), G)(S) ~ {Connected principal G-bundles X°/E°
s.t. g*X° is completely decomposed}/ =
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The Moduli Problem

We define the stack (ie., category) M of elliptic curves equipped with a
Teichmuller structure of level G as follows:
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The Moduli Problem

We define the stack (ie., category) M of elliptic curves equipped with a
Teichmuller structure of level G as follows:

1. Its objects are “enhanced elliptic curves’ (E/S, ), and « is a global
section of

Homg"™*(m1(E°/S), G)
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The Moduli Problem

We define the stack (ie., category) M of elliptic curves equipped with a
Teichmuller structure of level G as follows:

1. Its objects are “enhanced elliptic curves’ (E/S, ), and « is a global
section of
Homg"™*(m1(E°/S), G)
2. A morphism h: (E'/S’,a') — (E/S, ) is a fiber-product diagram

E——E

| ]

§S'——S
such that h*(a) = o
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“Forgetting” the level structure « yields a morphism (ie., functor)
p:./\/l(;—>./\/l171, (E/S,Oé)’—)E/S
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“Forgetting” the level structure « yields a morphism (ie., functor)
pZMG—>M171, (E/S,O&)’—)E/S

The “forget /eveL structure” morphism p : Mg — M1 1 is finite etale,
and for any Ey/Q,

P (Eo/Q) = Homg"*(my(E /Q), G)(Q) = Hom™"(F2, G)/Inn(G)
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“Forgetting” the level structure « yields a morphism (ie., functor)
pZMG—>M171, (E/S,O&)’—)E/S

Theorem

The “forget /eveL structure” morphism p : Mg — M1 1 is finite etale,
and for any Ey/Q,

p~H(Eo/Q) = HomZ"*(m1(E5 /Q), G)(Q) = Hom™"(F, G)/Inn(G)
There's a classical exact sequence

1— Inn(Fg) — Aut(Fg) — GLQ(Z) —1
so we may think of SLy(Z) C Out(Fz).
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“Forgetting” the level structure « yields a morphism (ie., functor)
pZMG—>M171, (E/S,O&)’—)E/S

Theorem

The “forget /eveL structure” morphism p : Mg — M1 1 is finite etale,
and for any Ey/Q,

p~H(Eo/Q) = HomZ"*(m1(E5 /Q), G)(Q) = Hom™"(F, G)/Inn(G)
There's a classical exact sequence

1— Inn(Fg) — Aut(Fg) — GLQ(Z) —1
so we may think of SLy(Z) C Out(Fz).

Theorem
—_—

The monodromy action of m1((M11)g) = SLa(Z) on p~*(Eo/Q) is via
outer automorphisms of F».
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Main Results

From now on, by default, all schemes/stacks will be over Q.
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Main Results

From now on, by default, all schemes/stacks will be over Q.

Let ¢ : F» — G be a surjective homomorphism, then we may think of
[¢] € p*(Eo/Q), and let [, := Stabgr,(z)([¢])-
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Main Results

From now on, by default, all schemes/stacks will be over Q.

Let ¢ : F» — G be a surjective homomorphism, then we may think of
[¢] € p*(Eo/Q), and let [, := Stabgr,(z)([¢])-

L. The connected components of Mg are in bijection with the orbits
of SLy(Z) C Out(F2) on p~1(Ey/Q) = Hom™"(Fa, G)/Inn(G).
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Main Results

From now on, by default, all schemes/stacks will be over Q.

Let ¢ : F» — G be a surjective homomorphism, then we may think of
[¢] € p*(Eo/Q), and let [, := Stabgr,(z)([¢])-

L. The connected components of Mg are in bijection with the orbits
of SLy(Z) C Out(F2) on p~1(Ey/Q) = Hom™"(Fa, G)/Inn(G).

2. The coarse moduli scheme Mg of Mg is a smooth affine curve
defined over Q (but possibly disconnected).
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Main Results

From now on, by default, all schemes/stacks will be over Q.

