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The general problem



The general problem

Given a function

determine

f:la,b] = R

I(f;a,b) = /b f(x) dx
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Wallis did not state this in this form

Analysis = Combinatorics
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A quartic analog

Theorem
Forme N anda> -1

/°° dx o Pm(a)
o (x*+2ax2 4 1)m+1 ) [2(a + 1)]m+l/2

m
=2 dimd
1=0

an-zmEa () ()Y

Coefficients d; ,, have many interesting properties
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Where else do the appear?

22 dx
Noa(2; m) =
0,42 m) /0 (x* + 2ax2 + 1)m+1

1 o0 lk 1
Va+Vidc=+vVa+1l+ No.a(a, k — 1)c¥
W\/EZ 0.4( )

k=1




Where else do the appear?

22 dx
Noa(2; m) =
0,42 m) /0 (x* + 2ax2 + 1)m+1

lkl

a+Vlitc=+va+1+ Noa(a, k — 1)ck
V4 W\[Z 0.4( )

Hardy had this formula for a =1 and ¢ = a°
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Double square roots

In view of the relation of the quartic integral with double square

roots, | looked for integrals having this function in the integrand

The famous table by Gradshteyn and Ryzhik has

dx T

Farssitrp

as entry 3.248.5 ¢(x) is a simple rational function
Beautiful

Unfortunately it is incorrect

| have no idea what the correct value is.
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Using integrals to define functions

X
log x = / t~Ldt
1

You have to make sure you have created a new function
Here is a famous one

r(x):/ et ldt
0

You get interesting functions integrating simple ones

And you also get interesting numbers

y=-rQ)

Then you can combine them.
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Ly = [, log"T(q) dg

Theorem
(L. Euler)
1
b= / logI'(q) dg = log V27
0
Theorem

(O. Espinosa, V.M., 2002)

1
L, = /Iog2r(q)dq
0
2 2
Y s 1 4
PP e
12 28373

2_
Err a2 ) = =

This came as a corollary of our work on Hurwitz zeta function.



Problem

We asked in 2002: what is

1
L3:/ log®T(q) dg ?
0



Borwein-Bailey-Crandall finally got it in 2015

Theorem

L3

§(C(3) I Ll) 22

4 \ 72 3

(8D 51,0 4, 2,80
2 2 2 2
12+ 6L1+3c()

3
82 (wi,1,0(1,1,1) = 2w10,1(1,1,1))

00 00 1
w(r,s,t)zzzm

n=1 m=1
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Borwein-Bailey-Crandall finally got it in 2015.
Continuation.

o oo
w(r,s,t):zz n"ms(n+ m)t

n=1 m=1

Tornhein-Witten-zeta functions

w(r,s, t) = )/ Li,(o)Lis(o)(— log o)t~ dt

Lis(x) = Zn- for x| <1 and Res > 1
n=1

wi00(r,s, t) = —w(r,s,t)

9
or
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Borwein-Bailey-Crandall finally got it in 2015.
Continuation.

1
A= —L
v+ Sh
1
C(S’ t) T Z ntms
n>m>0

Similar formula for L4 but we know nothing about Ls
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A problem

Invent a new function

x5~ ldX
) r(s)/
Riemann did it.

Evaluate the integral

/ (1_12tz)/ log|¢(o + it)| do dt
0 1/2

(1+4¢2)3
] 2 N
/O 8 B ﬁ)) / |, lo8lC(o+ )] do dt = (332 )

This might be hard

Is equivalent to the Riemann hypothesis.
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The method of brackets

Start with the expansion
o0
f(x)= Z apx"
n=0

Integrate term by term

/ f(x)dx:Za,,/ x" dx
0 — 0

Now make sense of this

This is the goal of the rest of the talk
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The method of brackets

fafHi= / x*ldx foraeR
0

this is the bracket corresponding to a € R.
Given the expansion

o
FX) =D cax® 1 cp 0, BeC
n=0

integrating term by term gives the value of the integral

/OOO f(x)dx = Zc,,(om+5>

n

as a bracket series.
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The method of brackets. What is left to do?

