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Abstract Controlling the shapes of surfaces provides a novel way to direct self-
assembly of colloidal particles on those surfaces andmay be useful formaterial design.
This motivates the investigation of an optimal control problem for surface shape in this
paper. Specifically, we consider an objective (tracking) functional for surface shape
with the prescribed mean curvature equation in graph form as a state constraint. The
control variable is the prescribed curvature. We prove existence of an optimal control,
and using improved regularity estimates, we show sufficient differentiability to make
sense of the first order optimality conditions. This allows us to rigorously compute
the gradient of the objective functional for both the continuous and discrete (finite
element) formulations of the problem. Numerical results are shown to illustrate the
minimizers and optimal controls on different domains.
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1 Introduction

Directed and self-assembly of micro and nano-structures is a growing research area
with applications in material design [18,32,34]. Controlling surface geometry can
be beneficial for directing the assembly of micro-structures (colloidal particles) [23].
This is because there is a coupling between the geometry of surfaces/interfaces and
the arrangements of charged colloidal particles, or polymers, on those curved surfaces
[26,36]; in particular, the presence of defects can seriously affect the surface geometry
[22,23] and vice-versa. Moreover, experimental techniques have been developed for
creating “custom shapes” (from swell gels) by encoding a desired surface metric [35].

With the above motivation, we investigate an optimal PDE control problem which
controls the surface shape by prescribing the mean curvature. We consider an open,
bounded, C1,1 domain� ⊂ R

n for an embedded surface inRn+1, with boundary of�
denoted by ∂� and n ≥ 1. If X1 and X2 are two Banach spaces, then X1 ↪→ X2 and
X1 ⊂⊂ X2 denote the continuous and compact embeddings of X1 in X2 respectively.
W 1

p(�), 1 ≤ p ≤ ∞ defines the standard Sobolev space with corresponding norm

‖·‖W 1
p(�). Moreover, W̊ 1

p(�) indicates the Sobolev space with zero trace and W −1
p′ (�)

is the canonical dual of W̊ 1
p(�), for 1 ≤ p < ∞, such that 1/p + 1/p′ = 1. In

deriving various inequalities and estimates, we pay special attention to the constants,
C , involved.

Then we are interested in solving the following PDE-constrained optimization
problem:

inf J (y, u) := 1

2
‖y − yd‖2L2(�)

+ α

2
‖u‖2L2(�)

over y − v ∈ W̊ 1∞(�), u ∈ Uad ,

(1.1)
subject to

− div
∇ y

Q(y)
− u = 0 in �. (1.2)

The second order nonlinear operator in (1.2) describes the mean curvature in graph
form, where y is the height function, andQ(y) = (1 + |∇ y|2)1/2 denotes the surface
measure. Moreover, we have an integral constraint on u: for some fixed p > n and
fixed θ > 0, u is in the convex set

Uad :=
{

u ∈ L2(�) :
∫

�

|u|p ≤ θ p
}

, (see Definition 2.12).

Eventually, see Remark 2.5 and Theorem 2.8, we will show there exists a value of
θ for which Uad is not empty. Note: throughout the entire paper, we now fix p to a
value strictly greater than n. In principle, either u or v (boundary value) may act as a
control variable, but in this work we will assume that v is a fixed given function and u
is the control variable. The setUad induces a “smallness” condition on the control, but
this is still relevant for applications. Indeed, in [13,18] they are able to drive colloidal
particles to aggregate on an immiscible interface using very mild distortions of the
interface (see Fig. 1).
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Fig. 1 Left 3-D perspective of colloidal rod-like particles (thick bars) on an immiscible interface. Right
2-D view showing the liquid-gas (immiscible) interface pinned to a central post. Colloidal rods shown as
circular cylinders (viewed along their axes). The curvature of the interface drives the aggregation of the
colloidal particles

We emphasize that the mean curvature operator in (1.2) is only locally coercive [25,
P. 104], which makes this problem harder than it appears. For instance, a compatibility
condition between the domain � and right-hand-side u must hold for (1.2) to have a
solution [19]. For instance, integrating both sides of (1.2) leads to

∣∣∣∣
∫

�

u

∣∣∣∣ =
∣∣∣∣
∫

�

div
∇ y

Q(y)

∣∣∣∣ =
∣∣∣∣
∫

∂�

ν · ∇ y

Q(y)

∣∣∣∣ ≤
∫

∂�

∣∣∣∣ν · ∇ y

Q(y)

∣∣∣∣ ≤
∫

∂�

1,

where ν is the outer unit normal of ∂�. Clearly u cannot be too large if (1.2) is to
be meaningful; in fact, the compatibility condition is even more involved [19]. Thus,
(1.2) is intricate, even for “nice” domains.

We refer to [6,10,27,31] and references therein for a vast literature on the optimal
control of semilinear PDEs. However, the control of mean curvature (1.2) and similar
quasilinear operators [20, Chap. 10] in full generality has not been dealt with before.
The closest approach is in [4,5]where they study the control of a Laplace free boundary
problem with surface tension effect for n = 1. This amounts to solving a Laplace
equation in the bulkwhich is a subset ofR2 and the prescribedmean curvature equation
(1.2) on (0, 1) ⊂ R

1 for an embedded surface in R
2. Furthermore, they replaced the

curvature operator by a simpler version, i.e.

�y

Q(y)
. (1.3)

In the present paper, we work in domains � ⊂ R
n , with n ≥ 2, and we do not

use the simplified curvature operator (1.3), i.e. we consider the general nonlinear
operator (1.2). The second novelty of this paper is the proof of the existence of a
strong unique solution to (1.2): for a given u ∈ L p(�), p > n, if u ∈ Uad , and
v ∈ W 2

p(�) is small, we prove that y ∈ W 2
p(�) (see, Theorem 2.8). We use an

implicit function theorem (IFT) [28, 2.7.2] based framework to prove this result. This
is an improvement over previous results in [1,2]. The improvement being that in [2,
Theorem 1], Amster et al use the Schauder theorem to show the existence and therefore
y may lack uniqueness. The implicit function theorem framework not only gives us the
existence and uniqueness but also the Fréchet differentiability of our control to state
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map [21, Sect. 1.4.2]; the latter is crucial to derive the first order necessary optimality
system. In addition, by further assuming a smallness condition on the data v, we derive
a continuity (a piori) estimate for the solution to the state equation (1.2) in Theorem
2.11.

The importance of such a continuity estimate is well-known in the literature; see
[25, p. 97] for the obstacle problem with locally coercive-operators where a similar
result leads to well-posedness. This has been used in the numerical approximation of
such PDEs to derive error estimates [29]. We will exploit this result to prove existence
of a solution to the control problem in Theorem 3.2.

In Lemma 2.14 we establish a W 2
p-regularity result for general linear elliptic PDEs

in non-divergence form. We only require that the lower order coefficient is in L p(�),
p > n. This result extends the classical result for linear PDEs where such coefficients
are assumed to be in L∞(�). We use this new result to establish existence of strong
solutions for the adjoint state equation.

Due to the topology mismatch between the regularization term in (1.1) and the
constraint set Uad , a subtle issue of 2-norm discrepancy arises. This has been well-
studied for semilinear problems (see [31]). We extend these results to our quasilinear
problem in Sect. 3.3.

To summarize, by using a smallness assumption on v and u we prove the existence
and uniqueness of a W 2

p solution to (1.2) within an IFT framework (Theorem 2.8).
In addition, we derive an a priori bound on the solution to the state equation using a
fixed point iteration. As pointed out earlier, such a smallness condition on u appears
naturally due to the structure of (1.2). However, at first glance, the condition on v might
seem unnecessary. We would like to stress that without this additional assumption on
the data v, using the techniques developed in this paper, it is not possible to show
the crucial W 2

p a priori estimate for the solution to (1.2). We conclude the paper with
several illustrative examples in Sect. 5.

2 The State Equation

2.1 Weak Solution

The state equation (1.2) has been studied by several authors; we only mention two
approaches which are of interest to us. For a Lipschitz domain � and v in L1(�),
Giaquinta in [19] gives a necessary and sufficient condition for the existence of a
solution y in the space of functions of bounded variation (BV). On the other hand, if
v ∈ W 1

1 (�), it is possible to show that y − v ∈ W̊ 1
1 (�) ⊂ BV , see [7, P. 394] for the

latter inclusion.

Theorem 2.1 (W 1
1 state) Let � be Lipschitz and v ∈ W 1

1 (�). Then there exists an
open set U1 ⊂ W −1∞ (�), with 0 ∈ U1, such that for every u ∈ U1, there exists a unique
solution y − v ∈ W̊ 1

1 (�) solving (1.2).