Let ¢ : F» — G be a surjective homomorphism, then we may think of
[¢] € p*(Eo/Q), and let [, := Stabgr,(z)([¢])-

L. The connected components of Mg are in bijection with the orbits
of SLy(Z) C Out(F2) on p~1(Ey/Q) = Hom™"(Fa, G)/Inn(G).

2. The coarse moduli scheme Mg of Mg is a smooth affine curve
defined over Q (but possibly disconnected).

3. The component of Mg containing [¢] is the modular curve
Mig) = T \H.
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Main Results

From now on, by default, all schemes/stacks will be over Q.

Let ¢ : F» — G be a surjective homomorphism, then we may think of
[¢] € p*(Eo/Q), and let [, := Stabgr,(z)([¢])-

L. The connected components of Mg are in bijection with the orbits
of SLy(Z) C Out(F2) on p~1(Ey/Q) = Hom™"(Fa, G)/Inn(G).

2. The coarse moduli scheme Mg of Mg is a smooth affine curve
defined over Q (but possibly disconnected).

3. The component of Mg containing [¢] is the modular curve
Mig) = T \H.

4. My = T1]\H is a fine moduli scheme <= Ty, is torsion-free.
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Main Results

From now on, by default, all schemes/stacks will be over Q.

Let ¢ : F» — G be a surjective homomorphism, then we may think of
[¢] € p*(Eo/Q), and let [, := Stabgr,(z)([¢])-

L. The connected components of Mg are in bijection with the orbits
of SLy(Z) C Out(F2) on p~1(Ey/Q) = Hom™"(Fa, G)/Inn(G).

2. The coarse moduli scheme Mg of Mg is a smooth affine curve
defined over Q (but possibly disconnected).

3. The component of Mg containing [¢] is the modular curve

Mig) = T\ K.
4. My = T1]\H is a fine moduli scheme <= Ty, is torsion-free.
5. If G is abelian, then I, is congruence.
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Example: G =Z/NZ

There is one SLa(Z)-orbit on

Hom®'(F,,Z/NZ)/Inn(Z/NZ) = Hom™"(Z?, 7,/ NZ)

with representative
e:[T]—n modN
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Example: G =Z/NZ

There is one SLa(Z)-orbit on

Hom®'(F,,Z/NZ)/Inn(Z/NZ) = Hom™"(Z?, 7,/ NZ)

with representative
e:[T]—n modN

The stabilizer are the matrices [2 5] € SLy(Z) such that

e([25]17) =e([2nthr]) =cm+dn=n mod N
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Example: G =Z/NZ

There is one SLa(Z)-orbit on

Hom®'(F,,Z/NZ)/Inn(Z/NZ) = Hom™"(Z?, 7,/ NZ)

with representative
e:[T]—n modN

The stabilizer are the matrices [2 5] € SLy(Z) such that

e([25]17) = w([iﬁiﬁﬂ]) =cm+dn=n mod N
Of course this forces c =0,d =1 mod N, so I',; = M1(N).
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Example: G =Z/NZ

There is one SLa(Z)-orbit on

Hom®'(F,,Z/NZ)/Inn(Z/NZ) = Hom™"(Z?, 7,/ NZ)

with representative
e:[T]—n modN

The stabilizer are the matrices [2 5] € SLy(Z) such that
p([23] (7)) = ¢ ([id]) =em+dn=n mod N
Of course this forces c =0,d =1 mod N, so I',; = M1(N).
If G = (Z/NZ)?, then there are ¢(N) SLa(Z)-orbits on
Hom*"(Z?, (Z/NZ)?)

where each orbit corresponds to a possible determinant, and the
stabilizers are all ['(N).
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Example: G = As

There are three SLy(Z)-orbits on Hom®"(F>, As)/Inn(As), with reps

X 23)(45 X 23)(45 X (23)(45)
ey : EIS%() s y : 514%() ) y : (14352)
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Example: G = As

There are three SLy(Z)-orbits on Hom®"(F>, As)/Inn(As), with reps

X 23)(45 X 23)(45 X (23)(45)
ey : EIS%() s y : 514%() ) y : (14352)

The orbits have sizes |[p1]| = |[2]| = 10, and [[¢s]| = 18.
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Example: G = As

There are three SLy(Z)-orbits on Hom®"(F>, As)/Inn(As), with reps

X 23)(45 X 23)(45 X (23)(45)
ey : EIS%() s y : 514%() ) y : (14352)

The orbits have sizes |[p1]| = |[2]| = 10, and [[¢s]| = 18.

