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Introduction

Let H be the classical upper half plane, and let � ⇢ SL
2

(Z) be a
subgroup of finite index.

To any such � we may associate the noncompact modular curve H/�.

If � � �(N) := {� 2 SL
2

(Z) : � ⌘ [ 1 0

0 1

] mod N} for some N, then we
call � a congruence subgroup. Otherwise, we call � a noncongruence
subgroup.

Noncongruence subgroups exist! In fact,

Theorem (Lubotsky-Segal, 2003)

lim
n!1

#{noncongruence subgroups of index n}
#{congruence subgroups of index n}

= 1
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Examples

Recall the classical congruence subgroups

�(N) := {� 2 SL
2

(Z) : � ⌘ [ 1 0

0 1

] mod N}
�

1

(N) := {� 2 SL
2

(Z) : � ⌘ [ 1 ⇤
0 1

] mod N}
�

0

(N) := {� 2 SL
2

(Z) : � ⌘ [ ⇤ ⇤
0 ⇤ ] mod N}

(1) Y (N)(C) ⇠ {(E/C,P ,Q) : eN(P ,Q) = e

2⇡i/N}/ ⇠=
(2) Y

1

(N)(C) ⇠ {(E/C,P) : P 2 E [N] has order N}/ ⇠=
(3) Y

0

(N)(C) ⇠ {(E/C,C ) : C ⇢ E [N] is cyclic of order N}/ ⇠=
(1’) Y (N)(S) ⇠ {(E/S ,P ,Q) : eN(P ,Q) = e

2⇡i/N}/ ⇠= (if N � 3)

(2’) Y

1

(N)(S) ⇠ {(E/S ,P) : P 2 E [N] has order N}/ ⇠= (if N � 5)
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The Question

Do noncongruence modular curves also have a moduli interpretation?

Bad answer: By Belyi’s theorem, every smooth projective irreducible
curve defined over Q is a quotient H/�, often noncongruence, so every
1-dimensional moduli space is a modular curve, often noncongruence.

To get a much nicer answer, we proceed as follows:

1. To every finite group G and elliptic curve E/S , we define the set

Homsur-ext(⇡
1

(E�/S),G )

of Teichmuller structures of level G on E/S .

2. We show that SL
2

(Z) acts on Homsur-ext(⇡
1

(E�/S),G ), and the
associated moduli spaces are H/�, where � is the stabilizer of some
level structure via the SL

2

(Z)-action.

3. � is congruence if G is abelian.
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Reinterpreting the Classical Congruence Level Structures

Congruence level structures from another point of view:

{�
0

(N)-structures on E} ⇠ {cyclic N-isogenies E

0 ! E}

· · · ⇠ {galois covers of E with galois group isomorphic to Z/NZ}/ ⇠=

Similarly, we have

{�
1

(N)-structures on E} ⇠ {Connected principal Z/NZ-bundles on E}/ ⇠=
and

{�(N)-structures on E} ⇠ {Connected principal (Z/NZ)2-bundles on E}/ ⇠=
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Idea: Considering level structures given by nonabelian covers should give
rise to noncongruence modular curves.

Problem: ⇡
1

(E ) ⇠= Z2 is abelian, so there are no nonabelian covers of
elliptic curves.

Solution: Allow for ramification at 1. I.e., consider covers of punctured
elliptic curves E �1.

Why? Because ⇡
1

(E �1) ⇠= F

2

(free group of rank 2) which has plenty
of nonabelian quotients!
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The Relative Fundamental Group (SGA 1)

Let f : E ! S be an elliptic curve and E

� := E �1.

Let g : S ! E

� be
a section. Let s 2 S be a geometric point, and L the set of primes
invertible on S . Then we have a split exact sequence

1 // ⇡L
1

(E�
s , g(s)) // ⇡0

1

(E�, g(s))
f⇤ // ⇡

1

(S , s) �! 1
g⇤

jj

⇡
1

(S , s) acting on ⇡L
1

(E�
s , g(s)) a pro-etale group scheme ⇡L

1

(E�/S , g , s)

The construction of ⇡L
1

(E�/S , g , s) is independent of g , s (up to inner
automorphisms), and commutes with arbitrary base change.
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Teichmuller Level Structures (Deligne/Mumford)

Let G be a finite constant group scheme over S of order N.