Proof See [16, P. 351]. ��
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To this end, we rewrite (1.2) in a weak form as: Find y − v ∈ W̊ 1∞(�) satisfying

〈N (y, u), w〉W−1∞ (�),W̊ 1
1 (�)

:= B(y, w) − ϕ(w) = 0 for all w ∈ W̊ 1
1 (�), (2.1)

where B(y, w) := ∫
�

∇ y
Q(y)

∇w and ϕ(w) := 〈u, w〉W−1∞ (�),W̊ 1
1 (�)

, and
〈·, ·〉W−1∞ (�),W̊ 1

1 (�)
denotes the duality pairing. Moreover, N is a nonlinear map. Thus

Theorem 2.1 states that for a given u ∈ U1, there exists a unique y − v ∈ W̊ 1
1 (�)

satisfying (2.1).
Next, we will develop an implicit function theorem based framework to show that

in fact y − v ∈ W̊ 1∞(�).

2.2 Differentiability of N

We begin by studying some differentiability properties of N , for the case when v ∈
W 1∞(�).

Lemma 2.2 If v ∈ W 1∞(�), then for every u ∈ U1, the operator N (·, u) : v ⊕
W̊ 1∞(�) → W −1∞ (�) is twice Fréchet differentiable with respect to y and the first
order Fréchet derivative at y ∈ v ⊕ W̊ 1∞(�) satisfies

〈
DyN (y, u) 〈h〉 , w

〉
W−1∞ (�),W̊ 1

1 (�)
=
〈(

I − ∇ y∇ yT

Q(y)2

) ∇h

Q(y)
,∇w

〉
L∞(�),L1(�)

.

Moreover, both the first and second order derivatives are Lipschitz continuous.

Proof The derivation of DyN is straightforward, so is omitted. We begin by first
showing thatQ : v⊕W̊ 1∞(�) → L∞(�) is Fréchet differentiable. Let y ∈ v⊕W̊ 1∞(�)

and h ∈ W̊ 1∞(�) (note: y + h ∈ v ⊕ W̊ 1∞(�)). To this end we need to show that for
every ε > 0 there exists a δ > 0, such that for ‖h‖W 1∞(�) < δ

‖Q(y + h) − Q(y) − DyQ(y) 〈h〉 ‖L∞(�)

‖h‖W 1∞(�)

< ε, where DyQ(y) 〈h〉 = ∇ y

Q(y)
· ∇h.

Define the residualR = Q(y + h)−Q(y)− DyQ(y) 〈h〉. Using an algebraic manip-
ulation, we get

Q(y + h) − Q(y) = ∇(2y + h) · ∇h

Q(y + h) + Q(y)
, (2.2)

whence

R =
( ∇(2y + h)

Q(y + h) + Q(y)
− ∇ y

Q(y)

)
· ∇h = (Q(y) − Q(y + h))∇ y + Q(y)∇h

Q(y)(Q(y + h) + Q(y))
· ∇h.
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Invoking the L∞ norm and using the necessary regularity of the underlying terms, we
deduce

‖R‖L∞(�) ≤ (‖Q(y) − Q(y + h)‖L∞(�) + ‖h‖W 1∞(�))‖h‖W 1∞(�). (2.3)

It only remains to show that Q is a Lipschitz continuous function. In view of (2.2),
for y, z ∈ v ⊕ W̊ 1∞(�), y �= z we get

‖Q(y) − Q(z)‖L∞(�) ≤
∣∣∣∣
∣∣∣∣ ∇(y + z)

Q(y) + Q(z)

∣∣∣∣
∣∣∣∣
L∞(�)

‖y − z‖W 1∞(�) ≤ ‖y − z‖W 1∞(�).

(2.4)
Then from (2.3) and (2.4) we obtain that ‖R‖L∞(�) ≤ 2‖h‖2

W 1∞(�)
, thus Q(·) is

Fréchet differentiable. Moreover,

∣∣∣∣
∣∣∣∣ 1

Q(y)
− 1

Q(z)

∣∣∣∣
∣∣∣∣
L∞(�)

=
∣∣∣∣
∣∣∣∣Q(z) − Q(y)

Q(y)Q(z)

∣∣∣∣
∣∣∣∣
L∞(�)

≤ ‖y − z‖W 1∞(�). (2.5)

Using these properties ofQ, and using the definition of the Fréchet derivative, it is not
hard to derive the assertions; we omit the details for brevity. ��

2.3 Limiting Case of the Linear Calderón–Zygmund Theory

With the differentiability of N in hand it seems to be possible to use the Implicit
Function Theorem (IFT) to prove that y − v ∈ W̊ 1∞(�). This, however, is not true in
general. We begin by recalling the IFT from [28, 2.7.2].

Theorem 2.3 (implicit function theorem) Let X, Y , and Z be Banach spaces and f
a continuous mapping of an open set U ⊂ X × Y → Z. Assume that f has a Fréchet
derivative with respect to x, Dx f (x, y), which is continuous in U. Let (x0, y0) ∈ U
and f (x0, y0) = 0. If Dx f (x0, y0) is an isomorphism of X onto Z then:

• There is a ball Br (y0) := {y : ‖y − y0‖ < r} ⊂ Y and a unique continuous map
g : Br (y0) → X such that g(y0) = x0 and f (g(y), y) = 0, for all y in Br (y0).

• If f is of class C1, then g(y) is of class C1 and

Dy g(y) = −[Dx f (g(y), y)]−1 ◦ Dy f (g(y), y).

• Dy g(y) belongs to C p if f is in C p, for p > 1.

Setting y = u and x = y, X = W̊ 1∞(�), Z = W −1∞ (�) in Theorem 2.3 and further
taking (y0, u0) = (0, 0), we obtain thatN (y0, u0) = 0 and DuN (y0, u0)〈h〉 = −�h,
where we have assumed that v = 0 for simplicity. Indeed IFT requires −� to be an
isomorphism from W̊ 1∞(�) to W −1∞ (�). This result, however, is not true. We illustrate
this next.

Consider the linear PDE

div (∇u) = div f in �, u|∂� = 0.
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The mapping f �→ ∇u is given by a singular integral operator [20]. Consequently, the
Calderón-Zygmund theory yields that, for p ∈ (1,∞), it is bounded from L p(�)n to
L p(�)n . This result, however, is not true for p = ∞. In fact, if f ∈ L∞(�)n , we can
only assert that ∇u ∈ BMO(�). See also [3,15].

In light of this negative result, in the next section, we will show that y belongs to
W 2

p(�) with p > n. Indeed with this requirement on p we have W 2
p(�) ⊂⊂ W 1∞(�).

2.4 W2
p(�)-Strong Solution

For a fixed p > n, throughout this section, we assume that v ∈ W 2
p(�). We introduce

the following space

Y := (
v ⊕ W̊ 1∞(�)

) ∩ W 2
p(�),

so y ∈ Y means y − v ∈ W̊ 1∞(�) ∩ W 2
p(�). We next state a W 2

p-version of Lemma
2.2.

Lemma 2.4 Let U2 ⊂ U1 ∩ L p(�) be open, then for every u ∈ U2 and v ∈ W 2
p(�),

the operatorN (·, u) : Y → L p(�) is Fréchet differentiable and the Fréchet derivative
is Lipschitz continuous and is given by

DyN (y, u) 〈h〉 = −div

((
I − ∇ y∇ yT

Q(y)2

) ∇h

Q(y)

)
.

Moreover,N is twice Fréchet differentiable with Lipschitz second order Fréchet deriva-
tive.

Proof For p > n, W 1
p(�) is a Banach algebra. Using this fact the proof is the same

as in Lemma 2.2. ��
Remark 2.5 Using Sobolev embedding theorem, for p > n, we have W̊ 1

1 (�) ⊂⊂
L p′

(�), consequently L p(�) ⊂⊂ W −1∞ (�). Since 0 ∈ U1, we have that U1 ∩ L p(�)

in Lemma 2.4 is not empty. So we can set U2 = U1 ∩ L p(�) �= ∅.
This brings us to the main result of this section. Using the IFT we will prove that y

solving (2.1) belongs to Y . Remarkably enough, we not only get the improved regular-
ity for y but also the Fréchet differentiability of the control to state map (compare with
[21, Sect. 1.4.2]). We recall that an application of the IFT requires an isomorphism of
the Fréchet derivative at a point; we illustrate this in Lemma 2.7. In order to prove this,
we make use of the following Neumann perturbation theorem [24, Chap. 4: Theorem
1.16].

Lemma 2.6 (Perturbation of identity) Consider two Banach spaces X and Y , and two
bounded linear operators A and B from X to Y . Suppose A has a bounded inverse
from Y to X and that

‖Bx‖Y ≤ C‖Ax‖Y ∀x ∈ X,
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with a constant 0 < C < 1. Then A+B : X → Y is bijective with a bounded inverse.

Lemma 2.7 Let � be C1,1 and v ∈ W 2
p(�) satisfies − div ∇v

Q(v)
= 0 in � then there

exists a ball V ⊂ W 2
p(�) such that for every v ∈ V , DyN (v, 0) is an isomorphism

between W 2
p(�) and L p(�).

