Suppose that \(f : X \to S^2 \) is a continuous mapping that is not onto. Show that \(f \) is homotopic to a constant mapping.

Solution: Let \(f : X \to S^2 \) be the given map. We consider \(S^2 \) as a unit sphere, imbedded into \(\mathbb{R}^3 \). Since \(f(X) \neq S^2 \), we can fix a point \(P \) in \(S^2 \setminus f(X) \). Consider the stereographic projection \(\pi : S^2 \setminus \{P\} \to T \), where \(T \) is the linear subspace of \(\mathbb{R}^3 \) (i.e. 2-dimensional plane, containing the origin 0), orthogonal to the vector \(0P \).

Consider the map \(G : T \times I \to T \), given by \(G(x,t) = (1-t)x \) for any \(t \in I = [0,1] \), and any \(x \in T \subset \mathbb{R}^3 \). Then \(G(-,0) = id_T \) and \(G(-,1) = c_0 \), the constant map with image in the origin.

We know that the stereographic projection \(\pi : S^2 \setminus \{s'\} \to T \) is a homeomorphism (in fact, diffeomorphism) from \(S^2 \setminus \{s'\} \) onto the plane \(T \). Therefore there exists the inverse map \(\pi^{-1} : T \to S^2 \setminus \{P\} \subset S^2 \) that also is continuous.

Consider the following diagram:

\[
\begin{array}{cccc}
X \times I & \xrightarrow{H} & S^2 & \xleftarrow{\text{inclusion}} S^2 \setminus P \\
\downarrow f \times id_I & & & \uparrow \pi^{-1} \\
(S^2 \setminus P) \times I & \xrightarrow{\pi \times id_I} & T \times I & \xrightarrow{G} & T \\
\end{array}
\]

Here \(f \times id_I \) is the induced map (product of \(f : X \to S^2 \) and \(id_I : [0,1] \to [0,1] \)). The map \(\pi \times id_I : (S^2 \setminus \{P\}) \times I \to T \times I \) is defined similarly. The composition \(H = \pi^{-1} \circ G \circ (\pi \times id_I) \circ (f \times id_I) \) is the map from \(X \times I \) to \(S^2 \). We would like to show that \(H \) is the desired homotopy between \(f \) and constant map \(c_0 \).

We need to show that \(H \) is continuous. For this purpose it is enough to show continuity of each function in the composition. The maps \(\pi^{-1} \) and \(G \) are clearly continuous. For the remaining two we recall the following fact about product maps:

If there are two continuous functions \(f_i : X_i \to Y_i \) for \(i = 1, 2 \), then the map \(f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2 \) is defined by \(f_1 \times f_2 : (x_1, x_2) \mapsto (f(x_1), f(x_2)) \). Using standard technique (using the standard subbasis of the product topology, and continuity by preimages of subbasis), one can show that \(f_1 \times f_2 \) is continuous.
Using this result, continuity of \(f \times \text{id}_I \) and \(\pi \times \text{id}_I \) follows immediately (since \(\text{id}_I \) is continuous). Therefore, the map \(H \) is continuous as a composition of continuous maps. So, it remains to check that \(H(-,0) = f \) and \(H(-,1) = c_{-P} \), where \(-P\) is the antipodal point of the point \(P \) in the unit sphere \(S^2 \).

For \(t = 0 \) and for any \(x \in X \), we have

\[
H(x,0) = \pi^{-1} \circ G \circ (\pi \times \text{id}_I) \circ (f \times \text{id}_I)(x,0) \\
= \pi^{-1} \circ G \circ (\pi \times \text{id}_I)(f(x),0) \\
= (\pi^{-1} \circ G)(\pi(f(x)),0) = \pi^{-1}((1-0)\pi(f(x))) \\
= \pi^{-1}(\pi(f(x))) = (\pi^{-1} \circ \pi)(f(x)) = f(x).
\]

Similarly, if \(t = 1 \), we get

\[
H(x,1) = \pi^{-1} \circ G \circ (\pi \times \text{id}_I) \circ (f \times \text{id}_I)(x,1) \\
= \pi^{-1} \circ G \circ (\pi \times \text{id}_I)(f(x),1) \\
= (\pi^{-1} \circ G)(\pi(f(x)),1) = \pi^{-1}((1-1)\pi(f(x))) \\
= \pi^{-1}(0) = -P
\]

for any \(x \in X \).

