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Finite quadratic modules

Definition

A finite quadratic module is a pair (D, q) of a finite abelian group
D and a (non-degenerate) quadratic form g : D — Q/Z, whose
associated bilinear form we denote by

b(x,y) = q(x +y) — q(x) — q(y).
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Finite quadratic modules

Definition

A finite quadratic module is a pair (D, q) of a finite abelian group
D and a (non-degenerate) quadratic form g : D — Q/Z, whose
associated bilinear form we denote by

b(x,y) = q(x +y) — q(x) — q(y).

Examples

p > 2 prime:
Ap = (Z/pZ,x — x*/p)

Ap = (Z/p"Z,x — x*/p")
Ay = (Z/p"Z,x — tx*/p"), (t,p) = 1
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The Weil Representation

Let (D, q) be a finite quadratic module. Let C(D) be the C-vector
space of functions f : D — C. This space has a canonical basis
{0x}xep of delta functions, i.e. dx(y) = dx,.
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The Weil Representation

Let (D, q) be a finite quadratic module. Let C(D) be the C-vector
space of functions f : D — C. This space has a canonical basis
{0x}xep of delta functions, i.e. dx(y) = dx,.

Definition
The Weil representation pp : Mp,(Z) — GL(C(D)) is defined
with respect to the basis {0x }xcp by

pp(T)(6:) = €95,

P D —27i b(x
po(S)(8:) = Z 52 5 e Eribeny,
yeD

where p~(D) = 3, .y e 27,
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Metaplectic covers of SLp(R)

e m1(SL2(R)) ~ m(SO(2)) ~ Z

5/24



Metaplectic covers of SLp(R)

e m1(SL2(R)) ~ m(SO(2)) ~ Z

® For each n € Z > 1, there is a unique normal (topological)
cover Mp,,(R) — SL>(R).

5/24



Metaplectic covers of SLp(R)

e m1(SL2(R)) ~ m(SO(2)) ~ Z

® For each n € Z > 1, there is a unique normal (topological)
cover Mp,,(R) — SL>(R).

® Mp,(R) is the group of pairs ((25) € SLy(R), ¢(7) € Of)
such that ¢(7)" = c7 + d.

5/24



Metaplectic covers of SLp(R)

e m1(SL2(R)) ~ m(SO(2)) ~ Z

® For each n € Z > 1, there is a unique normal (topological)
cover Mp,,(R) — SL>(R).

® Mp,(R) is the group of pairs ((25) € SLy(R), ¢(7) € Of)
such that ¢(7)" = c7 + d.

® Group law: (71, #1)(72, #2) = (7172, 2(7)P1(727)).
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Metaplectic covers of SL,(Z)

Definition

The metaplectic group of degree n Mp,,(Z) is the inverse image of
SL2(Z) in Mp,(R).
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Metaplectic covers of SL,(Z)

Definition

The metaplectic group of degree n Mp,,(Z) is the inverse image of
SL2(Z) in Mp,(R).

® Mp,(Z) is a non-trivial central extension:

1 — pn— Mp,(Z) = SLo(Z) — 1

e S=(97"), T=(3§1) generate SLy(Z). The pairs
5":(57%)7 Tn:(T,l)
generate Mp,(Z), S} = (h, e27ri/n), (SaT»)3 = (Sn)>.
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Examples of Weil representations

® Ay = (Z)2Z,x — x*/4), pa, : Mp,(Z) — GLy(C)
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Examples of Weil representations

® Ay = (Z)2Z,x — x*/4), pa, : Mp,(Z) — GLy(C)

pA2(T,1):((1) ?) PAz(Sv\/F):].;i<i _11>
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Examples of Weil representations

® Ay = (Z)2Z,x — x*/4), pa, : Mp,(Z) — GLy(C)

pA2(T,1):(é ?) PAz(Sv\/F):].;i<1 _11>

® A3 = (Z/3Z,x — x*/3), pa, : SL2(Z) — GL3(C)

o2 1 1 1
pA3(T) = ( ) IOA3(5) = ' 32<3 ( 1 CI% (3 )
1 G G

<3 — e27ri/3

(e )

0
G
0

O O =
O
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Properties of the Weil representations

e N =ord(pp(T)) = level of the finite quadratic module.
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Properties of the Weil representations

e N =ord(pp(T)) = level of the finite quadratic module.

® pp factors through finite group, a central extension

1—{+1} - G — SLx(Z/NZ) — 1

® Easy to decompose pp ~ @, pi into irreducibles.

Theorem (Nobs, 1970s)

Every complex irreducible representation of SLy(Z/NZ) appears as
a factor of a suitable Weil representation pp, except for 18
exceptional ones when N = 2",

8/24



Integrality for the Weil representation

® The matrix entries of pp are in Z[1/N,{n], (v = e2mi/N.
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Integrality for the Weil representation

® The matrix entries of pp are in Z[1/N,{n], (v = e2mi/N.

Question: ‘“clear the denominator”?