Proof We notice that DyN (0, 0) coincides with the Laplace operator, which is an
isomorphism between W 2

p(�) and L p(�) for� of class C1,1; see [20, Theorem 9.15].
Since N is twice continuously Fréchet differentiable, we obtain that

DyN (v, 0) = DyN (0, 0) + (DyN (v, 0) − DyN (0, 0))

= DyN (0, 0) +
∫ 1

0
D2

yN (tv) 〈v〉 dt.

Applying DyN (0, 0)−1 to both sides yields

DyN (0, 0)−1DyN (v, 0) = I + DyN (0, 0)−1
∫ 1

0
D2

yN (tv) 〈v〉 dt,

where I is the identity operator. We now employ Lemma 2.6 to conclude that the
right-hand-side is an isomorphism provided

∥∥∥DyN (0, 0)−1
∫ 1

0
D2

yN (tv) 〈v〉 dt
∥∥∥
L(Y,Y )

< 1.

The above inequality can be guaranteed by taking ‖v‖W 2
p(�) sufficiently small, which

also motivates the choice of the set V . ��
We notice the above result is of relevance only when y|∂� �= 0, as otherwise v = 0

does not play any role and it is sufficient to show the isomorphism of DyN (0, 0). We
finally state the main result of this section.

Theorem 2.8 (W̊ 1∞(�) ∩ W 2
p(�) state using IFT) Let � be C1,1 and v ∈ V where V

is defined in Lemma 2.7. There exists an open set U3 ⊂ U2 (recall Remark 2.5) such
that 0 ∈ U3 and for all u ∈ U3, there exists a unique solution map S : U3 → Y such
that

N (S(u), u) = 0, for all u ∈ U3.

Furthermore, S is twice continuously Fréchet differentiable as a function of u with
first order derivative at u ∈ U3 given by

DuS(u) = − [DyN (y, u)
]−1 ◦ DuN (y, u).

Proof To this end it is sufficient to confirm the hypothesis of Theorem 2.3.
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1. In view of Lemma 2.4,N is continuously Fréchet differentiable with respect to y
on an open subset of W 2

p(�).
2. At (y0, u0) = (v, 0), Lemma 2.7 yields N (y0, u0) = 0.
3. Again using Lemma 2.7 we deduce that DyN (y0, u0) is a Banach space isomor-

phism between W 2
p(�) to L p(�).

Using the implicit function theorem, we conclude. ��

2.5 W2
p-Continuity Estimate

Theorem 2.8 provides existence and uniqueness of W 2
p(�)-solution to the state equa-

tion but not the continuity (a priori) estimate for the solution variable. We will develop
a fixed point argument to show the existence and uniqueness of solution in a ball where
such an estimate holds. The proof requires the data v ∈ W 2

p(�) to be small and u to
be in an open subset of L p(�) (see Definition 2.12).

We begin by defining a solution set

B =
{

y ∈ Y : ‖y‖W 2
p(�) ≤ B1

}
, (2.6)

for some B1 > 0 as yet to be determined (see Remark 2.17). For a given y ∈ B, and
fixed u ∈ L p(�), define a map T : B → Y such that T (y) = ỹ solves

−(Q(y)2 I − ∇ y∇ yT ) : D2 ỹ = uQ(y)3 in �. (2.7)

This is a linearization of the state equation (1.2) obtained by formally expanding
the left-hand-side of (1.2) and evaluating the non-linear “coefficient” at y ∈ B. The
existence of the map T is asserted in Lemma 2.10.

Lemma 2.9 The coefficient matrix (Q(y)2 I − ∇ y∇ yT ) in (2.7) is uniformly positive
definite.

Proof Let b ∈ R
n be an arbitrary nonzero column vector with components b1, . . . , bn

and set E = Q(y)2 I − ∇ y∇ yT . Then, using the definition of Q, we obtain

bT Eb = bTb + (∇ yT ∇ y)(bTb) − bT ∇ y∇ yT b

= bTb + (∇ yT ∇ y)(bTb) − (∇ yTb)T (∇ yTb)

= bTb +
( n∑

i=1

|∂i y|2
)( n∑

j=1

|b j |2
)

−
∣∣∣

n∑
i=1

∂i ybi

∣∣∣2 ≥ bTb > 0,

where we have used the Cauchy–Schwarz inequality. ��
Lemma 2.10 (existence of) T There exist constants C� > 0, and B2(n, p, B1,�) >

0, such that if v ∈ W 2
p(�) and u ∈ L p(�) satisfy

C�

(‖v‖W 2
p(�) + B2‖u‖L p(�)

) ≤ B1, (2.8)
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then T maps B to B.

Proof For a given y ∈ B,Q(y) ∈ L∞(�), whence the right hand side in (2.7) belongs
to L p(�). In view of [20, Theorem 9.15] in conjunction with Lemma 2.9, there exists
a unique ỹ solving (2.7). Moreover [20, Lemma 9.17] implies there exists a constant
C� such that ỹ satisfies the a priori estimate:

‖ỹ‖W 2
p(�) ≤ C�(‖v‖W 2

p(�) + ‖u‖L p(�)‖Q(y)3‖L∞(�)).

Since y ∈ B and W 2
p(�) ⊂⊂ W 1∞(�) with embedding constant CS we deduce

‖ỹ‖W 2
p(�) ≤ C�(‖v‖W 2

p(�) + B2‖u‖L p(�)) (2.9)

where the constant B2 depends on B1, p, n and the embedding constant CS . Choosing
‖v‖W 2

p(�) and ‖u‖L p(�) such that (2.8) hold, we conclude that T maps B to B. ��

Theorem 2.11 (T is a contraction) If, in addition to (2.8), u ∈ L p(�) and v ∈ W 2
p(�)

further satisfy
CT := B3(2‖u‖L p(�) + ‖v‖W 2

p(�)) < 1, (2.10)

for some constant B3(n, p, B1, B2,�) > 0 then the map T : B → B is a contraction
with contraction constant CT .

Proof Take y1, y2 in B, with y1 �= y2, and let ỹi = T (yi ) (for i = 1, 2) solve the
linearized system (2.7). Define δy := y1 − y2 and δ ỹ := ỹ1 − ỹ2. Computing the
difference between the equations satisfied by ỹ1 and ỹ2 and after various algebraic
manipulations we deduce

−
(
Q(y2)

2 I − ∇ y2∇ yT
2

)
: D2δ ỹ = u

(
Q(y1)

3 − Q(y2)
3
)

−
(
Q(y2)

2 I − Q(y1)
2 I + ∇δy∇ yT

1 + ∇ y2∇δyT
)

: D2 ỹ1.

Again using the Sobolev embedding theorem, and p > n, it is easy to check that the
right-hand-side belongs to L p(�). Toward this end, we invoke [20, Theorem 9.15]
in conjunction with Lemma 2.9 and [20, Lemma 9.17], and find that there exists a
constant C�, such that

‖δ ỹ‖W 2
p(�) ≤ C�

(∥∥∥u(Q(y1)
3 − Q(y2)

3)

∥∥∥
L p(�)

+
∥∥∥(Q(y2)

2 − Q(y1)
2)�ỹ1

∥∥∥
L p(�)

+ ‖∇δy∇ yT
1 : D2 ỹ1‖L p(�) + ‖∇ y2∇δyT : D2 ỹ1‖L p(�)

)
.

123



Appl Math Optim (2018) 78:297–328 307

We further deduce

‖δ ỹ‖W 2
p(�) ≤ C�

(
‖u‖L p(�)‖Q(y1)

3 − Q(y2)
3‖L∞(�)

+‖Q(y1)
2 − Q(y2)

2‖L∞(�)‖ỹ1‖W 2
p(�)

+ |y1|W 1∞(�)‖ỹ1‖W 2
p(�)|δy|W 1∞(�) + |y2|W 1∞(�)‖ỹ1‖W 2

p(�)|δy|W 1∞(�)

)

= I + II + III + IV.

Regarding the terms III and IV, it suffices to estimate III. For every h ∈ W 2
p(�) we

have |h|W 1∞(�) ≤ CS‖h‖W 2
p(�), and ỹ1 satisfies (2.9), therefore

III ≤ C2
�CS‖y1‖W 2

p(�)(‖v‖W 2
p(�) + B2‖u‖L p(�))|δy|W 1∞(�).

To estimate I and II, we use the fact that Q is Lipschitz continuous (see the proof of
Lemma 2.2), ỹ satisfies (2.9), and y1, y2 ∈ B, to obtain

‖δ ỹ‖W 2
p(�) ≤ B3(‖u‖L p(�) + ‖v‖W 2

p(�))‖δy‖W 2
p(�),

where the constant B3 depends onC�, B1, p, andCS where the latter is the embedding
constant for W 2

p(�) in W 1∞(�) for p > n. Choosing u and v such that (2.10) holds,
we get the desired contraction. ��
Definition 2.12 (Control sets U and Uad ) Recall that p > n is fixed. We define an
open set

U (v) := {
u ∈ L p(�) : v ∈ V and (2.8), (2.10) holds

} ∩ U3.

