Problem 3, Page 100
Show that if \(A \) is closed in \(X \) and \(B \) is closed in \(Y \), then \(A \times B \) is closed in \(X \times Y \).

Proof: Since \(A, B \) are closed in \(X, Y \) respectively, \(X - A \) and \(Y - B \) are open in \(X, Y \) respectively. Then \((X - A) \times Y, X \times (Y - B)\) are open in \(X \times Y \). We have \(X \times Y - A \times B = (X - A) \times Y \cup X \times (Y - B) \) are open. Thus \(A \times B \) is closed in \(X \times Y \).

Problem 6, Page 101
Let \(A, B \) and \(A_\alpha \) denote subsets of a space \(X \). Prove following:
(a) If \(A \subset B \), then \(A \subset B \).
(b) \(A \cup B = A \cup B \).
(c) \(\bigcup A_\alpha \supset \bigcup A_\alpha \).

Proof: (a) Since \(A \subset B \) and \(B \subset B \), we have \(A \subset B \). Since \(B \) is closed and \(A \) is the smallest closed set containing \(A \), we have \(A \subset B \).
(b) Since \(A \subset B \) and \(B \subset B \), we have \(A \cup B \subset A \cup B \). Similarly, \(A \cup B \subset A \cup B \). Therefore, \(A \cup B \subset A \cup B \).
(c) Since \(A_\alpha \subset \bigcup A_\alpha \) and \(\bigcup A_\alpha \) is closed, we have \(A_\alpha \subset \bigcup A_\alpha \). Thus \(\bigcup A_\alpha \subset \bigcup A_\alpha \). Example: let \(A_i = \{1/i\} \), then \(A_i = A_i \) and \(\bigcup A_i = \bigcup A_i \). But \(\bigcup A_i = \bigcup A_i \cup \{0\} \). The equality fails in this case.

Problem 10, Page 101
Show that every order topology is Hausdorff.

Proof: Suppose \(X \) is a space with order topology. Let \(a \neq b \in X \). Without loss of generality, we assume \(a < b \).

1. If there is no \(c \), such that \(a < c < b \). Take \(A = \{x \in X \mid x < b\} \) and \(B = \{y \in X \mid y > a\} \). By the definition of order topology, \(A, B \) are open in \(X \). It is easy to see \(A \cap B = \emptyset \).
2. If there is \(c \) such that \(a < c < b \). Take \(A = \{x \in X \mid x < c\} \) and \(B = \{y \in X \mid y > c\} \). By the definition of order topology, \(A, B \) are open in \(X \). It is easy to see \(A \cap B = \emptyset \).

Above all, \(X \) is a Hausdorff space.

Problem 11, Page 101
Show that the product of two Hausdorff space is a Hausdorff space.

Proof: Let \(X, Y \) be two Hausdorff topological space and \(X \times Y \) be the product space. Suppose \((x_1, y_1), (x_2, y_2)\) are two different points in \(X \times Y \). Then \(x_1 \neq x_2 \) or \(y_1 \neq y_2 \). Without loss of generality, assume \(x_1 \neq x_2 \). Then since \(X \) is a Hausdorff space, we can choose two open sets \(V_1, V_2 \subset X \), such that \(x_1 \in V_1, x_2 \in V_2 \)
Problem 17, Page 101
Consider the lower limit topology on \mathbb{R} and the topology given by the basis C of Exercise 8 of §13. Determine the closures of the intervals $A = (0, \sqrt{2})$ and $B = (\sqrt{2}, 3)$ in this two topologies.

Proof:
Case 1: Lower limit topology.
For any open set U containing 0, there is a ϵ such that $[0, \epsilon) \subset U$ by the definition of Lower limit topology. Then we have $\emptyset \neq [0, \epsilon) \cap (0, \sqrt{2}) \subset U \cap (0, \sqrt{2})$. Thus $0 \in \overline{A}$. We have that $[0, \sqrt{2}) \subset \overline{A}$. Since $(-\infty, 0) = \bigcup_{n \in \mathbb{N}} \left(-n, 0\right)$, $n \in \mathbb{N}$ and $[\sqrt{2}, \infty)$ are open, $\mathbb{R} = [0, \sqrt{2}) = (-\infty, 0) \cup [\sqrt{2}, \infty)$ is open. Thus $[0, \sqrt{2})$ is closed. Above all, we have $[0, \sqrt{2}) = \overline{A}$. Use the exactly same discussion as above, we have $\overline{B} = [\sqrt{2}, 3)$.

