Moduli Interpretations for Noncongruence Modular Curves

William Y. Chen
Pennsylvania State University

April 6, 2015

Introduction

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a subgroup of finite index.

Introduction

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a subgroup of finite index.

To any such Γ we may associate the noncompact modular curve \mathcal{H} / Γ.

Introduction

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a subgroup of finite index.

To any such Γ we may associate the noncompact modular curve \mathcal{H} / Γ. If $\Gamma \supset \Gamma(N):=\left\{\gamma \in \operatorname{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \bmod N\right\}$ for some N, then we call Γ a congruence subgroup.

Introduction

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a subgroup of finite index.

To any such Γ we may associate the noncompact modular curve \mathcal{H} / Γ. If $\Gamma \supset \Gamma(N):=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \bmod N\right\}$ for some N, then we call Γ a congruence subgroup. Otherwise, we call Γ a noncongruence subgroup.

Introduction

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a subgroup of finite index.

To any such Γ we may associate the noncompact modular curve \mathcal{H} / Γ. If $\Gamma \supset \Gamma(N):=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \bmod N\right\}$ for some N, then we call Γ a congruence subgroup. Otherwise, we call Γ a noncongruence subgroup.

Noncongruence subgroups exist!

Introduction

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a subgroup of finite index.

To any such Γ we may associate the noncompact modular curve \mathcal{H} / Γ. If $\Gamma \supset \Gamma(N):=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \bmod N\right\}$ for some N, then we call Γ a congruence subgroup. Otherwise, we call Γ a noncongruence subgroup.

Noncongruence subgroups exist! In fact,

Introduction

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a subgroup of finite index.

To any such Γ we may associate the noncompact modular curve \mathcal{H} / Γ. If $\Gamma \supset \Gamma(N):=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \bmod N\right\}$ for some N, then we call Γ a congruence subgroup. Otherwise, we call Γ a noncongruence subgroup.

Noncongruence subgroups exist! In fact,

Theorem (Lubotsky-Segal, 2003)

$$
\lim _{n \rightarrow \infty} \frac{\#\{\text { noncongruence subgroups of index } n\}}{\#\{\text { congruence subgroups of index } n\}}=\infty
$$

Examples

Recall the classical congruence subgroups

$$
\begin{array}{rll}
\Gamma(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{lll}
1 & 0 \\
0 & 1
\end{array}\right]\right. & \bmod N\} \\
\Gamma_{1}(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{lll}
1 & * & *
\end{array}\right]\right. & \bmod N\} \\
\Gamma_{0}(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{lll}
* & * \\
0 & *
\end{array}\right]\right. & \bmod N\}
\end{array}
$$

Examples

Recall the classical congruence subgroups

$$
\begin{array}{rll}
\Gamma(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right. & \bmod N\} \\
\Gamma_{1}(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right]\right. & \bmod N\} \\
\Gamma_{0}(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{lll}
* & * \\
0 & *
\end{array}\right]\right. & \bmod N\}
\end{array}
$$

(1) $Y(N)(\mathbb{C}) \sim\left\{(E / \mathbb{C}, P, Q): e_{N}(P, Q)=e^{2 \pi i / N}\right\} / \cong$

Examples

Recall the classical congruence subgroups

$$
\begin{array}{rll}
\Gamma(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{lll}
1 & 0 \\
0 & 1
\end{array}\right]\right. & \bmod N\} \\
\Gamma_{1}(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{lll}
1 & * & *
\end{array}\right]\right. & \bmod N\} \\
\Gamma_{0}(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{lll}
* & * \\
0 & *
\end{array}\right]\right. & \bmod N\}
\end{array}
$$

(1) $Y(N)(\mathbb{C}) \sim\left\{(E / \mathbb{C}, P, Q): e_{N}(P, Q)=e^{2 \pi i / N}\right\} / \cong$
(2) $Y_{1}(N)(\mathbb{C}) \sim\{(E / \mathbb{C}, P): P \in E[N]$ has order $N\} / \cong$

Examples

Recall the classical congruence subgroups

$$
\begin{array}{rll}
\Gamma(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{lll}
1 & 0 \\
0 & 1
\end{array}\right]\right. & \bmod N\} \\
\Gamma_{1}(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{lll}
1 & * & *
\end{array}\right]\right. & \bmod N\} \\
\Gamma_{0}(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{lll}
* & * \\
0 & *
\end{array}\right]\right. & \bmod N\}
\end{array}
$$

(1) $Y(N)(\mathbb{C}) \sim\left\{(E / \mathbb{C}, P, Q): e_{N}(P, Q)=e^{2 \pi i / N}\right\} / \cong$
(2) $Y_{1}(N)(\mathbb{C}) \sim\{(E / \mathbb{C}, P): P \in E[N]$ has order $N\} / \cong$
(3) $Y_{0}(N)(\mathbb{C}) \sim\{(E / \mathbb{C}, C): C \subset E[N]$ is cyclic of order $N\} / \cong$

Examples

Recall the classical congruence subgroups

$$
\begin{array}{rll}
\Gamma(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right. & \bmod N\} \\
\Gamma_{1}(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{lll}
1 & * & \text { o }
\end{array}\right]\right. & \bmod N\} \\
\Gamma_{0}(N) & :=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{lll}
* & * \\
0 & *
\end{array}\right]\right. & \bmod N\}
\end{array}
$$

(1) $Y(N)(\mathbb{C}) \sim\left\{(E / \mathbb{C}, P, Q): e_{N}(P, Q)=e^{2 \pi i / N}\right\} / \cong$
(2) $Y_{1}(N)(\mathbb{C}) \sim\{(E / \mathbb{C}, P): P \in E[N]$ has order $N\} / \cong$
(3) $Y_{0}(N)(\mathbb{C}) \sim\{(E / \mathbb{C}, C): C \subset E[N]$ is cyclic of order $N\} / \cong$
(1') $Y(N)(S) \sim\left\{(E / S, P, Q): e_{N}(P, Q)=e^{2 \pi i / N}\right\} / \cong \quad$ (if $N \geq 3$)

Examples

Recall the classical congruence subgroups

$$
\begin{aligned}
& \Gamma(N):=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \bmod N\right\} \\
& \Gamma_{1}(N):=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{cc}
1 & \text { * } \\
0 & 1
\end{array}\right] \bmod N\right\} \\
& \Gamma_{0}(N):=\left\{\gamma \in \mathrm{SL}_{2}(\mathbb{Z}): \gamma \equiv\left[\begin{array}{c}
* \\
0 \\
0
\end{array}\right] \bmod N\right\}
\end{aligned}
$$

(1) $Y(N)(\mathbb{C}) \sim\left\{(E / \mathbb{C}, P, Q): e_{N}(P, Q)=e^{2 \pi i / N}\right\} / \cong$
(2) $Y_{1}(N)(\mathbb{C}) \sim\{(E / \mathbb{C}, P): P \in E[N]$ has order $N\} / \cong$
(3) $Y_{0}(N)(\mathbb{C}) \sim\{(E / \mathbb{C}, C): C \subset E[N]$ is cyclic of order $N\} / \cong$
(1') $Y(N)(S) \sim\left\{(E / S, P, Q): e_{N}(P, Q)=e^{2 \pi i / N}\right\} / \cong$ (if $N \geq 3$)
(2') $Y_{1}(N)(S) \sim\{(E / S, P): P \in E[N]$ has order $N\} / \cong$ (if $N \geq 5$)

The Question

Do noncongruence modular curves also have a moduli interpretation?

The Question

Do noncongruence modular curves also have a moduli interpretation?

Bad answer:

The Question

Do noncongruence modular curves also have a moduli interpretation?
Bad answer: By Belyi's theorem, every smooth projective irreducible curve defined over $\overline{\mathbb{Q}}$ is a quotient \mathcal{H} / Γ, often noncongruence

The Question

Do noncongruence modular curves also have a moduli interpretation?
Bad answer: By Belyi's theorem, every smooth projective irreducible curve defined over $\overline{\mathbb{Q}}$ is a quotient \mathcal{H} / Γ, often noncongruence, so every 1-dimensional moduli space is a modular curve, often noncongruence.

The Question

Do noncongruence modular curves also have a moduli interpretation?
Bad answer: By Belyi's theorem, every smooth projective irreducible curve defined over $\overline{\mathbb{Q}}$ is a quotient \mathcal{H} / Γ, often noncongruence, so every 1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

The Question

Do noncongruence modular curves also have a moduli interpretation?
Bad answer: By Belyi's theorem, every smooth projective irreducible curve defined over $\overline{\mathbb{Q}}$ is a quotient \mathcal{H} / Γ, often noncongruence, so every 1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

1. To every finite group G and elliptic curve E / S, we define the set

$$
\operatorname{Hom}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)
$$

of Teichmuller structures of level G on E / S.