So, \(H : X \times I \to S^2 \) is a homotopy between the given map \(f : X \to S^2 \) and the constant map \(c_{-P} : X \to \{-P\} \subset S^2 \).
Problem 7.3. If X is a space, recall that the *cone on X* is the quotient space $CX = X \times [0, 1]/X \times \{1\}$. Suppose $f : X \to Y$ is a continuous function and f is homotopic to a constant mapping $c_y : X \to Y$ for some $y \in Y$. Show that there is an extension of f, $\hat{f} : CX \to Y$ so that $f = \hat{f} \times i$ where $i : X \to CX$ is the inclusion, $i(x) = [(x, 0)]$.

Solution: Let $\pi : X \times I \to CX$, defined by $(x, t) \mapsto [(x, t)]$ be the natural projection (quotient map), where $[(x, t)]$ denotes an equivalence class of (x, t) in $X \times I$, i.e. a point in CX.

Recall that $U \subseteq CX$ is open if and only if $\pi^{-1}(U) \subseteq X \times I$ is open.

Let $H : X \times I \to Y$ be the homotopy, connecting f and c_y. That means, H is continuous, and furthermore,

$$H(-, 0) = f : X \to Y,$$

$$H(-, 1) = c_y : X \to Y.$$

Define the map $\hat{f} : CX \to Y$ by $\hat{f}([(x, t)]) = H(x, t)$ for any $x \in X$ and $t \in I$. The map \hat{f} is clearly well-defined. In fact, if $t \neq 1$, nothing to show. If we take $t = 1$, and $x_1, x_2 \in X$, then

$$\hat{f}([(x_1, 1)]) = H(x_1, 1) = y = H(x_2, 1) = \hat{f}([(x_2, 1)]).$$

In order to check the continuity of \hat{f}, consider the following commutative diagram

$$
\begin{array}{ccc}
X \times I & \xrightarrow{H} & Y \\
\downarrow{\pi} & & \downarrow{\hat{f}} \\
CX & &
\end{array}
$$

where π is the quotient map, and $H = \hat{f} \circ \pi$. Then by the Theorem 4.18, the composition $\hat{f} \circ \pi$ is continuous if and only if \hat{f} is continuous. But we already know that $\hat{f} \circ \pi = H$ is continuous. Therefore \hat{f} is continuous as well.

Now define the inclusions $j : X \to X \times I$, given by $x \mapsto (x, 0)$, and $i : X \to CX$, given by $x \mapsto [(x, 0)]$. Clearly, $i = \pi \circ j$, and by continuity of j (inclusion into the first factor of the product topology), and by continuity of π we get that i is also continuous.

So, we have the following commutative diagram, where each triangle commutes:
Then
\[\widehat{f} \circ i = \widehat{f} \circ (\pi \circ j) = (\widehat{f} \circ \pi) \circ j = H \circ j = f. \]
This means that \(\widehat{f} \) is an extension of \(f \) from \(X \) to \(CX \).
Problem 7.5. Prove that a disk minus two points is a deformation retract of a figure 8 (that is, $S^1 \vee S^1$).

Solution: Consider the following picture:

![Division of the disk in closed subsets.](image)

Figure 1. Division of the disk in closed subsets.

Here l is the line (x-axis) on which centers of circles and center of the disk is located. The union of two circles with centers $P2$ and $P4$ build the figure 8, i.e. space $Y = S^1 \vee S^1$. The center of the given disk is located in $P3 = 0$, the origin. The space $X = D^2 \setminus \{P1, P2\}$ is the given disk with punctured two points. We divide X into the closed regions A, B, C, D, E and F. Regions E and F are small closed disks with removed centers. Line segments $l1$ and $l2$ are vertical, touching small circles at $P1$ and $P2$ correspondingly. A is the closed circular segment, the region cutted out by $l1$ from X. Similarly, D contains all the points of X, that are located to the right side of $l2$, including
this segment. Finally, B and C are upper and lower parts of the remaining regions (again, we take them to be closed in X). For example, $B \cap C = \{P1, P3, P5\}$.

Our goal is to construct a deformation retraction of X, i.e. a homotopy of X into itself, that contracts this space onto Y, fixing Y pointwise under this homotopy. Idea is to build a retraction $r : X \to Y$, and construct H in a path-linear way, connecting id_X with r.

