Moduli Interpretations for Noncongruence Modular Curves

William Y. Chen

Pennsylvania State University

April 6, 2015

Pennsylvania State University

William Y. Chen

Let ${\cal H}$ be the classical upper half plane, and let $\Gamma\subset {\rm SL}_2({\mathbb Z})$ be a subgroup of finite index.

Pennsylvania State University

William Y. Chen

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset {\rm SL}_2(\mathbb{Z})$ be a subgroup of finite index.

To any such Γ we may associate the noncompact modular curve \mathcal{H}/Γ .

William Y. Chen

William Y Chen

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset \mathrm{SL}_2(\mathbb{Z})$ be a subgroup of finite index.

To any such Γ we may associate the noncompact modular curve \mathcal{H}/Γ .

If $\Gamma \supset \Gamma(N) := \{\gamma \in SL_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \}$ for some N, then we call Γ a *congruence subgroup*.

William Y Chen

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset \mathrm{SL}_2(\mathbb{Z})$ be a subgroup of finite index.

To any such Γ we may associate the noncompact modular curve \mathcal{H}/Γ .

If $\Gamma \supset \Gamma(N) := \{\gamma \in SL_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \}$ for some N, then we call Γ a congruence subgroup. Otherwise, we call Γ a noncongruence subgroup.

William Y Chen

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset \mathrm{SL}_2(\mathbb{Z})$ be a subgroup of finite index.

To any such Γ we may associate the noncompact modular curve \mathcal{H}/Γ .

If $\Gamma \supset \Gamma(N) := \{\gamma \in SL_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \}$ for some N, then we call Γ a congruence subgroup. Otherwise, we call Γ a noncongruence subgroup.

Noncongruence subgroups exist!

William Y Chen

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset \mathrm{SL}_2(\mathbb{Z})$ be a subgroup of finite index.

To any such Γ we may associate the noncompact modular curve \mathcal{H}/Γ .

If $\Gamma \supset \Gamma(N) := \{\gamma \in SL_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \}$ for some N, then we call Γ a congruence subgroup. Otherwise, we call Γ a noncongruence subgroup.

Noncongruence subgroups exist! In fact,

Let \mathcal{H} be the classical upper half plane, and let $\Gamma \subset \mathrm{SL}_2(\mathbb{Z})$ be a subgroup of finite index.

To any such Γ we may associate the noncompact modular curve \mathcal{H}/Γ .

If $\Gamma \supset \Gamma(N) := \{\gamma \in \operatorname{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \}$ for some N, then we call Γ a *congruence subgroup*. Otherwise, we call Γ a *noncongruence subgroup*.

Noncongruence subgroups exist! In fact,

William Y. Chen

Pennsylvania State University

William Y. Chen

Recall the classical congruence subgroups

$$\begin{split} &\Gamma(N) &:= \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \} \\ &\Gamma_1(N) &:= \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \mod N \} \\ &\Gamma_0(N) &:= \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} * \\ 0 & * \end{bmatrix} \mod N \} \end{split}$$

Recall the classical congruence subgroups

$$\begin{split} &\Gamma(N) &:= \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \} \\ &\Gamma_1(N) &:= \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \} \\ &\Gamma_0(N) &:= \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} * \\ 0 & * \end{bmatrix} \mod N \} \end{split}$$

(1)
$$Y(N)(\mathbb{C}) \sim \{(E/\mathbb{C}, P, Q) : e_N(P, Q) = e^{2\pi i/N}\} / \cong$$

Pennsylvania State University

William Y. Chen

Recall the classical congruence subgroups

$$\begin{split} &\Gamma(N) &:= \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \} \\ &\Gamma_1(N) &:= \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \} \\ &\Gamma_0(N) &:= \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} * \\ 0 & * \end{bmatrix} \mod N \} \end{split}$$

(1)
$$Y(N)(\mathbb{C}) \sim \{(E/\mathbb{C}, P, Q) : e_N(P, Q) = e^{2\pi i/N}\}/\cong$$

(2) $Y_1(N)(\mathbb{C}) \sim \{(E/\mathbb{C}, P) : P \in E[N] \text{ has order } N\}/\cong$

Pennsylvania State University

William Y. Chen

Recall the classical congruence subgroups

$$\begin{split} &\Gamma(N) &:= \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \} \\ &\Gamma_1(N) &:= \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \} \\ &\Gamma_0(N) &:= \{ \gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} n & * \\ 0 & * \end{bmatrix} \mod N \} \end{split}$$

(1)
$$Y(N)(\mathbb{C}) \sim \{(E/\mathbb{C}, P, Q) : e_N(P, Q) = e^{2\pi i/N}\}/\cong$$

(2) $Y_1(N)(\mathbb{C}) \sim \{(E/\mathbb{C}, P) : P \in E[N] \text{ has order } N\}/\cong$

(3) $Y_0(N)(\mathbb{C}) \sim \{(E/\mathbb{C}, C) : C \subset E[N] \text{ is cyclic of order } N\}/\cong$

William Y. Chen

Recall the classical congruence subgroups

$$\begin{split} &\Gamma(N) &:= \{\gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \} \\ &\Gamma_1(N) &:= \{\gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \} \\ &\Gamma_0(N) &:= \{\gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} n & * \\ 0 & * \end{bmatrix} \mod N \} \end{split}$$

(1)
$$Y(N)(\mathbb{C}) \sim \{(E/\mathbb{C}, P, Q) : e_N(P, Q) = e^{2\pi i/N}\}/\cong$$

(2) $Y_1(N)(\mathbb{C}) \sim \{(E/\mathbb{C}, P) : P \in E[N] \text{ has order } N\}/\cong$

- (3) $Y_0(N)(\mathbb{C}) \sim \{(E/\mathbb{C}, C) : C \subset E[N] \text{ is cyclic of order } N\}/\cong$
- (1') $Y(N)(S) \sim \{(E/S, P, Q) : e_N(P, Q) = e^{2\pi i/N}\}/\cong$ (if $N \ge 3$)

William Y. Chen

Recall the classical congruence subgroups

$$\begin{split} &\Gamma(N) &:= \{\gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \} \\ &\Gamma_1(N) &:= \{\gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \} \\ &\Gamma_0(N) &:= \{\gamma \in \mathrm{SL}_2(\mathbb{Z}) : \gamma \equiv \begin{bmatrix} n & * \\ 0 & * \end{bmatrix} \mod N \} \end{split}$$

(1)
$$Y(N)(\mathbb{C}) \sim \{(E/\mathbb{C}, P, Q) : e_N(P, Q) = e^{2\pi i/N}\}/\cong$$

(2) $Y_1(N)(\mathbb{C}) \sim \{(E/\mathbb{C}, P) : P \in E[N] \text{ has order } N\}/\cong$

(3) $Y_0(N)(\mathbb{C}) \sim \{(E/\mathbb{C}, C) : C \subset E[N] \text{ is cyclic of order } N\}/\cong$

(1')
$$Y(N)(S) \sim \{(E/S, P, Q) : e_N(P, Q) = e^{2\pi i/N}\} / \cong$$
 (if $N \ge 3$)

(2') $Y_1(N)(S) \sim \{(E/S, P) : P \in E[N] \text{ has order } N\}/\cong (\text{if } N \ge 5)$

Do noncongruence modular curves also have a moduli interpretation?

Pennsylvania State University

William Y. Chen

William Y. Chen

Do noncongruence modular curves also have a moduli interpretation?

Bad answer:

Pennsylvania State University

Do noncongruence modular curves also have a moduli interpretation?

Bad answer: By Belyi's theorem, every smooth projective irreducible curve defined over $\overline{\mathbb{Q}}$ is a quotient \mathcal{H}/Γ , often noncongruence

William Y. Chen

William Y Chen

Do noncongruence modular curves also have a moduli interpretation?

Bad answer: By Belyi's theorem, every smooth projective irreducible curve defined over $\overline{\mathbb{Q}}$ is a quotient \mathcal{H}/Γ , often noncongruence, so every 1-dimensional moduli space is a modular curve, often noncongruence.

William Y Chen

Do noncongruence modular curves also have a moduli interpretation?

Bad answer: By Belyi's theorem, every smooth projective irreducible curve defined over $\overline{\mathbb{Q}}$ is a quotient \mathcal{H}/Γ , often noncongruence, so every 1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

Do noncongruence modular curves also have a moduli interpretation?

Bad answer: By Belyi's theorem, every smooth projective irreducible curve defined over $\overline{\mathbb{Q}}$ is a quotient \mathcal{H}/Γ , often noncongruence, so every 1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

1. To every finite group G and elliptic curve E/S, we define the set

 $\operatorname{Hom}^{\operatorname{sur-ext}}(\pi_1(E^\circ/S),G)$

Pennsylvania State University

of Teichmuller structures of level G on E/S.

