Closed, Bounded Sets
(also Convex)

- **Lecture Three: 25 Jan., 2005**

When are optimum values guaranteed?
First glimpses of how to compute optimizers? (First & Second Deriv. Tests, Convex Functions)

Readings:
- Reserve Books: Chong/Zak: Optimization, Chapter 5
 Peressini: Sections 1.2, 1.3 & 2.1

- **Basic Result for Existence of Optimal Values:**
 The Bolzano-Weierstrass Guarantee

Bolzano-Weierstrass (19th century): A continuous function on a closed and bounded domain D has global extrema on D.

- **Terminology: Open, Closed, Bounded, Continuity**

A set D is open if each point x in D has an open ball centered at x, B(x,r), contained in D.

A set D is closed if its complement (all those points not in D) is open.
Equivalently, D contains all points, x, for which there is a sequence, x[k], of points in D for which the limit $\|x - x[k]\|$ is zero (as k "goes to infinity").

Examples:

A set S of real numbers is open precisely when it is the union of a countable collection of disjoint open intervals, (a,b). There is no such simple characterization in higher dimensions.

The set $C = \{1/n: \text{n is a positive integer}\} \cup \{0\}$ is closed. Its complement is $(-\infty,0) \cup (1/(n+1),1/n) \cup (1,\infty)$ (where the second union is over all positive integers). This is a countable collection of disjoint open intervals.

The set $\{(x,y): 2x + 3y - 6 < 0\}$ is open and $\{(x,y): 2x + 3y - 6 \leq 0\}$ is closed.
Basic Properties: The collection of open sets is closed under the operations of taking arbitrary unions and finite intersections.

Exercise: Show that open sets are not closed under the operation of taking an intersection of a countable number of open sets.

Boundedness: A set D is **bounded** if it is contained in some ball.

A function $F: D \rightarrow \mathbb{R}^n$ is continuous provided the inverse image of every open ball is relatively open in D (i.e. the intersection of an open set and D). Equivalently, if the limit of $x[k]$ is x, then $F[x[k]]$ must have limit $F[x]$.

Example: $F: C \rightarrow \mathbb{R}$, given by $F[1/n]=n$, $F[0]=0$ is not continuous. Hint: The inverse image of (-1,1) is $\{0\}$ which is not open in C. (Any open interval containing 0 and intersected with C would contain open points in C).

However, all polynomial function, common transcendental functions (Sine, Exp, Log) and functions built from these by adding, multiplying, dividing and composing are all continuous on their domain of definition.

- **Fundamental Investigation**

Find these guaranteed global extrema
Optimization theory is the study of such methods
Classical Optimization in Dimensions Two, Three, . . .

- Vanishing Gradient, Hessian Condition
- Taylor Series in Several Variables

Convex Sets and Functions

A set is **convex** provided the line segment from x to y, \{λ x + (1-λ)y: 0≤λ≤1\}, is in C whenever x and y are in C.

A real-valued function \(f: C \rightarrow \mathbb{R} \), is **convex** provided

\[
f[λ x + (1-λ)y] \leq λ f[x] + (1-λ) f[y],
\]

whenever 0≤λ≤1 and both x and y are in C.

- Basic Fact for Convex Functions

If the Hessian of f is positive semidefinite on C then f is convex.