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Abstract. We study the perturbation of the two-dimensional stochastic Navier-Stokes equation by a
Hilbert-space-valued fractional Brownian noise. Each Hilbert component is a scalar fractional Brown-
ian noise in time, with a common Hurst parameter H and a specific intensity. Because the noise is
additive, simple Wiener-type integrals are suffi cient for properly defining the problem. It is resolved by
separating it into a deterministic nonlinear PDE, and a linear stochastic PDE. Existence and unique-
ness of mild solutions are established under suitable conditions on the noise intensities for all Hurst
parameter values. Almost surely, the solution’s paths are shown to be quartically integrable in time
and space. Whether this integrability extends to the random parameter is an open question. An
extension to a multifractal model is given.
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1. Introduction

The stochastic Navier-Stokes system has been an important and active area of research, and has received
considerable attention in recent years. The introduction of randomness in the Navier-Stokes equations
arises from a need to understand (i) the velocity fluctuations observed in wind tunnels under identical
experimental conditions, and (ii) the onset of turbulence. Random body forces also arise as control
terms, or from random disturbances such as structural vibrations that act on the fluid. It was originally
the idea of Kolmogorov (see Vishik and Fursikov [18]) to introduce white noise in the Navier-Stokes
system in order to obtain an invariant measure for the system.

Of late, stochasticians have embraced this white-noise forcing for the 2-D Navier-Stokes system (see [4]
and references therein), and in certain inertial scales, this is justifiable: in [6], Kuppiainen has shown
that it is reasonable to model the uncertainty in velocity profiles by white noise. The independence of
increments inherent in white noise is key to all these studies: this has been confirmed by the discovery
and analysis of the solution’s Markov semigroup (again see references listed in [4]). The only published
article we have found in which there is a deviation from white noise for stochastic Navier-Stokes equa-
tions is [19]: a Levy process is used, but this is still confined to the realm of processes with independent
increments.

In this paper, we study a case where the time-scaling in the random forces is not related in the usual
manner to the state-space scaling, and where random forcing does not renew dynamically at every
instant, so that white noise is not appropriate. We consider the stochastic Navier-Stokes equation
(NSE) on a bounded open domain G in R2, with an infinite-dimensional fractional Brownian noise
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WH . Writing it in the abstract evolution setup, this is:

∂u

∂t
+ νAu + B(u) = Φ

dWH(t)

dt
(1.1)

with u(t, x) = 0 for all x ∈ ∂G, with u(0, x) = u0(x) for all x ∈ G, with A being the so-called Stokes
operator, and B (u) = (u · ∇)u. In the next section we will define suitable Hilbert spaces in which to
find mild-sense (evolution) solutions of this equation; we will consider incompressible flows with no-slip
condition at the boundary. The process WH =

{
WH (t, x) : t ≥ 0;x ∈ G

}
is a space-time fractional

Brownian motion (fBm) in a suitable Hilbert space of functions, implying that for fixed space parameter
x, it is a scalar fBm with Hurst parameter H ∈ (0, 1). Tindel, Tudor and Viens [16] can be consulted
for information on this type of noise in a square-integrable stochastic evolution context; the noise WH

is defined formally below in Section 3.2.

Fractional Brownian motion is not a semimartingale, nor a Markov process, and its increments have
medium- or long-range dependence. The usual methods for solving stochastic Navier-Stokes equations
such as energy equality, local monotonicity, Markov semigroups, and martingale problems, do not apply
to the present system. In addition to noise memory length, fBm is self-similar with parameter H; when
combining this with possible scaling in the space parameter, infinite-dimensional noises with prescribed
multiscale or other regularity properties can be realized (see [17] for details).

The theory of stochastic integration with respect to fBm is in sharp contrast to the Itô theory of
integrals; it has been developed by several authors (see Nualart [12, Chapter 5] and the references
therein). However, infinite-dimensional equations with additive noise, even ones with non-linearities
such as the one we consider here, can typically be expressed in a mild sense, making the required
integration theory rather elementary, as we will see in Section 3.1. In particular, we certainly bypass
the need for the noise term to be a semimartingale.

Stochastic partial differential equations of parabolic type perturbed by an fBm noise have been studied
in recent years by several authors (in addition to [16], see Maslowski and Schmalfuss [8], Nualart [10],
[11], and the references therein). A major question solved in these works is to identify sharp suffi cient
conditions on the noise coeffi cient Φ that guarantee the existence and uniqueness of solutions.

The Navier-Stokes system is quite distinct from all these works since it is a nonlinear system with an
unbounded, non-Lipschitz term B. Because of this, calculations in L2 (Ω), which are typical of the
above works (see [16]), are insuffi cient in our case. A major quantitative difference between our system
and some mainstream problems such as heat equations is its linear second-order operator A, which,
because it is restricted to a divergence-free domain, has unbounded eigenfunctions.

In this article, we take advantage of the fact that the noise term in (1.1) is additive; using a fixed point
argument, the existence and uniqueness of a mild solution is established by combining a solution of the
non-linear equation with no noise, and a solution of the stochastic equation without the non-linearity
using properties of the semigroup of the Stokes operator. The question of finding conditions on Φ
guaranteeing existence and uniqueness is dealt with in the linear stochastic portion of the analysis.
These conditions are fully explicit, insofar as they depend in an elementary way on the eigenstructure
of the Stokes operator. Our main result (Theorem 5.1 on page 12) states that under these conditions,
almost-surely w.r.t. the randomness ofWH , there is a unique solution in L4 ([0, T ]×G) to the stochastic
Navier-Stokes system.
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Our method leaves open the question of whether the solution has any moment with respect to WH’s
randomness. We conjecture that the solution is square-integrable w.r.t WH , but no more (see for
instance the results in the white-noise case [9]). This issue appears to be non-trivial, and is beyond the
scope of this concise article; we will investigate it, and its connections to path regularity of the solution,
in a separate paper.