Is there a choice of basis for C(D) such that the matrix entries of
pp are in Z[¢n]?
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Integrality for the Weil representation

® The matrix entries of pp are in Z[1/N,{n], (v = e2mi/N.

Question: ‘“clear the denominator”?

Is there a choice of basis for C(D) such that the matrix entries of
pp are in Z[¢n]?

Concretely: find a matrix M such that
Mpp(T)M™" € GL p|(Z[¢n])

Mpp(S)M™ € GL p|(Z[¢n])
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Example: A3

ol =)
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Example: As

0 —%@ +§ 0
1 §C3+§ -1

O O =
oo

pas(T): M (

o o
~_ —
S
4,

Il
/=

G -1 0
0 1 0
0 0 G
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Example: A3
0
1
—1
GG -1 0
pa(T): M 0 1 0
0 0 G

1 - 22 1 12 1 » G —-10
pas(S): M —3 1 ¢ @G M7 =1 -G -G 0
1 G ¢ 0 01
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Example: A3

1 - 22 1 12 1 » G —-10
pas(S): M —3 1 ¢ @G M7 =1 -G -G 0
1 G ¢ 0 01

PA, = pjp S pr = block decompositions
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Example: As

In [76]: MN|M

outl7el: (0 203 - 202205+ 2 —$3-33-36 0 0
D Saedeel eideined 1 30-dd-in-d
0 B3+l 8-804 0 18-33-36-4
RS S <t RS BN RS RS RS
Do EReiee) Aeideined o1 3G ined
Tn [651: M MA(=1)*T*M
outles): (s 342 +1 —2-C2-0s—1 0 0
0 -z G+s 0 0
0 -g-1 3= 0 0
0 0 0 & -3
0 0 0 0 -8-02-¢-1
In [66]: M MA(-1)*S*M
out [66]: -3-1 GG G- -G-1 0 0
B+2+G+1 G+G 0 B+G+u+l 0 0
-G GGG & ° |
0 0 0 —f-¢-6-1 Gt
o 0 0 -1 G+3++1
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Let (D, q) be a finite quadratic module of level N. Then the Weil

representation pp is integral over Z[(n], i.e. there exists a basis for
C(D) such that the matrix entries of pp with respect to this basis

are in Z[(n].
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Let (D, q) be a finite quadratic module of level N. Then the Weil

representation pp is integral over Z[(n], i.e. there exists a basis for
C(D) such that the matrix entries of pp with respect to this basis

are in Z[(n].

Note: by general representation theory of finite groups, pp is
defined over Oy, for K O Q({n).
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Let (D, q) be a finite quadratic module of level N. Then the Weil

representation pp is integral over Z[(n], i.e. there exists a basis for
C(D) such that the matrix entries of pp with respect to this basis

are in Z[(n].

Note: by general representation theory of finite groups, pp is
defined over Ok, for K O Q(¢n). Not good enough!
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Decomposition of finite quadratic modules

® Decompose (D, q):
(D7 q) = 69(Di’ ql)
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Decomposition of finite quadratic modules

® Decompose (D, q):

(D7 q) = @(Di) ql)
and each (Dj, g;) is one of:

£ x2
A;k = (z/p*Z, ;2) , p>2prime, (t,p)=1,

Kk EX?
AL, = (Z/2 z, 2k+1>, (t,2) =1,
= :

2 2
2
7)20.6 7,)27, HW) ,

Cor i= (Z/zkz ® Z/2°2, 2y )
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Decomposition of finite quadratic modules

® Decompose (D, q):
(D7 q) = @(Di) ql)
and each (Dj, g;) is one of:

£ x2
A;k = (z/p*Z, ;2) , p>2prime, (t,p)=1,

= (z/2*2 0 7/2"2,

; K, EX
A2k = Z/2 Z, W 5 (t, 2) = ]_7

x2 4+ 2xy + y?
2k ’

Cor i= (Z/zkz ® Z/2°2, 2y )

° If (D, q) ~ &:(Di, qi), then pp ~ @, pp,
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A;k case p odd

Let (D,q) = A;k, p odd.

R = Z[p], R = ZI1/p", Cpr]

pp defines an R'[G]-module W(D, q), free of rank |D| as an
R’-module.
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A;k case p odd
Let (D,q) = A;k, p odd.

R = Z[p], R = ZI1/p", Cpr]

pp defines an R'[G]-module W(D, q), free of rank |D| as an
R’-module.

Lemma (Curtis-Reiner, Thm. 75.2)

There exists an R[G]-module U(D, q) such that

W(D,q) ~ U(D,q) ®r R’
as R'[G]-modules.
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A;k case p odd
Let (D,q) = A;k, p odd.

R = Z[p], R = ZI1/p", Cpr]

pp defines an R'[G]-module W(D, q), free of rank |D| as an
R’-module.

Lemma (Curtis-Reiner, Thm. 75.2)

There exists an R[G]-module U(D, q) such that

W(D,q) ~ U(D,q) ®r R’
as R'[G]-modules.