Do noncongruence modular curves also have a moduli interpretation?

Bad answer: By Belyi's theorem, every smooth projective irreducible curve defined over $\overline{\mathbb{Q}}$ is a quotient \mathcal{H}/Γ , often noncongruence, so every 1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

1. To every finite group G and elliptic curve E/S, we define the set

Hom^{sur-ext} $(\pi_1(E^{\circ}/S), G)$

of Teichmuller structures of level G on E/S.

2. We show that $\operatorname{SL}_2(\mathbb{Z})$ acts on $\operatorname{Hom}^{\operatorname{sur-ext}}(\pi_1(E^{\circ}/S), G)$, and the associated moduli spaces are \mathcal{H}/Γ , where Γ is the stabilizer of some level structure via the $\operatorname{SL}_2(\mathbb{Z})$ -action.

Do noncongruence modular curves also have a moduli interpretation?

Bad answer: By Belyi's theorem, every smooth projective irreducible curve defined over $\overline{\mathbb{Q}}$ is a quotient \mathcal{H}/Γ , often noncongruence, so every 1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

1. To every finite group G and elliptic curve E/S, we define the set

 $\operatorname{Hom}^{\operatorname{sur-ext}}(\pi_1(E^\circ/S),G)$

of Teichmuller structures of level G on E/S.

- 2. We show that $\operatorname{SL}_2(\mathbb{Z})$ acts on $\operatorname{Hom}^{\operatorname{sur-ext}}(\pi_1(E^{\circ}/S), G)$, and the associated moduli spaces are \mathcal{H}/Γ , where Γ is the stabilizer of some level structure via the $\operatorname{SL}_2(\mathbb{Z})$ -action.
- 3. Γ is congruence if G is abelian.

Pennsylvania State University

William Y. Chen

Congruence level structures from another point of view:

 $\{\Gamma_0(N)\text{-structures on } E\} \sim \{\text{cyclic } N\text{-isogenies } E' \to E\}$

Pennsvlvania State University

William Y. Chen

Congruence level structures from another point of view:

 $\{\Gamma_0(N)\text{-structures on } E\} \sim \{\text{cyclic } N\text{-isogenies } E' \to E\}$

 $\cdots \sim \{$ galois covers of *E* with galois group isomorphic to $\mathbb{Z}/N\mathbb{Z}\}/\cong$

Pennsylvania State University

William Y. Chen

Congruence level structures from another point of view:

 $\{\Gamma_0(N)\text{-structures on } E\} \sim \{\text{cyclic } N\text{-isogenies } E' \to E\}$

 $\cdots \sim \{$ galois covers of *E* with galois group isomorphic to $\mathbb{Z}/N\mathbb{Z}\}/\cong$

Similarly, we have

 $\{\Gamma_1(N)\text{-structures on } E\} \sim \{\text{Connected principal } \mathbb{Z}/N\mathbb{Z}\text{-bundles on } E\}/\cong$

Pennsylvania State University

William Y. Chen

Congruence level structures from another point of view:

 $\{\Gamma_0(N)\text{-structures on } E\} \sim \{\text{cyclic } N\text{-isogenies } E' \to E\}$

 $\cdots \sim \{$ galois covers of *E* with galois group isomorphic to $\mathbb{Z}/N\mathbb{Z}\}/\cong$

Similarly, we have

 $\{\Gamma_1(N)\text{-structures on } E\} \sim \{\text{Connected principal } \mathbb{Z}/N\mathbb{Z}\text{-bundles on } E\}/\cong$ and

 ${\Gamma(N)}$ -structures on E $} \sim {Connected principal <math>(\mathbb{Z}/N\mathbb{Z})^2$ -bundles on E $}/\cong$

イロン 不通 とうせい

William Y. Chen

Problem: $\pi_1(E) \cong \mathbb{Z}^2$ is abelian, so there are no nonabelian covers of elliptic curves.

William Y. Chen

Problem: $\pi_1(E) \cong \mathbb{Z}^2$ is abelian, so there are no nonabelian covers of elliptic curves.

Solution: Allow for ramification at ∞ . I.e., consider covers of punctured elliptic curves $E - \infty$.

William Y Chen

Problem: $\pi_1(E) \cong \mathbb{Z}^2$ is abelian, so there are no nonabelian covers of elliptic curves.

Solution: Allow for ramification at ∞ . I.e., consider covers of punctured elliptic curves $E - \infty$.

Why? Because $\pi_1(E - \infty) \cong F_2$ (free group of rank 2) which has plenty of nonabelian quotients!

William Y Chen

The Relative Fundamental Group (SGA 1)

Let $f: E \to S$ be an elliptic curve and $E^{\circ} := E - \infty$.

▲ □ ▶ < (□ ▶ < (□ ▶ < (□ ▶) < (□ ▶)

Pennsylvania State University

William Y. Chen

Let $f: E \to S$ be an elliptic curve and $E^{\circ} := E - \infty$. Let $g: S \to E^{\circ}$ be a section.

Pennsylvania State University

William Y. Chen

Let $f : E \to S$ be an elliptic curve and $E^{\circ} := E - \infty$. Let $g : S \to E^{\circ}$ be a section. Let $s \in S$ be a geometric point, and \mathbb{L} the set of primes invertible on S.

Moduli Interpretations for Noncongruence Modular Curves

William Y Chen

Let $f : E \to S$ be an elliptic curve and $E^{\circ} := E - \infty$. Let $g : S \to E^{\circ}$ be a section. Let $s \in S$ be a geometric point, and \mathbb{L} the set of primes invertible on S. Then we have a split exact sequence

$$1 \longrightarrow \pi_1^{\mathbb{L}}(E_s^{\circ}, g(s)) \longrightarrow \pi_1'(E^{\circ}, g(s)) \xrightarrow{f_*} \pi_1(S, s) \longrightarrow 1$$

Pennsylvania State University

William Y. Chen

Let $f : E \to S$ be an elliptic curve and $E^{\circ} := E - \infty$. Let $g : S \to E^{\circ}$ be a section. Let $s \in S$ be a geometric point, and \mathbb{L} the set of primes invertible on S. Then we have a split exact sequence

$$1 \longrightarrow \pi_1^{\mathbb{L}}(E_s^{\circ}, g(s)) \longrightarrow \pi_1'(E^{\circ}, g(s)) \xrightarrow{f_*} \pi_1(S, s) \longrightarrow 1$$

 $\pi_1(S,s)$ acting on $\pi_1^{\mathbb{L}}(E_s^{\circ},g(s))$

Pennsylvania State University

William Y. Chen
Let $f : E \to S$ be an elliptic curve and $E^{\circ} := E - \infty$. Let $g : S \to E^{\circ}$ be a section. Let $s \in S$ be a geometric point, and \mathbb{L} the set of primes invertible on S. Then we have a split exact sequence

$$1 \longrightarrow \pi_1^{\mathbb{L}}(E_s^{\circ}, g(s)) \longrightarrow \pi_1'(E^{\circ}, g(s)) \xrightarrow{f_*} \pi_1(S, s) \longrightarrow 1$$

 $\pi_1(S,s)$ acting on $\pi_1^{\mathbb{L}}(E_s^{\circ},g(s)) \rightsquigarrow$ a pro-etale group scheme $\pi_1^{\mathbb{L}}(E^{\circ}/S,g,s)$

William Y. Chen

Let $f : E \to S$ be an elliptic curve and $E^{\circ} := E - \infty$. Let $g : S \to E^{\circ}$ be a section. Let $s \in S$ be a geometric point, and \mathbb{L} the set of primes invertible on S. Then we have a split exact sequence

$$1 \longrightarrow \pi_1^{\mathbb{L}}(E_s^{\circ}, g(s)) \longrightarrow \pi_1'(E^{\circ}, g(s)) \xrightarrow{f_*} \pi_1(S, s) \longrightarrow 1$$

 $\pi_1(S,s)$ acting on $\pi_1^{\mathbb{L}}(E_s^{\circ},g(s)) \rightsquigarrow$ a pro-etale group scheme $\pi_1^{\mathbb{L}}(E^{\circ}/S,g,s)$

The construction of $\pi_1^{\mathbb{L}}(E^{\circ}/S, g, s)$ is independent of g, s (up to inner automorphisms), and commutes with arbitrary base change.

William Y. Chen

Moduli Interpretations for Noncongruence Modular Curves

Pennsylvania State University

Let G be a finite constant group scheme over S of order N.

Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves

William Y. Chen

Let G be a finite constant group scheme over S of order N. Assume N is invertible on S, and \mathbb{L} the set of primes dividing N.