The Question

Do noncongruence modular curves also have a moduli interpretation?
Bad answer: By Belyi's theorem, every smooth projective irreducible curve defined over $\overline{\mathbb{Q}}$ is a quotient \mathcal{H} / Γ, often noncongruence, so every 1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

1. To every finite group G and elliptic curve E / S, we define the set

$$
\operatorname{Hom}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)
$$

of Teichmuller structures of level G on E / S.
2. We show that $\mathrm{SL}_{2}(\mathbb{Z})$ acts on $\operatorname{Hom}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)$, and the associated moduli spaces are \mathcal{H} / Γ, where Γ is the stabilizer of some level structure via the $\mathrm{SL}_{2}(\mathbb{Z})$-action.

The Question

Do noncongruence modular curves also have a moduli interpretation?
Bad answer: By Belyi's theorem, every smooth projective irreducible curve defined over $\overline{\mathbb{Q}}$ is a quotient \mathcal{H} / Γ, often noncongruence, so every 1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

1. To every finite group G and elliptic curve E / S, we define the set

$$
\operatorname{Hom}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)
$$

of Teichmuller structures of level G on E / S.
2. We show that $\mathrm{SL}_{2}(\mathbb{Z})$ acts on $\operatorname{Hom}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)$, and the associated moduli spaces are \mathcal{H} / Γ, where Γ is the stabilizer of some level structure via the $\mathrm{SL}_{2}(\mathbb{Z})$-action.
3. Γ is congruence if G is abelian.

Reinterpreting the Classical Congruence Level Structures

Reinterpreting the Classical Congruence Level Structures

Congruence level structures from another point of view:

$$
\left\{\Gamma_{0}(N) \text {-structures on } E\right\} \sim\left\{\text { cyclic } N \text {-isogenies } E^{\prime} \rightarrow E\right\}
$$

Reinterpreting the Classical Congruence Level Structures

Congruence level structures from another point of view:

$$
\left\{\Gamma_{0}(N) \text {-structures on } E\right\} \sim\left\{\text { cyclic } N \text {-isogenies } E^{\prime} \rightarrow E\right\}
$$

$\cdots \sim\{$ galois covers of E with galois group isomorphic to $\mathbb{Z} / N \mathbb{Z}\} / \cong$

Reinterpreting the Classical Congruence Level Structures

Congruence level structures from another point of view:

$$
\left\{\Gamma_{0}(N) \text {-structures on } E\right\} \sim\left\{\text { cyclic } N \text {-isogenies } E^{\prime} \rightarrow E\right\}
$$

$\cdots \sim\{$ galois covers of E with galois group isomorphic to $\mathbb{Z} / N \mathbb{Z}\} / \cong$

Similarly, we have
$\left\{\Gamma_{1}(N)\right.$-structures on $\left.E\right\} \sim\{$ Connected principal $\mathbb{Z} / N \mathbb{Z}$-bundles on $E\} / \cong$

Reinterpreting the Classical Congruence Level Structures

Congruence level structures from another point of view:

$$
\left\{\Gamma_{0}(N) \text {-structures on } E\right\} \sim\left\{\text { cyclic } N \text {-isogenies } E^{\prime} \rightarrow E\right\}
$$

$\cdots \sim\{$ galois covers of E with galois group isomorphic to $\mathbb{Z} / N \mathbb{Z}\} / \cong$

Similarly, we have
$\left\{\Gamma_{1}(N)\right.$-structures on $\left.E\right\} \sim\{$ Connected principal $\mathbb{Z} / N \mathbb{Z}$-bundles on $E\} / \cong$
and
$\{\Gamma(N)$-structures on $E\} \sim\left\{\right.$ Connected principal $(\mathbb{Z} / N \mathbb{Z})^{2}$-bundles on $\left.E\right\} / \cong$

Idea: Considering level structures given by nonabelian covers should give rise to noncongruence modular curves.

Idea: Considering level structures given by nonabelian covers should give rise to noncongruence modular curves.

Problem: $\pi_{1}(E) \cong \mathbb{Z}^{2}$ is abelian, so there are no nonabelian covers of elliptic curves.

Idea: Considering level structures given by nonabelian covers should give rise to noncongruence modular curves.

Problem: $\pi_{1}(E) \cong \mathbb{Z}^{2}$ is abelian, so there are no nonabelian covers of elliptic curves.

Solution: Allow for ramification at ∞. I.e., consider covers of punctured elliptic curves $E-\infty$.

Idea: Considering level structures given by nonabelian covers should give rise to noncongruence modular curves.

Problem: $\pi_{1}(E) \cong \mathbb{Z}^{2}$ is abelian, so there are no nonabelian covers of elliptic curves.

Solution: Allow for ramification at ∞. I.e., consider covers of punctured elliptic curves $E-\infty$.

Why? Because $\pi_{1}(E-\infty) \cong F_{2}$ (free group of rank 2) which has plenty of nonabelian quotients!

The Relative Fundamental Group (SGA 1)

Let $f: E \rightarrow S$ be an elliptic curve and $E^{\circ}:=E-\infty$.

The Relative Fundamental Group (SGA 1)

Let $f: E \rightarrow S$ be an elliptic curve and $E^{\circ}:=E-\infty$. Let $g: S \rightarrow E^{\circ}$ be a section.

The Relative Fundamental Group (SGA 1)

Let $f: E \rightarrow S$ be an elliptic curve and $E^{\circ}:=E-\infty$. Let $g: S \rightarrow E^{\circ}$ be a section. Let $s \in S$ be a geometric point, and \mathbb{L} the set of primes invertible on S.

The Relative Fundamental Group (SGA 1)

Let $f: E \rightarrow S$ be an elliptic curve and $E^{\circ}:=E-\infty$. Let $g: S \rightarrow E^{\circ}$ be a section. Let $s \in S$ be a geometric point, and \mathbb{L} the set of primes invertible on S. Then we have a split exact sequence

$$
1 \longrightarrow \pi_{1}^{\mathbb{L}}\left(E_{s}^{\circ}, g(s)\right) \longrightarrow \pi_{1}^{\prime}\left(E^{\circ}, g(s)\right) \underset{g_{*}}{\xrightarrow[f_{*}]{\longrightarrow} \pi_{1}}(S, s) \longrightarrow 1
$$

The Relative Fundamental Group (SGA 1)

Let $f: E \rightarrow S$ be an elliptic curve and $E^{\circ}:=E-\infty$. Let $g: S \rightarrow E^{\circ}$ be a section. Let $s \in S$ be a geometric point, and \mathbb{L} the set of primes invertible on S. Then we have a split exact sequence

$$
1 \longrightarrow \pi_{1}^{\mathbb{L}}\left(E_{s}^{\circ}, g(s)\right) \longrightarrow \pi_{1}^{\prime}\left(E^{\circ}, g(s)\right) \underset{g_{*}}{\stackrel{f_{*}}{\longrightarrow} \pi_{1}}(S, s) \longrightarrow 1
$$

$\pi_{1}(S, s)$ acting on $\pi_{1}^{\mathbb{L}}\left(E_{s}^{\circ}, g(s)\right)$

The Relative Fundamental Group (SGA 1)

Let $f: E \rightarrow S$ be an elliptic curve and $E^{\circ}:=E-\infty$. Let $g: S \rightarrow E^{\circ}$ be a section. Let $s \in S$ be a geometric point, and \mathbb{L} the set of primes invertible on S. Then we have a split exact sequence

$$
1 \longrightarrow \pi_{1}^{\mathbb{L}}\left(E_{s}^{\circ}, g(s)\right) \longrightarrow \pi_{1}^{\prime}\left(E^{\circ}, g(s)\right) \underset{g_{*}}{\xrightarrow[f_{*}]{f_{1}} \pi_{1}}(S, s) \longrightarrow 1
$$

$\pi_{1}(S, s)$ acting on $\pi_{1}^{\mathbb{L}}\left(E_{s}^{\circ}, g(s)\right) \rightsquigarrow$ a pro-etale group scheme $\pi_{1}^{\mathbb{L}}\left(E^{\circ} / S, g, s\right)$

The Relative Fundamental Group (SGA 1)

Let $f: E \rightarrow S$ be an elliptic curve and $E^{\circ}:=E-\infty$. Let $g: S \rightarrow E^{\circ}$ be a section. Let $s \in S$ be a geometric point, and \mathbb{L} the set of primes invertible on S. Then we have a split exact sequence

$$
1 \longrightarrow \pi_{1}^{\mathbb{L} L}\left(E_{s}^{\circ}, g(s)\right) \longrightarrow \pi_{1}^{\prime}\left(E^{\circ}, g(s)\right) \underset{g_{*}}{\longrightarrow} \pi_{1}(S, s) \longrightarrow 1
$$

$\pi_{1}(S, s)$ acting on $\pi_{1}^{\mathbb{L}}\left(E_{s}^{\circ}, g(s)\right) \rightsquigarrow$ a pro-etale group scheme $\pi_{1}^{\mathbb{L}}\left(E^{\circ} / S, g, s\right)$

The construction of $\pi_{1}^{\mathbb{L}}\left(E^{\circ} / S, g, s\right)$ is independent of g, s (up to inner automorphisms), and commutes with arbitrary base change.

Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N.

Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N. Assume N is invertible on S, and \mathbb{L} the set of primes dividing N.

Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N. Assume N is invertible on S, and \mathbb{L} the set of primes dividing N.

For any E / S, there is a scheme

$$
\mathcal{H o m}_{S}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right):=\mathcal{H o m}_{S}^{\text {sur }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right) / \operatorname{Inn}(G)
$$

finite etale over S whose formation commutes with base change.

Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N. Assume N is invertible on S, and \mathbb{L} the set of primes dividing N.

For any E / S, there is a scheme

$$
\mathcal{H o m}_{S}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right):=\mathcal{H o m}_{S}^{\text {sur }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right) / \operatorname{Inn}(G)
$$

finite etale over S whose formation commutes with base change.
We will call a global section of \mathcal{H} oms ${ }_{S}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)$ a Teichmuller structure of level G on E / S.

Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N. Assume N is invertible on S, and \mathbb{L} the set of primes dividing N.

For any E / S, there is a scheme

$$
\mathcal{H o m}_{S}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right):=\mathcal{H o m}_{S}^{\text {sur }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right) / \operatorname{Inn}(G)
$$

finite etale over S whose formation commutes with base change.
We will call a global section of \mathcal{H} oms ${ }_{S}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)$ a Teichmuller structure of level G on E / S.

If $S=$ Spec k for an algebraically closed field k, then

$$
\mathcal{H o m}_{k}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / k\right), G\right)(k) \quad \sim \quad \operatorname{Hom}^{\text {sur }}\left(F_{2}, G\right) / \operatorname{Inn}(G)
$$

Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N. Assume N is invertible on S, and \mathbb{L} the set of primes dividing N.

For any E / S, there is a scheme

$$
\mathcal{H o m}_{S}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right):=\mathcal{H o m}_{S}^{\text {sur }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right) / \operatorname{Inn}(G)
$$

finite etale over S whose formation commutes with base change.
We will call a global section of $\mathcal{H o m}_{S}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)$ a Teichmuller structure of level G on E / S.

If $S=$ Spec k for an algebraically closed field k, then

$$
\mathcal{H o m}_{k}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / k\right), G\right)(k) \quad \sim \quad \operatorname{Hom}^{\text {sur }}\left(F_{2}, G\right) / \operatorname{Inn}(G)
$$

In general

$$
\mathcal{H o m}_{S}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)(S) \quad \subset \quad \operatorname{Hom}^{\text {sur }}\left(F_{2}, G\right) / \operatorname{Inn}(G)
$$

Suppose E° / S admits a section $g: S \rightarrow E^{\circ}$,

Suppose E° / S admits a section $g: S \rightarrow E^{\circ}$, then for any covering space $X^{\circ} \rightarrow E^{\circ}$, we may consider $g^{*} X^{\circ}$.

Suppose E° / S admits a section $g: S \rightarrow E^{\circ}$, then for any covering space $X^{\circ} \rightarrow E^{\circ}$, we may consider $g^{*} X^{\circ}$.

Theorem

There is a canonical bijection
$\mathcal{H o m}_{S}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)(S) \sim\left\{\right.$ Connected principal G-bundles X° / E°
s.t. $g^{*} X^{\circ}$ is completely decomposed $\} / \cong$

The Moduli Problem

We define the stack (ie., category) \mathcal{M}_{G} of elliptic curves equipped with a Teichmuller structure of level G as follows:

The Moduli Problem

We define the stack (ie., category) \mathcal{M}_{G} of elliptic curves equipped with a Teichmuller structure of level G as follows:

1. Its objects are "enhanced elliptic curves" $(E / S, \alpha)$, and α is a global section of

$$
\mathcal{H o m}_{S}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)
$$

The Moduli Problem

We define the stack (ie., category) \mathcal{M}_{G} of elliptic curves equipped with a Teichmuller structure of level G as follows:

1. Its objects are "enhanced elliptic curves" $(E / S, \alpha)$, and α is a global section of

$$
\mathcal{H o m}_{S}^{\text {sur-ext }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)
$$

2. A morphism $h:\left(E^{\prime} / S^{\prime}, \alpha^{\prime}\right) \rightarrow(E / S, \alpha)$ is a fiber-product diagram

such that $h^{*}(\alpha)=\alpha^{\prime}$
"Forgetting" the level structure α yields a morphism (ie., functor)

$$
p: \mathcal{M}_{G} \rightarrow \mathcal{M}_{1,1}, \quad(E / S, \alpha) \mapsto E / S
$$

"Forgetting" the level structure α yields a morphism (ie., functor)

$$
p: \mathcal{M}_{G} \rightarrow \mathcal{M}_{1,1}, \quad(E / S, \alpha) \mapsto E / S
$$

Theorem

The "forget level structure" morphism $p: \mathcal{M}_{G} \rightarrow \mathcal{M}_{1,1}$ is finite etale, and for any $E_{0} / \overline{\mathbb{Q}}$,

$$
p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right)=\mathcal{H o m}_{\overline{\mathbb{Q}}}^{\text {sur-ext }}\left(\pi_{1}\left(E_{0}^{\circ} / \overline{\mathbb{Q}}\right), G\right)(\overline{\mathbb{Q}}) \cong \operatorname{Hom}^{\text {sur }}\left(F_{2}, G\right) / \operatorname{Inn}(G)
$$

"Forgetting" the level structure α yields a morphism (ie., functor)

$$
p: \mathcal{M}_{G} \rightarrow \mathcal{M}_{1,1}, \quad(E / S, \alpha) \mapsto E / S
$$

Theorem

The "forget level structure" morphism $p: \mathcal{M}_{G} \rightarrow \mathcal{M}_{1,1}$ is finite etale, and for any $E_{0} / \overline{\mathbb{Q}}$,

$$
p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right)=\mathcal{H o m}_{\overline{\mathbb{Q}}}^{\text {sur-ext }}\left(\pi_{1}\left(E_{0}^{\circ} / \overline{\mathbb{Q}}\right), G\right)(\overline{\mathbb{Q}}) \cong \operatorname{Hom}^{\text {sur }}\left(F_{2}, G\right) / \operatorname{Inn}(G)
$$

There's a classical exact sequence

$$
1 \longrightarrow \operatorname{Inn}\left(F_{2}\right) \longrightarrow \operatorname{Aut}\left(F_{2}\right) \longrightarrow \mathrm{GL}_{2}(\mathbb{Z}) \longrightarrow 1
$$

so we may think of $\mathrm{SL}_{2}(\mathbb{Z}) \subset \operatorname{Out}\left(F_{2}\right)$.
"Forgetting" the level structure α yields a morphism (ie., functor)

$$
p: \mathcal{M}_{G} \rightarrow \mathcal{M}_{1,1}, \quad(E / S, \alpha) \mapsto E / S
$$

Theorem

The "forget level structure" morphism $p: \mathcal{M}_{G} \rightarrow \mathcal{M}_{1,1}$ is finite etale, and for any $E_{0} / \overline{\mathbb{Q}}$,

$$
p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right)=\mathcal{H o m}_{\overline{\mathbb{Q}}}^{\text {sur-ext }}\left(\pi_{1}\left(E_{0}^{\circ} / \overline{\mathbb{Q}}\right), G\right)(\overline{\mathbb{Q}}) \cong \operatorname{Hom}^{\text {sur }}\left(F_{2}, G\right) / \operatorname{Inn}(G)
$$

There's a classical exact sequence

$$
1 \longrightarrow \operatorname{Inn}\left(F_{2}\right) \longrightarrow \operatorname{Aut}\left(F_{2}\right) \longrightarrow \mathrm{GL}_{2}(\mathbb{Z}) \longrightarrow 1
$$

so we may think of $\mathrm{SL}_{2}(\mathbb{Z}) \subset \operatorname{Out}\left(F_{2}\right)$.

Theorem

The monodromy action of $\pi_{1}\left(\left(\mathcal{M}_{1,1}\right)_{\overline{\mathbb{Q}}}\right) \cong \widehat{S L_{2}(\mathbb{Z})}$ on $p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right)$ is via outer automorphisms of F_{2}.

Main Results

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.

Main Results

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.
Let $\varphi: F_{2} \rightarrow G$ be a surjective homomorphism, then we may think of $[\varphi] \in p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right)$, and let $\Gamma_{[\varphi]}:=\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbb{Z})}([\varphi])$.

Main Results

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.
Let $\varphi: F_{2} \rightarrow G$ be a surjective homomorphism, then we may think of $[\varphi] \in p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right)$, and let $\Gamma_{[\varphi]}:=\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbb{Z})}([\varphi])$.

Theorem

1. The connected components of \mathcal{M}_{G} are in bijection with the orbits of $S L_{2}(\mathbb{Z}) \subset \operatorname{Out}\left(F_{2}\right)$ on $p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right) \cong \operatorname{Hom}^{\text {sur }}\left(F_{2}, G\right) / \operatorname{Inn}(G)$.