Next, define the closed set of admissible controls

Uad :=
{

u ∈ L2(�) : ‖u‖L p(�) ≤ θ, p > n
}

,

where θ is chosen such that Uad ⊂ U (v).

Since v is fixed, for simplicity, from here on, we will simply use the notationU instead
of U (v).

Corollary 2.13 (Fixed point solves the state equation) Let the assumptions of The-
orem 2.11 hold. Then for every u ∈ U (see Definition 2.12), there exists a unique
solution S(u) = y ∈ B to the state equation.

Proof Let u ∈ U be fixed but arbitrary. It now follows that T is a contraction in the
closed convex setB (cf. Theorem 2.11). Now take an initial function y0 ∈ B and apply
the Banach fixed point theorem (i.e. the iteration algorithm) to obtain a unique y ∈ B

such that T (y) = y. In view of (2.7), this is equivalent to saying that y is the solution
to the state equation. ��
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Nextwewill generalize a result fromGilbarg-Trudinger [20, Theorem9.15, Lemma
9.17] where the lower order coefficient is in Lq(�), for q > n, instead of being in
L∞(�). This is a standalone result and it will be used to show the global uniqueness
of solution to our state equation (1.2) and will later in Sect. 3.2 help us in deriving the
regularity for the adjoint state and the optimal control.

Theorem 2.14 Let A = (ai j )
n
i, j=1 ∈ C(�)n×n satisfy the ellipticity condition, i.e.,

there exists a constant γ > 0 such that

n∑
i, j=1

ai j (x)ξiξ j ≥ γ |ξ |2, ∀ ξ ∈ R
n .

If b ∈ Lq(�)n, n < q < ∞, then for all f ∈ Lr (�) with 1 < r ≤ q, there exists a
unique w ∈ W 2

r (�) ∩ W̊ 1
r (�) solving

−A : D2w − b · ∇w = f in �,

w = 0 on ∂�, (2.11)

with

‖w‖W 2
r (�) ≤ C�‖ f ‖Lr (�). (2.12)

Proof We prove the result in two steps.
1. Existence and Uniqueness. As L∞(�) is dense in Lq(�), for b ∈ Lq(�)n there

exists {bm}m∈N ⊂ L∞(�)n such that bm → b in Lq(�)n . Similarly as C∞(�) is
dense in Lr (�), therefore there exists { fm}m∈N ⊂ C∞(�) such that fm → f in
Lr (�). If we consider the auxiliary problem

−A : D2wm − bm · ∇wm = fm in �

wm = 0 on ∂�,

using [20, Lemma 9.17], we deduce

‖wm‖W 2
r (�) ≤ C�‖ fm‖Lr (�), ∀r ∈ (1,∞),

and the right hand side converges to ‖ f ‖Lr (�). Since a unit ball in W 2
r (�) is weakly

compact, there exists a subsequence, still labeledwm , that converges weakly in W 2
r (�)

and for s = rq
q−r strongly in W 1

s (�) to a function w ∈ W 2
r (�) ∩ W̊ 1

r (�). It remains
to show that w satisfies (2.11). Because

∣∣∣∣
∫

�

v(bm · ∇wm)

∣∣∣∣ ≤ ‖v‖Lr ′
(�)

‖bm‖Lq (�)‖wm‖W 1
s (�),
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we obtain
∫

�

fmv=−
∫

�

v(A : D2wm + bm · ∇wm) →
∫

�

f v = −
∫

�

v(A : D2w + b · ∇w),

for all v ∈ Lr ′
(�).

2. Continuity estimate. We first rewrite (2.11):

−A : D2w = f + b · ∇w in �,

w = 0 on ∂�.

In view of the definition of s = rq
q−r , it immediately follows that f +b ·∇w ∈ Lr (�),

whence [20, Lemma 9.17] implies

‖w‖W 2
r (�) ≤ C�(‖ f ‖Lr (�) + ‖b‖Lq (�)‖w‖W 1

s (�)). (2.13)

Toward this end, we will prove (2.12) by contradiction. Let {wm}m∈N ⊂ W 2
r (�) ∩

W̊ 1
r (�) be a sequence satisfying

‖wm‖W 2
r (�) = 1, ‖ fm‖Lr (�) → 0

as m → ∞, where fm = −A : D2wm − b · ∇wm . Since the unit ball of W 2
r (�)

is weakly compact, there exists a subsequence, that converges weakly in W 2
r (�) and

strongly in W 1
s (�) to a w ∈ W 2

r (�) ∩ W̊ 1
r (�). Therefore,

∫
�

fmv = −
∫

�

v(A : D2wm + b · ∇wm) → −
∫

�

v(A : D2w + b · ∇w) = 0,

for all v ∈ Lr ′
(�), whence −A : D2w − b · ∇w = 0 and w = 0 by uniqueness. But

from (2.13) we deduce

1 ≤ C�‖b‖Lq (�)‖w‖W 1
s (�),

which is a contradiction. Thus, (2.12) holds. ��
We next proceed to prove the global uniqueness of solution to our state equation

(1.2). Consequently the control-to-state map S : U → Y is well-defined.

Proposition 2.15 (global uniqueness of state solution) Let the assumptions of Corol-
lary 2.13 hold. If y1, y2 ∈ Y be solutions of (1.2). Then y1 = y2.

Proof We begin by rewriting the state equation for y1 and y2 in a form given in (2.7),
i.e.,

−(Q(y1)
2 I − ∇ y1∇ yT

1 ) : D2y1 = uQ(y1)
3 in �,
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and

−(Q(y2)
2 I − ∇ y2∇ yT

2 ) : D2y2 = uQ(y2)
3 in �.

Taking the difference, setting δy = y1 − y2, and rearranging terms we obtain

0 = − (Q(y2)
2 I − ∇ y2∇ yT

2 ) : D2δy

−
(
Q(y2)

2 I − Q(y1)
2 I + ∇δy∇ yT

1 + ∇ y2∇δyT
)

: D2y1

− u(Q(y1)
3 − Q(y2)

3)

= I1 + I2 + I3, (2.14)

with δy = 0 on ∂�. We inspect I2 and I3 separately. Since y1 and y2 belong to Y , it
is straight-forward to see that

I2 = −b · ∇δy, I3 = −c · ∇δy

with b, c ∈ L p(�)n where p > n. As a result, (2.14) becomes

−(Q(y2)
2 I − ∇ y2∇ yT

2 ) : D2δy − (b + c) · ∇δy = 0

which according to Theorem 2.14 has a unique solution δy ∈ W 2
p(�) ∩ W̊ 1∞(�).

Finally using (2.12) we obtain y1 = y2. ��
Lemma 2.16 (S Lipschitz) Let S be the control to state map and B1 be small enough
so that ⎛

⎝ 1√
1 + C2

S B2
1

− C2
S B2

1

⎞
⎠ ≥ 1

2
, (2.15)

where CS is the embedding constant for W 2
p(�) in W 1∞(�) for p > n. If u1, u2 ∈ U,

then

‖S(u1) − S(u2)‖W 1
2 (�) ≤ C(n, p, B1,�)‖u1 − u2‖W−1

2 (�)
, (2.16)

‖S(u1) − S(u2)‖W 2
p(�) ≤ C(n, p, B1,�)‖u1 − u2‖L p(�), (2.17)

where the generic constant C only depends on its arguments.

Proof Set y1 = S(u1) and y2 = S(u2). Note that y1, y2 ∈ B by Corollary 2.13.
Recall the equations satisfied by y1 ∈ Y and y2 ∈ Y

− div

(
1

Q(y1)
∇ y1

)
= u1, − div

(
1

Q(y2)
∇ y2

)
= u2.
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On subtracting and rearranging, we obtain

−div

(
1

Q(y1)
∇(y1 − y2)

)
= div

((
1

Q(y1)
− 1

Q(y2)

)
∇ y2

)
+ u1 − u2.

Multiplying by (y1 − y2) and integrating by parts, we arrive at

∫
�

1

Q(y1)
|∇(y1 − y2)|2 = −

∫
�

(
1

Q(y1)
− 1

Q(y2)

)
∇ y2 · ∇(y1 − y2)

+〈u1 − u2, y1 − y2〉W−1
2 (�),W̊ 1

2 (�)
.

In view of

Q(y1) =
√
1 + |∇ y1|2 ≤

√
1 + ‖y1‖2W 1∞(�)

≤
√
1 + C2

S‖y1‖2W 2
p(�)

≤
√
1 + C2

S B2
1 ,

we have

1√
1 + C2

S B2
1

|y1 − y2|2W 1
2 (�)

≤
∫

�

1

Q(y1)
|∇(y1 − y2)|2.