Pennsylvania State University

William Y. Chen

Let G be a finite constant group scheme over S of order N. Assume N is invertible on S, and \mathbb{L} the set of primes dividing N.

For any E/S, there is a scheme

 $\mathcal{H}om_{\mathcal{S}}^{\mathsf{sur-ext}}(\pi_1(E^\circ/\mathcal{S}),\mathcal{G}) := \mathcal{H}om_{\mathcal{S}}^{\mathsf{sur}}(\pi_1(E^\circ/\mathcal{S}),\mathcal{G})/\mathrm{Inn}(\mathcal{G})$

finite etale over S whose formation commutes with base change.

William Y. Chen

Let G be a finite constant group scheme over S of order N. Assume N is invertible on S, and \mathbb{L} the set of primes dividing N.

For any E/S, there is a scheme

 $\mathcal{H}om_{\mathcal{S}}^{\mathsf{sur-ext}}(\pi_1(E^\circ/\mathcal{S}),\mathcal{G}) := \mathcal{H}om_{\mathcal{S}}^{\mathsf{sur}}(\pi_1(E^\circ/\mathcal{S}),\mathcal{G})/\mathrm{Inn}(\mathcal{G})$

finite etale over S whose formation commutes with base change.

We will call a global section of $\mathcal{H}om_S^{\text{sur-ext}}(\pi_1(E^{\circ}/S), G)$ a Teichmuller structure of level G on E/S.

William Y Chen

Let G be a finite constant group scheme over S of order N. Assume N is invertible on S, and \mathbb{L} the set of primes dividing N.

For any E/S, there is a scheme

 $\mathcal{H}om_{\mathcal{S}}^{\mathsf{sur-ext}}(\pi_1(E^\circ/\mathcal{S}),\mathcal{G}) := \mathcal{H}om_{\mathcal{S}}^{\mathsf{sur}}(\pi_1(E^\circ/\mathcal{S}),\mathcal{G})/\mathrm{Inn}(\mathcal{G})$

finite etale over S whose formation commutes with base change.

We will call a global section of $\mathcal{H}om_S^{\text{sur-ext}}(\pi_1(E^{\circ}/S), G)$ a Teichmuller structure of level G on E/S.

If S = Spec k for an algebraically closed field k, then $\mathcal{H}om_k^{\text{sur-ext}}(\pi_1(E^\circ/k), G)(k) \sim \text{Hom}^{\text{sur}}(F_2, G)/\text{Inn}(G)$

William Y. Chen

Pennsylvania State University

・ロト ・日子・ ・ ヨト

Let G be a finite constant group scheme over S of order N. Assume N is invertible on S, and \mathbb{L} the set of primes dividing N.

For any E/S, there is a scheme

 $\mathcal{H}om_{\mathcal{S}}^{\mathsf{sur-ext}}(\pi_1(E^\circ/\mathcal{S}), \mathcal{G}) := \mathcal{H}om_{\mathcal{S}}^{\mathsf{sur}}(\pi_1(E^\circ/\mathcal{S}), \mathcal{G})/\mathrm{Inn}(\mathcal{G})$

finite etale over S whose formation commutes with base change.

We will call a global section of $\mathcal{H}om_S^{\text{sur-ext}}(\pi_1(E^{\circ}/S), G)$ a Teichmuller structure of level G on E/S.

If $S = \operatorname{Spec} k$ for an algebraically closed field k, then $\mathcal{H}om_k^{\mathsf{sur-ext}}(\pi_1(E^\circ/k), G)(k) \sim \operatorname{Hom}^{\mathsf{sur}}(F_2, G)/\operatorname{Inn}(G)$ In general

$$\mathcal{H}om_{S}^{\mathsf{sur-ext}}(\pi_{1}(E^{\circ}/S),G)(S) \subset \operatorname{Hom}^{\mathsf{sur}}(F_{2},G)/\operatorname{Inn}(G)$$

William Y. Chen

Pennsylvania State University

Suppose E°/S admits a section $g: S \rightarrow E^{\circ}$,

Pennsylvania State University

William Y. Chen

Suppose E°/S admits a section $g: S \to E^{\circ}$, then for any covering space $X^{\circ} \to E^{\circ}$, we may consider g^*X° .

William Y. Chen

Suppose E°/S admits a section $g: S \to E^{\circ}$, then for any covering space $X^{\circ} \to E^{\circ}$, we may consider g^*X° .

$$g^*X^\circ \longrightarrow X^\circ$$
$$\downarrow \qquad \qquad \downarrow$$
$$S \xrightarrow{g} E^\circ$$

Theorem

There is a canonical bijection

 $\mathcal{H}om_{S}^{sur-ext}(\pi_{1}(E^{\circ}/S), G)(S) \sim \{Connected principal G-bundles X^{\circ}/E^{\circ} s.t. g^{*}X^{\circ} \text{ is completely decomposed}\}/\cong$

William Y. Chen

Moduli Interpretations for Noncongruence Modular Curves

Pennsylvania State University

The Moduli Problem

We define the stack (ie., category) M_G of elliptic curves equipped with a Teichmuller structure of level G as follows:

《曰》《聞》《臣》《臣》 臣 《)오()

Pennsylvania State University

William Y. Chen

The Moduli Problem

We define the stack (ie., category) M_G of elliptic curves equipped with a Teichmuller structure of level G as follows:

1. Its objects are "enhanced elliptic curves" $(E/S, \alpha)$, and α is a global section of

 $\mathcal{H}om_S^{\mathsf{sur-ext}}(\pi_1(E^\circ/S),G)$

Moduli Interpretations for Noncongruence Modular Curves

William Y Chen

The Moduli Problem

We define the stack (ie., category) M_G of elliptic curves equipped with a Teichmuller structure of level G as follows:

1. Its objects are "enhanced elliptic curves" $(E/S, \alpha)$, and α is a global section of

 $\mathcal{H}om_S^{\text{sur-ext}}(\pi_1(E^\circ/S),G)$

2. A morphism $h: (E'/S', \alpha') \to (E/S, \alpha)$ is a fiber-product diagram

such that
$$h^*(\alpha) = \alpha'$$

William Y. Chen

Moduli Interpretations for Noncongruence Modular Curves

Pennsylvania State University

"Forgetting" the level structure α yields a morphism (ie., functor) $p: \mathcal{M}_G \to \mathcal{M}_{1,1}, \qquad (E/S, \alpha) \mapsto E/S$

Pennsylvania State University

William Y. Chen

"Forgetting" the level structure α yields a morphism (ie., functor) $p: \mathcal{M}_{\mathcal{G}} \to \mathcal{M}_{1,1}, \qquad (E/S, \alpha) \mapsto E/S$

Theorem

The "forget level structure" morphism $p: \mathcal{M}_G \to \mathcal{M}_{1,1}$ is finite etale, and for any $E_0/\overline{\mathbb{Q}}$,

$$p^{-1}(E_0/\overline{\mathbb{Q}}) = \mathcal{H}om^{sur-ext}_{\overline{\mathbb{Q}}}(\pi_1(E_0^{\circ}/\overline{\mathbb{Q}}), G)(\overline{\mathbb{Q}}) \cong \mathit{Hom}^{sur}(F_2, G)/\mathit{Inn}(G)$$

Pennsylvania State University

< 同 > < 三 >

Moduli Interpretations for Noncongruence Modular Curves

William Y. Chen

"Forgetting" the level structure α yields a morphism (ie., functor) $p: \mathcal{M}_{\mathcal{G}} \to \mathcal{M}_{1,1}, \qquad (E/S, \alpha) \mapsto E/S$

Theorem

The "forget level structure" morphism $p: \mathcal{M}_G \to \mathcal{M}_{1,1}$ is finite etale, and for any $E_0/\overline{\mathbb{Q}}$,

 $p^{-1}(E_0/\overline{\mathbb{Q}}) = \mathcal{H}om_{\overline{\mathbb{Q}}}^{sur-ext}(\pi_1(E_0^\circ/\overline{\mathbb{Q}}), G)(\overline{\mathbb{Q}}) \cong Hom^{sur}(F_2, G)/Inn(G)$

There's a classical exact sequence

$$1 \longrightarrow \operatorname{Inn}(F_2) \longrightarrow \operatorname{Aut}(F_2) \longrightarrow \operatorname{GL}_2(\mathbb{Z}) \longrightarrow 1$$

so we may think of $\mathrm{SL}_2(\mathbb{Z}) \subset \mathrm{Out}(F_2)$.