Main Results

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.
Let $\varphi: F_{2} \rightarrow G$ be a surjective homomorphism, then we may think of $[\varphi] \in p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right)$, and let $\Gamma_{[\varphi]}:=\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbb{Z})}([\varphi])$.

Theorem

1. The connected components of \mathcal{M}_{G} are in bijection with the orbits of $S L_{2}(\mathbb{Z}) \subset \operatorname{Out}\left(F_{2}\right)$ on $p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right) \cong \operatorname{Hom}^{\text {sur }}\left(F_{2}, G\right) / \operatorname{Inn}(G)$.
2. The coarse moduli scheme M_{G} of \mathcal{M}_{G} is a smooth affine curve defined over \mathbb{Q} (but possibly disconnected).

Main Results

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.
Let $\varphi: F_{2} \rightarrow G$ be a surjective homomorphism, then we may think of $[\varphi] \in p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right)$, and let $\Gamma_{[\varphi]}:=\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbb{Z})}([\varphi])$.

Theorem

1. The connected components of \mathcal{M}_{G} are in bijection with the orbits of $S L_{2}(\mathbb{Z}) \subset \operatorname{Out}\left(F_{2}\right)$ on $p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right) \cong \operatorname{Hom}^{\text {sur }}\left(F_{2}, G\right) / \operatorname{Inn}(G)$.
2. The coarse moduli scheme M_{G} of \mathcal{M}_{G} is a smooth affine curve defined over \mathbb{Q} (but possibly disconnected).
3. The component of M_{G} containing $[\varphi]$ is the modular curve $M_{[\varphi]}:=\Gamma_{[\varphi]} \backslash \mathcal{H}$.

Main Results

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.
Let $\varphi: F_{2} \rightarrow G$ be a surjective homomorphism, then we may think of $[\varphi] \in p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right)$, and let $\Gamma_{[\varphi]}:=\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbb{Z})}([\varphi])$.

Theorem

1. The connected components of \mathcal{M}_{G} are in bijection with the orbits of $S L_{2}(\mathbb{Z}) \subset \operatorname{Out}\left(F_{2}\right)$ on $p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right) \cong \operatorname{Hom}^{\text {sur }}\left(F_{2}, G\right) / \operatorname{Inn}(G)$.
2. The coarse moduli scheme M_{G} of \mathcal{M}_{G} is a smooth affine curve defined over \mathbb{Q} (but possibly disconnected).
3. The component of M_{G} containing $[\varphi]$ is the modular curve $M_{[\varphi]}:=\Gamma_{[\varphi]} \backslash \mathcal{H}$.
4. $M_{[\varphi]}=\Gamma_{[\varphi]} \backslash \mathcal{H}$ is a fine moduli scheme $\Longleftrightarrow \Gamma_{[\varphi]}$ is torsion-free.

Main Results

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.
Let $\varphi: F_{2} \rightarrow G$ be a surjective homomorphism, then we may think of $[\varphi] \in p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right)$, and let $\Gamma_{[\varphi]}:=\operatorname{Stab}_{\mathrm{SL}_{2}(\mathbb{Z})}([\varphi])$.

Theorem

1. The connected components of \mathcal{M}_{G} are in bijection with the orbits of $S L_{2}(\mathbb{Z}) \subset \operatorname{Out}\left(F_{2}\right)$ on $p^{-1}\left(E_{0} / \overline{\mathbb{Q}}\right) \cong \operatorname{Hom}^{\text {sur }}\left(F_{2}, G\right) / \operatorname{Inn}(G)$.
2. The coarse moduli scheme M_{G} of \mathcal{M}_{G} is a smooth affine curve defined over \mathbb{Q} (but possibly disconnected).
3. The component of M_{G} containing $[\varphi]$ is the modular curve $M_{[\varphi]}:=\Gamma_{[\varphi]} \backslash \mathcal{H}$.
4. $M_{[\varphi]}=\Gamma_{[\varphi]} \backslash \mathcal{H}$ is a fine moduli scheme $\Longleftrightarrow \Gamma_{[\varphi]}$ is torsion-free.
5. If G is abelian, then $\Gamma_{[\varphi]}$ is congruence.

Example: $G=\mathbb{Z} / N \mathbb{Z}$

There is one $\mathrm{SL}_{2}(\mathbb{Z})$-orbit on

$$
\operatorname{Hom}^{\text {sur }}\left(F_{2}, \mathbb{Z} / N \mathbb{Z}\right) / \operatorname{Inn}(\mathbb{Z} / N \mathbb{Z})=\operatorname{Hom}^{\text {sur }}\left(\mathbb{Z}^{2}, \mathbb{Z} / N \mathbb{Z}\right)
$$

with representative

$$
\varphi:\left[\begin{array}{c}
m \\
n
\end{array}\right] \mapsto n \bmod N
$$

Example: $G=\mathbb{Z} / N \mathbb{Z}$

There is one $\mathrm{SL}_{2}(\mathbb{Z})$-orbit on

$$
\operatorname{Hom}^{\text {sur }}\left(F_{2}, \mathbb{Z} / N \mathbb{Z}\right) / \operatorname{Inn}(\mathbb{Z} / N \mathbb{Z})=\operatorname{Hom}^{\text {sur }}\left(\mathbb{Z}^{2}, \mathbb{Z} / N \mathbb{Z}\right)
$$

with representative

$$
\varphi:\left[\begin{array}{c}
m \\
n
\end{array}\right] \mapsto n \bmod N
$$

The stabilizer are the matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$ such that

$$
\varphi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{c}
m \\
n
\end{array}\right]\right)=\varphi\left(\left[\begin{array}{cc}
a m+b n \\
c m+d n
\end{array}\right]\right)=c m+d n \equiv n \quad \bmod N
$$

Example: $G=\mathbb{Z} / N \mathbb{Z}$

There is one $\mathrm{SL}_{2}(\mathbb{Z})$-orbit on

$$
\operatorname{Hom}^{\text {sur }}\left(F_{2}, \mathbb{Z} / N \mathbb{Z}\right) / \operatorname{Inn}(\mathbb{Z} / N \mathbb{Z})=\operatorname{Hom}^{\text {sur }}\left(\mathbb{Z}^{2}, \mathbb{Z} / N \mathbb{Z}\right)
$$

with representative

$$
\varphi:\left[\begin{array}{c}
m \\
n
\end{array}\right] \mapsto n \bmod N
$$

The stabilizer are the matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$ such that

$$
\varphi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
m \\
n
\end{array}\right]\right)=\varphi\left(\left[\begin{array}{cc}
a m+b n \\
c m+d n
\end{array}\right]\right)=c m+d n \equiv n \quad \bmod N
$$

Of course this forces $c \equiv 0, d \equiv 1 \bmod N$, so $\Gamma_{[\varphi]}=\Gamma_{1}(N)$.

Example: $G=\mathbb{Z} / N \mathbb{Z}$

There is one $\mathrm{SL}_{2}(\mathbb{Z})$-orbit on

$$
\operatorname{Hom}^{\text {sur }}\left(F_{2}, \mathbb{Z} / N \mathbb{Z}\right) / \operatorname{Inn}(\mathbb{Z} / N \mathbb{Z})=\operatorname{Hom}^{\text {sur }}\left(\mathbb{Z}^{2}, \mathbb{Z} / N \mathbb{Z}\right)
$$

with representative

$$
\varphi:\left[\begin{array}{c}
m \\
n
\end{array}\right] \mapsto n \bmod N
$$

The stabilizer are the matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z})$ such that

$$
\varphi\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{c}
m \\
n
\end{array}\right]\right)=\varphi\left(\left[\begin{array}{cc}
a m+b n \\
c m+d n
\end{array}\right]\right)=c m+d n \equiv n \quad \bmod N
$$

Of course this forces $c \equiv 0, d \equiv 1 \bmod N$, so $\Gamma_{[\varphi]}=\Gamma_{1}(N)$.
If $G=(\mathbb{Z} / N \mathbb{Z})^{2}$, then there are $\phi(N) \mathrm{SL}_{2}(\mathbb{Z})$-orbits on

$$
\operatorname{Hom}^{\text {sur }}\left(\mathbb{Z}^{2},(\mathbb{Z} / N \mathbb{Z})^{2}\right)
$$

where each orbit corresponds to a possible determinant, and the stabilizers are all $\Gamma(N)$.