Combining this with the algebraic identity

1

Q(y1)
− 1

Q(y2)
= 1

Q(y1)Q(y2)

∇(y2 − y1) · ∇(y2 + y1)

Q(y1) + Q(y2)
,

and

〈u1 − u2, y1 − y2〉W−1
2 (�),W̊ 1

2 (�)
≤ C(�)‖u1 − u2‖W−1

2 (�)
|y1 − y2|W 1

2 (�)

where C(�) is the Poincaré constant, we deduce

1√
1 + C2

S B2
1

|y1 − y2|W 1
2 (�)

≤
∥∥∥ 1

Q(y1)

∥∥∥
L∞(�)

∥∥∥ ∇ y2
Q(y2)

∥∥∥
L∞(�)

·
∥∥∥ ∇(y2+y1)

Q(y1)+Q(y2)

∥∥∥
L∞(�)

|y2−y2|W 1
2 (�)

+‖u1−u2‖W−1
2 (�)

.

Since

∥∥∥ 1

Q(y1)

∥∥∥
L∞(�)

<1,
∥∥∥ ∇ y2
Q(y2)

∥∥∥
L∞(�)

< CS B1,

∥∥∥ ∇(y2 + y1)

Q(y1) + Q(y2)

∥∥∥
L∞(�)

< CS B1,
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we arrive at
⎛
⎝ 1√

1 + C2
S B2

1

− C2
S B2

1

⎞
⎠ |y1 − y2|W 1

2 (�) < ‖u1 − u2‖W−1
2 (�)

,

which in combination with (2.15) yields (2.16).
To prove (2.17), we rewrite the state equation (1.2) into the non-divergence form

as

−(Q(y1)
2 I − ∇ y1∇ yT

1 ) : D2y1 = u1Q(y1)
3 in �, and

−(Q(y2)
2 I − ∇ y2∇ yT

2 ) : D2y2 = u2Q(y2)
3 in �.

After subtracting, rearranging, and setting δy = y1 − y2, we obtain

−(Q(y2)
2 I − ∇ y2∇ yT

2 ) : D2δy = (u1 − u2)Q(y1)
3 + u2(Q(y1)

3 − Q(y2)
3)

−
{
Q(y2)

2 I − Q(y1)
2 I + ∇δy∇ yT

1 + ∇ y2∇δyT
}

: D2y1.

Recalling (2.10), the remaining proof is similar to the proof of Theorem 2.11 and is
omitted to avoid repetition. ��
Remark 2.17 For the remainder of the paper we will assume that B1 satisfies (2.15).

3 Optimality Conditions

Using the control to state map, we can rewrite the minimization problem (1.1)-(1.2)
in the following reduced form:

inf j (u) := J (S(u), u) over u ∈ Uad , (3.1)

where

J (S(u), u) = J1(S(u)) + J2(u),

with

J1(S(u)) = 1

2
‖S(u) − yd‖2L2(�)

, J2(u) = α

2
‖u‖2L2(�)

.

We begin by introducing the notion of a minimizer for our optimal control problem.

Definition 3.1 (Optimal control) A control u ∈ Uad is said to be optimal if it satisfies,
together with the associated optimal state y(u) := S(u),

J (y(u), u) ≥ J (y(u), u) for all u ∈ Uad .

123



Appl Math Optim (2018) 78:297–328 313

A control u ∈ Uad is said to be locally optimal in the sense of L p(�), if there exists an
ε > 0 such that above inequality holds for all u ∈ Uad such that ‖u − u‖L p(�) ≤ ε.

The above definition clearly distinguishes between local and global solutions to
our optimal control problem. Although in Theorem 3.2 below we prove the existence
of a global optimal control, a local optimal control plays a central role in optimiza-
tion theory and algorithms. Generally speaking, gradient based numerical schemes
only guarantee convergence to a local optimal solution. Thus, we state our first order
necessary optimality conditions in Theorem 3.6 in terms of a local optimal control.
Uniqueness of such a local optimal control is shown in Corollary 3.12 under a second
order condition (Assumption 1). In order to get to Theorem 3.6 and Corollary 3.12,
we prove several new results which do not assume the local condition on the control
and are central to this paper. Moreover, Proposition 3.4 and Lemmas 3.13, 3.14 hold
for an arbitrary u ∈ U (recall Definition 2.12).

3.1 Existence of an Optimal Control

Let us first show the existence (not necessarily unique) of a global optimal control.

Theorem 3.2 There exists an optimal control u solving the reduced minimization
problem (3.1).

Proof The proof is based on aminimizing sequence argument. AsJ is bounded below,
there exists a minimizing sequence {un}n∈N, i.e.

inf
u∈Uad

J (S(u), u) = lim
n→∞J (S(un), un).

By Definition 2.12, Uad is a nonempty, closed, bounded and convex subset of L p(�)

which is a reflexive Banach space for n < p < ∞, thus weakly sequentially compact.
Consequently, we can extract a weakly convergent subsequence {unk }k∈N ⊂ L p(�)

i.e.

unk ⇀ u in L p(�), u ∈ Uad .

This u is the candidate for our optimal control.
In the sequel, we drop the index k when extracting subsequences. Using Theorem

2.11, S(un) = yn satisfies the state equation (1.2) thus {yn} ⊂ B. Since Y ⊂⊂
v ⊕ W̊ 1∞(�) for p > n, the Rellich-Kondrachov theorem yields a strongly convergent
subsequence {yn}n∈N ⊂ v ⊕ W̊ 1∞(�), i.e.

yn → y in v ⊕ W̊ 1∞(�).

Note that the limit y is the state corresponding to the control u. This results from
replacing y with yn in the variational equation (2.1) taking the limit and making use
of the embedding L p(�) ⊂⊂ W −1∞ (�).
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Finally, using the fact that J2(u) is continuous in L2-and convex, together with the
strong convergence yn → y in L∞(�), it follows that J is weakly lower semiconti-
nous, whence

inf
u∈Uad

j (u) = lim inf
n→∞ (J1(S(un)) + J2(un)) ≥ J1(S(u)) + J2(u) = J (u).

This completes the proof. ��

3.2 First Order Necessary Conditions

In the following, let u denote the local optimal control. We derive the first order
necessary optimality conditions that are satisfied by u with associated state y. We
recall the following result from [31].

Lemma 3.3 If u ∈ Uad denotes a local optimal control, then the first order necessary
optimality condition satisfied by u is

〈
j ′(u), u − u

〉
L2(�),L2(�)

≥ 0, ∀u ∈ Uad .

Proof Since Uad ⊂ L p(�) is nonempty and convex, and j is Fréchet differentiable
(see Theorem 2.8) in an open subset of L p(�) containingUad , the proof follows along
the lines of [31]. ��

Let

A[y] = 1

Q(y)

(
I − ∇ y∇ yT

Q(y)2

)
. (3.2)

Then the first and second order Fréchet derivatives of S satisfy the following:

Proposition 3.4 For every u ∈ U and every h1, h2 ∈ L p(�) the first and second
order Fréchet derivatives S ′(u)h1 ∈ W 2

p(�) and S ′′(u)h1h2 ∈ W 2
p(�) at S(u) ∈ Y

satisfy

− div (A[S(u)]∇S ′(u)h1) = h1 in �, (3.3)

− div (A[S(u)]∇S ′′(u)h1h2) = div (Du A[S(u)] 〈h2〉 ∇S ′(u)h1) in �, (3.4)

with S ′(u)h1 = 0, S ′′(u)h1h2 = 0 on ∂� and A[·] given in (3.2). Moreover,

‖S ′(u)h1‖W 1
2 (�)

≤ C(n, p, �)‖h1‖W−1
2 (�)

, ‖S ′(u)h1‖W 2
p(�) ≤ C(n, p, �)‖h1‖L p(�)

(3.5)

‖S ′′(u)h1h2‖W 1
2 (�)

≤ C(n, p, B1, �)‖h1‖W−1
2 (�)

‖h2‖L p(�). (3.6)

Proof In terms of the control to state map, (1.2) can be written as − div ∇S(u)
Q(S(u))

= u.
Since the control to state map is twice Fréchet differentiable, then differentiating with
respect to u in the directions h1 and h2 leads to (3.3) and (3.4). The first inequality
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in (3.5) is due to the characterization of W −1
2 (�) functions [17, P. 283, Theorem 1]

and the second inequality is due to Theorem 2.14. Using both of these results, in
conjunction with the Sobolev embedding W 2

p(�) ⊂⊂ W 1∞(�) for p > n, gives (3.6).
��

Following [31, Sect. 4.6], we introduce the adjoint state as follows.

