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For the convenience of the reader, we collect several basic results that are useful
to the main paper.

SM1. Proof of Proposition 2.1. Using (2.8), we may estimate the skeleton
term in (2.12) by

h‖v‖2L2(Eh) ≤
∑
T∈Th

h‖v‖2L2(∂T ) ≤ C3

∑
T∈Th

‖v‖2L2(T ) + h2‖∇v‖2L2(T )

≤ C3

(
‖v‖2L2(Ω) + h2‖∇v‖2L2(Ω)

)
,

(SM1.1)

which gives the result.

SM2. Background of curved finite elements. We review the theory in
[SM5].

SM2.1. Parametric elements. Let Pl(D) ≡ Pl(D;R) be the space of polyno-

mials of degree ≤ l on the generic domain D (for l ≥ 0), and let T̂ be the reference

unit triangle. We introduce the set of Lagrange nodal variables (points) Nl(T̂ ) ≡ N̂l
on T̂ that correspond to Pl(T̂ ) ≡ P̂l, with associated (point evaluation) Lagrange

interpolation operator ̂̇Il. Thus, the reference finite element is the triple (T̂ , N̂l, P̂l).
LetAT : T̂ → T 1 be an affine map that generates a straight triangle T 1 ∈ T 1

h , with
polynomial space P1

l ≡ P1
l (T 1), corresponding finite element triple (T 1,N 1

l ,P1
l ), and

Lagrange interpolation operator İ1
l . Let Tm = FmT (T 1) be a curved triangle, where

[Pm(T̂ )]2 3 FmT : T 1 → Tm is a regular invertible mapping (and m ≥ 1). This induces
a mapped polynomial space

(SM2.1) Pml ≡ Pml (Tm) = {p̂ ◦ (FmT )−1 | p̂ ∈ P1
l },

with mapped nodal set given by Nm
l ≡ Nm

l (Tm) = {FmT (a) | a ∈ N 1
l }. Hence, the

“parametric” finite element is the triple (Tm,Nm
l ,Pml ), with Lagrange interpolation

operator given by İml (f) ◦ FmT = İ1
l (f ◦ FmT ).

In general, there is no relation between l and m. Typically, l = m refers to the
iso-parametric case. We use the notation F∞T ≡ FT to indicate a general non-linear
map (not necessarily a polynomial) that maps T 1 to a triangle T ∈ Th, and the same
considerations above apply to this case as well.

Note that m = 1 indicates linear (straight) triangles and there are well-known
procedures for generating a conforming, shape regular triangulation, consisting of lin-
ear triangles, that approximates a smooth domain. Generating higher order triangles,
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Tm, that approximate the domain better than linears, requires an “optimal” map FmT
which is defined by the procedure in [SM5]. The next section highlights the properties
of these maps.

SM2.2. Approximation of Ω by Ωm. The following results [SM5, Lemma 5,
Propositions 2, 3] give estimates on how well Ωm approximates Ω. Let Ψm

T : Tm → T ,
for each T ∈ Th, and note that Ψ1

T ≡ FT .

Proposition SM2.1 (Forward Map). Let 1 ≤ m ≤ k. The map Ψm
T satisfies

the following properties:
1. There exist constants bs > 0, independent of h, such that

(SM2.2) ‖∇s((Ψm
T − idTm) ◦ FmT ◦AT )‖L∞(T̂ ) ≤ bsh

m+1, ∀ s ≤ m+ 1.

2. There exist constants γs > 0, independent of h, such that

(SM2.3) ‖∇s(Ψm
T − idTm)‖L∞(Tm) ≤ γshm+1−s, ∀ s ≤ m+ 1.

3. Ψm
T is a Cm+1 diffeomorphism: Tm → T .

4. There exists γ > 0, independent of h, such that

(SM2.4) ‖ det(∇Ψm
T )− 1‖L∞(Tm) ≤ γhm.

Proposition SM2.2 (Inverse Map). Let 1 ≤ m ≤ k. The inverse map (Ψm
T )−1 :

T → Tm satisfies the following properties:
1. There exist constants ρs > 0, independent of h, such that

(SM2.5) ‖∇s((Ψm
T )−1 − idT )‖L∞(T ) ≤ ρshm+1−s, ∀ s ≤ m+ 1.

2. There exists ρ > 0, independent of h, such that

(SM2.6) ‖det(∇(Ψm
T )−1)− 1‖L∞(T ) ≤ ρhm.

SM2.3. Proof of Theorem 3.2. We break the result up into Theorem SM2.3,
Corollary SM2.4, and Corollary SM2.5.