Example: $G=A_{5}$

There are three $\mathrm{SL}_{2}(\mathbb{Z})$-orbits on $\operatorname{Hom}^{\text {sur }}\left(F_{2}, A_{5}\right) / \operatorname{Inn}\left(A_{5}\right)$, with reps

$\varphi_{1}:$	x	$\mapsto(23)(45)$
y	$\mapsto(152)$	$\quad \varphi_{2}:$
---	---	---
y	$\mapsto(142)$	$\quad \varphi_{3}:$
:---	:---	:---
y	\mapsto	(14352)

Example: $G=A_{5}$

There are three $\mathrm{SL}_{2}(\mathbb{Z})$-orbits on $\operatorname{Hom}^{\text {sur }}\left(F_{2}, A_{5}\right) / \operatorname{Inn}\left(A_{5}\right)$, with reps

$\varphi_{1}:$	x	$\mapsto(23)(45)$
y	$\mapsto(152)$	$\quad \varphi_{2}:$
---	---	---
y	$\mapsto(142)$	
:---	:---	:---
y	\mapsto	(14352)

The orbits have sizes $\left|\left[\varphi_{1}\right]\right|=\left|\left[\varphi_{2}\right]\right|=10$, and $\left|\left[\varphi_{3}\right]\right|=18$.

Example: $G=A_{5}$

There are three $\mathrm{SL}_{2}(\mathbb{Z})$-orbits on $\operatorname{Hom}^{\text {sur }}\left(F_{2}, A_{5}\right) / \operatorname{Inn}\left(A_{5}\right)$, with reps

$\varphi_{1}:$	x	$\mapsto(23)(45)$
y	$\mapsto(152)$	$\quad \varphi_{2}:$
---	---	---
y	$\mapsto(142)$	
:---	:---	:---
y	\mapsto	(14352)

The orbits have sizes $\left|\left[\varphi_{1}\right]\right|=\left|\left[\varphi_{2}\right]\right|=10$, and $\left|\left[\varphi_{3}\right]\right|=18$.
The stabilizers are $\Gamma_{\left[\varphi_{1}\right]}=\Gamma_{\left[\varphi_{2}\right]}, \Gamma_{\left[\varphi_{3}\right]}$ and have indices 10, 10, 18 in $\mathrm{SL}_{2}(\mathbb{Z})$ and are all noncongruence.

Example: $G=A_{5}$

There are three $\mathrm{SL}_{2}(\mathbb{Z})$-orbits on $\operatorname{Hom}^{\text {sur }}\left(F_{2}, A_{5}\right) / \operatorname{Inn}\left(A_{5}\right)$, with reps $\varphi_{1}: \begin{array}{lll}x & \mapsto(23)(45) \\ y & \mapsto(152)\end{array} \quad \varphi_{2}: \begin{array}{lll}x & \mapsto(23)(45) \\ y & \mapsto(142)\end{array} \quad \varphi_{3}: \begin{array}{llll}x & \mapsto & (23)(45) \\ y & \mapsto & (14352)\end{array}$
The orbits have sizes $\left|\left[\varphi_{1}\right]\right|=\left|\left[\varphi_{2}\right]\right|=10$, and $\left|\left[\varphi_{3}\right]\right|=18$.
The stabilizers are $\Gamma_{\left[\varphi_{1}\right]}=\Gamma_{\left[\varphi_{2}\right]}, \Gamma_{\left[\varphi_{3}\right]}$ and have indices 10, 10, 18 in $\mathrm{SL}_{2}(\mathbb{Z})$ and are all noncongruence.

The coarse moduli scheme of \mathcal{M}_{G} is $M_{G}=M_{\left[\varphi_{1}\right]} \sqcup M_{\left[\varphi_{2}\right]} \sqcup M_{\left[\varphi_{3}\right]}$ and is defined over \mathbb{Q}.

Example: $G=A_{5}$

There are three $\mathrm{SL}_{2}(\mathbb{Z})$-orbits on $\operatorname{Hom}^{\text {sur }}\left(F_{2}, A_{5}\right) / \operatorname{Inn}\left(A_{5}\right)$, with reps

$\varphi_{1}:$	x	$\mapsto(23)(45)$
y	$\mapsto(152)$	$\quad \varphi_{2}:$
---	---	---
y	$\mapsto(142)$	$\quad \varphi_{3}:$
:---	:---	:---
y	\mapsto	(14352)

The orbits have sizes $\left|\left[\varphi_{1}\right]\right|=\left|\left[\varphi_{2}\right]\right|=10$, and $\left|\left[\varphi_{3}\right]\right|=18$.
The stabilizers are $\Gamma_{\left[\varphi_{1}\right]}=\Gamma_{\left[\varphi_{2}\right]}, \Gamma_{\left[\varphi_{3}\right]}$ and have indices 10, 10, 18 in $\mathrm{SL}_{2}(\mathbb{Z})$ and are all noncongruence.

The coarse moduli scheme of \mathcal{M}_{G} is $M_{G}=M_{\left[\varphi_{1}\right]} \sqcup M_{\left[\varphi_{2}\right]} \sqcup M_{\left[\varphi_{3}\right]}$ and is defined over \mathbb{Q}. Each $M_{\left[\varphi_{i}\right]}=\mathcal{H} / \Gamma_{\left[\varphi_{i}\right]}$.

Example: $G=A_{5}$

There are three $\mathrm{SL}_{2}(\mathbb{Z})$-orbits on $\operatorname{Hom}^{\text {sur }}\left(F_{2}, A_{5}\right) / \operatorname{Inn}\left(A_{5}\right)$, with reps $\varphi_{1}: \begin{array}{lll}x & \mapsto(23)(45) \\ y & \mapsto(152)\end{array} \quad \varphi_{2}: \begin{array}{llll}x & \mapsto & (23)(45) \\ y & \mapsto(142)\end{array} \quad \varphi_{3}: \begin{array}{llll}x & \mapsto & (23)(45) \\ y & \mapsto & (14352)\end{array}$
The orbits have sizes $\left|\left[\varphi_{1}\right]\right|=\left|\left[\varphi_{2}\right]\right|=10$, and $\left|\left[\varphi_{3}\right]\right|=18$.
The stabilizers are $\Gamma_{\left[\varphi_{1}\right]}=\Gamma_{\left[\varphi_{2}\right]}, \Gamma_{\left[\varphi_{3}\right]}$ and have indices 10, 10, 18 in $\mathrm{SL}_{2}(\mathbb{Z})$ and are all noncongruence.

The coarse moduli scheme of \mathcal{M}_{G} is $M_{G}=M_{\left[\varphi_{1}\right]} \sqcup M_{\left[\varphi_{2}\right]} \sqcup M_{\left[\varphi_{3}\right]}$ and is defined over \mathbb{Q}. Each $M_{\left[\varphi_{i}\right]}=\mathcal{H} / \Gamma_{\left[\varphi_{i}\right]}$.
$M_{\left[\varphi_{3}\right]}$ is defined over \mathbb{Q}, but $M_{\left[\varphi_{1}\right]}=M_{\left[\varphi_{2}\right]}$ are defined over a quadratic extension of \mathbb{Q}.

Example: $G=A_{5}$

There are three $\mathrm{SL}_{2}(\mathbb{Z})$-orbits on $\operatorname{Hom}^{\text {sur }}\left(F_{2}, A_{5}\right) / \operatorname{Inn}\left(A_{5}\right)$, with reps $\varphi_{1}: \begin{array}{lll}x & \mapsto(23)(45) \\ y & \mapsto(152)\end{array} \quad \varphi_{2}: \begin{array}{llll}x & \mapsto & (23)(45) \\ y & \mapsto(142)\end{array} \quad \varphi_{3}: \begin{array}{llll}x & \mapsto & (23)(45) \\ y & \mapsto & (14352)\end{array}$
The orbits have sizes $\left|\left[\varphi_{1}\right]\right|=\left|\left[\varphi_{2}\right]\right|=10$, and $\left|\left[\varphi_{3}\right]\right|=18$.
The stabilizers are $\Gamma_{\left[\varphi_{1}\right]}=\Gamma_{\left[\varphi_{2}\right]}, \Gamma_{\left[\varphi_{3}\right]}$ and have indices 10, 10, 18 in $\mathrm{SL}_{2}(\mathbb{Z})$ and are all noncongruence.

The coarse moduli scheme of \mathcal{M}_{G} is $M_{G}=M_{\left[\varphi_{1}\right]} \sqcup M_{\left[\varphi_{2}\right]} \sqcup M_{\left[\varphi_{3}\right]}$ and is defined over \mathbb{Q}. Each $M_{\left[\varphi_{i}\right]}=\mathcal{H} / \Gamma_{\left[\varphi_{i}\right]}$.
$M_{\left[\varphi_{3}\right]}$ is defined over \mathbb{Q}, but $M_{\left[\varphi_{1}\right]}=M_{\left[\varphi_{2}\right]}$ are defined over a quadratic extension of \mathbb{Q}. The modular curves $M_{\left[\varphi_{i}\right]}$ all have genus 0 .