The stabilizers are I',,; = .1, [[p,) and have indices 10, 10, 18 in
SL2(Z) and are all noncongruence.
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Example: G = As

There are three SLy(Z)-orbits on Hom®"(F>, As)/Inn(As), with reps

X 23)(45 X 23)(45 X (23)(45)
ey : EIS%() s y : §14%() ) y : (14352)

The orbits have sizes |[p1]| = |[2]| = 10, and [[¢s]| = 18.

The stabilizers are I',,; = .1, [[p,) and have indices 10, 10, 18 in
SL2(Z) and are all noncongruence.

The coarse moduli scheme of Mg is Mg = Migp,) U Mg, U My, and is
defined over Q.
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Example: G = As

There are three SLy(Z)-orbits on Hom®"(F>, As)/Inn(As), with reps

X 23)(45 X 23)(45 X (23)(45)
ey : EIS%() s y : §14%() ) y : (14352)

The orbits have sizes |[p1]| = |[2]| = 10, and [[¢s]| = 18.

The stabilizers are I',,; = .1, [[p,) and have indices 10, 10, 18 in
SL2(Z) and are all noncongruence.

The coarse moduli scheme of Mg is Mg = Migp,) U Mg, U My, and is
defined over Q. Each M, = H /I,
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Example: G = As

There are three SLy(Z)-orbits on Hom®"(F>, As)/Inn(As), with reps

X 23)(45 X 23)(45 X (23)(45)
ey : EIS%() s y : §14%() ) y : (14352)

The orbits have sizes |[p1]| = |[2]| = 10, and [[¢s]| = 18.

The stabilizers are I',,; = .1, [[p,) and have indices 10, 10, 18 in
SL2(Z) and are all noncongruence.

The coarse moduli scheme of Mg is Mg = Migp,) U Mg, U My, and is
defined over Q. Each M, = H /I,

M, is defined over Q, but M, = M.} are defined over a quadratic
extension of Q.
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Example: G = As

There are three SLy(Z)-orbits on Hom®"(F>, As)/Inn(As), with reps

X 23)(45 X 23)(45 X (23)(45)
ey : EIS%() s y : §14%() ) y : (14352)

The orbits have sizes |[p1]| = |[2]| = 10, and [[¢s]| = 18.

The stabilizers are I',,; = .1, [[p,) and have indices 10, 10, 18 in
SL2(Z) and are all noncongruence.

The coarse moduli scheme of Mg is Mg = Migp,) U Mg, U My, and is
defined over Q. Each M, = H /I,

M, is defined over Q, but M, = M.} are defined over a quadratic
extension of Q. The modular curves M, all have genus 0.
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Example: G = As

There are three SLy(Z)-orbits on Hom®"(F>, As)/Inn(As), with reps

X 23)(45 X 23)(45 X (23)(45)
ey : EIS%() s y : §14%() ) y : (14352)

The orbits have sizes |[p1]| = |[2]| = 10, and [[¢s]| = 18.

The stabilizers are I',,; = .1, [[p,) and have indices 10, 10, 18 in
SL2(Z) and are all noncongruence.

The coarse moduli scheme of Mg is Mg = Migp,) U Mg, U My, and is
defined over Q. Each M, = H /I,

M, is defined over Q, but M, = M.} are defined over a quadratic
extension of Q. The modular curves M, all have genus 0.

Since each I} contains —/, none of the M, are fine moduli spaces.
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Example: G = As

There are three SLy(Z)-orbits on Hom®"(F>, As)/Inn(As), with reps

X 23)(45 X 23)(45 X (23)(45)
ey : EIS%() s y : §14%() ) y : (14352)

The orbits have sizes |[p1]| = |[2]| = 10, and [[¢s]| = 18.