The organization of the paper is as follows. In Section 2, the evolution equation setup of the Navier-
Stokes equations is presented. The fractional Brownian motion and its basic integration theory are
briefly presented in Section 3. The L4 (Ω)-integrability of a convolution Wiener integral is proved in
Section 4 under suitable conditions on the noise coeffi cient. The solvability of the stochastic Navier-
Stokes system is proved in the final Section 5.

We are indebted to a referee who read our paper carefully and made important comments which resulted
in improvements.

2. Navier-Stokes equations

In this section, we express the NSE using appropriate function spaces. Let G be a bounded open
domain in R2 with a smooth boundary ∂G. For t ∈ [0, T ], consider the stochastic NSE for a viscous
incompressible flow with no-slip condition at the boundary:

∂u

∂t
+ (u · ∇)u− ν∆u +∇p = Φ

dWH(t)

dt
(2.1)

and
∇ · u = 0 (2.2)

with initial and boundary data

u(t, x) = 0 ∀x ∈ ∂G,∀t ≥ 0

u(0, x) = u0(x) ∀ x ∈ G.
In the above, p denotes the pressure field and is a scalar-valued function. The deterministic noise coef-
ficient Φ is assumed to be a (possibly generalized) operator that is deterministic and independent of t.
This Φ is defined below. The cylindrical fBm WH is constructed in Section 3. These modeling assump-
tions ensure that the driving noise has the power-decay memory length and self-similarity properties of
fBm, in the parameter t.

2.1. Functional analysis background for the 2-D Navier-Stokes equation. To study the sto-
chastic Navier-Stokes system (2.1), (2.2), we first write these stochastic partial differential equations in
the abstract (variational, or evolution) form on suitable function spaces. For the functional analytic
set up and the mathematical details, one can consult Ladyzhenskaya [7] and Temam [15]. Let U be the
space of 2-dimensional vector functions u on G which are infinitely differentiable with compact support
strictly contained in G, satisfying ∇ · u = 0. For any fixed α ∈ R, we can define the restriction of the
standard Sobolev space Wα,2 to those divergence-free 2-vectors by letting Vα denote the closure of U
in Wα,2.

We will use the shorthand notation H := V0 and V := V1. We thus define the space H to be the
closure of U in L2, and the space V to be the closure of U in W 1,2. The notation L2(G), W 1,2

0 (G), etc.
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denotes 2-vector functions on G with each coordinate in the scalar versions of L2(G), W 1,2
0 (G), etc. For

instance, we simply have

W 1,2
0 (G) = {u : ui ∈ L2(G,R) and ∇ui ∈ L2(G,R2) for i = 1, 2, and u|∂G = 0}.

Denoting by n the outward normal on ∂G, the following characterizations of the spaces H and V are
well-known, and will be convenient:

H = {u ∈ L2(G);∇ · u = 0, u · n|∂G = 0},
V = {u ∈W 1,2

0 (G) : ∇ · u = 0}.

For proofs of the above characterizations, one can refer to Temam [15], Theorems 1.4 and 1.6, pages
11-13. Here, we have used derivatives in the sense of distributions in G, and divergence of u belongs to
L2(G). Hence, the elements of H can be evaluated at x ∈ G.

Let V ′ be the dual of V. We will denote the norm in H by | · |, and the inner product in H by (·, ·). We
have the dense, continuous and compact embedding (see [15]):

V ⊂→ H = H
′
⊂→ V

′
.

LetD(A) = W 2,2(G)∩V. Define the linear operatorA : D(A)→ H byAu = −∆u. Since V = D(A1/2),
we can endow V with the norm ‖u‖ =

∣∣A1/2u
∣∣. The V-norm is equivalent to the W 1,2-norm by the

Poincaré inequality. From now on, ‖·‖ will denote the V-norm. The pairing between V and its dual V ′
is denoted by 〈·, ·〉. The operator A is known as the Stokes operator and is positive, self-adjoint with
compact resolvent. The eigenvalues of A will be denoted by 0 < λ1 < λ2 ≤ · · · , and the corresponding
eigenfunctions by e1, e2, · · · . The eigenfunctions form a complete orthonormal system for H. It is known
that the eigenfunctions, {ej}, are not bounded uniformly in j, and that the eigenvalues grow linearly.
We record the corresponding quantitative facts here (see [7]).

Lemma 2.1. There are values c, c′ > 0 such that

lim
j→∞

j/λj = c > 0 and ‖ej‖L4(G) ≤ c
′λ

1/4
j for all j.

Define b(·, ·, ·) : V × V × V 7→ R by

b(u,v,w) =

2∑
i,j=1

∫
G

ui (x)
∂vj
∂xi

(x)wj (x) dx.

This allows us to define B : V × V 7→ V ′ as the continuous bilinear operator such that

〈B(u,v); w〉 = b(u,v,w) for all u,v,w ∈ V.

Note that b(u,v,w) = −b(u,w,v). We will denote B(u,u) by B(u). This B(u) satisfies the following
estimate:

‖B(u)‖V′ ≤ 2 |u| ||u|| (2.3)
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2.2. The 2-D stochastic Navier-Stokes equation. We assume that u0 is H-valued. Let Π denote
the Leray projection of L2(G) into H. By applying this projection to each term of the Navier-Stokes sys-
tem, and invoking the Leray decomposition of L2(G) into divergence free and irrotational components,
we can write the system (2.1) and (2.2) as

du (t) + [νA u (t) + B(u (t))] dt = Φ dWH(t). (2.4)

This is to be understood in the integral form u (t) = u (0)−ν
∫ t

0
A u (s) ds−

∫ t
0

B(u (s))ds+
∫ t

0
ΦdWH(s).