Definition 3.5 (Adjoint state) The adjoint state ϕ ∈ W̊ 1
2 (�) is the unique weak solu-

tion to the adjoint equation

− div (A[y]∇ϕ) = y − yd in �, ϕ = 0 on ∂�. (3.7)

The adjoint state enables us to rewrite the first order necessary conditions presented
in Lemma 3.3 as follows:

Theorem 3.6 Every locally optimal control u ∈ Uad for problem (1.1)–(1.2) satisfies,
together with the associated adjoint state ϕ ∈ W̊ 1

2 (�) defined by (3.7), the variational
inequality

〈ϕ + αu, u − u〉L2(�),L2(�) ≥ 0, ∀u ∈ Uad . (3.8)

Proof Using Theorem 2.8 we can infer that j is Fréchet differentiable, and the Fréchet
derivative of j at u in a direction h is

〈
j ′(u), h

〉
L p′

(�),L p(�)
= 〈

J ′
1(S(u)),S ′(u)h

〉
L2(�),L2(�)

+ 〈
J ′
2(u), h

〉
L2(�),L2(�)

,

whence

〈
j ′(u), h

〉
L p′

(�),L p(�)
= 〈

y − yd ,S ′(u)h
〉
L2(�),L2(�)

+ α 〈u, h〉L2(�),L2(�) ,

where S ′(u)h is the weak solution to (3.3). Setting S ′(u)h as a test function in the
weak formulation of (3.7), and integrating by parts, yields

〈
y − yd ,S ′(u)h

〉
L2(�),L2(�)

=
∫

�

A[y]∇ϕ · ∇S ′(u)h = 〈ϕ, h〉L2(�),L2(�)

where the final equality is a consequence of using ϕ as a test function in the weak
form of (3.3). Collecting all the estimates and using Lemma 3.3 leads to asserted
inequality. We remark that the pairing

〈
j ′(u), h

〉
L p′

(�),L p(�)
can be simply treated as

the L2-pairing. ��
Remark 3.7 In general, j ′(u) = ϕ(y) + αu for an arbitrary u in Uad , where y solves
(1.2) with u as right-hand-side, and ϕ(y) solves (3.7) with right-hand-side given by
y − yd .

We next study the regularity of the adjoint ϕ and the control u.

Proposition 3.8 (Regularity of the adjoint) For every local optimal control u, there
exists a unique ϕ ∈ W 2

2 (�) ∩ W̊ 1
2 (�). If in addition yd ∈ L p(�), p > n, then

ϕ ∈ W 2
p(�).
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Proof Rewriting (3.7) in the non-divergence form, we get

−A[y] : D2ϕ − div (A[y]) · ∇ϕ = y − yd in �, ϕ = 0 on ∂�.

Since y ∈ W 2
p(�), p > n, therefore A[y] ∈ W 1

p(�), and div (A[y]) ∈ L p(�), then
invoking Theorem 2.14, with q = p, we obtain the desired result. ��
Proposition 3.9 (Regularity of the optimal control) Let u denote a local optimal
control. Then u ∈ W 2

2 (�) and further if yd ∈ L p(�), p > n, then u ∈ W 2
p(�).

Proof In view of (3.8) we have u = PUad (−ϕ
α
) where PUad (z) = z when z is strictly

inside Uad and PUad (z) = θ z/‖z‖L p(�) otherwise. Then invoking Proposition 3.8 we
obtain the assertion. ��

3.3 Second Order Sufficient Conditions

We investigate the second order behavior of the cost functional J . Starting from
Assumption 1, we build up several intermediate results that allow us to prove Corollary
3.12 which is a quadratic growth condition on j near the optimal solution u. In order
to carefully handle the L2-L p norm discrepancy, we prove a Lipschitz continuity type
result for j ′′ in Lemma 3.15. This requires several intermediate results which are
shown in Proposition 3.4 and Lemmas 3.13 and 3.14.

We introduce a set of admissible directions.

Definition 3.10 (Admissible set) Given u ∈ Uad , the convex set C(u) comprises all
directions h ∈ L p(�) such that u + th ∈ Uad for some t > 0, i.e.

C(u) := {
h ∈ L p(�) : u + th ∈ Uad , for some t > 0

}
.

Assumption 1 We make the following standard assumption about the second order
behavior of the cost functional:

j ′′(u)(u − u)2 ≥ δ‖u − u‖2L2(�)
, ∀u − u ∈ C(u), for some fixed δ > 0. (3.9)

Remark 3.11 (Admissible set vs critical cone) In the context of second order sufficient
conditions, generally, one uses the cone of critical directions [9,12,31]

K(u) =
{
C(u) : j ′(ū)h = 0

}
, (3.10)

and an assumption
j ′′(u)h2 > 0, ∀h ∈ K(u) \ {0} (3.11)

to prove the so-called quadratic growth condition (3.13). We refer to [9, Theorem 4.1]
for a proof of the quadratic growth condition where the state equation is a semilinear
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elliptic partial differential equation. In addition, given ua , ub in L∞(�)with ua ≤ ub,
the control u in [9] fulfills

ua(x) ≤ u(x) ≤ ub(x) x a.e. in �.

We notice that the control constraints in our case are of integral type and the state
equation is a degenerate quasilinear partial differential equation. Thus the result of [9]
do not apply directly. However, it is plausible to work under the assumption (3.11) but
we believe that this is a subject requiring investigation, even in case of extremely well-
studied semilinear problems [9,12,31]. Instead we will prove the quadratic growth
condition under the coercivity condition (3.9). Recently, a similar condition was used
in [4,5], and a rigorous proof was provided.

Our next goal is to prove the following crucial result:

Corollary 3.12 (Quadratic growth near a local optimal control) Let the control u ∈
Uad satisfy the first order necessary optimality condition (3.8) and assume that (3.9)
holds. Then there exists an ε > 0 such that, for all u ∈ Uad with ‖u − u‖L p(�) ≤ ε,
we have 〈

j ′(u) − j ′(u), u − u
〉
L2(�)×L2(�)

≥ δ

2
‖u − u‖2L2(�)

, (3.12)

and

j (u) ≥ j (u) + δ

4
‖u − u‖2L2(�)

. (3.13)

In particular, u is a unique local optimal control (see Definition 3.1).

The proof requires a non-trivial estimate which we will prove in Lemma 3.15.
Such an estimate is needed to deal with the so-called 2-norm discrepancy, we refer to
[11] for further reading on the subject. We will conclude this section with a proof of
Corollary 3.12, first we need several intermediate results.

Lemma 3.13 (A is Lipschitz) If u1, u2 ∈ U, with u1 �= u2, the map A : Y → W 1
p(�)

in (3.7) satisfies

‖A[S(u1)] − A[S(u2)]‖L∞(�) ≤ C(n, p, B1,�)‖S(u1) − S(u2)‖W 1∞(�), (3.14)

‖A[S(u1)] − A[S(u2)]‖L2(�) ≤ C(n, p, B1,�)‖S(u1) − S(u2)‖W 1
2 (�), (3.15)

and for h1 ∈ L p(�), S ′ : U → L(L p(�), Y ):

‖Du(A[S(u1)] − A[S(u2)]) 〈h1〉 ‖L2(�) ≤ C(n, p, B1, �)‖(S ′(u1) − S ′(u2))h1‖W 1
2 (�)

.

(3.16)

Proof In order to ease the notation we set y1 = S(u1) and y2 = S(u2). It is enough
to show (3.14), the same proof works for (3.15) and (3.16). Now

‖A[y1] − A[y2]‖L∞(�) ≤ ‖ 1

Q(y1)
− 1

Q(y2)
‖

L∞(�)

+‖∇ y1∇ yT
1

Q(y1)3
− ∇ y2∇ yT

2

Q(y2)3
‖

L∞(�)

.
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We consider each term on the right hand side separately. For the first term, we recall
(2.5). Setting δy = y1 − y2 and invoking the triangle inequality on the second term
leads to

‖∇ y1∇ yT
1

Q(y1)3
− ∇ y2∇ yT

2
Q(y2)3

‖
L∞(�)

≤ ‖∇ y1∇ yT
1 Q(y2)

3 − ∇ y2∇ yT
2 Q(y1)

3

Q(y1)3Q(y2)3
‖

L∞(�)

≤ ‖∇δy∇ yT
1 Q(y2)

3

Q(y1)3Q(y2)3
‖

L∞(�)

+ ‖∇ y2∇δyQ(y2)
3

Q(y1)3Q(y2)3
‖

L∞(�)

+ ‖∇ y2∇ yT
2 (Q(y2)

3 − Q(y1)
3)

Q(y1)3Q(y2)3
‖

L∞(�)

≤ C |δy|W 1∞(�),

where C > 0 is a generic uniform constant depending on n, p,� and B1. ��
Lemma 3.14 (S ′ is Lipschitz) Let u, u1, u2 ∈ U, and h1 ∈ L p(�). Then S ′ : U →
L(L p(�), Y ) satisfies

‖(S ′(u1) − S ′(u2))h1‖W 1
2 (�) ≤ C(n, p, B1,�)‖u1 − u2‖L p(�)‖h1‖L2(�). (3.17)

Proof Consider the system satisfied by S ′(u1)h1 and S ′(u2)h1 from Proposition 3.4:

− div (A[S(u1)]∇S ′(u1)h1) = h1 in �, S ′(u1)h1 = 0 on ∂�

− div (A[S(u2)]∇S ′(u2)h1) = h1 in �, S ′(u2)h1 = 0 on ∂�

On subtracting and rearranging

− div (A[S(u1)]∇(S ′(u1) − S ′(u2))h1) = div (A[S(u1)] − A[S(u2)]∇S ′(u2)h1) in �

(S ′(u1) − S ′(u2))h1 = 0 on ∂�.