The stabilizers are I',,; = .1, [[p,) and have indices 10, 10, 18 in
SL2(Z) and are all noncongruence.

The coarse moduli scheme of Mg is Mg = Migp,) U Mg, U My, and is
defined over Q. Each M, = H /I,

M, is defined over Q, but M, = M.} are defined over a quadratic
extension of Q. The modular curves M, all have genus 0.

Since each I} contains —/, none of the M, are fine moduli spaces.
Nonetheless, there is a bijection

Mg(C) ~ {(E/C,X) : X/E® is a connected principal G-bundle}/ =

William Y. Chen Pennsylvania State University
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When is [ noncongruence?
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When is [ noncongruence?

For ' < SLy(Z) finite index, let £ := ¢(T') be the lcm of its cusp widths.
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When is [ noncongruence?

For ' < SLy(Z) finite index, let £ := ¢(T') be the lcm of its cusp widths.

£(T) is called the geometric level of T.
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When is [ noncongruence?

For ' < SLy(Z) finite index, let £ := ¢(T') be the lcm of its cusp widths.

£(T) is called the geometric level of T.

Theorem (Wohlfart)

I is congruence if and only if T D T(¥).
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When is [ noncongruence?

For ' < SLy(Z) finite index, let £ := ¢(T') be the lcm of its cusp widths.

£(T) is called the geometric level of T.

Theorem (Wohlfart)

I is congruence if and only if T D T(¥).

We use an idea of Schmithusen - Consider

1 r(¢) SLo(Z) —25 SLy(Z/07) —— 1
f d e
1——r@)nr r 2 pe(T) > 1
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When is [ noncongruence?

For ' < SLy(Z) finite index, let £ := ¢(T') be the lcm of its cusp widths.

£(T) is called the geometric level of T.

Theorem (Wohlfart)

I is congruence if and only if T D T(¥).

We use an idea of Schmithusen - Consider

1 r(¢) SLo(Z) —25 SLy(Z/07) —— 1
f d e
1——r@)nr r 2 pe(T) > 1

Then d = e- f, and T is congruence iff f = 1, or equivalently e = d.
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When is [ noncongruence?

For ' < SLy(Z) finite index, let £ := ¢(T') be the lcm of its cusp widths.

£(T) is called the geometric level of T.

Theorem (Wohlfart)

I is congruence if and only if T D T(¥).

We use an idea of Schmithusen - Consider

1 r(¢) SLo(Z) —25 SLy(Z/07) —— 1
f d e
1——r@)nr r 2 pe(T) 1

Then d = e- f, and T is congruence iff f = 1, or equivalently e = d.

le, T is noncongruence iff e < d (pe(T) is large in SLo(Z/?)).

William Y. Chen Pennsylvania State University
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Example: G = As

Let A:= (23)(45), B := (152), then AB = (15423) in As.
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Example: G = As

Let A:= (23)(45), B := (152), then AB = (15423) in As.

Let o € Hom™" ®*(F,, As) be given by x +— A, y + B,
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Example: G = As

Let A:= (23)(45), B := (152), then AB = (15423) in As.

Theorem

Let ¢ € Hom™"®(F2, As) be given by x — A, y — B, then I is
noncongruence.

Key Fact: |p(x)

I
>
I
IS
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Example: G = As

Let A:= (23)(45), B := (152), then AB = (15423) in As.

Theorem

Let ¢ € Hom™"®(F2, As) be given by x — A, y — B, then I is
noncongruence.

Key Fact: |p(x)

I
>
I
S
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S
I
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Example: G = As

William Y. Chen

Let A:= (23)(45), B := (152), then AB = (15423) in As.

Theorem

Let ¢ € Hom™"®(F2, As) be given by x — A, y — B, then I is
noncongruence.

Key Fact: |p(x)| = [Al =2, |p(y)|=[Bl =3, [o(xy)|=|AB|=5.

(ie, they're pairwise coprime)
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Example: G = As

Let A:= (23)(45), B := (152), then AB = (15423) in As.

Theorem

Let ¢ € Hom™"®(F2, As) be given by x — A, y — B, then I is
noncongruence.