Pennsylvania State University

< 17 >

William Y. Chen

"Forgetting" the level structure α yields a morphism (ie., functor) $p: \mathcal{M}_{\mathcal{G}} \to \mathcal{M}_{1,1}, \qquad (E/S, \alpha) \mapsto E/S$

Theorem

The "forget level structure" morphism $p: \mathcal{M}_G \to \mathcal{M}_{1,1}$ is finite etale, and for any $E_0/\overline{\mathbb{Q}}$,

 $p^{-1}(E_0/\overline{\mathbb{Q}}) = \mathcal{H}om^{sur-ext}_{\overline{\mathbb{Q}}}(\pi_1(E_0^\circ/\overline{\mathbb{Q}}), G)(\overline{\mathbb{Q}}) \cong \mathit{Hom}^{sur}(F_2, G)/\mathit{Inn}(G)$

There's a classical exact sequence

$$1 \longrightarrow \operatorname{Inn}(F_2) \longrightarrow \operatorname{Aut}(F_2) \longrightarrow \operatorname{GL}_2(\mathbb{Z}) \longrightarrow 1$$

so we may think of $\operatorname{SL}_2(\mathbb{Z}) \subset \operatorname{Out}(F_2)$.

Theorem

The monodromy action of $\pi_1((\mathcal{M}_{1,1})_{\overline{\mathbb{Q}}}) \cong \overline{SL}_2(\mathbb{Z})$ on $p^{-1}(E_0/\overline{\mathbb{Q}})$ is via outer automorphisms of F_2 .

William Y. Chen

Moduli Interpretations for Noncongruence Modular Curves

Pennsylvania State University

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.

Pennsylvania State University

William Y. Chen

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.

Let $\varphi: F_2 \twoheadrightarrow G$ be a surjective homomorphism, then we may think of $[\varphi] \in p^{-1}(E_0/\overline{\mathbb{Q}})$, and let $\Gamma_{[\varphi]} := \operatorname{Stab}_{\operatorname{SL}_2(\mathbb{Z})}([\varphi])$.

William Y. Chen

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.

Let $\varphi: F_2 \twoheadrightarrow G$ be a surjective homomorphism, then we may think of $[\varphi] \in p^{-1}(E_0/\overline{\mathbb{Q}})$, and let $\Gamma_{[\varphi]} := \operatorname{Stab}_{\operatorname{SL}_2(\mathbb{Z})}([\varphi])$.

Theorem

 The connected components of M_G are in bijection with the orbits of SL₂(ℤ) ⊂ Out(F₂) on p⁻¹(E₀/ℚ) ≃ Hom^{sur}(F₂, G)/Inn(G).

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.

Let $\varphi: F_2 \twoheadrightarrow G$ be a surjective homomorphism, then we may think of $[\varphi] \in p^{-1}(E_0/\overline{\mathbb{Q}})$, and let $\Gamma_{[\varphi]} := \operatorname{Stab}_{\operatorname{SL}_2(\mathbb{Z})}([\varphi])$.

Theorem

- The connected components of M_G are in bijection with the orbits of SL₂(ℤ) ⊂ Out(F₂) on p⁻¹(E₀/ℚ) ≃ Hom^{sur}(F₂, G)/Inn(G).
- The coarse moduli scheme M_G of M_G is a smooth affine curve defined over Q (but possibly disconnected).

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.

Let $\varphi: F_2 \twoheadrightarrow G$ be a surjective homomorphism, then we may think of $[\varphi] \in p^{-1}(E_0/\overline{\mathbb{Q}})$, and let $\Gamma_{[\varphi]} := \operatorname{Stab}_{\operatorname{SL}_2(\mathbb{Z})}([\varphi])$.

Theorem

- The connected components of M_G are in bijection with the orbits of SL₂(ℤ) ⊂ Out(F₂) on p⁻¹(E₀/ℚ) ≃ Hom^{sur}(F₂, G)/Inn(G).
- The coarse moduli scheme M_G of M_G is a smooth affine curve defined over Q (but possibly disconnected).
- The component of M_G containing [φ] is the modular curve M_[φ] := Γ_[φ]\H.

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.

Let $\varphi: F_2 \twoheadrightarrow G$ be a surjective homomorphism, then we may think of $[\varphi] \in p^{-1}(E_0/\overline{\mathbb{Q}})$, and let $\Gamma_{[\varphi]} := \operatorname{Stab}_{\operatorname{SL}_2(\mathbb{Z})}([\varphi])$.

Theorem

- The connected components of M_G are in bijection with the orbits of SL₂(ℤ) ⊂ Out(F₂) on p⁻¹(E₀/ℚ) ≃ Hom^{sur}(F₂, G)/Inn(G).
- The coarse moduli scheme M_G of M_G is a smooth affine curve defined over Q (but possibly disconnected).
- The component of M_G containing [φ] is the modular curve M_[φ] := Γ_[φ]\H.

4. $M_{[\varphi]} = \Gamma_{[\varphi]} \setminus \mathcal{H}$ is a fine moduli scheme $\iff \Gamma_{[\varphi]}$ is torsion-free.

From now on, by default, all schemes/stacks will be over $\overline{\mathbb{Q}}$.

Let $\varphi: F_2 \twoheadrightarrow G$ be a surjective homomorphism, then we may think of $[\varphi] \in p^{-1}(E_0/\overline{\mathbb{Q}})$, and let $\Gamma_{[\varphi]} := \operatorname{Stab}_{\operatorname{SL}_2(\mathbb{Z})}([\varphi])$.

Theorem

- The connected components of M_G are in bijection with the orbits of SL₂(ℤ) ⊂ Out(F₂) on p⁻¹(E₀/ℚ) ≃ Hom^{sur}(F₂, G)/Inn(G).
- The coarse moduli scheme M_G of M_G is a smooth affine curve defined over Q (but possibly disconnected).
- The component of M_G containing [φ] is the modular curve M_[φ] := Γ_[φ]\H.
- 4. $M_{[\varphi]} = \Gamma_{[\varphi]} \setminus \mathcal{H}$ is a fine moduli scheme $\iff \Gamma_{[\varphi]}$ is torsion-free.
- 5. If G is abelian, then $\Gamma_{[\varphi]}$ is congruence.

William Y. Chen

There is one $\mathrm{SL}_2(\mathbb{Z})$ -orbit on

$$\operatorname{Hom}^{\operatorname{\mathsf{sur}}}(F_2,\mathbb{Z}/N\mathbb{Z})/\operatorname{Inn}(\mathbb{Z}/N\mathbb{Z}) = \operatorname{Hom}^{\operatorname{\mathsf{sur}}}(\mathbb{Z}^2,\mathbb{Z}/N\mathbb{Z})$$

with representative

 $\varphi: \begin{bmatrix} m \\ n \end{bmatrix} \mapsto n \mod N$

William Y. Chen

There is one $\mathrm{SL}_2(\mathbb{Z})$ -orbit on

 $\operatorname{Hom}^{\operatorname{sur}}(F_2, \mathbb{Z}/N\mathbb{Z})/\operatorname{Inn}(\mathbb{Z}/N\mathbb{Z}) = \operatorname{Hom}^{\operatorname{sur}}(\mathbb{Z}^2, \mathbb{Z}/N\mathbb{Z})$

with representative

 $\varphi: \begin{bmatrix} m \\ n \end{bmatrix} \mapsto n \mod N$

The stabilizer are the matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z})$ such that

$$\varphi\left(\left[\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right]\left[\begin{smallmatrix}m\\n\end{smallmatrix}\right]\right)=\varphi\left(\left[\begin{smallmatrix}am+bn\\cm+dn\end{smallmatrix}\right]\right)=cm+dn\equiv n\mod N$$

< 🗇 > <

William Y. Chen

There is one $\mathrm{SL}_2(\mathbb{Z})$ -orbit on

 $\operatorname{Hom}^{\operatorname{sur}}(F_2, \mathbb{Z}/N\mathbb{Z})/\operatorname{Inn}(\mathbb{Z}/N\mathbb{Z}) = \operatorname{Hom}^{\operatorname{sur}}(\mathbb{Z}^2, \mathbb{Z}/N\mathbb{Z})$

with representative

 $\varphi: \begin{bmatrix} m \\ n \end{bmatrix} \mapsto n \mod N$

The stabilizer are the matrices $\left[\begin{smallmatrix}a&b\\c&d\end{smallmatrix}
ight]\in\mathrm{SL}_2(\mathbb{Z})$ such that

 $\varphi\left(\left[\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right]\left[\begin{smallmatrix}m\\n\end{smallmatrix}\right]\right)=\varphi\left(\left[\begin{smallmatrix}am+bn\\cm+dn\end{smallmatrix}\right]\right)=cm+dn\equiv n\mod N$

Of course this forces $c \equiv 0, d \equiv 1 \mod N$, so $\Gamma_{[\varphi]} = \Gamma_1(N)$.