Here Φ is a (possibly generalized-function-valued) linear operator from H to H. We can define it by its
action on the complete orthonormal basis {en} in H mentioned above, formed by the eigenfunctions of
the Stokes operator A on G: for any n = 1, 2, · · ·

Φen =

∞∑
n=1

(Φen, ej) ej (·) .

Assuming Φ is non-random and not dependent on time, the expression
∫ t

0
ΦdWH(s) should simply be

given as ΦWH (t), whose interpretation as the action of Φ on the cylindrical WH is straightforward.
However, a bit more care must be taken because (2.4) should be written in its “semigroup”or “evolution”
form.

To write (2.4) in its evolution form, we will need S (t) the semigroup generated by A. Assuming for
simplicity that the diffusion constant ν = 1, the stochastic NSE in H then writes as

u (t) = S (t) u (0)−
∫ t

0

S (t− s) B(u (s))ds+

∫ t

0

[S (t− s) Φ] dWH(s). (2.5)

This means we only need to explain how to define integrals of the form
∫ t

0
φ (s) dWH(s), where φ is a

suitable non-random integrand. While the strategy to construct this type of integral is well-known, we
detail it in the next section for completeness, along with some general information about fBm.

3. Fractional Brownian motion

The calligraphic letter H is used for the Stokes’operator’s Hilbert space, and is not to be confused
with the letter H, the the so-called Hurst or self-similarity parameter for our fBm, which is a number
in (0, 1).

Definition 3.1. A continuous centered Gaussian process {βHt } is called a fractional Brownian motion
with Hurst parameter H ∈ (0, 1) if its covariance function is given by

E
[(
βHt β

H
s

)]
= RH(t, s) :=

1

2

(
s2H + t2H − |t− s|2H

)
. (3.1)

It is well-known that {βHt } is not a semimartingale, and that it exhibits medium or long-range memory.
However, the fBm with H = 1/2 coincides with the standard Brownian motion (a.k.a the Wiener
process). Stochastic integration with respect to fBm cannot be treated using the same martingale tools
as for Itô integration with respect to the Wiener process.
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3.1. Gaussian integral with respect to fBm. Fortunately for our purposes, the distinctions between
various ways of defining stochastic integrals for fBm will not be relevant, because, as seen in (2.5), we
only need to explain how to integrate deterministic functions w.r.t. an fBm βH (albeit perhaps an
infnite-dimensional one).

All Riemann-sum or Lebesgue-Stieltjes-type approximation constructions of integrals of deterministic
functions against fBm are essentially equivalent. The following is a traditional construction. Let S be
the set of all step functions on [0, T ]. For a step function φ =

∑n−1
0 aj1(tj ,tj+1] we define∫ T

0

φ(s)dβHs :=

n−1∑
j=0

aj(β
H
tj+1 − β

H
tj ).

Let K be the Reproducing Kernel Hilbert Space of the process βH . In other words, K is the closure of
S w.r.t. the inner product 〈

1[0,t], 1[0,s]

〉
K := RH(t, s).

Then the map 1[0,t] 7→ βHt extends to an isometry between K and the L2(Ω)-closure of the linear span
of {βHt : t ∈ [0, T ]}. This extension is called the Wiener integral w.r.t. β, and can be denoted by

φ 7→
∫ T

0

φ (s) dβH (s) ∈ L2 (Ω) .

Note that the Wiener integral of any function φ ∈ K w.r.t. βH is a centered Gaussian random variable,
and that for φ, ψ ∈ K we have that

∫ T
0
φdβH and

∫ T
0
ψdβH are jointly Gaussian with covariance equal

to 〈φ, ψ〉K, thereby extending the Wiener integral for standard Brownian motion.

There is a connection between the standard Wiener process and fractional Brownian motions. One
begins by noting that RH is, by definition, a non-negative definite kernel, which means that there exists
a kernel function KH , the “square root”of RH , such that RH(t, s) =

∫ t∧s
0

KH(t, u)KH(s, u)du. In fact,
its expression is explicit (see [12]):

KH(t, s) = cH

(
t

s

)H−1/2

(t− s)H−1/2
+ s1/2−HF

(
t

s

)
where F (z) = cH(1/2−H)

∫ z−1

0
rH−3/2

(
1− (1 + r)H−1/2

)
dr. Using these facts, one proves that there

exists a standard Brownian motion W such that βHt =
∫ t

0
KH(t, s)dWs. In the next paragraph, we will

simply write K for KH for notational simplicity.

For s < T , if we define the adjoint operator K∗T on a possible subset of L
2([0, T ]) by

(K∗Tφ)(s) = K(T, s)φ(s) +

∫ T

s

(φ(r)− φ(s))
∂K

∂r
(r, s)dr;

a result of Alos, Mazet, Nualart [1] then guarantees that K∗T is an isometry between K and L2[0, T ], and
that the Wiener integral w.r.t βH can be represented in the following convenient way: for all φ ∈ K,
K∗Tφ ∈ L2[0, T ] and ∫ T

0

φ(s)dβH(s) =

∫ T

0

(K∗Tφ)(s)dWs

where the last integral is a Wiener integral w.r.t. standard Brownian motion. It turns out that when
H > 1/2, K contains distributions (generalized functions), although we will not need for K∗ to act so



STOCHASTIC NAVIER-STOKES EQUATIONS WITH FBM NOISE 7

broadly in our applications. It is easy to check that K∗T [φ 1[0,t]] = K∗t [φ]1[0,t]. Therefore,∫ t

0

φ(s)dβH(s) =

∫ t

0

(K∗t φ)(s)dWs. (3.2)

3.2. Cylindrical fBm. As announced at the end of the Introduction, we now only need to define
integrals of the form

∫ t
0
φ(s)dWH(s) where WH is a cylindrical H-valued fBm and φ is a deterministic,

Borel-measurable function on [0, T ] taking values in the space L of linear operators from H to H. The
process WH is an infinite-dimensional stochastic process with an fBm behavior in time. To define WH ,
take any complete orthonormal basis {hn} in H, and

{
βHn
}
n
, a family of IID scalar fBm’s. Define

WH(t) :=

∞∑
j=1

hn β
H
n (t).