The integrals are divergent. Regularize.
We need to decide rules of evaluation for bracket series

We need to be able to produce bracket series in an efficient
manner.

What about rigor?



Rules to generate bracket series

Rule 1:

(an+ax+---+a) —

Z n (—a+n+n+
¢1727"' 7rall - afr

...+nr>

M(—a)

ni,nz,-,nr

$12 = Pn Py



Rules for brackets. Continuation
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Rules for brackets. Continuation

Rule 2. Evaluation of a bracket series:

qun )(an + B) — f(n ) (=n")
where n* solves the equation an+ g = 0.

This is Ramanujan master theorem.

It requires an extension of f from N to C
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Rules for brackets. Continuation

Rule 3:

Z Gy np (N1, n2)(a11n + a12ne + c1)(a21n + axnn + o)

ny,m

1
\311 a» — 312821\

f(n1, )l (—=np)l(=n3)

where (nj, n3) solves the linear system obtained by the vanishing of
brackets

We do not assign a value if the determinant vanishes.
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Rules for brackets. Continuation

Rule 4: If the system is not square, consider separately all square
subsystems.

Rule 5: Divergent answers should be discarded.

At the end we will see how to use these.
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Wallis’ formula

o0 dx 0o
s T = 1+x%) ™1y
/0 (X2 =N 1)m+1 /O ( + X ) X

m+1+n1+n2> 2
1 ouLumtEAE E 1M x<n2
( +X 01,2 ) X

ny,n2

Im |—>Zgb12r( )<m+1—|—n1+n2)(2n2+1>

ny,m

System: m+1+m+nm=0, 2nmn+1=0

Solution: nj = —(m+1/2), n; =-1/2.
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Wallis’ formula. Continuation

Rule 3 implies

e 11 (=n7) T (=n3)

_ T(m+1/2)1(1/2)

2 T(m+1)

The values

2l (m)

Fm)=m!and I((m+1/2) = V7 (2m)!
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Wallis’ formula. Continuation

Rule 3 implies

5 LT=n)T(=n3)

_ T(m+1/2)1(1/2)

2 I(m+1)

The values

2l (m)

[(m) = ml and [(m+1/2) = YT Zm)!

produce

-22m i

7 ()

/°° dx
0 (X2 - 1)m+1 T

5 22m



Wallis’ formula. Continuation

Rule 3 implies

szf

10(=n7)F(=n3) T(m+1/2)T(1/2)

2 (m+1) 2r(m)

The values

F(m)=m!and I[(m+1/2) = om

produce

e )
0 (X2 + 1)m+1 ~ 2 22m

That is all.

V7 (2m)!
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A Bessel integral

l::/0 Jo(ax) sin(bx)dx

2m

£ a
L ¢ X2m
mzo "I (m+ 1)22m

1)
sin(bx) Z¢n 2n—:_2 p2n+1,2n+1

2mb2n+1

i
Z%"zzmwnr( D+ 3/2)

(2m+2n+2).



Evaluation of the Bessel integral
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T ™ 2m+2nT (m 4+ 1) (n + 3/2)
m,n
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Choose m as the free parameter: n* = —m — 1.

T 1 a\2m 1
/—b;aﬁmr e (3) = 7= lal<hl



Evaluation of the Bessel integral

I_ﬁ2¢ a2mb2n—|—1
2 et B D2m 28] (o )P+ 3/2)

(2m+2n+2).

Choose m as the free parameter: n* = —m — 1.

VT 1 ay2m 1
= b;¢mw+;)(b) e st L e

Choose n free: m* = —n — 1.
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Evaluation of the Bessel integral

a2mb2n+1

/T
= — m,n
> 2 om 22m+2n[ (m + 1)I (n + 3/2)
m,n

(2m+2n+2).

Choose m as the free parameter: n* = —m — 1.

JE 1 azm 1
=5 Loty (B —ymm A<

Choose n free: m* = —n — 1.

/_bfzqsn (1n+3/2) <b> n:o. |la| > |b].