Using the characterization of W −1
2 (�) functions [17, P. 283, Theorem 1] we deduce

‖(S ′(u1) − S ′(u2))h1‖W 1
2 (�) ≤C(�)‖A[S(u1)]− A[S(u2)]‖L∞(�)‖S ′(u2)h1‖W 1

2 (�).

Using (3.14) and (3.5), we obtain

‖(S ′(u1) − S ′(u2))h1‖W 1
2 (�) ≤ C(n, p, B1,�)‖S(u1) − S(u2)‖W 1∞(�)‖h1‖W−1

2 (�)
.

Using (2.17) and W −1
2 (�) ↪→ L2(�) we get (3.17). ��

The treatment of the L2 − L p norm discrepancy requires a technical result. This
result makes use of the previous estimates in this section.
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Lemma 3.15 (Auxiliary result for the L2 − L p norm discrepancy) Let u ∈ U and
yd , h, h1, h2 ∈ L p(�). Then there exists a constant L(n, p, B1,�) > 0 such that

| j ′′(u + h) 〈h1, h2〉 − j ′′(u) 〈h1, h2〉 |
≤ L(‖h‖L2(�)‖h2‖L p(�) + ‖h‖L p(�)‖h2‖L2(�))‖h1‖L2(�). (3.18)

Proof Using the reduced cost functional (3.1), a simple calculation gives

j ′′(u + h) 〈h1, h2〉 − j ′′(u) 〈h1, h2〉 =
∫

�

(S ′(u + h)2 − S ′(u)2)h1h2

+
∫

�

[
(S(u + h) − yd)S ′′(u + h) − (S(u) − yd)S ′′(u)

]
h1h2

=
∫

�

(S ′(u + h) − S ′(u))h1(S ′(u + h) + S ′(u))h2

+
∫

�

[
(S(u + h)−S(u))S ′′(u + h)+(S(u) − yd)(S ′′(u + h) − S ′′(u))

]
h1h2.

Using the triangle inequality in combination with Cauchy-Schwarz, we arrive at

| j ′′(u + h) 〈h1, h2〉 − j ′′(u) 〈h1, h2〉 |
≤ ‖(S ′(u + h) − S ′(u))h1‖L2(�)‖(S ′(u + h) + S ′(u))h2‖L2(�)

+‖S(u + h) − S(u)‖L2(�)‖S ′′(u + h)h1h2‖L2(�)

+ |
∫

�

(S(u) − yd)(S ′′(u + h) − S ′′(u))h1h2|
= I + II + III.

We will estimate each term I − III individually. In view of (3.17), (3.5)

I ≤ C(n, p, B1,�)‖h‖L p(�)‖h1‖L2(�)‖h2‖L2(�)

and using (2.16) and (3.6)

II ≤ C(n, p, B1,�)‖h‖L2(�)‖h1‖L2(�)‖h2‖L p(�).

The estimate for the term III is more involved. Recall (3.4), namely the system satisfied
by S ′′(u + h)h1h2 and S ′′(u)h1h2:

− div (A[S(u + h)]∇S ′′(u + h)h1h2) = div (Du A[S(u + h)] 〈h2〉 ∇S ′(u + h)h1) in �,

− div (A[S(u)]∇S ′′(u)h1h2) = div (Du A[S(u)] 〈h2〉 ∇S ′(u)h1) in �,

123



320 Appl Math Optim (2018) 78:297–328

with S ′′(u + h)h1h2 = 0 and S ′′(u)h1h2 = 0 on ∂�. On subtracting and rearranging,
we obtain

− div (A[S(u)]∇(S ′′(u) − S ′′(u + h))h1h2)

= div ((A[S(u)] − A[S(u + h)])∇S ′′(u + h)h1h2)

+ div (Du A[S(u)] 〈h2〉 ∇S ′(u)h1 − Du A[S(u + h)] 〈h2〉 ∇S ′(u + h)h1).

For u ∈ U , we denote the variable satisfying (3.7) by ϕ, with right hand side
S(u) − yd . We further deduce

III =
∣∣∣∣
∫

�

∇ϕ ·
{
((A[S(u)] − A[S(u + h)])∇S ′′(u + h)h1h2)

+ (Du A[S(u)] 〈h2〉 ∇S ′(u)h1 − Du A[S(u + h)] 〈h2〉 ∇S ′(u + h)h1)

}∣∣∣∣
≤ ‖ϕ‖W 1∞(�)‖A[S(u)] − A[S(u + h)]‖L2(�)‖S ′′(u + h)h1h2‖W 1

2 (�)

+ ‖ϕ‖W 1∞(�)‖Du A[S(u)] 〈h2〉 ‖L2(�)‖(S ′(u) − S ′(u + h))h1‖W 1
2 (�)

+ ‖ϕ‖W 1∞(�)‖Du(A[S(u)] − A[S(u + h)]) 〈h2〉 ‖L2(�)‖S ′(u + h)h1‖W 1
2 (�).

Using (3.15), (2.16), (3.6), (3.16), (3.17) and (3.5), we obtain

III ≤ C(n, p, B1,�)‖ϕ‖W 1∞(�)(‖h‖L2(�)‖h2‖L p(�) + ‖h‖L p(�)‖h2‖L2(�))‖h1‖L2(�).

This completes the proof. ��
Lemma 3.16 (Second order behavior in a neighborhood) If u satisfies (3.9) then

j ′′(u)(u − u)2 ≥ δ

2
‖u − u‖2L2(�)

, (3.19)

for all u ∈ Uad with ‖u − u‖L p(�) < δ
4L . Note: the argument of j ′′ is different from

that in (3.9).

Proof We begin by rewriting j ′′(u)(u − u)2:

j ′′(u)(u − u)2 = j ′′(u)(u − u)2 + ( j ′′(u)(u − u)2 − j ′′(u)(u − u)2)

≥ j ′′(u)(u − u)2 − |( j ′′(u)(u − u)2 − j ′′(u)(u − u)2)| = I − II

Using (3.9), we obtain I ≥ δ‖u − u‖2L2(�)
. And invoking (3.18) yields

II ≤ L(‖u − u‖L2(�)‖u − u‖L p(�) + ‖u − u‖L p(�)‖u − u‖L2(�))‖u − u‖L2(�).

Finally, combining the estimates for I and II gives

j ′′(u)(u − u)2 ≥ δ‖u − u‖2L2(�)
− 2L‖u − u‖L p(�)‖u − u‖2L2(�)

.
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For ‖u − u‖L p(�) < δ
4L , we obtain (3.19). ��

We now arrive at the main result of this section.

Proof [Proof of Corollary 3.12] We proceed in two steps:
1 Let u ∈ Uad and ‖u − u‖L p(�) < δ

8L . By Taylor’s theorem, there is a t ∈ (0, 1)
such that

j (u) = J (u) + 〈
j ′(u), u − u

〉+ 1

2
j ′′(tu + (1 − t)u)(u − u)2

= j (u) + 〈
j ′(u), u − u

〉+ 1

2
j ′′(u)(u − u)2 + 1

2
( j ′′(tu + (1 − t)u) − j ′′(u))(u − u)2

≥ j (u) + 〈
j ′(u), u − u

〉+ δ

2
‖u − u‖2L2(�)

−
∣∣∣1
2

(
j ′′(tu + (1 − t)u) − j ′′(u)

)
(u − u)2

∣∣∣
where the last inequality is due to (3.9). Next, (3.18) gives

j (u) ≥ j (u) + 〈
j ′(u), u − u

〉+ δ

2
‖u − u‖2L2(�)

− 2L‖u − u‖L p(�)‖u − u‖2L2(�)
,

which implies

j (u) ≥ j (u) + 〈
j ′(u), u − u

〉+ δ

4
‖u − u‖2L2(�)

. (3.20)