Since the definition does not depend on the choice of the basis, we will take the complete orthonormal
basis {en} in H formed by the eigenfunctions of the Stokes operator A on G, and set

WH(t) :=

∞∑
j=1

en β
H
n (t).

For every t, our random vector WH (t) is a generalized member of L2 (Ω,H), since its norm is infinite,
but it will be easy to guarantee that an integral w.r.t. WH will be in that space.

Indeed, let {φ (s) : s ∈ [0, T ]} be a deterministic L-valued measurable function (for every s, φ (s) ∈ L).
We can write φ (s) en =

∑
m (φ (s) en, em) em, and this is a deterministic measurable function on [0, T ].

We may now define∫ t

0

φ (s) dWH(s) :=

∞∑
n=1

∫ t

0

φ (s) en dβ
H
n (s)

=

∞∑
n=1

∞∑
j=1

ej

∫ t

0

(φ (s) en, ej) dβ
H
n (s)

=

∞∑
n=1

∞∑
j=1

ej

∫ t

0

(K∗t ((φ (·) en, ej))) (s) dWn(s)

where the third line follows from the convenient representation (3.2), in which Wn is the standard
Brownian motion used to represent βHn , provided the last expression exists as a member of L

2 (Ω,H).

Consider the last expression with the summations interchanged. Then, for each fixed j, we obtain
the element ej ∈ H multiplied by a series of independent centered Gaussian r.v.’s. This observation
provides us immediately with a necessary and suffi cient condition for the above integral to exist: it is
a Gaussian random element in L2 (Ω,H) if and only if

E

[∣∣∣∣∫ t

0

φ (s) dWH(s)

∣∣∣∣2
]

= E

 ∞∑
j=1

∣∣∣∣∣
∞∑
n=1

∫ t

0

(K∗t ((φ (·) en, ej))) (s) dWn(s)

∣∣∣∣∣
2


=

∞∑
j=1

∞∑
n=1

E

[∣∣∣∣∫ t

0

(K∗t ((φ (·) en, ej))) (s) dWn(s)

∣∣∣∣2
]
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=

∞∑
j=1

∞∑
n=1

∫ t

0

|(K∗t ((φ (·) en, ej))) (s) |2 ds <∞. (3.3)

4. Quartic integrability of the convolution integral

In equation (2.5), we announced that we only need to be able to define the convolution integral z (t) =∫ t
0

[S (t− s) Φ] dWH(s) where S (t) is the semigroup of the Stokes operator A, and Φ is a bounded
linear operator from H to H. In other words, we apply the result of the end of the previous section with
the function φ (s) = S(t− s)Φ. Using the eigenstructure of A and the Fubini theorem, we thus have

z(t) :=

∫ t

0

S(t− s)ΦdWH
s =

∞∑
n=1

∫ t

0

S(t− s)ΦendβHn (s)

=

∫ t

0

∞∑
n=1

∞∑
j=1

(Φen, ej)S(t− s)ejdβHn (s)

=

∞∑
j=1

∞∑
n=1

(Φen, ej)

∫ t

0

e−(t−s)λjdβHn (s)ej (4.1)

It is elementary to check that if Az happens to be defined as an H-valued function on [0, T ], then z is
the solution of

z (t)− z (0) +

∫ t

0

Az (s) ds = ΦWH (t) (4.2)

with z(0) = 0. This justifies our claim that z in (4.1) is the mild- (evolution-) sense solution to the
stochastic evolution equation (4.2), modulo finiteness of the expression in (3.3), even ifAz is not defined,
i.e. even if z does not take values in the domain of A.

We now compute the fourth moments of z in order to see under what conditions on Φ we may have

z ∈ L4(Ω× [0, T ]×G).

This restriction will be needed for our main theorem, when we construct the evolution solution to the
full NSE (2.5). Let H ∈ (0, 1). Recall that K is the canonical Hilbert space of fBm βH , the space such
that for any scalar-valued functions g, h ∈ K, E

[(∫∞
0
h(s)dβH(s)

) (∫∞
0
g(s)dβH(s)

)]
= 〈g, h〉K. The

following lemma is a key estimate.

Lemma 4.1. Fix H ∈ (0, 1). There is a constant cH depending only on H such that for any λ, t ≥ 0

E

[(∫ t

0

e−λ(t−s)dβH(s)

)2
]

= |1[0,t] (·) e−λ(t−·)|2K ≤ cHλ−2H .

Proof. Let It :=
∫ t

0
e−λ(t−s)dβH(s).

We claim first that the Gaussian centered distribution of this Wiener integral for any H ∈ (0, 1) is
invariant by time reversal in the integrand, for fixed t. Indeed, It can be written, for instance, as the
L2 (Ω)-limit as n→∞ of the following Riemann sum:

It,n :=

n−1∑
k=1

e−λ(t−kt/n)∆k,nβ
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where the increment of β used above is defined as

∆k,nβ = βH ((2k + 1)t/2n)− βH ((2k − 1)t/2n) .

The distribution of the centered Gaussian vector Gn := {∆k,nβ : k = 1, · · · , n− 1} is determined by
the covariance

E [∆k,nβ∆`,nβ] : k, ` = 1 · · · , n− 1,

which, by the stationarity of the increments of βH , depends only on |k − `|, as an elementary com-
putation using formula (3.1) readily shows. This implies that the Gaussian vector Gn has the same
distribution as the vector

Ǧn := {∆n−k,nβ : k = 1, · · · , n− 1} .
Now by a simple change of index (replace k by n− k) , the Riemann sum

Jt,n :=

n−1∑
k=1

e−λ(t−kt/n)∆n−k,nβ

is immediately seen to converge in L2 (Ω) to
∫ t

0
e−λsdβH (s) as n→∞. But since Gn and Ǧn have the

same distribution and the coeffi cients in the Riemann sums are non-random, thus It,n and Jt,n have
the same distribution, from which the claim follows.