We need to prove that U(D, q) is free over R.
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How to prove a finitely generated module is free?
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How to prove a finitely generated module is free?

® Structure theorem of finitely generated modules over a
Dedekind domain:

p

U(D, q) ~ P Ji

i=1

where each J; is a fractional ideal of R.
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How to prove a finitely generated module is free?

® Structure theorem of finitely generated modules over a
Dedekind domain:

P
i=1
where each J; is a fractional ideal of R.

® The isomorphism class of U(D, q) is determined by its Steinitz
class

[U(D, g)] := [ [ 41 = [[141 € CU(R).
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How to prove a finitely generated module is free?

® Structure theorem of finitely generated modules over a
Dedekind domain:

P
i=1
where each J; is a fractional ideal of R.

® The isomorphism class of U(D, q) is determined by its Steinitz
class

[U(D, g)] := [ [ 41 = [[141 € CU(R).

The Steinitz class [U(D, q)] is trivial in C1(R).

This implies U(D, q) is free.
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Finding explicit integral bases
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Finding explicit integral bases

® For (Z/pZ,x + x2/p) p prime: Pat Gilmer (LSU), Yilong
Wang (LSU).
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Finding explicit integral bases

® For (Z/pZ,x + x2/p) p prime: Pat Gilmer (LSU), Yilong
Wang (LSU).

® Take

€ =01+ 5p_1, €_ =01 — 5p_1

and let the basis be

e pp(U)(er), - -, po(U) (e ) PH/2,

e, pp(U)(e2), ..., pp(U)(e)P~1)/2

where U = (_11(1))
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Applications

® Modular representations
SLo(Z/p"Z) — GL4(F)p)

(Gilmer-Massbaum, 2015 for n = 1). What's known for
n>17?
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Applications

® Modular representations
SLo(Z/p"Z) — GL4(F)p)

(Gilmer-Massbaum, 2015 for n = 1). What's known for
n>17?

® Integral Weil representations are toy models for Integral
Topological Quantum Field Theories of Gilmer and Massbaum.

® (24+1) TQFTs = Modular Tensor Categories
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Modular tensor categories

Sort of a Definition

A modular tensor category C is a braided spherical fusion category
satisfying a certain non-degeneracy condition...
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A modular tensor category C is a braided spherical fusion category
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¢ Simple objects M(C) = {x1,...,x}, r = rank of C.
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Modular tensor categories

Sort of a Definition

A modular tensor category C is a braided spherical fusion category
satisfying a certain non-degeneracy condition...

¢ Simple objects M(C) = {x1,...,x}, r = rank of C.

® C is a ‘machine’ producing projective representations of
mapping class groups

M(X) —s PGL,(C)

where X is an orientable surface with boundary components
labeled by IM(C).
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The modular representation

M(T?) = SLy(Z) — PGL,(C) is the modular representation of C.
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The modular representation

M(T?) = SLy(Z) — PGL,(C) is the modular representation of C.

The modular representation lifts canonically to a linear
representation
pc : Mp.(Z) — GL,(C)

where c is the order of the square of the global anomaly of C.
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The modular representation

M(T?) = SLy(Z) — PGL,(C) is the modular representation of C.

The modular representation lifts canonically to a linear
representation

pc : Mp.(Z) — GL,(C)

where c is the order of the square of the global anomaly of C.

pc factors through SL2(Z/NZ) where N = ord(pc(T.)) is the level
of C (Ng-Schauenberg, 2010)
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Example: Fibonacci modular category

e (C is a fusion category with two simple objects (rank 2) {1, 0},
cRo~1do.
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Example: Fibonacci modular category

e (C is a fusion category with two simple objects (rank 2) {1, 0},
cRo~1do.

¢ Modular representation p : Mpg(Z) — GL»(C):

(3 8)

1+02¢ (1

0= % is the golden ratio
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Integrality for modular tensor categories

Theorem (C., Ng, Wang 2019)

Let C be a modular tensor category of level N = p", for prime p.
Then the modular representation pc of the metaplectic cover
Mp.(Z) is integral over Z[(n].
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® Uses the Cauchy Theorem of modular tensor categories
(Bruillard, Ng, Rowell, Zhang, 2015).
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Integrality for modular tensor categories

Theorem (C., Ng, Wang 2019)

Let C be a modular tensor category of level N = p", for prime p.
Then the modular representation pc of the metaplectic cover
Mp.(Z) is integral over Z[(n].

® Uses the Cauchy Theorem of modular tensor categories
(Bruillard, Ng, Rowell, Zhang, 2015).

® pc = pp is the Weil rep., when C is pointed!

® Find explicit integral bases?
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Fibonacci example

Let p* = 1+ ©?¢F2, @:% J
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Fibonacci example

Let pt = 14 @22, =115 J
1 0
T,1) =
wr= (5
sy P (1w
1 1/p+>
M =
<0 p/pt
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Thank you!
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