< (1) × (1)

William Y. Chen

There is one $\mathrm{SL}_2(\mathbb{Z})$ -orbit on

 $\operatorname{Hom}^{\operatorname{sur}}(F_2, \mathbb{Z}/N\mathbb{Z})/\operatorname{Inn}(\mathbb{Z}/N\mathbb{Z}) = \operatorname{Hom}^{\operatorname{sur}}(\mathbb{Z}^2, \mathbb{Z}/N\mathbb{Z})$

with representative

 $\varphi: \begin{bmatrix} m \\ n \end{bmatrix} \mapsto n \mod N$

The stabilizer are the matrices $\left[\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right]\in\mathrm{SL}_2(\mathbb{Z})$ such that

$$\varphi\left(\left[\begin{smallmatrix}a&b\\c&d\end{smallmatrix}\right]\left[\begin{smallmatrix}m\\n\end{smallmatrix}\right]\right) = \varphi\left(\left[\begin{smallmatrix}am+bn\\cm+dn\end{smallmatrix}\right]\right) = cm + dn \equiv n \mod N$$

Pennsylvania State University

Of course this forces $c \equiv 0, d \equiv 1 \mod N$, so $\Gamma_{[\varphi]} = \Gamma_1(N)$.

If
$$G = (\mathbb{Z}/N\mathbb{Z})^2$$
, then there are $\phi(N)$ SL₂(\mathbb{Z})-orbits on
Hom^{sur}($\mathbb{Z}^2, (\mathbb{Z}/N\mathbb{Z})^2$)

where each orbit corresponds to a possible determinant, and the stabilizers are all $\Gamma(N)$.

William Y. Chen

There are three $\mathrm{SL}_2(\mathbb{Z})$ -orbits on $\mathrm{Hom}^{\mathsf{sur}}(F_2,A_5)/\mathrm{Inn}(A_5)$, with reps

$$\varphi_1: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (152) \end{array} \qquad \varphi_2: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (142) \end{array} \qquad \varphi_3: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (14352) \end{array}$$

Pennsylvania State University

William Y. Chen

There are three $\mathrm{SL}_2(\mathbb{Z})$ -orbits on $\mathrm{Hom}^{\mathsf{sur}}(F_2, A_5)/\mathrm{Inn}(A_5)$, with reps

 $\varphi_1: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (152) \end{array} \qquad \varphi_2: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (142) \end{array} \qquad \varphi_3: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (14352) \end{array}$

The orbits have sizes $|[\varphi_1]| = |[\varphi_2]| = 10$, and $|[\varphi_3]| = 18$.

< 🗇 🕨

William Y. Chen

There are three $\mathrm{SL}_2(\mathbb{Z})$ -orbits on $\mathrm{Hom}^{\mathsf{sur}}(F_2, A_5)/\mathrm{Inn}(A_5)$, with reps

$$\varphi_1: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (152) \end{array} \qquad \varphi_2: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (142) \end{array} \qquad \varphi_3: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (14352) \end{array}$$

The orbits have sizes $|[\varphi_1]| = |[\varphi_2]| = 10$, and $|[\varphi_3]| = 18$.

The stabilizers are $\Gamma_{[\varphi_1]} = \Gamma_{[\varphi_2]}$, $\Gamma_{[\varphi_3]}$ and have indices 10, 10, 18 in $SL_2(\mathbb{Z})$ and are all noncongruence.

< 🗇 🕨

William Y. Chen

There are three $\mathrm{SL}_2(\mathbb{Z})$ -orbits on $\mathrm{Hom}^{\mathsf{sur}}(F_2,A_5)/\mathrm{Inn}(A_5)$, with reps

$$\varphi_1: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (152) \end{array} \qquad \varphi_2: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (142) \end{array} \qquad \varphi_3: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (14352) \end{array}$$

The orbits have sizes $|[\varphi_1]| = |[\varphi_2]| = 10$, and $|[\varphi_3]| = 18$.

The stabilizers are $\Gamma_{[\varphi_1]} = \Gamma_{[\varphi_2]}$, $\Gamma_{[\varphi_3]}$ and have indices 10, 10, 18 in $SL_2(\mathbb{Z})$ and are all noncongruence.

The coarse moduli scheme of \mathcal{M}_G is $M_G = M_{[\varphi_1]} \sqcup M_{[\varphi_2]} \sqcup M_{[\varphi_3]}$ and is defined over \mathbb{Q} .

William Y. Chen

There are three $\mathrm{SL}_2(\mathbb{Z})$ -orbits on $\mathrm{Hom}^{\mathsf{sur}}(F_2, A_5)/\mathrm{Inn}(A_5)$, with reps

$$\varphi_1: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (152) \end{array} \qquad \varphi_2: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (142) \end{array} \qquad \varphi_3: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (14352) \end{array}$$

The orbits have sizes $|[\varphi_1]| = |[\varphi_2]| = 10$, and $|[\varphi_3]| = 18$.

The stabilizers are $\Gamma_{[\varphi_1]} = \Gamma_{[\varphi_2]}$, $\Gamma_{[\varphi_3]}$ and have indices 10, 10, 18 in $SL_2(\mathbb{Z})$ and are all noncongruence.

The coarse moduli scheme of \mathcal{M}_G is $M_G = M_{[\varphi_1]} \sqcup M_{[\varphi_2]} \sqcup M_{[\varphi_3]}$ and is defined over \mathbb{Q} . Each $M_{[\varphi_i]} = \mathcal{H}/\Gamma_{[\varphi_i]}$.

・ロト ・回ト ・ヨト

There are three $\mathrm{SL}_2(\mathbb{Z})$ -orbits on $\mathrm{Hom}^{\mathsf{sur}}(F_2, A_5)/\mathrm{Inn}(A_5)$, with reps

$$\varphi_1: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (152) \end{array} \qquad \begin{array}{cccc} \varphi_2: & x & \mapsto & (23)(45) \\ y & \mapsto & (142) \end{array} \qquad \begin{array}{cccc} x & \mapsto & (23)(45) \\ \varphi_3: & y & \mapsto & (14352) \end{array}$$

The orbits have sizes $|[\varphi_1]| = |[\varphi_2]| = 10$, and $|[\varphi_3]| = 18$.

The stabilizers are $\Gamma_{[\varphi_1]} = \Gamma_{[\varphi_2]}$, $\Gamma_{[\varphi_3]}$ and have indices 10, 10, 18 in $SL_2(\mathbb{Z})$ and are all noncongruence.

The coarse moduli scheme of \mathcal{M}_G is $M_G = M_{[\varphi_1]} \sqcup M_{[\varphi_2]} \sqcup M_{[\varphi_3]}$ and is defined over \mathbb{Q} . Each $M_{[\varphi_i]} = \mathcal{H}/\Gamma_{[\varphi_i]}$.

 $M_{[\varphi_3]}$ is defined over \mathbb{Q} , but $M_{[\varphi_1]} = M_{[\varphi_2]}$ are defined over a quadratic extension of \mathbb{Q} .

Image: A math a math

There are three $\mathrm{SL}_2(\mathbb{Z})$ -orbits on $\mathrm{Hom}^{\mathsf{sur}}(F_2,A_5)/\mathrm{Inn}(A_5)$, with reps

$$\varphi_1: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (152) \end{array} \qquad \varphi_2: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (142) \end{array} \qquad \varphi_3: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (14352) \end{array}$$

The orbits have sizes $|[\varphi_1]| = |[\varphi_2]| = 10$, and $|[\varphi_3]| = 18$.

The stabilizers are $\Gamma_{[\varphi_1]} = \Gamma_{[\varphi_2]}$, $\Gamma_{[\varphi_3]}$ and have indices 10, 10, 18 in $SL_2(\mathbb{Z})$ and are all noncongruence.

The coarse moduli scheme of \mathcal{M}_G is $M_G = M_{[\varphi_1]} \sqcup M_{[\varphi_2]} \sqcup M_{[\varphi_3]}$ and is defined over \mathbb{Q} . Each $M_{[\varphi_i]} = \mathcal{H}/\Gamma_{[\varphi_i]}$.

 $M_{[\varphi_3]}$ is defined over \mathbb{Q} , but $M_{[\varphi_1]} = M_{[\varphi_2]}$ are defined over a quadratic extension of \mathbb{Q} . The modular curves $M_{[\varphi_i]}$ all have genus 0.