Thus It has the same centered Gaussian probability law as

Ǐt :=

∫ t

0

e−λsdβH(s).

By the H-self-similarity of fBm (or using Riemann sum arguments similar to the ones above), we can
replace dβH(r/λ) by λ−HdβH (r); this means that by the change of variable r = λs, It and Ǐt have the
same distribution as the centered Gaussian r.v.

Kt := λ−H
∫ λt

0

e−rdβH(r),

whose variance equals λ−2HE

[(∫ λt
0
e−rdβH(r)

)2
]
.

To finish the proof of the lemma, we only need to bound the second factor in the variance ofKt uniformly
in λt ∈ R+. By integration by parts, we get∫ T

0

e−rdβH(r) = e−TβH (T ) +

∫ T

0

e−rβH (r) dr

and thus √√√√√E

(∫ T

0

e−rdβH(r)

)2
 ≤ THe−T +

∫ T

0

e−rrHdr.

which is bounded for all T ∈ R+. This finishes the proof of the lemma. �

Remark 4.1. The above proof shows that the constant in the statement of Lemma 4.1 can be taken as

cH := sup
T≥0

{
THe−T +

∫ T

0

e−rrHdr

}
.

Elementary calculus then shows that cH =
∫∞

0
e−rrHdr.
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We now make calculations to ascertain conditions under which z belongs to L4(Ω × [0, T ] ×G). With
the notation

pts(n, j) := 1[0,t](s)e
−(t−s)λj (Φen, ej)ej ,

using standard Gaussian calculations, we get

E[z4(t, x)] = 3
∑
n,m

E

[(∫ t

0

[
∑
jp
t
s(n, j)(x)]dβHn (s)

)2
]

E

[(∫ t

0

[
∑
jp
t
s(m, j)(x)]dβHm(s)

)2
]
.

With the inner product notation in K, this now reads as

E[z4(t, x)] = 3
∑
n,m

∣∣∣∑jp
t
·(n, j)(x)

∣∣∣2
K

∣∣∣∑jp
t
·(m, j)(x)

∣∣∣2
K

= 3

(∑
n

∣∣∣∑jp
t
·(n, j)(x)

∣∣∣2
K

)2

.

Now let us reintroduce the terms in the notation pt·(n, j). As a shorthand, we will omit the factor 1[0,t]

in pt(n, j). We thus get

‖z‖4L4(Ω×[0,T ]×G) = 3

∫ T

0

∫
G

dtdx

(∑
n

∑
j,k〈e

−(t−·)λj ; e−(t−·)λk〉K(Φen, ej)(Φen, ek)ej(x)ek(x)

)2

.

At this point, one notes that to do this computation exactly, it would be necessary to evaluate an inner
product in H of two exponentials relative to two different modes λj and λk. There is a wide class of
examples, that of noise spatial covariances which are co-diagonalizable with the Stokes operator, where
this is unnecessary, since the sum over j, k reduces to a single term where j = k = n. Therefore, there
is not much loss of power in invoking the Cauchy-Schwarz inequality to write:

‖z‖4L4(Ω×[0,T ]×G) ≤ 3

∫ T

0

∫
G

dtdx

(∑
n

∑
j,k|e

−(t−·)λj |K|e−(t−·)λk |K |(Φen, ej)(Φen, ek)ej(x)ek(x)|
)2

.

Now, in order to reunite the space base functions ej etc... with their space integral, in principle it
is necessary to expand the above square, resulting in terms of the form

∫
G
ei(x)ej(x)ek(x)e`(x)dx.

Unfortunately, nothing is known about the values of the four-way integrals of the eigenfunctions for the
Stokes operator. The best we can do is to invoke Hölder’s inequality and say that the integral over G
which one obtains after expanding the square above, is bounded in absolute value by the product of
the four ‖ei‖L4(G)’s. By Lemma 2.1 given in Section 2, we know that ‖ej‖L4(G) ≤ cλ

1/4
j Using this and

Lemma 4.1 yields:

‖z‖4L4(Ω×[0,T ]×G)

≤ 3c4
∫ T

0

(cH)2dt
∑
n,m

∑
i,j,k,`(λiλjλkλ`)

−H+1/4 |(Φen, ej)(Φen, ek)(Φem, ei)(Φem, e`)|

= 3c4
∫ T

0

(cH)2dt

(∑
n

(
∑
jλ
−H+1/4
j |(Φen, ej)|)2

)2

where the constant (cH)2 depends only on H. We have thus proved the following.

Theorem 4.2. Assume H ∈ (0, 1). The evolution solution z of the stochastic parabolic equation (4.2)
on [0, T ]×G with the Stokes operator A and driven by the additive noise ΦdWH , which is given by the
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formula (4.1), satisfies ‖z‖L4(Ω×[0,T ]×G) <∞ as soon as∑
n

(∑
jλ
−H+1/4
j |(Φen, ej)|

)2

<∞, (4.3)

where (λj , ej)j are the eigen-elements of A.

It is important to note that under the condition (4.3), the interchange of sums and integrals in the
above calculation is justified by the Fubini theorem.

Remark 4.2. Since λj is asymptotically linear by Lemma 2.1, Condition (4.3) is equivalent to∑
n

(∑
jj
−H+1/4 |(Φen, ej)|

)2

<∞,

We can get a sense of what this condition means in terms of the spatial regularity of the noise ΦWH

by looking specifically at the co-diagonalizable case, that is the case where the eigenfunctions of Φ are
the en’s.

