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Let ω(n) denote the number of distinct prime divisors
of n. The celebrated Erdős-Kac theorem asserts that
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for any t ∈ R. Recognizing that the right-hand side is
the Gaussian distribution, one may regard the Erdős-Kac
theorem as a “Central Limit Theorem.” In this context,
one can further view ω(n) as a “random variable” de-
fined on the probability space [x, 2x]. From this point
of view, one may be curious about what will happen if
the probability space becomes “smaller.” More precisely,
what can one say about the limiting behavior of
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In this talk, we will show that the limiting behavior of
(1) is still Gaussian for h = xθ with 0 < θ ≤ 1. If time
permits, we will discuss a prime analogue of (1) in light
of the work of Halberstam.
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