Let R be the radius of small circles. Define

$$r(x) = \begin{cases}
P1 & \text{if } x \in A,
P5 & \text{if } x \in D,
p(x) & \text{if } x \in B \text{ or } x \in C,
P2 + \frac{x-P2}{||x-P2||} \cdot R & \text{if } x \in E,
P4 + \frac{x-P4}{||x-P4||} \cdot R & \text{if } x \in F
\end{cases}$$

where p is the vertical projection of region B on the upper part of Y. Similarly, p vertically projects C onto the lower part of $Y = S^1 \vee S^1$. On E and F the map r is a radial retraction inside corresponding punctured disks onto the boundary circles. Remark that r is well-defined (easy check on intersections of regions). Next, r is continuous on each of the closed regions A, B, \ldots, F. Therefore, by ”pasting lemma” (Theorem 4.4), the map r is continuous. Furthermore, $r(y) = y$ for any $y \in Y$. Therefore, r is a retraction of X onto Y.

Let us now define $H : X \times I \to \mathbb{R}^2$ by $H(x, t) = (1 - t)x + t \cdot r(x)$. Then clearly, H is continuous (multivariable calculus). Furthermore, it is also clear that the line segment, connecting x to $r(x)$ is contained in X for any $x \in X$. This can be checked by considering each region separately. Since D^2 is convex, we just need to make sure that line segment does not contain neither of $P2$ and $P4$. On E and F it is clear. On A and D, corresponding segments are outside of interior of regions E and F (i.e. do not intersect the removed points $P2$ and $P4$), and on B and C the statement is also clearly true.

Thus, H is a mapping from $X \times I$ to X, i.e. homotopy on X. Furthermore,

$$H(-, 0) = id_X : X \to X, \quad H(-, 1) = r : X \to X.$$

For any $y \in Y$, have $r(y) = y$. Therefore, for any $y \in Y$ and $t \in I = [0, 1]$,

$$H(y, t) = (1 - t)y + tr(y) = (1 - t)y + ty = y.$$

This means that the homotopy H is a deformation retraction of $X = D^2 \setminus \{P2, P4\}$ onto the subspace $Y = S^1 \vee S^1$.

P.S.
Check continuity of p on B. Let $(u,v) \in B$. Then define the projection on the first coordinate $\pi(u,v) = (u,0)$, and the map $s : Z \to Y$ (here $Z = [-2R,2R] \times \{0\}$ is the line segment, connecting $P1$ to $P5$) via

\[
s(u,0) = \begin{cases}
(u, \sqrt{R^2 - (u+R)^2}) & \text{if } -2R \leq u \leq 0, \\
(u, \sqrt{R^2 - (u-R)^2}) & \text{if } 0 \leq u \leq 2R,
\end{cases}
\]

for any point $(u,0) \in [-2R,2R] \times \{0\}$. Then $p = s \circ \pi : B \to Y$, and continuity of π and s (easy) implies continuity of p.
Problem 7.6. A starlike space is a slightly weaker notion than a convex space – in a starlike space \(X \subset \mathbb{R}^n \), there is a point \(x_0 \in X \) so that for any other point \(f \in X \) and any \(t \in [0,1] \) the point \(tx_0 + (1-t)y \) is in \(X \). Give an example of starlike space that is not convex. Show that a starlike space is a deformation retract of a point.

Solution: The simplest example is a union of two segments joined with the common vertex 0 in the plane, building a nonzero geometric angle of less than \(\pi \) radians. Denote this object by \(M \). Then \(M \subset \mathbb{R}^2 \) is a starlike space with respect to the point \(x_0 = 0 \). Clearly, \(M \) is not convex.

Now, let \(X \) be a starlike space with special point \(x_0 \). We will show that there is a deformation retraction of \(X \) onto the point \(\{x_0\} \subset X \).

Define the map \(H : X \times I \rightarrow \mathbb{R}^n \) via
\[
H(x, t) = tx_0 + (1-t)x
\]
for any \(x \in X \) and \(t \in [0,1] \). We need to check that \(H \) is a deformation retraction of \(X \) onto the point \(\{x_0\} \).

Since \(X \) is a starlike space, the image of \(H \) is actually in \(X \). So, have \(H : X \times I \rightarrow X \). Furthermore, \(H(x, 0) = 0 \cdot x_0 + (1-0) \cdot x = x \) for any \(x \in X \), and \(H(x, 1) = 1 \cdot x_0 + (1-1) \cdot x = x_0 \). The homotopy \(H \) fixes the space \(A = \{x_0\} \) pointwise, since for any \(t \in [0,1] \) have
\[
H(x_0, t) = tx_0 + (1-t)x_0 = x_0.
\]

This means that the homotopy \(H \) is a deformation retraction of \(X \) onto the point \(x_0 \).