T 1/vVb% — a2 for |b
/ Jo(ax) sin(bx)dx = {0/\/73 or [b] > |a|
0

for |b| < |a|
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A multi-dimensional example: 4.638.3 in GR

/ / /OO Pl 1 N A p”_l dX]_dX2 INEA an
5 = )
(1+ rlxl)ql + o4 (rxn)9)*

n

k k
denominator — Z ®0,- .n H(rjxj)ql kit ole o+ >
koK1, kn Jj=1 (s)

z <5 -+ ko E S kn>
I > cbo,.--,njl_[l rix;) 9% r(s) [1¢p; + aiks)-

ko,ki,: kn
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n
The solutions are kg = —s + Z < and kj = E8t] for1 <j<n.
=Y qj

1 "5\ 1 (5)
==l |s=) I [] —%
r(s) =) i g



A multi-dimensional example. Continuation

n
The solutions are kg = —s + Z Bi and kj = =P for1 <j<n.
=1 q; q;

1 * 5\ T (2)
h=—T|s- S H|TT %,
"T(s) =4 I1 gjry’

(S

j=1

There was an error in the answer in GR.
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Ising integrals

—k—1

dulduQ
nk/ / / UJ+1/UJ)2 FpRanmRasEE

reduces to (Jon Borwein-David Bradley)

on k+1 0 .
Chi= TRl /0 t" Ky (t) dt
where

™1y (x) — (%)
KO(X) 5 I/IE}T]OE SIn7TI/

is the modified Bessel function.

dup,
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Ising integrals. Continuation.

The only known values

&

|

'\
X
N/

I
[

s <(3n -1+ 12 (3n —1+ 2)2> ’

Gr=4(3)

These are the only ones we can evaluate with brackets.
There must be a reason
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Difficulties with the method

I—EC __/OO/OO dx dy
At o Jo xy(x+y+1/x+1/y)?

o [ dxdy m—ns. mp—ng \2 M1+ M2+ N3+ ng)
/0 /0 =5 Y prpzax™ My )

ni,n2,n3,n4

Z $123.4(m — n3){n — na)(2+ n + na + n3 + n4)

ni,n2,n3,n4

4 indices and 3 brackets
One free variable
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Difficulties. Continuation

Z $1,2,3,4(m — n3)(n2 — na)(2+ ny + no + n3 + ng)

n,nz,n3,ns4

n free: n5=—-nm—1,n3=n1,n;=-n—1

b= Y g (=)
e ;;(_1)"1r(n1+1)r(—n1).

Divergent

Discard it

The same occurs with the other three choices of free variable.
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Difficulties. Continuation

ReEEes: /OO/OO dx dy
27 Jo Jo xyx+y+1/x+1/y)?

+H /‘X’/‘X’ xy dx dy
o Jo Ry 2+ x+y)?

Every form produces divergent integrals

The same occur with
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Difficulties. Continuation

ReEEes: /OO/OO dx dy
27 Jo Jo xyx+y+1/x+1/y)?

+H /OO/OO xy dx dy
o Jo Ry 2+ x+y)?

Every form produces divergent integrals

The same occur with
/ / xy dx dy
(xy(x+y)+x+y)?

/ / (xv( X+X§dicg<+y))

1
Finally gives I = 5




Integrals coming from Feynman diagrams

The figure shows interaction of three particles

Figure : The triangle



Integrals coming from Feynman diagrams. Continuation.

Schwinger parametrization gives

311321a31

-D/2
i 10 s
I_(‘31 (a2)l(a3) (x1 + x2 + x3)P/2

X exp(xym3 + xom3 + x3m3)

o _C11P1 +2C12P1-P2+C22P2 dscr dboo e
X1 + X2 + X3 TPrpre

X



Integrals coming from Feynman diagrams. Continuation.

Schwinger parametrization gives

a11321a31

1 —D)2 X2
H r(al (a2)l 83/ // X1+X2+X3)D/2

X exp(xym3 + xom3 + x3m3)
C11P? +2Ci12P1 - Py + CaoP,
Lo (_ 11°] +2C12F1 - Po 4+ (oo 2) e e

X

X1+ X2 + X3

The coefficients C; ; are given by

G =x1(x2 +x3), G2 =x1x3, Coo = x3(x1 + x2).
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Integrals coming from Feynman diagrams. Continuation.