Theorem SM2.3. The map Φlm
T = FmT ◦ (F lT )−1, given in (3.1), satisfies a vari-

ant of (SM2.3) and (SM2.5), i.e.,

‖∇s(Φlm
T − idT l)‖L∞(T l) ≤ Chl+1−s,

‖∇s((Φlm
T )−1 − idTm)‖L∞(Tm) ≤ Chl+1−s,

(SM2.7)

for 0 ≤ s ≤ l + 1, where C only depends on Γ.

Proof. By the triangle inequality and (SM2.3),

‖∇s(Φlm
T − idT l)‖L∞(T l) ≤ ‖∇s(Φlm

T −Ψl
T )‖L∞(T l) + ‖∇s(Ψl

T − idT l)‖L∞(T l)

≤ ‖∇s
[
(Ψl

T ◦ (Φlm
T )−1 − idTm) ◦Φlm

T

]
‖L∞(T l) + Chl+1−s

≤ ‖∇s
[
(Ψm

T − idTm) ◦Φlm
T

]
‖L∞(T l) + Chl+1−s,

(SM2.8)

where we used that Ψl
T ◦(Φlm

T )−1 = FT ◦(F lT )−1◦F lT ◦(FmT )−1 = FT ◦(FmT )−1 = Ψm
T .

Next, let F̃ lT := F lT ◦AT : T̂ → T l (for all l ≤ m) and note that

‖∇F lT ‖L∞(T 1) ≤ ‖∇F̃ lT ‖L∞(T̂ )‖(∇AT )−1‖L∞(T̂ ) ≤ C1hC2h
−1 ≤ C ′,(SM2.9)
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where we used [SM5, Thm. 1] on ∇F̃ lT (because F lT is an optimal map), AT is the
standard affine map, and C ′ > 0 is a uniform constant only depending on Γ. From
this, we get

∇Φlm
T = ∇[FmT ◦ (F lT )−1] = [(∇FmT )(∇F lT )−1] ◦ (F lT )−1,

⇒ ‖∇Φlm
T ‖L∞(T l) ≤ C‖∇FmT ‖L∞(T 1)‖(∇F lT )−1‖L∞(T 1) ≤ C ′.

(SM2.10)

Therefore,

‖∇s
[
(Ψm

T − idTm) ◦Φlm
T

]
‖L∞(T l)

≤ C
s∑
j=1

‖∇j(Ψm
T − idTm)‖L∞(Tm)‖∇s−j+1Φlm

T ‖L∞(T l) ≤ Chl+1−s,
(SM2.11)

for 0 ≤ s ≤ l + 1, where we used the product rule, (SM2.3), (SM2.10), and many
inverse estimates. Combining with (SM2.8) gives the first estimate in (SM2.7); the
other estimate follws similarly.

Corollary SM2.4. The maps FmT , F lT satisfy

‖∇s(F lT − idT 1)‖L∞(T 1) ≤ Ch2−s, for s = 0, 1, 2,

‖∇s(FmT − F lT )‖L∞(T 1) ≤ Chl+1−s, for 0 ≤ s ≤ l + 1,
(SM2.12)

and

1− Ch ≤ ‖[∇F lT ]−1‖L∞(T 1) ≤ 1 + Ch, ‖[∇F lT ]−1 − I‖L∞(T 1) ≤ Ch,(SM2.13)

where C only depends on Γ.

Proof. The first estimate in (SM2.12) follows from (SM2.7) with l = 1, and also
implies that

‖∇sF l‖L∞(T 1) ≤ Cs, for s = 0, 1, 2,(SM2.14)

where C0 = C1 = O(1), and C2 > 0 depends on the curvature of Γ. In particular,
this implies that ‖[∇F l]−1‖L∞(T 1) = O(1), which gives

‖[∇F l]−1 − I‖L∞(T 1) ≤ ‖[∇F l]−1‖L∞(T 1)‖I− [∇F l]‖L∞(T 1)

≤ C‖∇(F l − idT 1)‖L∞(T 1) ≤ Ch,
(SM2.15)

using the first estimate in (SM2.12). This proves (SM2.13). Then,

‖∇s(FmT − F lT )‖L∞(T 1) = ‖∇s[(Φlm
T − idT l) ◦ F lT ]‖L∞(T 1)

≤ C
s∑
j=1

‖∇j(Φlm
T − idT l)‖L∞(T 1)‖∇s−j+1F lT ‖L∞(T 1) ≤ Chl+1−s,

(SM2.16)

for 0 ≤ s ≤ l + 1, where we used the product rule, (SM2.7), (SM2.14), and many
inverse estimates.