Corollary 4.3. Under the assumptions of Theorem 4.2, if in addition Φ is co-diagonalizable with A in
the sense that (Φen, ej) = 0 if j 6= n, then, denoting qn = |(Φen, en)|2 the nth squared eigenvalue of Φ,
Condition (4.3) in Theorem 4.2 becomes

∑
n λ
−2H+1/2
n qn <∞, or equivalently∑

n

n−2H+1/2qn <∞, (4.4)

Condition (4.4) is not needed for the stochastic convolution z to exist. Since z is Gaussian, the existence
of z (t, x) as a random variable is equivalent to the existence of its variance. In the co-diagonalizable
case, we can compute, for instance, the variance of z as an element of L2 ([0, T ]×G): from formula
(4.1) and Lemmas 2.1 and 4.1, we immediately get

‖z‖2L2([0,T ]×G×Ω) =

∫ T

0

∑
n

qn|e−(t−·)λn |2Kdt ≤ TcH
∑
n

n−2Hqn

so that z exists as soon as
∑
n n
−2Hqn < ∞. This is evidently a weaker condition than (4.4). This

discrepancy is due, again, to the diffi culty in computing fourth-power integrals of the Stokes operator’s
eigenfunctions of the form

∫
G
|en|2|em|2, combined with the fact that the norms of the en’s in L2 (G)

increase with n. These problems do not occur when computing second moments, since the eigenfunctions
can be taken to be orthogonal in L2 (G).

While Condition (4.4) guarantees the existence of a solution to the stochastic Navier-Stokes equation
in the co-diagonalizable case as we are about to see in the next section, we suspect that existence does
not hold under the weaker condition

∑
n n
−2Hqn <∞.

5. Existence and uniqueness of solutions

The existence and uniqueness of mild solutions to Navier-Stokes evolution systems have been studied
by a number of authors (cf. Da Prato and Zabczyk [2], [3], Sohr [14], Temam [15]). The method of
solvability in the stochastic case, consists in breaking up the system (2.5) into a linear stochastic system
and a nonlinear partial differential equation. Since our system is perturbed by an additive fractional
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noise term, this approach works in a straightforward way. The theorem below is this article’s main
result. Its proof is given in full detail, and divided into several steps for the reader’s convenience. Note
that this theorem falls short of proving that the solution exists in L4 ([0, T ]×G× Ω), showing only that
almost surely, it belongs to the space L4 ([0, T ]×G). We will investigate the stronger, former statement
in a separate publication, conjecturing here that the solution is only square-integrable with respect to
Ω.

Theorem 5.1. Let {en : n ∈ N} be an orthonormal basis in the Hilbert space H of eigenfunctions of
the Stokes operator A. Let Φ be a linear operator from H to H. For any H ∈ (0, 1), under the condition

∑
n

∑
j

j1/4−H |(Φen, ej)|

2

<∞,

there exists a unique mild solution of the stochastic Navier-Stokes system, i.e. P-almost surely, there
is a unique solution in L4 ([0, T ]×G) to equation (2.5) driven by the infinite-dimensional fractional
Brownian noise ΦWH where WH is defined in Section 3.2.

Remark 5.1. In the case where Φ and A are co-diagonalizable (i.e. (Φen, ej) = 0 for j 6= n), letting
qn := |(Φen, en)|2, the above condition reduces to

∑
n n

1/2−2H qn <∞.

Before proceeding with the proof of the theorem, we present an extension to the case of inhomogeneous
Hurst parameter, relative to the Stokes operator’s eigenstructure.

Corollary 5.2. We make the same assumptions as in Theorem 5.1, and replace WH by a multifractal
infinite-dimensional noise. Using the notation in Section 3.2, we define

W̄(t) :=

∞∑
n=1

en β
Hn
n (t)

where (Hn)n∈N is a sequence of numbers in (0, 1). Then the conclusions of Theorem 5.1 remains
unchanged if we replace WH by W̄.

Proof of Theorem 5.1. Step 1. Consider the system

du + [νA u + B(u)] dt = ΦdWH
t ,

as in (2.1). In order to find the solution u, we will use the previous theorems, which tell us how to find
the unique evolution (mild) solution z(t) of

dz (t) + Azdt = ΦdWH
t ,

with z(0) = 0. If u existed, say in a strong sense, we would denote v := u− z, and notice that

∂v

∂t
=
∂u

∂t
− ∂z

∂t

= (−Au−B(u) + Φ
dWH

dt
)− (−Az + Φ

dWH

dt
)

= −A(u− z)−B(u) = −Av −B(v + z)

Therefore, with z given, solving for u in (2.5) would be equivalent to solving for v in

∂v

∂t
+ Av + B(v + z) = 0 (5.1)
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with initial data v(0) = u0 ∈ H.

More precisely, Theorem 4.2 guarantees the existence (and uniqueness) in L4(Ω× [0, T ]×G) of z as a
mild solution of (4.2) given by formula (4.1); therefore the evolution equation (2.5) has a unique solution
mild in that same space (starting from u0) if the evolution (mild) version of equation (5.1) admits a
solution in L4(Ω× [0, T ]×G) as well. This evolution solution v, when it exists in that space, satisfies

v(t) = S(t)u0 −
∫ t

0

S(t− s)B(v(s) + z(s))ds (5.2)

where S(t) = e−tA is the semigroup generated by the operator A. Let us introduce notation meant to
signify that equation (5.2) is a fixed point problem:

Λ (w) := S(t)u0 −
∫ t

0

S(t− s)B(w(s) + z(s))ds.

Studying the properties of this operator Λ is the main subject of this proof.