Image: A math a math

Pennsylvania State University
There are three $\mathrm{SL}_2(\mathbb{Z})$ -orbits on $\mathrm{Hom}^{\mathsf{sur}}(F_2, A_5)/\mathrm{Inn}(A_5)$, with reps

$$\varphi_1: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (152) \end{array} \qquad \begin{array}{cccc} \varphi_2: & x & \mapsto & (23)(45) \\ y & \mapsto & (142) \end{array} \qquad \begin{array}{cccc} x & \mapsto & (23)(45) \\ \varphi_3: & y & \mapsto & (14352) \end{array}$$

The orbits have sizes $|[\varphi_1]| = |[\varphi_2]| = 10$, and $|[\varphi_3]| = 18$.

The stabilizers are $\Gamma_{[\varphi_1]} = \Gamma_{[\varphi_2]}$, $\Gamma_{[\varphi_3]}$ and have indices 10, 10, 18 in $SL_2(\mathbb{Z})$ and are all noncongruence.

The coarse moduli scheme of \mathcal{M}_G is $M_G = M_{[\varphi_1]} \sqcup M_{[\varphi_2]} \sqcup M_{[\varphi_3]}$ and is defined over \mathbb{Q} . Each $M_{[\varphi_i]} = \mathcal{H}/\Gamma_{[\varphi_i]}$.

 $M_{[\varphi_3]}$ is defined over \mathbb{Q} , but $M_{[\varphi_1]} = M_{[\varphi_2]}$ are defined over a quadratic extension of \mathbb{Q} . The modular curves $M_{[\varphi_i]}$ all have genus 0.

Since each $\Gamma_{[\varphi_i]}$ contains -I, none of the $M_{[\varphi_i]}$ are fine moduli spaces.

There are three $\mathrm{SL}_2(\mathbb{Z})$ -orbits on $\mathrm{Hom}^{\mathsf{sur}}(F_2,A_5)/\mathrm{Inn}(A_5)$, with reps

$$\varphi_1: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (152) \end{array} \qquad \varphi_2: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (142) \end{array} \qquad \varphi_3: \begin{array}{cccc} x & \mapsto & (23)(45) \\ y & \mapsto & (14352) \end{array}$$

The orbits have sizes $|[\varphi_1]| = |[\varphi_2]| = 10$, and $|[\varphi_3]| = 18$.

The stabilizers are $\Gamma_{[\varphi_1]} = \Gamma_{[\varphi_2]}$, $\Gamma_{[\varphi_3]}$ and have indices 10, 10, 18 in $\mathrm{SL}_2(\mathbb{Z})$ and are all noncongruence.

The coarse moduli scheme of \mathcal{M}_G is $M_G = M_{[\varphi_1]} \sqcup M_{[\varphi_2]} \sqcup M_{[\varphi_3]}$ and is defined over \mathbb{Q} . Each $M_{[\varphi_i]} = \mathcal{H}/\Gamma_{[\varphi_i]}$.

 $M_{[\varphi_3]}$ is defined over \mathbb{Q} , but $M_{[\varphi_1]} = M_{[\varphi_2]}$ are defined over a quadratic extension of \mathbb{Q} . The modular curves $M_{[\varphi_i]}$ all have genus 0.

Since each $\Gamma_{[\varphi_i]}$ contains -I, none of the $M_{[\varphi_i]}$ are fine moduli spaces. Nonetheless, there is a bijection

 $M_G(\mathbb{C}) \sim \{(E/\mathbb{C}, X) : X/E^\circ \text{ is a connected principal } G\text{-bundle}\}/\cong$

- 《曰》 《聞》 《臣》 《臣》 三百 - 少�(?)

William Y. Chen

Moduli Interpretations for Noncongruence Modular Curves

Pennsylvania State University

For $\Gamma \leq \operatorname{SL}_2(\mathbb{Z})$ finite index, let $\ell := \ell(\Gamma)$ be the lcm of its cusp widths.

Pennsylvania State University

William Y. Chen

For $\Gamma \leq \operatorname{SL}_2(\mathbb{Z})$ finite index, let $\ell := \ell(\Gamma)$ be the lcm of its cusp widths.

 $\ell(\Gamma)$ is called the *geometric level* of Γ .

Pennsylvania State University

William Y. Chen

For $\Gamma \leq \operatorname{SL}_2(\mathbb{Z})$ finite index, let $\ell := \ell(\Gamma)$ be the lcm of its cusp widths.

 $\ell(\Gamma)$ is called the *geometric level* of Γ .

Theorem (Wohlfart)

 Γ is congruence if and only if $\Gamma \supseteq \Gamma(\ell)$.

Pennsylvania State University

William Y. Chen

For $\Gamma \leq {\rm SL}_2(\mathbb{Z})$ finite index, let $\ell := \ell(\Gamma)$ be the lcm of its cusp widths.

 $\ell(\Gamma)$ is called the *geometric level* of Γ .

Theorem (Wohlfart)

 Γ is congruence if and only if $\Gamma \supseteq \Gamma(\ell)$.

We use an idea of Schmithusen - Consider

William Y. Chen

Moduli Interpretations for Noncongruence Modular Curves

Pennsylvania State University

(日) (同) (三) (

For $\Gamma \leq \operatorname{SL}_2(\mathbb{Z})$ finite index, let $\ell := \ell(\Gamma)$ be the lcm of its cusp widths.

 $\ell(\Gamma)$ is called the *geometric level* of Γ .

Theorem (Wohlfart)

 Γ is congruence if and only if $\Gamma \supseteq \Gamma(\ell)$.

We use an idea of Schmithusen - Consider

$$1 \longrightarrow \Gamma(\ell) \longrightarrow \operatorname{SL}_{2}(\mathbb{Z}) \xrightarrow{p_{\ell}} \operatorname{SL}_{2}(\mathbb{Z}/\ell\mathbb{Z}) \longrightarrow 1$$
$$\begin{vmatrix} f & & \\ & \\ 1 \longrightarrow \Gamma(\ell) \cap \Gamma \longrightarrow \Gamma \xrightarrow{p_{\ell}} p_{\ell}(\Gamma) \longrightarrow 1 \end{vmatrix}$$

Then $d = e \cdot f$, and Γ is congruence iff f = 1, or equivalently e = d.

William Y. Chen

Pennsylvania State University

For $\Gamma \leq \operatorname{SL}_2(\mathbb{Z})$ finite index, let $\ell := \ell(\Gamma)$ be the lcm of its cusp widths.

 $\ell(\Gamma)$ is called the *geometric level* of Γ .

Theorem (Wohlfart)

 Γ is congruence if and only if $\Gamma \supseteq \Gamma(\ell)$.

We use an idea of Schmithusen - Consider

$$1 \longrightarrow \Gamma(\ell) \longrightarrow \operatorname{SL}_{2}(\mathbb{Z}) \xrightarrow{\rho_{\ell}} \operatorname{SL}_{2}(\mathbb{Z}/\ell\mathbb{Z}) \longrightarrow 1$$
$$\begin{vmatrix} f & & \\ & \\ 1 \longrightarrow \Gamma(\ell) \cap \Gamma \longrightarrow \Gamma \xrightarrow{p_{\ell}} p_{\ell}(\Gamma) \longrightarrow 1 \end{vmatrix}$$

Then $d = e \cdot f$, and Γ is congruence iff f = 1, or equivalently e = d.

Ie, Γ is noncongruence iff $e < d \ (p_{\ell}(\Gamma) \text{ is large in } \operatorname{SL}_2(\mathbb{Z}/\ell))$.

William Y. Chen

Pennsylvania State University

Let A := (23)(45), B := (152), then AB = (15423) in A_5 .

Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves

Let A := (23)(45), B := (152), then AB = (15423) in A_5 .

Theorem

William Y. Chen

Let
$$\varphi \in Hom^{sur-ext}(F_2, A_5)$$
 be given by $x \mapsto A, y \mapsto B$,

Pennsylvania State University

< 🗗 🕨 🔸

Let A := (23)(45), B := (152), then AB = (15423) in A_5 .

Theorem

Let $\varphi \in Hom^{sur-ext}(F_2, A_5)$ be given by $x \mapsto A, y \mapsto B$, then $\Gamma_{[\varphi]}$ is noncongruence.

Pennsylvania State University

Key Fact: $|\varphi(x)| = |A| = 2$,

William Y. Chen

Let A := (23)(45), B := (152), then AB = (15423) in A_5 .

Theorem

Let $\varphi \in Hom^{sur-ext}(F_2, A_5)$ be given by $x \mapsto A, y \mapsto B$, then $\Gamma_{[\varphi]}$ is noncongruence.

< 17 >

Pennsylvania State University

Key Fact: $|\varphi(x)| = |A| = 2$, $|\varphi(y)| = |B| = 3$,

William Y. Chen

Let A := (23)(45), B := (152), then AB = (15423) in A_5 .

Theorem

Let $\varphi \in Hom^{sur-ext}(F_2, A_5)$ be given by $x \mapsto A$, $y \mapsto B$, then $\Gamma_{[\varphi]}$ is noncongruence.