Assume N is
invertible on S , and L the set of primes dividing N.

For any E/S , there is a scheme

Hom

sur-ext

S (⇡
1

(E�/S),G ) := Hom

sur

S (⇡
1

(E�/S),G )/Inn(G )

finite etale over S whose formation commutes with base change.

We will call a global section of Hom

sur-ext

S (⇡
1

(E�/S),G ) a Teichmuller
structure of level G on E/S .

If S = Spec k for an algebraically closed field k , then

Hom

sur-ext

k (⇡
1

(E�/k),G )(k) ⇠ Homsur(F
2

,G )/Inn(G )

In general

Hom

sur-ext

S (⇡
1

(E�/S),G )(S) ⇢ Homsur(F
2

,G )/Inn(G )
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Suppose E

�/S admits a section g : S ! E

�,

then for any covering space
X

� ! E

�, we may consider g⇤
X

�.

g

⇤
X

� //

✏✏

X

�

✏✏

S

g
//
E

�

Theorem
There is a canonical bijection

Hom

sur-ext

S (⇡
1

(E�/S),G )(S) ⇠ {Connected principal G -bundles X

�/E�

s.t. g

⇤
X

� is completely decomposed}/ ⇠=
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The Moduli Problem

We define the stack (ie., category) MG of elliptic curves equipped with a
Teichmuller structure of level G as follows:

1. Its objects are “enhanced elliptic curves” (E/S ,↵), and ↵ is a global
section of

Hom

sur-ext

S (⇡
1

(E�/S),G )

2. A morphism h : (E 0/S 0,↵0) ! (E/S ,↵) is a fiber-product diagram

E

0

✏✏

//
E

✏✏

S

0 //
S

such that h⇤(↵) = ↵0
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“Forgetting” the level structure ↵ yields a morphism (ie., functor)

p : MG ! M
1,1, (E/S ,↵) 7! E/S

Theorem
The “forget level structure” morphism p : MG ! M

1,1 is finite etale,
and for any E

0

/Q,

p

�1(E
0

/Q) = Hom

sur-ext

Q (⇡
1

(E�
0

/Q),G )(Q) ⇠= Homsur(F
2

,G )/Inn(G )

There’s a classical exact sequence

1 �! Inn(F
2

) �! Aut(F
2

) �! GL
2

(Z) �! 1

so we may think of SL
2

(Z) ⇢ Out(F
2

).

Theorem
The monodromy action of ⇡

1

((M
1,1)Q)

⇠= \SL
2

(Z) on p

�1(E
0

/Q) is via
outer automorphisms of F

2

.

William Y. Chen Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves



“Forgetting” the level structure ↵ yields a morphism (ie., functor)

p : MG ! M
1,1, (E/S ,↵) 7! E/S

Theorem
The “forget level structure” morphism p : MG ! M

1,1 is finite etale,
and for any E

0

/Q,

p

�1(E
0

/Q) = Hom

sur-ext

Q (⇡
1

(E�
0

/Q),G )(Q) ⇠= Homsur(F
2

,G )/Inn(G )

There’s a classical exact sequence

1 �! Inn(F
2

) �! Aut(F
2

) �! GL
2

(Z) �! 1

so we may think of SL
2

(Z) ⇢ Out(F
2

).

Theorem
The monodromy action of ⇡

1

((M
1,1)Q)

⇠= \SL
2

(Z) on p

�1(E
0

/Q) is via
outer automorphisms of F

2

.

William Y. Chen Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves



“Forgetting” the level structure ↵ yields a morphism (ie., functor)

p : MG ! M
1,1, (E/S ,↵) 7! E/S

Theorem
The “forget level structure” morphism p : MG ! M

1,1 is finite etale,
and for any E

0

/Q,

p

�1(E
0

/Q) = Hom

sur-ext

Q (⇡
1

(E�
0

/Q),G )(Q) ⇠= Homsur(F
2

,G )/Inn(G )

There’s a classical exact sequence

1 �! Inn(F
2

) �! Aut(F
2

) �! GL
2

(Z) �! 1

so we may think of SL
2

(Z) ⇢ Out(F
2

).