Step 2 : Let w ∈ L4([0, T ] × G) ∩ V. We will show that B(w + z) ∈ L2(0, T ;V ′). Indeed, for any
φ ∈ L2(0, T ;V), and suppressing time in the argument of functions, and denoting w + z as y,

|〈B(y), φ〉| = |b(y, φ, y)|

=

∣∣∣∣∣
2∑
i=1

∫
G

yi
dφj
dxi

yjdx

∣∣∣∣∣
≤ |y|L4(G)|∇φ|L2(G)|y|L4(G). (5.3)

By the Poincaré inequality which applies by the boundedness of the domain G and the zero boundary
condition, we get the equivalence of |∇φ|L2(G) and ‖φ‖V . Hence,∫ T

0

|〈B(y), φ〉|ds ≤
∫ T

0

|y|2L4(G)|∇φ|L2(G)ds. (5.4)

By the Schwarz inequality, the assertion of this step is obtained.0.1in

Step 3 : We show here that Λ(w) ∈ L∞(0, T ;H) ∩ L2(0, T ;V) =: Y , and in fact,

||Λ(w)||Y ≤ 2||B(w + z)||L2(0,T ;V′).

Indeed, by the Sobolev embedding theoremH1/2 = W 1/2,2(G) ↪→ L4(G), there is a non-random constant
C depending only on the bounded domain G such that ‖u‖L4(G) ≤ C‖u‖W 1/2,2(G). Using this in (5.3),

|〈B(y), φ〉| ≤ C|y|2
W

1
2
,2
‖φ‖V

≤ C|y|H ‖y‖V ‖φ‖V
by the interpolation theorem. Thus ‖B(y)‖V′ ≤ C|y|H ‖y‖V .

Now define h(t) = −
∫ t

0
S(t − s)B(y(s))ds, and y ∈ L4([0, T ] × G). Then h(0) = 0, and by the energy

equality,

|h(t)|2L2 =− 2

∫ t

0

|∇h|2L2ds− 2

∫ t

0

〈B(y(s)), h(s)〉V′×Vds

≤− 2

∫ t

0

|h|2Vds+ 2

∫ t

0

|B(y(s))|V′ · |h(s)|Vds
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≤− 2

∫ t

0

|h|2Vds+

∫ t

0

|B(y(s))|2V′ds+

∫ t

0

|h(s)|2Vds.

So

|h (t) |2H +

∫ t

0

|h(s)|2Vds ≤
∫ t

0

|B(y)|2V′ds,

and thus

sup
0≤t≤T

|h (t) |2H +

∫ T

0

|h(s)|2Vds ≤ 2

∫ T

0

|B(y)|2V′ds,

which is bounded. Therefore, h(t) ∈ L∞(0, T ;H) ∩ L2(0, T ;V). Therefore, Λ(w) ∈ L∞(0, T ;H) ∩
L2(0, T ;V).

Step 4 : Let L4 denote L4([0, T ]×G) = L4(0, T ;L4(G)). We now show that for any w1,w2 ∈ L4([0, T ]×
G) ∩ V, we have

|Λ(w1)− Λ(w2)|L4 ≤ CC
′ |w1 −w2|L4 (|w1 + z|L4 + |w2 + z|L4).

Here C is the universal (G-dependent) constant from the Sobolev embedding theorem used in Step 3,
and C ′ is another constant which depends only on G.

For any u1, u2 ∈ L4, and φ ∈ V, we have
|〈B(u1)−B(u2), ψ〉|
= |b(u1,u1, ψ)− b(u2,u2, ψ)|
≤ |b(u1 − u2,u1, ψ)|+ |b(u2,u1 − u2, ψ)|
= |b(u1 − u2, ψ,u1)|+ |b(u2, ψ,u1 − u2)|
≤ |u1 − u2|L4 |∇ψ|H|u1|L4 + |u2|L4 |∇ψ|H|u1 − u2|L4
= |u1 − u2|L4 |ψ|V(|u1|L4 + |u2|L4),

which implies, by Jensen’s inequality for some C ′ depending only on G,

|B(u1)−B(u2)|L2(0,T ;V′) ≤ C ′|u1 − u2|L4(|u1|L4 + |u2|L4)
and thus

|B(Λ(w1) + z)−B(Λ(w2) + z)|L2(0,T ;V′) ≤ C ′|Λ(w1)− Λ(w2)|L4(|Λ(w1) + z|L4 + |Λ(w2) + z|L4).

If we let yj = Λ(wj) + z for j = 1, 2, then, using again the Sobolev embedding of L4(G) in W 1/2,2,

|h(y1)− h(y2)|L4(G) ≤ C|h(y1)− h(y2)|
W

1
2
,2 ≤ C|h(y1)− h(y2)|

1
2

H · |h(y1)− h(y2)|
1
2

V

Note that h(y1)− h(y2) = Λ(w1)− Λ(w2) so that by the above estimate

|Λ(w1)− Λ(w2)|L4 = |h(y1)− h(y2)|L4

=(

∫ T

0

|h(y1)− h(y2)|4L4dt)
1
4

≤C(|h(y1)− h(y2)|2H ·
∫ T

0

|h(y1)− h(y2)|2Vdt)
1
4

≤C( sup
0≤t≤T

|h(y1)− h(y2)|2H ·
∫ T

0

|h(y1)− h(y2)|2Vdt)
1
4
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≤C[(

∫ T

0

|B(y1)−B(y2)|2V′dt)2]
1
4

≤CC ′|y1 − y2|L4(|y1|L4 + |y2|L4)
=CC ′|w1 −w2|L4(|w1 + z|L4 + |w2 + z|L4).

Step 5 :

The previous step proves that the operator

Λ :

{
L4 7→ L4

w 7→ Λ (w) := S(·)u0 −
∫ ·

0
S(· − s)B(w(s) + z(s))ds

is well-defined as mapping L4 to itself. As mentioned in Step 1, from Theorem 4.2, z is in L4(Ω ×
[0, T ]×G), which implies that z ∈ L4 almost surely. Fix any ω in this almost sure set. Note that

Λ (0) = S(·)u0 −
∫ ·

0

S(· − s)B(z(s))ds

is then a fixed function on [0, T ]×G, and a member of L4. Let η = 1
4CC′ . Replacing T in the definition

of L4 by a smaller value, one can choose a time T1 > 0 small enough, which may depend on ω, so that

|Λ (0) |L4 ≤
η

2
and |z|L4 ≤

η

4
.