Corollary SM2.5. The map Φlm satisfies the following identities:[
Φlm − idT l

]
◦ F l = Fm − F l,[

∇(Φlm − idT l)
]
◦ F l = ∇(Fm − F l) +O(hl+1),[

∇2(Φlm − idT l) · eγ
]
◦ F l = ∇2(Fm − F l) · eγ +O(hl),

(SM2.17)

for γ = 1, 2, where the constants depend on Γ ∈ Ck+1, and l ≤ m ≤ k.
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Proof. We start by noting that Φlm − idT l = (Fm − F l) ◦ (F l)−1, and so

∇(Φlm − idT l) = ([∇(Fm − F l)][∇F l]−1) ◦ (F l)−1,

∇2(Φlm − idT l) = ([∇2(Fm − F l)] : [[∇F l]−1 ⊗ [∇F l]−1]) ◦ (F l)−1

−(∇(Fm−F l)
[
[∇F l]−T [∇2F l][∇F l]−1

]
[∇F l]−1) ◦ (F l)−1,

(SM2.18)

and so

[∇(Φlm − idT l)] ◦ F l = [∇(Fm − F l)][∇F l]−1

= [∇(Fm − F l)]
{

[∇F l]−1 − I
}

+∇(Fm − F l)
≤ ∇(Fm − F l) + Chl+1,

(SM2.19)

where we used (SM2.12) and (SM2.13). Next, we have

[∇2(Φlm − idT l) · eγ ] ◦ F l = [∇F l]−T [∇2(Fm − F l) · eγ ][∇F l]−1

−(∇(Fm − F l) · eγ)
[
[∇F l]−T [∇2F l][∇F l]−1

]
[∇F l]−1

≤ ∇2(Fm − F l) · eγ + Chl,

(SM2.20)

where we add/subtract the identity matrix and use (SM2.12)–(SM2.14).

SM2.4. Proof of Proposition 3.3.

Proof. W.L.O.G., assume m > l. From [SM5, Prop. 4], ‖v‖Hs(Tm) ≈ ‖v̂‖Hs(T l)

for s ≥ 0. More specifically, ‖∇v‖L2(T m
h ) ≈ ‖∇v̂‖L2(T l

h) and

‖∇2v‖L2(Tm
h ) ≤ C

(
‖∇2v̂‖L2(T l

h) + hl−1‖∇v̂‖L2(T l
h)

)
.

Applying a change of variables to the jump term in (2.10) gives

‖ Jn · ∇vK ‖L2(Emh ) ≤ Chl‖∇v̂‖L2(Elh) + ‖ Jn̂ · ∇v̂K ‖L2(Elh),(SM2.21)

where we emphasize that we cannot put a jump in the first term on the right-hand-
side because different Jacobians appear on either side of the edge. Next, we have the
following scaling estimate (see (2.8))

‖∇v̂‖2L2(∂T l) ≤ C0

(
h−1‖∇v̂‖2L2(T l) + h‖∇2v̂‖2L2(T l)

)
,(SM2.22)

which leads to

h−1/2‖ Jn · ∇vK ‖L2(Emh ) ≤ C1h
l−1‖∇v̂‖L2(T l

h) + C1h
l‖∇2v̂‖L2(T l

h) + h−1/2‖ Jn̂ · ∇v̂K ‖L2(Elh),

(SM2.23)

and implies ‖v‖2,h,m ≤ C2(‖v̂‖2,h,l+hl−1‖∇v̂‖L2(Ωl)), giving the upper bound in (3.5)
and (3.6). Combining with the Poincaré inequality in (2.14), shows the upper bound
in (3.6); the lower bound follows similarly.

For ‖v‖0,h,m, the argument is simpler because there are no jump terms.

SM3. Mesh-dependent approximation results for curved Lagrange fi-
nite elements.
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SM3.1. Scaling results.

Lemma SM3.1. Assume 1 ≤ m ≤ k (or m = ∞). There is a constant C > 0,
independent of h and m, such that

‖v‖Lq(∂Tm) ≤ Ch1/q−2/p‖v‖Lp(Tm), for any 1 ≤ q, p ≤ ∞,(SM3.1)

for all v̂ := v ◦ FmT ∈ Pr(T 1), where r ≥ 0.

Corollary SM3.2. Assume 1 ≤ m ≤ k (or m =∞). There is a constant C > 0,
independent of h and m, such that

‖∇v‖Lq(∂Tm) ≤ Ch1/q−2/p‖∇v‖Lp(Tm), for any 1 ≤ q, p ≤ ∞,(SM3.2)

for all v̂ := v ◦ FmT ∈ Pr+1(T 1), where r ≥ 0.