Theorem
The monodromy action of ⇡

1

((M
1,1)Q)

⇠= \SL
2

(Z) on p

�1(E
0

/Q) is via
outer automorphisms of F

2

.

William Y. Chen Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves



“Forgetting” the level structure ↵ yields a morphism (ie., functor)

p : MG ! M
1,1, (E/S ,↵) 7! E/S

Theorem
The “forget level structure” morphism p : MG ! M

1,1 is finite etale,
and for any E

0

/Q,

p

�1(E
0

/Q) = Hom

sur-ext

Q (⇡
1

(E�
0

/Q),G )(Q) ⇠= Homsur(F
2

,G )/Inn(G )

There’s a classical exact sequence

1 �! Inn(F
2

) �! Aut(F
2

) �! GL
2

(Z) �! 1

so we may think of SL
2

(Z) ⇢ Out(F
2

).

Theorem
The monodromy action of ⇡

1

((M
1,1)Q)

⇠= \SL
2

(Z) on p

�1(E
0

/Q) is via
outer automorphisms of F

2

.

William Y. Chen Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves



Main Results

From now on, by default, all schemes/stacks will be over Q.

Let ' : F
2

⇣ G be a surjective homomorphism, then we may think of
['] 2 p

�1(E
0

/Q), and let �['] := StabSL2(Z)([']).

Theorem

1. The connected components of MG are in bijection with the orbits
of SL

2

(Z) ⇢ Out(F
2

) on p

�1(E
0

/Q) ⇠= Homsur(F
2

,G )/Inn(G ).

2. The coarse moduli scheme MG of MG is a smooth affine curve
defined over Q (but possibly disconnected).

3. The component of MG containing ['] is the modular curve
M['] := �[']\H.

4. M['] = �[']\H is a fine moduli scheme () �['] is torsion-free.

5. If G is abelian, then �['] is congruence.
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5. If G is abelian, then �['] is congruence.
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Example: G = Z/NZ
There is one SL

2

(Z)-orbit on

Homsur(F
2

,Z/NZ)/Inn(Z/NZ) = Homsur(Z2,Z/NZ)

with representative
' : [mn ] 7! n mod N

The stabilizer are the matrices
⇥
a b
c d

⇤ 2 SL
2

(Z) such that

'
�⇥

a b
c d

⇤
[mn ]

�
= '

�⇥
am+bn
cm+dn

⇤�
= cm + dn ⌘ n mod N

Of course this forces c ⌘ 0, d ⌘ 1 mod N, so �['] = �
1

(N).

If G = (Z/NZ)2, then there are �(N) SL
2

(Z)-orbits on

Homsur(Z2, (Z/NZ)2)

where each orbit corresponds to a possible determinant, and the
stabilizers are all �(N).
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Example: G = A5

There are three SL
2

(Z)-orbits on Homsur(F
2

,A
5

)/Inn(A
5

), with reps

'
1

:
x 7! (23)(45)
y 7! (152) '

2

:
x 7! (23)(45)
y 7! (142) '

3

:
x 7! (23)(45)
y 7! (14352)

The orbits have sizes |['
1

]| = |['
2

]| = 10, and |['
3

]| = 18.

The stabilizers are �['1] = �['2], �['3] and have indices 10, 10, 18 in
SL

2

(Z) and are all noncongruence.

The coarse moduli scheme of MG is MG = M['1] tM['2] tM['3] and is
defined over Q. Each M['i ] = H/�['i ].

M['3] is defined over Q, but M['1] = M['2] are defined over a quadratic
extension of Q. The modular curves M['i ] all have genus 0.

Since each �['i ] contains �I , none of the M['i ] are fine moduli spaces.
Nonetheless, there is a bijection

MG (C) ⇠ {(E/C,X ) : X/E� is a connected principal G -bundle}/ ⇠=
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When is �['] noncongruence?