Define L := {w ∈ L4 : |w + z|L4 ≤ η}. Then 0 ∈ L and Λ (0) ∈ L. In fact we have |Λ(0)| ≤ η
2 .

Therefore, denoting by Λj the jth iteration of the map Λ, we get by the result of the previous step,

|Λ2(0)|L4 ≤ |Λ(Λ(0))− Λ(0)|L4 +
η

2

≤ CC ′|Λ(0)|L4 (|Λ(0) + z|L4 + |z|L4) +
η

2

≤ CC ′|Λ(0)|L4η +
η

2

≤ η

8
+
η

2
.

Thus |Λ2(0) + z|L4 ≤ η(1/2 + 1/4 + 1/8) which means Λ2(0) ∈ L.

More generally we can prove by induction that |Λn(0)|L4 < 3
4η for all n ≥ 1. Indeed, this is true for

n = 1, 2, and repeating the above calculation we get

|Λn(0)|L4 ≤
∣∣Λ(Λn−1(0))− Λ(0)

∣∣
L4

+ |Λ(0)|L4 ≤ C
3

4
η(1 +

1

4
)η +

η

2

= C
3

4
η(1 +

1

4
)

1

4C
+
η

2
<
η

4
+
η

2
=

3

4
η.

This proves that |Λn(0) + z|L4 < η for all n ≥ 1. Thus, {Λn(0)} is a sequence that remains within the
closed set L. With our choice of η, Λ is a contraction in L: indeed, the result of Step 4 implies, for
points w1 and w2 restricted to L, that

|Λ(w1)− Λ(w2)|L4 ≤ CC ′|w1 −w2|L4(|w1 + z|L4 + |w2 + z|L4)

≤ |w1 −w2|L4CC ′ · 2 · η =
1

2
|w1 −w2|L4 .
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Thus {Λn(0) : n ≥ 1} converges to a function v ∈ L, which is the unique fixed point of the map Λ in L;
this is the unique solution in L of equation (5.2) restricted to [0, T1], i.e. the unique evolution solution
in L of the stochastic Navier Stokes equation (2.1) on [0, T1].

Step 6 :

If there existed another distinct solution ṽ to equation (5.2) on [0, T1], it would have to not be in L.
Then by replacing T1 by a suffi ciently smaller time T0 < T1, the other solution ṽ can be made to be
in L also. Therefore, v and ṽ coincide on [0, T0]. In other words, for almost every fixed ω, we have
existence and uniqueness of the solution to equation (5.2) up to some time T0 which may depend on ω.

Now considering v (T0) instead of u0 as a new initial condition of the evolution equation (5.2), one
can find T2 > T0 such that the time interval can be extended to [0, T2] on which the unique solution
exists. Continuing this way, suppose R is the supremum of all the times in [0, T ] up to which the unique
solution exists using the above procedure. In other words, the equation has a unique solution in [0, R).
A standard argument can now be used to prove that R = T , as in [13, pages 186-187]. We include the
details in our case for the sake of completeness.

We start by noting that z (s) is defined for all s ≤ T . Also define y (s) = v (s) + z (s) for all s < R.
Now we may define h (R) as in Step 3, for which we note that v (R) is not needed. We also note that
by the estimates from Step 3, and the inclusion L∞ (0, R;H) ∩ L2 (0, R;V) ⊂ L4 (G),

‖h (R)− h (s)‖L4(G) ≤
[∫ R

s

|B (y (r))|2V′ dr
]1/2

for all s < R, and in particular h (s) converges in L4 (G) to h (R) as s → R. Trivially since S (t)u0 =∑
k e
−λkt (u0, ek) ek, S (s)u0 converges in L4 (G) to S (R)u0 as s→ R. Therefore, we can define v (R)

by continuity in L4 (G) as S (R)u0 + h (R), as it should be. This v (R) is thus such that v satisfies
the equation (5.2) on the closed interval [0, R] and is in L4 ([0, R]×G). From this point, if R were less
than T , one would run the equation from v (R) instead of u0, up to a latter time, contradicting R’s
maximality, showing that R cannot be less than T . �

Proof of the Corollary. The proof of the Theorem above shows that the value of H only has an effect
on whether the solution z to the stochastic parabolic equation dz (t) + Azdt = ΦdWH

t has a solution
starting at 0 which is quartically integrable in space and time. This solution is the stochastic convolution
studied in Section 4. We saw in Theorem 4.2 that this solution is in L4 ([0, T ]×G× Ω) as soon as
Condition (4.3) is satisfied. This was established by controlling the solution’s norm in this space via
Lemma 2.1 and Lemma 4.1. These lemmas introduce the constants c and cH respectively. The constant
c depends only on the geometry of G, and therefore is not effected by replacing WH by W̄. The
constant cH was identified in Remark 4.1, as

cH =

∫ ∞
0

e−rrHdr.

As a function of H, cH is strictly convex and twice differentiable on the interval [0, 1], since dcH/dH =∫∞
0
e−rrH log r dr and d2cH/dH

2 =
∫∞

0
e−rrH log2 r dr. We calculate that c′ (0) is the opposite of the

Euler constant −γ ≈ −0.58, while c′ (1) = 1− γ ≈ 0.42. We also calculate that c0 = c1 = 1. Therefore,
as a function on [0, 1], cH has a unique positive minimum, and its maximum is 1. [Numerical integration
reveals that the minimum is reached near H = 0.46, and is near 0.886.] Thus, since cH is bounded
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above and below by positive universal constants, one may use the value cH = 1 in applying Lemma 4.1
in the proof of Theorem 4.2, uniformly on all eigencomponents of W̄ even if the values of Hn vary, and
moreover, there is no loss of effi ciency in doing so. �
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