GENERALIZED ARITHMETIC PROGRESSIONS AND DIOPHANTINE APPROXIMATION BY POLYNOMIALS

Abstract

ALEX RICE

Abstract. We discuss two related notions of "approximate subgroups" inside finite sets of integers: Bohr sets, which capture simultaneous Diophantine approximation, and symmetric generalized arithmetic progressions (GAPs). For example, fix natural numbers N and d and consider the following pair of questions: (1) For fixed $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}$, how close to an integer can we simultaneously make $n^{2} \alpha_{1}, \ldots, n^{2} \alpha_{d}$ for some $1 \leq n \leq N$? (2) How large can a set of the form $\left\{x_{1} \ell_{1}+\cdots+x_{d} \ell_{d}:-L_{i} \leq\right.$ $\left.\ell_{i} \leq L_{i}\right\} \subseteq[-N, N]$ be before it is guaranteed to contain a perfect square? Our discussions range from classical facts like the Kronecker approximation theorem and Linnik's theorem, to a recent breakthrough result of Maynard and its potential future applications. In between we survey results including previous joint work with Neil Lyall and Ernie Croot.