Key Fact: $|\varphi(x)| = |A| = 2$, $|\varphi(y)| = |B| = 3$, $|\varphi(xy)| = |AB| = 5$.

< 17 ▶

Pennsylvania State University

(ie, they're pairwise coprime)

William Y. Chen

Let A := (23)(45), B := (152), then AB = (15423) in A_5 .

Theorem

Let $\varphi \in Hom^{sur-ext}(F_2, A_5)$ be given by $x \mapsto A$, $y \mapsto B$, then $\Gamma_{[\varphi]}$ is noncongruence.

Key Fact: $|\varphi(x)| = |A| = 2$, $|\varphi(y)| = |B| = 3$, $|\varphi(xy)| = |AB| = 5$. (ie, they're pairwise coprime) and $\{\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\}$ generate $SL_2(\mathbb{Z})$.

< (1) × (1)

Pennsylvania State University

William Y. Chen

$$\varphi_{23} = \varphi: \begin{array}{cccc} x & \mapsto & A \\ y & \mapsto & B \end{array} \qquad \varphi_{25}: \begin{array}{cccc} x & \mapsto & A \\ y & \mapsto & AB \end{array} \qquad \varphi_{53}: \begin{array}{cccc} x & \mapsto & AB \\ y & \mapsto & B \end{array}$$

Pennsylvania State University

William Y. Chen

$$\varphi_{23} = \varphi: \begin{array}{cccc} x & \mapsto & A \\ y & \mapsto & B \end{array} \qquad \varphi_{25}: \begin{array}{cccc} x & \mapsto & A \\ y & \mapsto & AB \end{array} \qquad \varphi_{53}: \begin{array}{cccc} x & \mapsto & AB \\ y & \mapsto & B \end{array}$$

Then $\Gamma_{[\varphi_{ij}]}$ are all conjugate in $\mathrm{SL}_2(\mathbb{Z})$, so let $N := \ell(\Gamma_{[\varphi_{ij}]})$.

William Y. Chen

$$\varphi_{23} = \varphi: \begin{array}{cccc} x & \mapsto & A \\ y & \mapsto & B \end{array} \qquad \varphi_{25}: \begin{array}{cccc} x & \mapsto & A \\ y & \mapsto & AB \end{array} \qquad \varphi_{53}: \begin{array}{cccc} x & \mapsto & AB \\ y & \mapsto & B \end{array}$$

Then $\Gamma_{[\varphi_{ij}]}$ are all conjugate in $SL_2(\mathbb{Z})$, so let $N := \ell(\Gamma_{[\varphi_{ij}]})$. Write $N = 2^{e_2} 3^{e_3} 5^{e_5} M$, where $2, 3, 5 \nmid M$, then we have

Moduli Interpretations for Noncongruence Modular Curves

$$\varphi_{23} = \varphi: \begin{array}{cccc} x & \mapsto & A \\ y & \mapsto & B \end{array} \qquad \varphi_{25}: \begin{array}{cccc} x & \mapsto & A \\ y & \mapsto & AB \end{array} \qquad \varphi_{53}: \begin{array}{cccc} x & \mapsto & AB \\ y & \mapsto & B \end{array}$$

Then $\Gamma_{[\varphi_{ij}]}$ are all conjugate in $SL_2(\mathbb{Z})$, so let $N := \ell(\Gamma_{[\varphi_{ij}]})$. Write $N = 2^{e_2} 3^{e_3} 5^{e_5} M$, where $2, 3, 5 \nmid M$, then we have

 $\operatorname{SL}_2(\mathbb{Z}/\ell) \cong \operatorname{SL}_2(\mathbb{Z}/2^{e_2}) \times \operatorname{SL}_2(\mathbb{Z}/3^{e_3}) \times \operatorname{SL}_2(\mathbb{Z}/5^{e_5}) \times \operatorname{SL}_2(\mathbb{Z}/M)$

Moduli Interpretations for Noncongruence Modular Curves

$$\varphi_{23} = \varphi: \begin{array}{cccc} x & \mapsto & A \\ y & \mapsto & B \end{array} \qquad \varphi_{25}: \begin{array}{cccc} x & \mapsto & A \\ y & \mapsto & AB \end{array} \qquad \varphi_{53}: \begin{array}{cccc} x & \mapsto & AB \\ y & \mapsto & B \end{array}$$

Then $\Gamma_{[\varphi_{ij}]}$ are all conjugate in $\operatorname{SL}_2(\mathbb{Z})$, so let $N := \ell(\Gamma_{[\varphi_{ij}]})$. Write $N = 2^{e_2} 3^{e_3} 5^{e_5} M$, where 2, 3, 5 $\nmid M$, then we have

 $\operatorname{SL}_2(\mathbb{Z}/\ell) \cong \operatorname{SL}_2(\mathbb{Z}/2^{e_2}) \times \operatorname{SL}_2(\mathbb{Z}/3^{e_3}) \times \operatorname{SL}_2(\mathbb{Z}/5^{e_5}) \times \operatorname{SL}_2(\mathbb{Z}/M)$

Note $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \in \Gamma_{[\varphi_{23}]}$, so $p_{\ell}(\Gamma_{[\varphi_{23}]}) \supset I \times I \times \operatorname{SL}_2(\mathbb{Z}/5^{e_5}) \times \operatorname{SL}_2(\mathbb{Z}/M)$

< 17 >

Moduli Interpretations for Noncongruence Modular Curves

The following are in the same $\operatorname{SL}_2(\mathbb{Z})\text{-orbit:}$

$$\begin{split} \varphi_{23} &= \varphi : \begin{array}{cccc} x &\mapsto A \\ y &\mapsto B \end{array} \quad \varphi_{25} : \begin{array}{cccc} x &\mapsto A \\ y &\mapsto AB \end{array} \quad \varphi_{53} : \begin{array}{cccc} x &\mapsto AB \\ y &\mapsto B \end{array} \end{split}$$
Then $\Gamma_{[\varphi_{ij}]}$ are all conjugate in $\operatorname{SL}_2(\mathbb{Z})$, so let $N := \ell(\Gamma_{[\varphi_{ij}]})$.
Write $N = 2^{e_2} 3^{e_3} 5^{e_5} M$, where $2, 3, 5 \nmid M$, then we have
 $\operatorname{SL}_2(\mathbb{Z}/\ell) \cong \operatorname{SL}_2(\mathbb{Z}/2^{e_2}) \times \operatorname{SL}_2(\mathbb{Z}/3^{e_3}) \times \operatorname{SL}_2(\mathbb{Z}/5^{e_5}) \times \operatorname{SL}_2(\mathbb{Z}/M)$
Note $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \in \Gamma_{[\varphi_{23}]}$, so $p_\ell(\Gamma_{[\varphi_{23}]}) \supset I \times I \times \operatorname{SL}_2(\mathbb{Z}/5^{e_5}) \times \operatorname{SL}_2(\mathbb{Z}/M)$
Also, $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix} \in \Gamma_{[\varphi_{25}]}$, so $p_\ell(\Gamma_{[\varphi_{25}]}) \supset I \times \operatorname{SL}_2(\mathbb{Z}/3^{e_3}) \times I \times \operatorname{SL}_2(\mathbb{Z}/M)$

Pennsylvania State University

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

William Y. Chen

The following are in the same $\operatorname{SL}_2(\mathbb{Z})\text{-orbit:}$

$$\begin{split} \varphi_{23} &= \varphi \colon \begin{array}{cccc} x &\mapsto A \\ y &\mapsto B \end{array} \quad \varphi_{25} \colon \begin{array}{cccc} x &\mapsto A \\ y &\mapsto AB \end{array} \quad \varphi_{53} \colon \begin{array}{cccc} x &\mapsto AB \\ y &\mapsto B \end{array} \end{split}$$
Then $\Gamma_{[\varphi_{ij}]}$ are all conjugate in $\operatorname{SL}_2(\mathbb{Z})$, so let $N := \ell(\Gamma_{[\varphi_{ij}]})$.
Write $N = 2^{e_2} 3^{e_3} 5^{e_5} M$, where 2, 3, 5 $\nmid M$, then we have
 $\operatorname{SL}_2(\mathbb{Z}/\ell) \cong \operatorname{SL}_2(\mathbb{Z}/2^{e_2}) \times \operatorname{SL}_2(\mathbb{Z}/3^{e_3}) \times \operatorname{SL}_2(\mathbb{Z}/5^{e_5}) \times \operatorname{SL}_2(\mathbb{Z}/M)$
Note $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix} \in \Gamma_{[\varphi_{23}]}$, so $p_\ell(\Gamma_{[\varphi_{23}]}) \supset I \times I \times \operatorname{SL}_2(\mathbb{Z}/5^{e_5}) \times \operatorname{SL}_2(\mathbb{Z}/M)$
Also, $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix} \in \Gamma_{[\varphi_{25}]}$, so $p_\ell(\Gamma_{[\varphi_{25}]}) \supset I \times \operatorname{SL}_2(\mathbb{Z}/3^{e_3}) \times I \times \operatorname{SL}_2(\mathbb{Z}/M)$