Using Lemma 3.3, we obtain (3.13).
2 Since ‖u − u‖L p(�) < δ

8L (i.e. u satisfies (3.19)), we can repeat all the steps in 1
with u replaced by u and vice-versa to get

j (u) ≥ j (u) + 〈
j ′(u), u − u

〉+ δ

4
‖u − u‖2L2(�)

. (3.21)

Adding (3.20) and (3.21) and setting ε = δ
8L proves the corollary. ��

4 Discrete Control Problem

Let T denote a geometrically conforming, quasiuniform triangulation of the domain
� such that � = ∪K∈T K with K closed and h the meshsize of T . Consider the
following finite dimensional spaces

Y h =
{

yh ∈ C0(�) : yh |K ∈ P1(K ), K ∈ T
}

,

Y̊ h = Y h ∩ W̊ 1∞(�),

U h
ad = Y h ∩ Uad . (4.1)

The spaces U h
ad , Y h will be used to approximate the continuous solution of (1.1) and

(1.2). The spaces are based on the finite dimensional space P1 which are the linear
polynomials on the domain K , where K is a triangle. This discretization is classical
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and can be found in any standard finite element book, for instance [8,14]. We remark
that in our numerical implementation the L p constraints inU h

ad are enforced by scaling
the functions with their L p-norm, we refer to §s:computations for more details. Using
Ih : W 1

r (�) → Y h we denote the interpolation operator, i.e. if r > n then Ih is the
standard Lagrange interpolation operator, otherwise it indicates the so-called Scott-
Zhang interpolation operator [30].

The discrete version of the continuous optimal control problem (1.1) is

inf Jh(yh, uh) := 1

2
‖yh − yd‖2L2(�)

+ α

2
‖uh‖2L2(�)

over yh − Ihv ∈ Y̊ h, uh ∈ U h
ad ,

(4.2)
subject to yh − Ihv ∈ Y̊h solving the discrete state equation

∫
�

∇ yh

Q(yh)
· ∇zh =

∫
�

uhzh, for all zh ∈ Y̊ h . (4.3)

We remark that in (4.2), for simplicity, we have not discretized yd .
The discrete optimality conditions amount to the state (4.3); the adjoint, find ϕh ∈

Y̊ h such that
∫

�

∇zT
h A[yh]∇ϕh =

∫
�

(yh − yd)zh for all zh ∈ Y̊ h, (4.4)

where A[yh] = 1
Q(yh)

(
I − ∇ yh∇ yT

h
Q(yh)2

)
, and the discrete variational inequality for the

optimal control

〈
ϕh + αuh, uh − uh

〉
L2(�),L2(�)

≥ 0, for all uh ∈ U h
ad . (4.5)

Remark 4.1 Similar to Remark 3.7, the discrete functional derivative is given by
j ′h(uh) = ϕh(yh) + αuh for an arbitrary uh in U h

ad , where yh solves (4.3) with uh

as right-hand-side, and ϕh(yh) solves (4.4) with right-hand-side given by yh − yd .

5 Numerical Examples

5.1 Setup

We present numerical examples for the discrete optimal control problem in Sect. 4.
We solve the optimization problem using MATLAB’s optimization toolbox with an
SQP method, where we provide the gradient information.

The gradient of the cost functional (4.2), at each iteration of the optimization algo-
rithm, is computed by first solving the state equation (4.3) for yh with the control uh

taken from the previous iteration. Then, the adjoint problem (4.4) is solved for ϕh

using the discrete solution yh . We then define the linear form (see Remark 4.1)

〈
j ′h(uh), vh

〉
L2(�),L2(�)

=
∫

�

(ϕh + αuh)vh, for all vh ∈ Y h,
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Fig. 2 Left Desired surface height yd = sin(2πx) sin(2πy). Right Actual surface height y (after the
optimization method converges). Boundary data is v = 0

and pass the discrete gradient vector (and cost value) to MATLAB’s optimization
algorithm at the current iteration. The constraint on the control U h

ad is handled by
MATLAB’s optimization algorithm by specifying an inequality constraint on uh .

The non-linear state equation is solved with Newton’s method and a direct solver
(backslash); we also use a direct solver for the adjoint problem. This was all imple-
mented in MATLAB using the FELICITY toolbox [33]. The following sections show
some examples of our computational method. In all cases, we set α = 10−6 and
p = 2.5. For most examples, we set θ = 20 in the definition of U h

ad , except in Sect.
5.2.2 where θ = 2. The first two examples are posed on a unit square domain, which
technically does not satisfy the C1,1 domain assumption. The last example is posed
on a C∞ domain in the shape of a four-leaf clover.

5.2 Sine on a Square

5.2.1 θ = 20

We take yd to be a product of sine functions and set the boundary data to v = 0. The
domain� is the unit square. See Figs. 2 and 3 for plots of yd , y, u, and the optimization
history. This example shows that we can recover the desired surface almost exactly
when the boundary condition v matches yd on ∂�. Note: for this optimal control, we
have ‖u‖L p(�) ≈ 3.75.

5.2.2 θ = 2

We run the same example as in Sect. 5.2.1, except we choose a smaller value of θ to
see the impact on the quality of the optimal control; all other parameters are identical.
See Figs. 4 and 5 for plots of yd , y, u, and the optimization history. The value of
‖u‖L p(�) in the previous example was ≈ 3.75. Here, ‖u‖L p(�) is constrained to be
≤ 2 (in fact, it is equal to 2).
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Fig. 3 Left Optimal control function u for yd in Fig. 2. Right Decrease of cost functional J
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Fig. 4 Left desired surface height yd = sin(2πx) sin(2πy). Right actual surface height y (after the opti-
mization method converges). Boundary data is v = 0. Note: θ = 2 here
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Fig. 5 Left optimal control function u for yd in Fig. 4. Right decrease of cost functional J

123



Appl Math Optim (2018) 78:297–328 325

0
0.5

1

0

0.5

1

−0.2

−0.1

0

0.1

0.2

X

Desired Surface

Y
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0
0.5

1

0

0.5

1

−0.2

−0.1

0

0.1

0.2

X

Actual Surface

Y
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Fig. 6 Left Desired surface height yd = 0.1 exp
(
−((x − 0.5)2 + (y − 0.5)2)/0.1

)
. Right Actual surface

height y (after the optimization method converges). Boundary data is v = −0.1 sin(πx) cos(2πy)

It is clear from Fig. 5 that the height of the optimal control is less than in Fig. 3
(note the different scale in the plot). Moreover, u is not as “peaked” as before (more
rounded), but is qualitatively the same. This, in turn, affects the obtained surface height
y in Fig. 4, i.e. it appears to be uniformly scaled with respect to the result in Fig. 2.
In other words, the main effect that θ has is to scale down the optimal control, which
shrinks the obtained surface height. But the qualitative shape of u and y is essentially
the same as before.

5.3 Gaussian on a Square (Nonzero Boundary Condition)

We take yd to be a Gaussian bump and set the boundary data to v = −0.1 sin(πx)

cos(2πy). The domain � is the unit square. See Figs. 6 and 7 for plots of yd , y, u,
and the optimization history. In this case, we impose a mismatch between the imposed
boundary condition v and the desired surface yd . The results show that the optimization
does the “best it can” by trying to match yd in the interior of �. Note the large value
of the control u at the boundary of � in Fig. 7.

5.4 Cosine on a Clover

We take yd to be a product of cosine functions and set the boundary data to v = 0.
The domain � is a four-leaf clover (smooth domain). See Figs. 8 and 9 for plots of
yd , y, u, and the optimization history. This example also has a mismatch between the
imposed boundary condition v and yd . Again, the optimal surface y matches yd well
in the interior of �, but not at the boundary. Moreover, in Fig. 9, it is evident from the
convergence history of the optimization algorithm that the path to the optimal control
is non-trivial.
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6 Conclusion and Future Work

Themean curvature operator is only locally-coercive,which leads to several difficulties
in proving the existence of solution to the PDE. Using two approaches, (i) the implicit
function theorem (see Theorem 2.8) and (ii) a fixed point theorem (see Theorem 2.11),
we provide a complete second order analysis to this PDE. This requires a smallness
condition on the boundary data v and right-hand-side u. We handle (i) by proving
various Fréchet differentiability results, where as for (ii) we prove a new result for
second order elliptic PDEs in non-divergence form, where the lower order coefficients
need not be bounded (for the bounded coefficient case, see [20, Theorem 9.15]).

By using the regularity results for the PDE,we rigorously justify the first and second
order sufficient optimality conditions and further tackle the 2-norm discrepancy in the
L p − L2 pair. The discretization of the PDE uses a finite element method.

There are somepossible extensions of thiswork.Thefirst could beboundary control.
The second is where the surface tension coefficient K ∈ R

n×n in the operator

− div K
∇ y

Q(y)

acts as an optimal control, and the right-hand-side u acts as a driving force. This would
be especially applicable to material science, where the presence of colloidal particles
on a surface, or interface, can modulate surface tension.
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