Problem 1. [20 pts] Define the term topological property. Give three examples. Prove the topological invariance of the one of your choice.

Problem 2. [20 pts] Let \(f : A \to B \) be a continuous function between topological spaces.

(1) If \(A \) is compact, prove that \(f(A) \) is compact.

(2) If \(A \) is connected, prove that \(f(A) \) is connected.

Problem 3. [20 pts]

(1) Let \(\pi_j : X_1 \times X_2 \to X_j \) be the projection onto the \(j \)-th factor. Show that the product topology on \(X_1 \times X_2 \) is the coarsest topology making \(\pi_1 \) and \(\pi_2 \) continuous.

(2) Compute the fundamental group of \(X_1 \times X_2 \) in terms of the \(\pi_1(X_j) \).

Problem 4. [30 pts] Let \(A \) be the subset of the real numbers with two elements, \(\{1, 2\} \).

(1) Find all the connected subsets containing \(A \).

(2) Which of these connected subsets are compact?

(3) Give a proof of the connectedness of one of the sets in your answer.

Problem 5. [20 pts] Let \(X \) be the real numbers with the finite complement topology.

(1) Prove that the integers are dense in \(X \).

(2) Discuss convergence of sequences in this space.

Problem 6. [40 pts] Let \(X \) be the union of a regular hexagon and an inscribed equilateral triangle.

(1) State and use van Kampen’s theorem to compute the fundamental group of \(X \).

(2) Construct a 3-sheeting covering map from \(X \) to the join of two circles.

(3) Prove a result relating the fundamental groups of these two spaces.

(4) Verify this result for your 3-sheeted covering.

Problem 7. [10 pts] Prove that every map from the 2-disc to itself has a fixed point.

Problem 8. [20 pts] Compute the fundamental group of the real projective plane with one point removed.

Problem 9. [20 pts] Let \(X(\neq \emptyset) \) be a compact Hausdorff space, and let \(F : X \to X \) be a continuous map. Let \(A = \bigcap_n F^n(X) \). Show that:

(1) \(A \) is closed.

(2) \(A \) is compact.

(3) \(F(A) \subseteq A \).