William Y. Chen

Moduli Interpretations for Noncongruence Modular Curves

Pennsylvania State University

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\begin{split} \varphi_{23} &= \varphi \colon \begin{array}{cccc} x &\mapsto A \\ y &\mapsto B \end{array} \quad \varphi_{25} \colon \begin{array}{cccc} x &\mapsto A \\ y &\mapsto AB \end{array} \quad \varphi_{53} \colon \begin{array}{cccc} x &\mapsto AB \\ y &\mapsto B \end{array} \end{split}$$
Then $\Gamma_{[\varphi_{ij}]}$ are all conjugate in $\operatorname{SL}_2(\mathbb{Z})$, so let $N := \ell(\Gamma_{[\varphi_{ij}]})$.
Write $N = 2^{e_2} 3^{e_3} 5^{e_5} M$, where 2, 3, 5 $\nmid M$, then we have
 $\operatorname{SL}_2(\mathbb{Z}/\ell) \cong \operatorname{SL}_2(\mathbb{Z}/2^{e_2}) \times \operatorname{SL}_2(\mathbb{Z}/3^{e_3}) \times \operatorname{SL}_2(\mathbb{Z}/5^{e_5}) \times \operatorname{SL}_2(\mathbb{Z}/M)$
Note $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 3 \end{bmatrix} \in \Gamma_{[\varphi_{23}]}$, so $p_\ell(\Gamma_{[\varphi_{23}]}) \supset I \times I \times \operatorname{SL}_2(\mathbb{Z}/5^{e_5}) \times \operatorname{SL}_2(\mathbb{Z}/M)$
Also, $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix} \in \Gamma_{[\varphi_{25}]}$, so $p_\ell(\Gamma_{[\varphi_{25}]}) \supset I \times \operatorname{SL}_2(\mathbb{Z}/3^{e_3}) \times I \times \operatorname{SL}_2(\mathbb{Z}/M)$

Thus, $p_{\ell}(\Gamma_{[\varphi]}) = \operatorname{SL}_2(\mathbb{Z}/\ell)$, so e = 1 < d, hence $\Gamma_{[\varphi]}$ is noncongruence.

William Y. Chen

Pennsylvania State University

Theorem

William Y. Chen

If $G = S_n$ $(n \ge 4)$, A_n $(n \ge 5)$, or $PSL_2(\mathbb{F}_p)$ $(p \ge 5)$, then there exists a surjection $F_2 \to G$ such that $\Gamma_{[\varphi]}$ is noncongruence.

Pennsylvania State University

Theorem

If $G = S_n$ $(n \ge 4)$, A_n $(n \ge 5)$, or $PSL_2(\mathbb{F}_p)$ $(p \ge 5)$, then there exists a surjection $F_2 \to G$ such that $\Gamma_{[\varphi]}$ is noncongruence.

Conjecture

1. For every nonabelian finite simple group G, every surjection $\varphi: F_2 \to G$ has $\Gamma_{[\varphi]}$ noncongruence.

William Y. Chen

Pennsylvania State University

Theorem

If $G = S_n$ $(n \ge 4)$, A_n $(n \ge 5)$, or $PSL_2(\mathbb{F}_p)$ $(p \ge 5)$, then there exists a surjection $F_2 \to G$ such that $\Gamma_{[\varphi]}$ is noncongruence.

Conjecture

- 1. For every nonabelian finite simple group G, every surjection $\varphi: F_2 \to G$ has $\Gamma_{[\varphi]}$ noncongruence.
- For every finite group G, either all surjections φ : F₂ → G have Γ_[φ] congruence, or all surjections have Γ_[φ] noncongruence.

Which subgroups of $SL_2(\mathbb{Z})$ appear as $\Gamma_{[\varphi]}$?

▲□▶▲御▶▲콜▶▲콜▶ ▲콜▶ 콜 ∽)♀(♡

William Y. Chen

Moduli Interpretations for Noncongruence Modular Curves

Pennsylvania State University

Which subgroups of $\operatorname{SL}_2(\mathbb{Z})$ appear as $\mathsf{\Gamma}_{[arphi]}$?

Theorem (Asada, 2001)

For a surjective homomorphism $\varphi : F_2 \to G$ onto a finite group G, let $\Gamma_{\varphi} := Stab_{Aut(F_2)}(\varphi)$. Then every finite index subgroup of $Aut(F_2)$ contains a group of the form Γ_{φ} .

Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves

Which subgroups of $\operatorname{SL}_2(\mathbb{Z})$ appear as $\mathsf{\Gamma}_{[arphi]}$?

Theorem (Asada, 2001)

For a surjective homomorphism $\varphi : F_2 \to G$ onto a finite group G, let $\Gamma_{\varphi} := Stab_{Aut(F_2)}(\varphi)$. Then every finite index subgroup of $Aut(F_2)$ contains a group of the form Γ_{φ} .

Corollary

William Y Chen

Every modular curve is covered by some $M_{[\varphi]} = \mathcal{H}/\Gamma_{[\varphi]}$.

Pennsylvania State University

Which subgroups of $SL_2(\mathbb{Z})$ appear as $\Gamma_{[\varphi]}$?

Theorem (Asada, 2001)

For a surjective homomorphism $\varphi : F_2 \to G$ onto a finite group G, let $\Gamma_{\varphi} := Stab_{Aut(F_2)}(\varphi)$. Then every finite index subgroup of $Aut(F_2)$ contains a group of the form Γ_{φ} .

Corollary

Every modular curve is covered by some $M_{[\varphi]} = \mathcal{H}/\Gamma_{[\varphi]}$.

In fact, the galois closure of any such $M_{[\varphi]}$ is also of the form $M_{[\psi]}$ for some $\psi: F_2 \to G'$ (possibly non-surjective)

Pennsylvania State University

Which subgroups of $SL_2(\mathbb{Z})$ appear as $\Gamma_{[\varphi]}$?

Theorem (Asada, 2001)

For a surjective homomorphism $\varphi : F_2 \to G$ onto a finite group G, let $\Gamma_{\varphi} := Stab_{Aut(F_2)}(\varphi)$. Then every finite index subgroup of $Aut(F_2)$ contains a group of the form Γ_{φ} .

Corollary

Every modular curve is covered by some $M_{[\varphi]} = \mathcal{H}/\Gamma_{[\varphi]}$.

In fact, the galois closure of any such $M_{[\varphi]}$ is also of the form $M_{[\psi]}$ for some $\psi: F_2 \to G'$ (possibly non-surjective), so we have

Corollary

Every modular curve is the quotient of some fine moduli scheme $M_{[\varphi]} = \mathcal{H}/\Gamma_{[\varphi]}$ for some homomorphism $\varphi : F_2 \to G$.

William Y. Chen

Pennsylvania State University

If we replace the sheaf $\mathcal{H}om_S^{sur}(\pi_1(E^{\circ}/S), G)$ with its quotient $\mathcal{H}om_S^{sur}(\pi_1(E^{\circ}/S), G)/\operatorname{Aut}(G)$

Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves

If we replace the sheaf $\mathcal{H}om_S^{sur}(\pi_1(E^\circ/S),G)$ with its quotient

 $\mathcal{H}om_S^{sur}(\pi_1(E^\circ/S),G)/\mathrm{Aut}(G)$

then the corresponding modular curves are "origami curves", as studied by Schmithusen, Lochak, Herrlich, Moller, Veech et al., and the corresponding subgroups $\Gamma_{[[\varphi]]}$ are called *Veech groups*.

Moduli Interpretations for Noncongruence Modular Curves

If we replace the sheaf $\mathcal{H}om_S^{sur}(\pi_1(E^\circ/S),G)$ with its quotient

 $\mathcal{H}om_{S}^{sur}(\pi_{1}(E^{\circ}/S),G)/\mathrm{Aut}(G)$

then the corresponding modular curves are "origami curves", as studied by Schmithusen, Lochak, Herrlich, Moller, Veech et al., and the corresponding subgroups $\Gamma_{[[\varphi]]}$ are called *Veech groups*.

Theorem (Ellenberg-McReynolds, 2011)

Every finite index subgroup of $\Gamma(2)$ containing $\pm I$ is a Veech group.

Pennsylvania State University

William Y. Chen