Case 2: C-basis topology.
For any open set U containing 0, there is a $\epsilon \in \mathbb{Q}$ such that $[0, \epsilon) \subset U$ by the definition of C-basis topology. Then we have $\emptyset \neq [0, \epsilon) \cap (0, \sqrt{2}) \subset U \cap (0, \sqrt{2})$. Thus $0 \in \overline{A}$. For any open set U containing $\sqrt{2}$, there is an interval $[a, b) \subset U$ containing $\sqrt{2}$ where $a, b \in \mathbb{Q}$ by the definition of C-basis topology. Then we have $\emptyset \neq [a, b) \cap (0, \sqrt{2}) \subset U \cap (0, \sqrt{2})$. Thus $\sqrt{2} \in \overline{A}$. Above all, we have $[0, \sqrt{2}] \subset \overline{B}$. Since $(-\infty, 0) = \bigcup_{n \in \mathbb{N}} \left(-n, 0\right)$, $n \in \mathbb{N}$ and $(\sqrt{2}, \infty) = \bigcup_{n \in \mathbb{N}} \left(a_n, \infty\right)$ are open where $\{a_n\} \subset \mathbb{Q}$ and $a_n \to \sqrt{2}$, we have $[0, \sqrt{2}]$ is closed. Thus $\overline{A} = [0, \sqrt{2}]$.

For any open set U containing $\sqrt{2}$, there is an interval $[a, b) \subset U$ containing $\sqrt{2}$ where $a, b \in \mathbb{Q}$ by the definition of C-basis topology. Then we have $\emptyset \neq [a, b) \cap (\sqrt{2}, 3) \subset U \cap (\sqrt{2}, 3)$. Thus $\sqrt{2} \in \overline{A}$. Therefore, $(\sqrt{2}, 3) \subset \overline{B}$. Since $[3, \infty)$ and $(-\infty, \sqrt{2}) = \bigcup_{n \in \mathbb{N}} \left(-\infty, a_n\right)$ are open, where $\{a_n\} \subset \mathbb{Q}$ and $a_n \to \sqrt{2}$, we have $[\sqrt{2}, 3)$ is closed. Thus $\overline{B} = [\sqrt{2}, 3)$.

Problem 18, Page 101
Determine the closures of the following subsets of the ordered square:

$A = \{(1/n) \times 0 \mid n \in \mathbb{Z}_+\}$
$B = \{(1 - 1/n) \times (1/2) \mid n \in \mathbb{Z}_+\}$
$C = \{x \times 0 \mid 0 < x < 1\}$
$D = \{x \times (1/2) \mid 0 < x < 1\}$
$E = \{(1/2) \times y \mid 0 < y < 1\}$

Proof:
$\overline{A} = A \cup \{0 \times 1\}$
$\overline{B} = B \cup \{1 \times 0\}$
We prove that if

\[E = C \cup [0, 1] \times 1 \]
\[D = D \cup (0, 1) \times 0 \cup [0, 1] \times 1 \]
\[F = E \cup \{1/2 \times 0, 1/2 \times 1\} \]

Problem 1, Page 111
Prove that for functions \(f : \mathbb{R} \rightarrow \mathbb{R} \), the \(\epsilon - \delta \) definition of the continuity implies the open set definition.

Proof: We need to show that if \(f \) is continuous in sense of \(\epsilon - \delta \) definition, then it is continuous in sense of the open set definition.
If \(f \) is continuous in sense of \(\epsilon - \delta \) definition, then we have for any point \(x \in \mathbb{R} \) and \(\delta > 0 \), there is an \(\epsilon > 0 \) such that for any \(y \in (x-\epsilon, x+\epsilon) \) \(f(y) \in (f(x)-\delta, f(x)+\delta) \), i.e. \((x-\epsilon, x+\epsilon) \subset f^{-1}((f(x)-\delta, f(x)+\delta)) \). Now we need to show that for any open set \(U \subset \mathbb{R} \), \(f^{-1}(U) \) is open in \(\mathbb{R} \). Since \(U \) is open, for any \(f(x) \in U \) we have an \(\delta_x \) such that \((f(x)-\delta_x, f(x)+\delta_x) \subset U \). Since \(f \) is continuous in sense of \(\epsilon - \delta \) definition, we have that there is an \(\epsilon_x \) such that \((x-\epsilon_x, x+\epsilon_x) \subset f^{-1}(U) \). Therefore, by exercise 1 in homework 1, we have \(f^{-1}(U) \) is open. Thus \(f \) is continuous in sense of the open set definition.

Problem 2, Page 111
Suppose that \(f : X \rightarrow Y \) is continuous. If \(x \) is a limit point of the subset \(A \) of \(X \), is it necessarily true that \(f(x) \) is a limit point of \(f(A) \).

Proof: No.
Let \(X = (0, 1) \subset \mathbb{R} \) with usual topology. And \(Y = \{0, 1\} \) discrete topology. Let \(f(x) = 0 \) for all \(x \). Then \(f(0) = 0 \) but \(f(0) \) is not the limit point of \(f([0, 1]) \).

Problem 8, Page 111
Let \(Y \) be an ordered set in the order topology. Let \(f, g : X \rightarrow Y \) be continuous.
(a)Show that the set \(\{x \mid f(x) \leq g(x)\} \) is closed in \(X \).
(b)Let \(h : X \rightarrow Y \) be the function
\[h(x) = \min\{f(x), g(x)\} \]
Show that \(h \) is continuous.