Key Fact: |p(x)| = [Al =2, |p(y)|=[Bl =3, [o(xy)|=|AB|=5.

(ie, they're pairwise coprime) and {[§ }],[1 9]} generate SLy(Z).

William Y. Chen Pennsylvania State University
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The following are in the same SLy(Z)-orbit:

x = A x = A

P23 =@ y — B ©25 - y — AB ©53 -

< x
117
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The following are in the same SLy(Z)-orbit:

x = A x = A

x +— AB
y +— B 5, AB ¥, s B

P23 =@

Then I, are all conjugate in SLa(Z), so let N := £(T'(,1)-

William Y. Chen Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves



The following are in the same SLy(Z)-orbit:

x = A x = A

X
y —~ B <‘025'y|—>AB @53'yH

AB
P23 = P - B

Then I, are all conjugate in SLa(Z), so let N := £(T'(,1)-
Write N = 2°23%5% M, where 2,3,5 1 M, then we have
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The following are in the same SLy(Z)-orbit:

x = A x = A

x +— AB
y +— B 5, AB ¥, s B

P23 =@

Then I, are all conjugate in SLa(Z), so let N := £(T'(,1)-
Write N = 2°23%5% M, where 2,3,5 1 M, then we have
SLo(Z/6) =2 SLa(Z/2%2) x SLp(Z/3%) x SLa(Z/5%) x SLa(Z/ M)
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The following are in the same SLy(Z)-orbit:

x = A x = A

x +— AB
y +— B 5, AB ¥, s B

P23 =@

Then I, are all conjugate in SLa(Z), so let N := £(T'(,1)-
Write N = 2°23%5% M, where 2,3,5 1 M, then we have
SLo(Z/6) =2 SLa(Z/2%2) x SLp(Z/3%) x SLa(Z/5%) x SLa(Z/ M)

Note (1)%] , [é ?] S r[¢23], SO pg(r[wzs]) DI x /I x SLz(Z/Ses) X SLQ(Z/M)
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The following are in the same SLy(Z)-orbit:

x = A x = A

x +— AB
y +— B 5, AB ¥, s B

P23 =@

Then I, are all conjugate in SLa(Z), so let N := £(T'(,1)-
Write N = 2°23%5% M, where 2,3,5 1 M, then we have
SLo(Z/6) =2 SLa(Z/2%2) x SLp(Z/3%) x SLa(Z/5%) x SLa(Z/ M)

Note [(1) %] , [é ?] € r[¢23], SO pg(r[wza]) Ol xIx SLz(Z/Ses) X SLQ(Z/M)

Also, [§32],[3 9] € Mas)r 50 Pe(Mpas)) D 1 X SLa(Z/3%) x | x SLp(Z/ M)
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The following are in the same SLy(Z)-orbit:

x = A x = A

x +— AB
y +— B 5, AB ¥, s B

P23 =@

Then I, are all conjugate in SLa(Z), so let N := £(T'(,1)-
Write N = 2°23%5% M, where 2,3,5 1 M, then we have
SLo(Z/6) =2 SLa(Z/2%2) x SLp(Z/3%) x SLa(Z/5%) x SLa(Z/ M)

Note [(1) %] , [é ?] € r[¢23], SO pg(r[wza]) Ol xIx SLz(Z/Ses) X SLQ(Z/M)
Also, [§32],[3 9] € Mas)r 50 Pe(Mpas)) D 1 X SLa(Z/3%) x | x SLp(Z/ M)

Also, [(1) ‘;_f] s [% ?] S I'[%s], SO pg(r[wss]) D) SLQ(Z/262) x | x| x SLQ(Z/M)
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The following are in the same SLy(Z)-orbit:

x = A x = A

x +— AB
y +— B 5, AB ¥, s B

P23 =@

Then I, are all conjugate in SLa(Z), so let N := £(T'(,1)-
Write N = 2°23%5% M, where 2,3,5 1 M, then we have
SLo(Z/6) =2 SLa(Z/2%2) x SLp(Z/3%) x SLa(Z/5%) x SLa(Z/ M)