The following mesh-dependent results essentially come from [SM1] (when m = 1).

Lemma SM3.3. Assume 1 ≤ m ≤ k (or m = ∞). There is a constant C > 0,
independent of h and m, such that

‖v‖0,h ≤ C‖v‖L2(Ωm), for all v ∈Wm
h ,(SM3.3)

where ‖ · ‖0,h is given in (2.12).

Proof. Combining Proposition 2.1 with an inverse inequality gives the assertion.

Lemma SM3.4. Assume 1 ≤ m ≤ k (or m = ∞). There is a constant C > 0,
independent of h and m, such that

‖v‖2,h ≤ Ch−1‖v‖H1(Ωm), for all v ∈Wm
h .(SM3.4)

SM3.2. Approximation results. The following approximation results follow
from [SM1] when m = 1.

Lemma SM3.5. Suppose v ∈W t,p(Ωm), for p > 1 and t ≥ 2 is an integer. Then,

‖∇s(v − Imh v)‖Lq(Emh ) ≤ Chl−s+1/q−2/p+2 min(0,1/p−1/q)‖v‖W l,p(Ωm),(SM3.5)

where s = 0, 1, 1 ≤ l ≤ min(r+ 2, t), for all h, and C > 0 is an independent constant,

and 1 ≤ q ≤ ∞ is such that W l,p(T̂ ) ↪→W s,q(∂T̂ ).

Lemma SM3.6. Assume the hypothesis of Lemma SM3.5. Then,

‖∇s(v − Imh v)‖Lq(Ωm) ≤ Chl−s+2/q−2/p+2 min(0,1/p−1/q)‖v‖W l,p(Ωm),

‖v − Imh v‖L2(Ωm) ≤ ‖v − Imh v‖0,h ≤ Chl‖v‖Hl(Ωm), for v ∈ H l(Ωm) ∩W t,p(Ωm),

(SM3.6)

where s = 0, 1, 1 ≤ l ≤ min(r+ 2, t), for all h, C > 0 is an independent constant, and

1 ≤ q ≤ ∞ is such that W l,p(T̂ ) ↪→W s,q(T̂ ).

Lemma SM3.7. Assume the hypothesis of Lemma SM3.5. Then,

 ∑
Tm∈Tm

h

|v − Imh v|
q
W 2,q(Tm)

1/q

≤ Chl−2+2/q−2/p+2 min(0,1/p−1/q)‖v‖W l,p(Ωm),

‖v − Imh v‖2,h ≤ Chl−1−2/p‖v‖W l,p(Ωm),

(SM3.7)
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where 2 ≤ l ≤ min(r + 2, t), for all h, C > 0 is an independent constant, and

1 ≤ q ≤ ∞ is such that W l,p(T̂ ) ↪→W 2,q(T̂ ).

Proof. The first inequality is standard. The second follows by recalling the defi-
nition (2.10) and combining the first inequality and (SM3.5) with q = 2.

SM4. Approximation results for curved HHJ finite elements. We make
note of some standard transformation rules for covariant and contravariant quanti-
ties, since they are critical for analyzing the geometric error when comparing similar
quantities on different domains, e.g., Ωm and Ωl with m 6= l.

We use a “hat” notation to indicate a function defined on T 1. Recall the following
transformation rules for covariant (contravariant) vectors and tensors:

(covariant) v ◦ FmT (û) = (Bm
T )−T v̂,

(contravariant) v ◦ FmT (û) = Bm
T v̂,

(covariant) w ◦ FmT (û) = (Bm
T )−T ŵ(Bm

T )−1,

(contravariant) w ◦ FmT (û) = Bm
T ŵ(Bm

T )T ,

(SM4.1)

where Bm
T := ∇FmT .

We also note the following transformation rules for normal and tangent vectors
on ∂T :

n ◦ FmT =
(Bm

T )−T n̂

|(Bm
T )−T n̂|

, t ◦ FmT =
Bm
T t̂

|Bm
T t̂|

.(SM4.2)

SM4.1. The reference HHJ element. Recall (4.1) and let

V 1
h ≡ V 1

h (T 1) := Pr(T 1;S) ⊂M1
nn(T 1),

be a conforming finite element space on the element T 1 ∈ T 1
h with nodal Degrees-of-

Freedom (DoFs) given by

• |E1|
∫
E1

n̂T ϕ̂n̂q̂ ds, ∀q̂ ∈ Pr(E1), ∀E1 ∈ ∂T 1,

•
∫
T 1

ϕ̂ : η̂ dS, ∀η̂ ∈ Pr−1(T 1;S),

(SM4.3)

i.e., ϕ̂ ∈ V 1
h is uniquely defined by (SM4.3) [SM6].