Conservation of momentum gives P; = P; + P> and then

-D
G: /2/// 311321831

X exp (xlml + xom3 + x3m3)
o XX P12+X2X3 P22 +x3X1 P3
xp X1+X2+Xx3
X dxidxpdxs.

(x1+ x2 + x3)P/2
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Problem. Evaluate G = G(P1, P2, m;, D, a;).
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Integrals coming from Feynman diagrams. Continuation.

Problem. Evaluate G = G(P1, P2, m;, D, a;).
Special case m; = my = m3 = 0 and P12 = P22 =0.

(-2
[(a1)l(a2)l(a3)

_ o X1x3 2

ai—1_ar—1_az—1 exp < X1+X2+X3 P3)

x XE XS T 5
R (x1 +x2 + x3)

G =

dX]_ dX2 dX3 {

3
T



Integrals coming from Feynman diagrams. Continuation.

Problem. Evaluate G = G(P1, P2, m;, D, a;).
Special case m; = my = m3 = 0 and P12 = P22 =0.

(o
¢ = e

X1X3 D

exp | — P. )

a;—1_ar—1_az3—1 P < x1+xa+x3 " 3

X X1 X5 X3 D2
RY (x1 + x2 + x3)P/

Xm dX2 dX3 {

The method of brackets gives

o ( NV.PY. V¥
G_r [(a3) ZZZZ¢1234 P3)" m

ng np n3 mg



Integrals coming from Feynman diagrams. Continuation.

The brackets A; are

Ay = (D/24 ny+ ny+ n3 + ng),
Ay = (a1 + nm + m),

As (a2 + n3),

Ay (a3 + n1 + na).

This problem has no free indices.

* D * D * * D
N = 5—ar—ax—az, N = —5+ax+as, n3 = —az, Ny = —5+ar+a.



Integrals coming from Feynman diagrams. Continuation.

This gives

] (_1)_D/2 2\D/2—aj—ap—a3
SRR P LU 5

M(a1+ax+ as — %)r(% —ap — a3)r(a2)r(g)r(g — a1 — a)

F(D—al—ag—ag)



How to use divergent series

Start with the exponential integral

00 ,—xt Q [e9)
Ei(—x) = —/ ¢ =~ gbnlx”l/ tm—L gt
1 1

t
n1=0

/ tn1—1 dt = / (_)/"‘ 1)n1—1 dy
1 0

= L ar e e s M )
T Z ¢n2n3 r(inl + 1)

n2,n3



How to use divergent series. Continuation
This gives

(=m +1+n+n3)(m+1)

Ei(—x) = Z Prymany X"

ny,n2,n3

0 n
X
SR
n=0

F( n +1)
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This gives

Ei(—x) = Z Prymany X"

ny,n2,n3
[e.9]
Xn
SR
n=0

a divergent series
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How to use divergent series. Continuation
This gives

. —m +1+n+n3){n+1
Ei(—x) = Z Prymany X" ! ’ 31402 )

F( n +1)

ny,n2,n3
[e.9]
Xn
SR
n=0

a divergent series
This is the bracket version of the expansion

Ei(—x) = 7 + In(x +Z¢n



How to use divergent series. Continuation

We compute the Mellin transform

o0 bn (o)
s—lps I p+n—1
/0 x*7 Ei(—bx) dx g gi),,—n / ¥ dx
= E ¢n {1+ n)

: —%r(u)
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How to use divergent series. Continuation

We compute the Mellin transform

o0 bn (o)
s—lps I p+n—1
/0 x*7 Ei(—bx) dx g gi),,—n / ¥ dx
= E ¢n {1+ n)

b_

T —Tr(ﬂ)

Exercise for the audience

/Oox”_le_“XEi(—ﬁx)dx:——r(y)) 2F1 (1 R
0

V(B 1 V)

B+u

)



Thanks for your attention.