Example: $G=A_{5}$

There are three $\mathrm{SL}_{2}(\mathbb{Z})$-orbits on $\operatorname{Hom}^{\text {sur }}\left(F_{2}, A_{5}\right) / \operatorname{Inn}\left(A_{5}\right)$, with reps

$$
\varphi_{1}: \begin{array}{lll}
x & \mapsto(23)(45) \\
y & \mapsto(152)
\end{array} \quad \varphi_{2}: \begin{array}{llll}
x & \mapsto & (23)(45) \\
y & \mapsto(142)
\end{array} \quad \varphi_{3}: \begin{array}{llll}
x & \mapsto & (23)(45) \\
y & \mapsto & (14352)
\end{array}
$$

The orbits have sizes $\left|\left[\varphi_{1}\right]\right|=\left|\left[\varphi_{2}\right]\right|=10$, and $\left|\left[\varphi_{3}\right]\right|=18$.
The stabilizers are $\Gamma_{\left[\varphi_{1}\right]}=\Gamma_{\left[\varphi_{2}\right]}, \Gamma_{\left[\varphi_{3}\right]}$ and have indices 10, 10, 18 in $\mathrm{SL}_{2}(\mathbb{Z})$ and are all noncongruence.

The coarse moduli scheme of \mathcal{M}_{G} is $M_{G}=M_{\left[\varphi_{1}\right]} \sqcup M_{\left[\varphi_{2}\right]} \sqcup M_{\left[\varphi_{3}\right]}$ and is defined over \mathbb{Q}. Each $M_{\left[\varphi_{i}\right]}=\mathcal{H} / \Gamma_{\left[\varphi_{i}\right]}$.
$M_{\left[\varphi_{3}\right]}$ is defined over \mathbb{Q}, but $M_{\left[\varphi_{1}\right]}=M_{\left[\varphi_{2}\right]}$ are defined over a quadratic extension of \mathbb{Q}. The modular curves $M_{\left[\varphi_{i}\right]}$ all have genus 0 .
Since each $\Gamma_{\left[\varphi_{i}\right]}$ contains - I, none of the $M_{\left[\varphi_{i}\right]}$ are fine moduli spaces.

Example: $G=A_{5}$

There are three $\mathrm{SL}_{2}(\mathbb{Z})$-orbits on $\operatorname{Hom}^{\text {sur }}\left(F_{2}, A_{5}\right) / \operatorname{Inn}\left(A_{5}\right)$, with reps
$\varphi_{1}: \begin{array}{lll}x & \mapsto(23)(45) \\ y & \mapsto(152)\end{array} \quad \varphi_{2}: \begin{array}{llll}x & \mapsto & (23)(45) \\ y & \mapsto(142)\end{array} \quad \varphi_{3}: \begin{array}{llll}x & \mapsto & (23)(45) \\ y & \mapsto & (14352)\end{array}$
The orbits have sizes $\left|\left[\varphi_{1}\right]\right|=\left|\left[\varphi_{2}\right]\right|=10$, and $\left|\left[\varphi_{3}\right]\right|=18$.
The stabilizers are $\Gamma_{\left[\varphi_{1}\right]}=\Gamma_{\left[\varphi_{2}\right]}, \Gamma_{\left[\varphi_{3}\right]}$ and have indices 10, 10, 18 in $\mathrm{SL}_{2}(\mathbb{Z})$ and are all noncongruence.
The coarse moduli scheme of \mathcal{M}_{G} is $M_{G}=M_{\left[\varphi_{1}\right]} \sqcup M_{\left[\varphi_{2}\right]} \sqcup M_{\left[\varphi_{3}\right]}$ and is defined over \mathbb{Q}. Each $M_{\left[\varphi_{i}\right]}=\mathcal{H} / \Gamma_{\left[\varphi_{i}\right]}$.
$M_{\left[\varphi_{3}\right]}$ is defined over \mathbb{Q}, but $M_{\left[\varphi_{1}\right]}=M_{\left[\varphi_{2}\right]}$ are defined over a quadratic extension of \mathbb{Q}. The modular curves $M_{\left[\varphi_{i}\right]}$ all have genus 0 .
Since each $\Gamma_{\left[\varphi_{i}\right]}$ contains $-l$, none of the $M_{\left[\varphi_{i}\right]}$ are fine moduli spaces. Nonetheless, there is a bijection

$$
M_{G}(\mathbb{C}) \sim\left\{(E / \mathbb{C}, X): X / E^{\circ} \text { is a connected principal } G \text {-bundle }\right\} / \cong
$$

When is $\Gamma_{[\varphi]}$ noncongruence?

When is $\Gamma_{[\varphi]}$ noncongruence?

For $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ finite index, let $\ell:=\ell(\Gamma)$ be the Icm of its cusp widths.

When is $\Gamma_{[\varphi]}$ noncongruence?

For $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ finite index, let $\ell:=\ell(\Gamma)$ be the Icm of its cusp widths. $\ell(\Gamma)$ is called the geometric level of Γ.

When is $\Gamma_{[\varphi]}$ noncongruence?

For $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ finite index, let $\ell:=\ell(\Gamma)$ be the Icm of its cusp widths. $\ell(\Gamma)$ is called the geometric level of Γ.

Theorem (Wohlfart)

Γ is congruence if and only if $\Gamma \supseteq \Gamma(\ell)$.

When is $\Gamma_{[\varphi]}$ noncongruence?

For $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ finite index, let $\ell:=\ell(\Gamma)$ be the Icm of its cusp widths.
$\ell(\Gamma)$ is called the geometric level of Γ.

Theorem (Wohlfart)

Γ is congruence if and only if $\Gamma \supseteq \Gamma(\ell)$.
We use an idea of Schmithusen - Consider

When is $\Gamma_{[\varphi]}$ noncongruence?

For $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ finite index, let $\ell:=\ell(\Gamma)$ be the lcm of its cusp widths. $\ell(\Gamma)$ is called the geometric level of Γ.

Theorem (Wohlfart)

Γ is congruence if and only if $\Gamma \supseteq \Gamma(\ell)$.
We use an idea of Schmithusen - Consider

Then $d=e \cdot f$, and Γ is congruence iff $f=1$, or equivalently $e=d$.

When is $\Gamma_{[\varphi]}$ noncongruence?

For $\Gamma \leq \mathrm{SL}_{2}(\mathbb{Z})$ finite index, let $\ell:=\ell(\Gamma)$ be the Icm of its cusp widths.
$\ell(\Gamma)$ is called the geometric level of Γ.

Theorem (Wohlfart)

Γ is congruence if and only if $\Gamma \supseteq \Gamma(\ell)$.
We use an idea of Schmithusen - Consider

Then $d=e \cdot f$, and Γ is congruence iff $f=1$, or equivalently $e=d$.
le, Γ is noncongruence iff $e<d\left(p_{\ell}(\Gamma)\right.$ is large in $\left.\mathrm{SL}_{2}(\mathbb{Z} / \ell)\right)$.

Example: $G=A_{5}$

Let $A:=(23)(45), B:=(152)$, then $A B=(15423)$ in A_{5}.

Example: $G=A_{5}$

Let $A:=(23)(45), B:=(152)$, then $A B=(15423)$ in A_{5}.

Theorem
 Let $\varphi \in \operatorname{Hom}^{\text {sur-ext }}\left(F_{2}, A_{5}\right)$ be given by $x \mapsto A, y \mapsto B$,

Example: $G=A_{5}$

Let $A:=(23)(45), B:=(152)$, then $A B=(15423)$ in A_{5}.

Theorem

Let $\varphi \in \operatorname{Hom}^{\text {sur-ext }}\left(F_{2}, A_{5}\right)$ be given by $x \mapsto A$, $y \mapsto B$, then $\Gamma_{[\varphi]}$ is noncongruence.

Key Fact: $|\varphi(x)|=|A|=2$,

Example: $G=A_{5}$

Let $A:=(23)(45), B:=(152)$, then $A B=(15423)$ in A_{5}.

Theorem

Let $\varphi \in \operatorname{Hom}^{\text {sur-ext }}\left(F_{2}, A_{5}\right)$ be given by $x \mapsto A$, $y \mapsto B$, then $\Gamma_{[\varphi]}$ is noncongruence.

Key Fact: $|\varphi(x)|=|A|=2, \quad|\varphi(y)|=|B|=3$,

Example: $G=A_{5}$

Let $A:=(23)(45), B:=(152)$, then $A B=(15423)$ in A_{5}.

Theorem

Let $\varphi \in \operatorname{Hom}^{\text {sur-ext }}\left(F_{2}, A_{5}\right)$ be given by $x \mapsto A, y \mapsto B$, then $\Gamma_{[\varphi]}$ is noncongruence.

Key Fact: $|\varphi(x)|=|A|=2, \quad|\varphi(y)|=|B|=3, \quad|\varphi(x y)|=|A B|=5$.
(ie, they're pairwise coprime)

Example: $G=A_{5}$

Let $A:=(23)(45), B:=(152)$, then $A B=(15423)$ in A_{5}.

Theorem

Let $\varphi \in \operatorname{Hom}^{\text {sur-ext }}\left(F_{2}, A_{5}\right)$ be given by $x \mapsto A, y \mapsto B$, then $\Gamma_{[\varphi]}$ is noncongruence.

Key Fact: $|\varphi(x)|=|A|=2, \quad|\varphi(y)|=|B|=3, \quad|\varphi(x y)|=|A B|=5$.
(ie, they're pairwise coprime) and $\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\right\}$ generate $\mathrm{SL}_{2}(\mathbb{Z})$.