Note [(1) %] , [é ?] € r[¢23], SO pg(r[wza]) Ol xIx SLz(Z/Ses) X SLQ(Z/M)
Also, [§32],[3 9] € Mas)r 50 Pe(Mpas)) D 1 X SLa(Z/3%) x | x SLp(Z/ M)

Also, [(1) ‘;_f] s [% ?] S I'[%s], SO pg(r[wss]) D) SLQ(Z/262) x | x| x SLQ(Z/M)

Thus, pe(T[)) = SL2(Z/f), so e = 1 < d, hence I, is noncongruence.
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IfG=S,(n>4) A, (n>5), or PSLy(F,) (p > 5), then there exists a
surjection F» — G such that I, is noncongruence.
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IfG=S,(n>4) A, (n>5), or PSLy(F,) (p > 5), then there exists a
surjection F» — G such that I, is noncongruence.

Conjecture

1. For every nonabelian finite simple group G, every surjection
@ : F2 = G has '\, noncongruence.
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IfG=S,(n>4) A, (n>5), or PSLy(F,) (p > 5), then there exists a
surjection F» — G such that I, is noncongruence.

Conjecture

1. For every nonabelian finite simple group G, every surjection
@ : F2 = G has '\, noncongruence.

2. For every finite group G, either all surjections ¢ : F» — G have '
congruence, or all surjections have I'|,; noncongruence.
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Which subgroups of SLy(Z) appear as [',;?
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Which subgroups of SLy(Z) appear as [',;?

Theorem (Asada, 2001)

For a surjective homomorphism ¢ : F; — G onto a finite group G, let
[, = Stabauyr,) (). Then every finite index subgroup of Aut(F,)
contains a group of the form I',.
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Which subgroups of SLy(Z) appear as [',;?

Theorem (Asada, 2001)

For a surjective homomorphism ¢ : F; — G onto a finite group G, let
[, = Stabauyr,) (). Then every finite index subgroup of Aut(F,)
contains a group of the form I',.

Corollary

Every modular curve is covered by some My, = H /T,
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Which subgroups of SLy(Z) appear as [',;?

Theorem (Asada, 2001)

For a surjective homomorphism ¢ : F; — G onto a finite group G, let
[y := Stabayuyr,)(¢). Then every finite index subgroup of Aut(F>)
contains a group of the form I',.

Corollary

Every modular curve is covered by some My, = H /T,

In fact, the galois closure of any such M, is also of the form My for
some ¢ : F; — G’ (possibly non-surjective)
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Which subgroups of SLy(Z) appear as [',;?

Theorem (Asada, 2001)

For a surjective homomorphism ¢ : F; — G onto a finite group G, let
[y := Stabayuyr,)(¢). Then every finite index subgroup of Aut(F>)
contains a group of the form I',.

Corollary

Every modular curve is covered by some My, = H /T,

In fact, the galois closure of any such M, is also of the form My for
some ¢ : F; — G’ (possibly non-surjective), so we have

Corollary

Every modular curve is the quotient of some fine moduli scheme
M) = H /Ty for some homomorphism ¢ : F» — G.
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If we replace the sheaf Hom%'"(m1(E°/S), G) with its quotient

Hom® (w1 (E°/S), G)/Aut(G)
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If we replace the sheaf Hom%'"(m1(E°/S), G) with its quotient
HomZ" (w1 (E°/S), G)/Aut(G)

then the corresponding modular curves are “origami curves”, as studied by
Schmithusen, Lochak, Herrlich, Moller, Veech et al., and the
corresponding subgroups I'[j,; are called Veech groups.
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If we replace the sheaf Hom%'"(m1(E°/S), G) with its quotient
HomZ" (w1 (E°/S), G)/Aut(G)

then the corresponding modular curves are “origami curves”, as studied by
Schmithusen, Lochak, Herrlich, Moller, Veech et al., and the
corresponding subgroups I'[j,; are called Veech groups.

Theorem (Ellenberg-McReynolds, 2011)
Every finite index subgroup of ['(2) containing 1 is a Veech group.
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