For �  SL
2

(Z) finite index, let ` := `(�) be the lcm of its cusp widths.

`(�) is called the geometric level of �.

Theorem (Wohlfart)

� is congruence if and only if � ◆ �(`).

We use an idea of Schmithusen - Consider

1 // �(`) // SL
2

(Z) p`
// SL

2

(Z/`Z) // 1

1 // �(`) \ �

f

// �

d

p`
//
p`(�)

e

// 1

Then d = e · f , and � is congruence iff f = 1, or equivalently e = d .

Ie, � is noncongruence iff e < d (p`(�) is large in SL
2

(Z/`)).
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Example: G = A5

Let A := (23)(45),B := (152), then AB = (15423) in A

5

.

Theorem
Let ' 2 Homsur-ext(F

2

,A
5

) be given by x 7! A, y 7! B , then �['] is
noncongruence.

Key Fact: |'(x)| = |A| = 2, |'(y)| = |B | = 3, |'(xy)| = |AB | = 5.

(ie, they’re pairwise coprime) and {[ 1 1

0 1

] , [ 1 0

1 1

]} generate SL
2

(Z).
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The following are in the same SL
2

(Z)-orbit:

'
23

= ' :
x 7! A

y 7! B

'
25

:
x 7! A

y 7! AB

'
53

:
x 7! AB

y 7! B

Then �['ij ] are all conjugate in SL
2

(Z), so let N := `(�['ij ]).
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Theorem
If G = Sn (n � 4), An (n � 5), or PSL

2

(Fp) (p � 5), then there exists a
surjection F

2

! G such that �['] is noncongruence.

Conjecture

1. For every nonabelian finite simple group G , every surjection
' : F

2

! G has �['] noncongruence.

2. For every finite group G , either all surjections ' : F
2

! G have �[']
congruence, or all surjections have �['] noncongruence.
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Which subgroups of SL2(Z) appear as �[']?

Theorem (Asada, 2001)

For a surjective homomorphism ' : F
2

! G onto a finite group G , let
�' := StabAut(F2)('). Then every finite index subgroup of Aut(F

2

)
contains a group of the form �'.

Corollary

Every modular curve is covered by some M['] = H/�['].

In fact, the galois closure of any such M['] is also of the form M[ ] for
some  : F

2

! G

0 (possibly non-surjective), so we have

Corollary

Every modular curve is the quotient of some fine moduli scheme
M['] = H/�['] for some homomorphism ' : F

2

! G .
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If we replace the sheaf Hom

sur

S (⇡
1

(E�/S),G ) with its quotient

Hom

sur

S (⇡
1

(E�/S),G )/Aut(G )

then the corresponding modular curves are “origami curves”, as studied by
Schmithusen, Lochak, Herrlich, Moller, Veech et al., and the
corresponding subgroups �[[']] are called Veech groups.

Theorem (Ellenberg-McReynolds, 2011)

Every finite index subgroup of �(2) containing ±I is a Veech group.

William Y. Chen Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves



If we replace the sheaf Hom

sur

S (⇡
1

(E�/S),G ) with its quotient

Hom

sur

S (⇡
1

(E�/S),G )/Aut(G )

then the corresponding modular curves are “origami curves”, as studied by
Schmithusen, Lochak, Herrlich, Moller, Veech et al., and the
corresponding subgroups �[[']] are called Veech groups.

Theorem (Ellenberg-McReynolds, 2011)

Every finite index subgroup of �(2) containing ±I is a Veech group.

William Y. Chen Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves



If we replace the sheaf Hom

sur

S (⇡
1

(E�/S),G ) with its quotient

Hom

sur

S (⇡
1

(E�/S),G )/Aut(G )

then the corresponding modular curves are “origami curves”, as studied by
Schmithusen, Lochak, Herrlich, Moller, Veech et al., and the
corresponding subgroups �[[']] are called Veech groups.

Theorem (Ellenberg-McReynolds, 2011)

Every finite index subgroup of �(2) containing ±I is a Veech group.

William Y. Chen Pennsylvania State University

Moduli Interpretations for Noncongruence Modular Curves