The following are in the same $\mathrm{SL}_{2}(\mathbb{Z})$-orbit:

$$
\varphi_{23}=\varphi: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & B
\end{array} \quad \varphi_{25}: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & A B
\end{array} \quad \varphi_{53}: \begin{array}{llll}
x & \mapsto & A B \\
y & \mapsto & B
\end{array}
$$

The following are in the same $\mathrm{SL}_{2}(\mathbb{Z})$-orbit:

$$
\varphi_{23}=\varphi: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & B
\end{array} \quad \varphi_{25}: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & A B
\end{array} \quad \varphi_{53}: \begin{array}{llll}
x & \mapsto & A B \\
y & \mapsto & B
\end{array}
$$

Then $\Gamma_{\left[\varphi_{i j}\right]}$ are all conjugate in $\mathrm{SL}_{2}(\mathbb{Z})$, so let $N:=\ell\left(\Gamma_{\left[\varphi_{i j}\right]}\right)$.

The following are in the same $\mathrm{SL}_{2}(\mathbb{Z})$-orbit:

$$
\varphi_{23}=\varphi: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & B
\end{array} \quad \varphi_{25}: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & A B
\end{array} \quad \varphi_{53}: \begin{array}{llll}
x & \mapsto & A B \\
y & \mapsto & B
\end{array}
$$

Then $\Gamma_{\left[\varphi_{i j}\right]}$ are all conjugate in $\mathrm{SL}_{2}(\mathbb{Z})$, so let $N:=\ell\left(\Gamma_{\left[\varphi_{i j}\right]}\right)$.
Write $N=2^{e_{2}} 3^{e_{3}} 5^{e_{5}} M$, where $2,3,5 \nmid M$, then we have

The following are in the same $\mathrm{SL}_{2}(\mathbb{Z})$-orbit:

$$
\varphi_{23}=\varphi: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & B
\end{array} \quad \varphi_{25}: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & A B
\end{array} \quad \varphi_{53}: \begin{array}{lll}
x & \mapsto & A B \\
y & \mapsto & B
\end{array}
$$

Then $\Gamma_{\left[\varphi_{i j}\right]}$ are all conjugate in $\mathrm{SL}_{2}(\mathbb{Z})$, so let $N:=\ell\left(\Gamma_{\left[\varphi_{i j}\right]}\right)$.
Write $N=2^{e_{2}} 3^{e_{3}} 5^{e_{5}} M$, where $2,3,5 \nmid M$, then we have

$$
\mathrm{SL}_{2}(\mathbb{Z} / \ell) \cong \mathrm{SL}_{2}\left(\mathbb{Z} / 2^{\mathrm{e}_{2}}\right) \times \mathrm{SL}_{2}\left(\mathbb{Z} / 3^{\mathrm{e}_{3}}\right) \times \mathrm{SL}_{2}\left(\mathbb{Z} / 5^{\mathrm{e}_{5}}\right) \times \mathrm{SL}_{2}(\mathbb{Z} / M)
$$

The following are in the same $\mathrm{SL}_{2}(\mathbb{Z})$-orbit:

$$
\varphi_{23}=\varphi: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & B
\end{array} \quad \varphi_{25}: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & A B
\end{array} \quad \varphi_{53}: \begin{array}{llll}
x & \mapsto & A B \\
y & \mapsto & B
\end{array}
$$

Then $\Gamma_{\left[\varphi_{i j}\right]}$ are all conjugate in $\mathrm{SL}_{2}(\mathbb{Z})$, so let $N:=\ell\left(\Gamma_{\left[\varphi_{i j}\right]}\right)$.
Write $N=2^{e_{2}} 3^{e_{3}} 5^{e_{5}} M$, where $2,3,5 \nmid M$, then we have

$$
\mathrm{SL}_{2}(\mathbb{Z} / \ell) \cong \mathrm{SL}_{2}\left(\mathbb{Z} / 2^{\mathrm{e}_{2}}\right) \times \mathrm{SL}_{2}\left(\mathbb{Z} / 3^{\mathrm{e}_{3}}\right) \times \mathrm{SL}_{2}\left(\mathbb{Z} / 5^{e_{5}}\right) \times \mathrm{SL}_{2}(\mathbb{Z} / M)
$$

Note $\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 3 & 1\end{array}\right] \in \Gamma_{\left[\varphi_{23}\right]}$, so $p_{\ell}\left(\Gamma_{\left[\varphi_{23}\right]}\right) \supset I \times I \times \mathrm{SL}_{2}\left(\mathbb{Z} / 5^{e_{5}}\right) \times \mathrm{SL}_{2}(\mathbb{Z} / M)$

The following are in the same $\mathrm{SL}_{2}(\mathbb{Z})$-orbit:

$$
\varphi_{23}=\varphi: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & B
\end{array} \quad \varphi_{25}: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & A B
\end{array} \quad \varphi_{53}: \begin{array}{llll}
x & \mapsto & A B \\
y & \mapsto & B
\end{array}
$$

Then $\Gamma_{\left[\varphi_{i j}\right]}$ are all conjugate in $\mathrm{SL}_{2}(\mathbb{Z})$, so let $N:=\ell\left(\Gamma_{\left[\varphi_{i j}\right]}\right)$.
Write $N=2^{e_{2}} 3^{e_{3}} 5^{e_{5}} M$, where $2,3,5 \nmid M$, then we have

$$
\mathrm{SL}_{2}(\mathbb{Z} / \ell) \cong \mathrm{SL}_{2}\left(\mathbb{Z} / 2^{\mathrm{e}_{2}}\right) \times \mathrm{SL}_{2}\left(\mathbb{Z} / 3^{\mathrm{e}_{3}}\right) \times \mathrm{SL}_{2}\left(\mathbb{Z} / 5^{\mathrm{e}_{5}}\right) \times \mathrm{SL}_{2}(\mathbb{Z} / M)
$$

Note $\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 3 & 1\end{array}\right] \in \Gamma_{\left[\varphi_{23}\right]}$, so $p_{\ell}\left(\Gamma_{\left[\varphi_{23}\right]}\right) \supset I \times I \times \mathrm{SL}_{2}\left(\mathbb{Z} / 5^{e_{5}}\right) \times \mathrm{SL}_{2}(\mathbb{Z} / M)$
Also, $\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 5 & 1\end{array}\right] \in \Gamma_{\left[\varphi_{25}\right.}$, so $p_{\ell}\left(\Gamma_{\left[\varphi_{25}\right]}\right) \supset I \times \mathrm{SL}_{2}\left(\mathbb{Z} / 3^{\mathrm{e}_{3}}\right) \times I \times \mathrm{SL}_{2}(\mathbb{Z} / M)$

The following are in the same $\mathrm{SL}_{2}(\mathbb{Z})$-orbit:

$$
\varphi_{23}=\varphi: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & B
\end{array} \quad \varphi_{25}: \begin{array}{lll}
x & \mapsto & A \\
y & \mapsto & A B
\end{array} \quad \varphi_{53}: \begin{array}{llll}
x & \mapsto & A B \\
y & \mapsto & B
\end{array}
$$

Then $\Gamma_{\left[\varphi_{i j}\right]}$ are all conjugate in $\mathrm{SL}_{2}(\mathbb{Z})$, so let $N:=\ell\left(\Gamma_{\left[\varphi_{i j}\right]}\right)$.
Write $N=2^{e_{2}} 3^{e_{3}} 5^{e_{5}} M$, where $2,3,5 \nmid M$, then we have

$$
\mathrm{SL}_{2}(\mathbb{Z} / \ell) \cong \mathrm{SL}_{2}\left(\mathbb{Z} / 2^{\mathrm{e}_{2}}\right) \times \mathrm{SL}_{2}\left(\mathbb{Z} / 3^{e_{3}}\right) \times \mathrm{SL}_{2}\left(\mathbb{Z} / 5^{e_{5}}\right) \times \mathrm{SL}_{2}(\mathbb{Z} / M)
$$

Note $\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 3 & 1\end{array}\right] \in \Gamma_{\left[\varphi_{23}\right.}$, so $p_{\ell}\left(\Gamma_{\left[\varphi_{23}\right]}\right) \supset I \times I \times \mathrm{SL}_{2}\left(\mathbb{Z} / 5^{e_{5}}\right) \times \mathrm{SL}_{2}(\mathbb{Z} / M)$
Also, $\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 5 & 1\end{array}\right] \in \Gamma_{\left[\varphi_{25}\right]}$, so $p_{\ell}\left(\Gamma_{\left[\varphi_{25}\right]}\right) \supset I \times \mathrm{SL}_{2}\left(\mathbb{Z} / 3^{\mathrm{e}_{3}}\right) \times I \times \mathrm{SL}_{2}(\mathbb{Z} / M)$

