Problems in HW 2.

Problem 1.3.5:
It is given that \(a \leq b \forall a \in A \), \(b \in B \).

\[\therefore \text{Any} \ b \in B \text{ is an upper bound for } A. \]

\[\therefore A \text{ has a lub. Which is also the sup } A. \text{ Thus} \sup A \leq b \forall b \in B. \]

\[\sup A < \infty, \text{ and hence } B \text{ has a lower bound, namely } \sup A. \text{ Therefore, it has a greatest lower bound. This glb is inf } B. \]

Thus \(\sup A \leq \inf B \).

Problem 1.3.10:
If \(\{ x_n \} = \{-1, 0, 1, 2, 3, \ldots \} \)

and \(\{ y_n \} = \{-2, -1, 0, 1, 2, \ldots \} \)

then

\[\{ x_n y_n \} = \{ 2, 0, 0, 2, 6, \ldots \} \]

which is not monotone.

Problem 1.3.12: \(x_n = (-1)^n / n \). The full segment is \(\{ x_n \} = \{-1, 1/2, -1/3, 1/4, \ldots \} \).

\[\therefore s_1 = 1/2, \ s_2 = 1/2, \ s_3 = 1/4, \ s_4 = 1/4, \ldots \]

et cetera.

where \(s_n = \sup \{ x_n, x_{n+1}, \ldots \} \).

Clearly, \(s_{2n-1} = 1/2n \) and \(s_{2n} = 1/2n \) for all \(n \).

We know that \(\{ s_n \} \) is always a
decreasing sequence. In this case, it is also bounded. \(n \to \infty \) \(\implies \lim s_n = \inf s_n \).

Clearly, \(\lim s_n = 0 \) \(\implies \inf s_n = 0 \).

i.e. \(\lim \sup x_n = 0 \).

Let us consider \(\{ i_n \} \).

\[i_1 = -1, \quad i_2 = -\frac{1}{3}, \quad i_3 = -\frac{1}{3}, \text{ etc.} \]

In general,

\[i_{2n} = -\frac{1}{2n+1}; \quad i_{2n+1} = -\frac{1}{2n+1} \]

\(\forall n \geq 1 \).

We know that \(\{ i_n \} \) is always an increasing sequence. Here \(\{ i_n \} \) is also bounded. Therefore,

\[\implies \lim i_n = \sup i_n. \]

\(\lim i_n = 0 \) in this case. \(\implies \sup i_n = 0 \).

\(\forall n \to \infty \)

i.e. \(\lim \inf i_n = 0. \)

1.3.15: \(\implies \) part: Assume that \(x_n \to \infty \).

Then given any \(M > 0, \exists N \in \mathbb{N} \) such that \(\forall n > N, x_n > M \). \(\text{(1)} \).

\[\forall n \geq M \implies n \geq N. \]

\(\{ s_n \} \) is a decreasing sequence.

\[\forall n \geq M \implies n \geq 1 \text{ since } s_1 > s_2 > s_3 \geq s_n \]
\[\inf_{n} \alpha_{n} \geq M \quad \text{i.e.} \quad \limsup_{n \to \infty} \alpha_{n} \geq M. \]

This is so for all \(M > 0 \).

\[\limsup_{n \to \infty} \alpha_{n} = \infty. \]

Also from (1), we get \(\inf_{n} \geq M + n \geq N \).

\[\sup_{n} \inf_{\infty} = \infty. \quad \text{This is so for any } M. \]

i.e. \(\liminf_{n \to \infty} \alpha_{n} = \infty. \)

\[\leq \quad \text{part: Assume that } \liminf_{n \to \infty} \alpha_{n} = \infty. \]

Then

\[\sup_{n} \inf_{\infty} = \infty. \quad \text{i.e. } \{i_{n}\} \text{ is not bounded above.} \]

\[\therefore \text{Given any } M > 0, \exists N \Rightarrow i_{N} > M. \]

\[\inf_{n} \geq M + n \geq N \quad \text{since } \{i_{n}\} \text{ is an increasing sequence.} \]

\[\text{Note that } \alpha_{n} \geq i_{n} + n. \]

\[\therefore \alpha_{n} \geq M + n \geq N. \]

i.e. \(\alpha_{n} \) diverges to \(\infty \). \(\square \).