Proof:

a) We prove that \(\{x : f(x) > g(x)\} = X - \{x : f(x) \leq g(x)\} \) is open in \(X \).
Given \(x_0 \in \{x : f(x) > g(x)\} \)
1) If \(\{y : f(x_0) > y > g(x_0)\} \) is not empty, then choose \(y_0 \in \{y : f(x_0) > y > g(x_0)\} \). Thus, the set \(U_1 = f^{-1}((y_0, \infty)) \cap g^{-1}((-\infty, y_0)) \) contains \(x_0 \). Since \(f \) and \(g \) are both continuous, \(U_1 \) is open in \(X \). For \(\forall x \in U_1 \), we have \(f(x) > y_0 > g(x) \).
 So \(U_1 \subset \{x : f(x) > g(x)\} \)
2) If \(\{y : f(x_0) > y > g(x_0)\} \) is empty.
Set $U_2 = f^{-1}((g(x_0), \infty)) \cap g^{-1}((-\infty, f(x_0)))$. So U_2 is an open set in X, containing x_0. For $\forall x \in U_2$, $f(x) > g(x_0)$ and $g(x) < f(x_0)$. Since \{\{y : f(x_0) > y > g(x_0)\}\} is empty, we have $f(x) \geq f(x_0)$. It follows $f(x) \geq g(x)$. So $x \in \{x : f(x) > g(x)\}$. Therefore, $\{x : f(x) > g(x)\}$ is open in X. So $x | f(x) \leq g(x)$ is closed in X.

b) Set $X_1 = \{x | f(x) \geq g(x)\}$, $X_2 = \{x | f(x) \leq g(x)\}$. So $X = X_1 \cup X_2$. By the conclusion of Part a, we have both X_1 and X_2 are closed. Moreover, $h|_{X_1} = g(x)$ and $h|_{X_2} = f(x)$, both of which are continuous. Additionally, $X_1 \cap X_2 = \{x | f(x) = g(x)\}$, so $h|_{X_1 \cap X_2} = g|_{X_1 \cap X_2}$. By pasting Lemma, h is continuous.

Problem 10, Page 111

Let $f : A \rightarrow B$ and $g : C \rightarrow D$ be continuous functions. Let us define a map $f \times g : A \times B \rightarrow C \times D$ by equation:

$$(f \times g)(a \times c) = f(a) \times g(c)$$

Show that $f \times g$ is continuous.

Proof: Given $U \times V \subset B \times D$, where U is open in B and V is open in D. Then $(f \times g)^{-1}(U \times V) = \{(a, c) \in A \times C \mid f(a) \in U \text{ and } g(c) \in V\}$. That is, $(f \times g)^{-1}(U \times V) = \{(a, c) \in A \times C \mid a \in f^{-1}(U) \text{ and } c \in g^{-1}(V)\}$. So $(f \times g)^{-1}(U \times V) = f^{-1}(U) \times g^{-1}(V)$. Since both f and g are continuous, we have $f^{-1}(U)$ and $g^{-1}(V)$ are both open. So $f^{-1}(U) \times g^{-1}(V)$ are open in $A \times C$. So $f \times g$ is continuous.

Problem 12, Page 111

Let $F : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by the equation

$$F(x \times y) = \begin{cases} xy/(x^2 + y^2), & x \times y \neq 0 \times 0, \\ 0, & x \times y = 0 \times 0. \end{cases}$$

(a) Show that F is continuous in each variable separately.

(b) Compute the function $g : \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x) = F(x \times y)$.

(c) Show that F is not continuous.

Proof:

a) Fix $y_0 \in \mathbb{R}$. Prove that $F(x, y_0)$ as a map from $\mathbb{R} \rightarrow \mathbb{R}$ is continuous.

- If $y_0 = 0$ then $F(x, y_0) = 0$ for $\forall x \in \mathbb{R}$. So $F(x, y_0)$ is continuous.

- If $y_0 \neq 0$, then $F(x, y_0) = \frac{xy_0}{x^2 + y_0^2}$ for $\forall x \in \mathbb{R}$. Since xy_0 and $x^2 + y_0^2$ are both continuous in \mathbb{R}, we have $F(x, y_0) = \frac{xy_0}{x^2 + y_0^2}$ is continuous. Similarly, if fix $x_0 \in \mathbb{R}$. $F(x_0, y)$ as a map from \mathbb{R} to \mathbb{R} is continuous as well.

Therefore, F is continuous in each variable separately.
b) As $y = x$

\[g(x) = F(x, y) = \begin{cases}
\frac{1}{2} & x \neq 0 \\
0 & x = 0.
\end{cases} \]

c) By the part b, we have along line $x = y$, $F(x, y)$ is not continuous at $(0, 0)$. So $F(x, y)$ is not continuous at $(0, 0)$.