Also, $\left[\begin{array}{cc}1 & 5 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right] \in \Gamma_{\left[\varphi_{53}\right]}$, so $p_{\ell}\left(\Gamma_{\left[\varphi_{53}\right]}\right) \supset \mathrm{SL}_{2}\left(\mathbb{Z} / 2^{\mathrm{e}_{2}}\right) \times I \times I \times \mathrm{SL}_{2}(\mathbb{Z} / M)$

The following are in the same $\mathrm{SL}_{2}(\mathbb{Z})$-orbit:
$\varphi_{23}=\varphi: \begin{array}{lll}x & \mapsto & A \\ y & \mapsto & B\end{array} \quad \varphi_{25}: \begin{array}{lll}x & \mapsto & A \\ y & \mapsto & A B\end{array} \quad \varphi_{53}: \begin{array}{lll}x & \mapsto & A B \\ y & \mapsto & B\end{array}$
Then $\Gamma_{\left[\varphi_{i j}\right]}$ are all conjugate in $\mathrm{SL}_{2}(\mathbb{Z})$, so let $N:=\ell\left(\Gamma_{\left[\varphi_{i j}\right]}\right)$.
Write $N=2^{e_{2}} 3^{e_{3}} 5^{e_{5}} M$, where $2,3,5 \nmid M$, then we have

$$
\mathrm{SL}_{2}(\mathbb{Z} / \ell) \cong \mathrm{SL}_{2}\left(\mathbb{Z} / 2^{\mathrm{e}_{2}}\right) \times \mathrm{SL}_{2}\left(\mathbb{Z} / 3^{e_{3}}\right) \times \mathrm{SL}_{2}\left(\mathbb{Z} / 5^{e_{5}}\right) \times \mathrm{SL}_{2}(\mathbb{Z} / M)
$$

Note $\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 3 & 1\end{array}\right] \in \Gamma_{\left[\varphi_{23}\right]}$, so $p_{\ell}\left(\Gamma_{\left[\varphi_{23}\right]}\right) \supset I \times I \times \mathrm{SL}_{2}\left(\mathbb{Z} / 5^{e_{5}}\right) \times \mathrm{SL}_{2}(\mathbb{Z} / M)$
Also, $\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 5 & 1\end{array}\right] \in \Gamma_{\left[\varphi_{25}\right]}$, so $p_{\ell}\left(\Gamma_{\left[\varphi_{25}\right]}\right) \supset I \times \mathrm{SL}_{2}\left(\mathbb{Z} / 3^{\mathrm{e}_{3}}\right) \times I \times \mathrm{SL}_{2}(\mathbb{Z} / M)$

Also, $\left[\begin{array}{cc}1 & 5 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 3 & 1\end{array}\right] \in \Gamma_{\left[\varphi_{53}\right]}$, so $p_{\ell}\left(\Gamma_{\left[\varphi_{53}\right]}\right) \supset \mathrm{SL}_{2}\left(\mathbb{Z} / 2^{\mathrm{e}_{2}}\right) \times I \times I \times \mathrm{SL}_{2}(\mathbb{Z} / M)$

Thus, $p_{\ell}\left(\Gamma_{[\varphi]}\right)=\operatorname{SL}_{2}(\mathbb{Z} / \ell)$, so $e=1<d$, hence $\Gamma_{[\varphi]}$ is noncongruence.

Theorem

If $G=S_{n}(n \geq 4)$, $A_{n}(n \geq 5)$, or $P S L_{2}\left(\mathbb{F}_{p}\right)(p \geq 5)$, then there exists a surjection $F_{2} \rightarrow G$ such that $\Gamma_{[\varphi]}$ is noncongruence.

Theorem

If $G=S_{n}(n \geq 4), A_{n}(n \geq 5)$, or $P S L_{2}\left(\mathbb{F}_{p}\right)(p \geq 5)$, then there exists a surjection $F_{2} \rightarrow G$ such that $\Gamma_{[\varphi]}$ is noncongruence.

Conjecture

1. For every nonabelian finite simple group G, every surjection $\varphi: F_{2} \rightarrow G$ has $\Gamma_{[\varphi]}$ noncongruence.

Theorem

If $G=S_{n}(n \geq 4), A_{n}(n \geq 5)$, or $P S L_{2}\left(\mathbb{F}_{p}\right)(p \geq 5)$, then there exists a surjection $F_{2} \rightarrow G$ such that $\Gamma_{[\varphi]}$ is noncongruence.

Conjecture

1. For every nonabelian finite simple group G, every surjection $\varphi: F_{2} \rightarrow G$ has $\Gamma_{[\varphi]}$ noncongruence.
2. For every finite group G, either all surjections $\varphi: F_{2} \rightarrow G$ have $\Gamma_{[\varphi]}$ congruence, or all surjections have $\Gamma_{[\varphi]}$ noncongruence.

Which subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$ appear as $\Gamma_{[\varphi}$?

Which subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$ appear as $\Gamma_{[\varphi]}$?

Theorem (Asada, 2001)

For a surjective homomorphism $\varphi: F_{2} \rightarrow G$ onto a finite group G, let $\Gamma_{\varphi}:=\operatorname{Stab}_{A u t\left(F_{2}\right)}(\varphi)$. Then every finite index subgroup of $\operatorname{Aut}\left(F_{2}\right)$ contains a group of the form Γ_{φ}.

Which subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$ appear as $\Gamma_{[\varphi]}$?

Theorem (Asada, 2001)

For a surjective homomorphism $\varphi: F_{2} \rightarrow G$ onto a finite group G, let $\Gamma_{\varphi}:=\operatorname{Stab}_{A u t\left(F_{2}\right)}(\varphi)$. Then every finite index subgroup of $\operatorname{Aut}\left(F_{2}\right)$ contains a group of the form Γ_{φ}.

Corollary

Every modular curve is covered by some $M_{[\varphi]}=\mathcal{H} / \Gamma_{[\varphi]}$.

Which subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$ appear as $\Gamma_{[\varphi]}$?

Theorem (Asada, 2001)

For a surjective homomorphism $\varphi: F_{2} \rightarrow G$ onto a finite group G, let $\Gamma_{\varphi}:=\operatorname{Stab}_{A u t\left(F_{2}\right)}(\varphi)$. Then every finite index subgroup of $\operatorname{Aut}\left(F_{2}\right)$ contains a group of the form Γ_{φ}.

Corollary

Every modular curve is covered by some $M_{[\varphi]}=\mathcal{H} / \Gamma_{[\varphi]}$.
In fact, the galois closure of any such $M_{[\varphi]}$ is also of the form $M_{[\psi]}$ for some $\psi: F_{2} \rightarrow G^{\prime}$ (possibly non-surjective)

Which subgroups of $\mathrm{SL}_{2}(\mathbb{Z})$ appear as $\Gamma_{[\varphi]}$?

Theorem (Asada, 2001)

For a surjective homomorphism $\varphi: F_{2} \rightarrow G$ onto a finite group G, let $\Gamma_{\varphi}:=\operatorname{Stab}_{A u t\left(F_{2}\right)}(\varphi)$. Then every finite index subgroup of $\operatorname{Aut}\left(F_{2}\right)$ contains a group of the form Γ_{φ}.

Corollary

Every modular curve is covered by some $M_{[\varphi]}=\mathcal{H} / \Gamma_{[\varphi]}$.
In fact, the galois closure of any such $M_{[\varphi]}$ is also of the form $M_{[\psi]}$ for some $\psi: F_{2} \rightarrow G^{\prime}$ (possibly non-surjective), so we have

Corollary

Every modular curve is the quotient of some fine moduli scheme $M_{[\varphi]}=\mathcal{H} / \Gamma_{[\varphi]}$ for some homomorphism $\varphi: F_{2} \rightarrow G$.

If we replace the sheaf $\mathcal{H o m}_{S}^{\text {sur }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)$ with its quotient

$$
\mathcal{H o m}_{S}^{\text {sur }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right) / \operatorname{Aut}(G)
$$

If we replace the sheaf $\mathcal{H o m}_{S}^{\text {sur }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)$ with its quotient

$$
\mathcal{H o m}_{S}^{\text {sur }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right) / \operatorname{Aut}(G)
$$

then the corresponding modular curves are "origami curves", as studied by Schmithusen, Lochak, Herrlich, Moller, Veech et al., and the corresponding subgroups $\Gamma_{[[\varphi]]}$ are called Veech groups.

If we replace the sheaf $\mathcal{H o m}_{S}^{\text {sur }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right)$ with its quotient

$$
\mathcal{H o m}_{S}^{\text {sur }}\left(\pi_{1}\left(E^{\circ} / S\right), G\right) / \operatorname{Aut}(G)
$$

then the corresponding modular curves are "origami curves", as studied by Schmithusen, Lochak, Herrlich, Moller, Veech et al., and the corresponding subgroups $\Gamma_{[[\varphi]]}$ are called Veech groups.

Theorem (Ellenberg-McReynolds, 2011)

Every finite index subgroup of $\Gamma(2)$ containing $\pm I$ is a Veech group.