SM4.2. Matrix Piola transform. We now recall Definition 4.2 of the matrix
Piola transform, and verify a key elementary property, which shows that it preserves
normal-normal continuity. Given an orientation-preserving diffeomorphism F : D̂ →
D, and a tensor field ϕ : D → R2, we define ϕ̂ : D̂ → R2 by

ϕ̂(x̂) = (detB)2B−1ϕ(x)B−T ,

where x = F(x̂), and B = B(x̂) = ∇F(x̂). Also, denote by t,n : ∂D → R2

the positively-oriented unit tangent vector and the outward unit normal vector, and
similarly for t̂, n̂ on ∂D̂. Then the normal-normal component of ϕ transforms as
follows:

(SM4.4) (n̂T ϕ̂n̂)|Bt̂|−2 = (nTϕn) ◦ F.
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To see this, note that t = |Bt̂|−1Bt̂ and n = |B−T n̂|−1B−T n̂ = (detB)|Bt̂|−1B−T n̂,
where we have used the elementary identity (detB)|B−T n̂| = |Bt̂|, whenever B is
a 2 × 2 matrix with positive determinant and t̂, n̂ are orthonormal. Thus n̂ =
(detB)−1|Bt̂|BTn. Substituting this expression and the definition of ϕ̂ into the
left-hand size of (SM4.4) gives the result.

Note that the term Bt̂ in (SM4.4) is continuous across inter-element boundaries.
Indeed, for ϕnn, we have

(SM4.5) ϕnn ◦ FmT ≡ (nTϕn) ◦ FmT = |Bm
T t̂|−2ϕ̂nn.

Hence, one can map basis functions on the reference element to basis functions on the
physical element using (4.2) and maintain normal-normal continuity. Furthermore, if
F is a general affine map (m = 1), with E = F(E1), then |Bt̂| = |E|/|E1|, so (SM4.4)
implies that

|E|
∫
E

(nTϕn)q ds = |E1|
∫
E1

(n̂T ϕ̂n̂)q̂ ds, ∀q̂ ∈ Pr(E1), and all edges E1 in ∂T 1,

(SM4.6)

i.e., the edge DoFs are scaled when mapped.
We close with a norm equivalence implied by Lemma SM3.3:

(SM4.7) ‖ϕ‖20,h ≤ C0

2∑
α,β=1

‖ϕαβ‖20,h ≤ CC0‖ϕ‖2L2(Ωm), ∀ϕ ∈ V mh ,

so ‖ϕ‖0,h ≈ ‖ϕ‖L2(Ω) for all ϕ ∈ V mh . By the same arguments in the proof of
Proposition 3.3, we have that

(SM4.8) ‖ϕ‖0,h,m ≈ ‖ϕ̂‖0,h,l, for all ϕ ∈ H0
h(Ωm;S),

using the Piola transform involving Φ taken from Proposition 3.3.

SM4.3. Approximation results of the HHJ interpolation operator. The
operator Πm

h enjoys the following approximation properties [SM4].

Lemma SM4.1. Suppose ϕ ∈ W t,p(Ωm;S), for p > 1 and t ≥ 1 is an integer.
Then,

‖ϕ−Πm
h ϕ‖Lq(Emh ) ≤ Chl+1/q−2/p+2 min(0,1/p−1/q)‖ϕ‖W l,p(Ωm),(SM4.9)

where 1 ≤ l ≤ min(r + 1, t), for all h, and C > 0 is an independent constant, and

1 ≤ q ≤ ∞ is such that W l,p(T̂ ) ↪→ Lq(∂T̂ ).

The following is a modification of [SM4, Lem. 4].

Lemma SM4.2. For 2 ≥ p > 1 and t ≥ 1 is an integer, there holds

‖Πm
h ϕ‖Mm

nn(Ωm) ≤ C‖ϕ‖Mm
nn(Ωm), for all ϕ ∈Mm

nn(Ωm),

‖ϕ−Πm
h ϕ‖Lq(Ωm) ≤ Chl+2(1/q−1/p)+2 min(0,1/p−1/q)‖ϕ‖W l,p(Ωm),

‖ϕ−Πm
h ϕ‖L2(Ωm) ≤ ‖ϕ−Πm

h ϕ‖0,h ≤ Chl+1−2/p‖ϕ‖W l,p(Ωm),

(SM4.10)

for all ϕ ∈Mm
nn(Ωm)∩W t,p(Ωm), where ‖ϕ‖pMm

nn(Ωm) := ‖ϕ‖pLp(Ωm)+
∑
Tm ‖∇ϕ‖pLp(Tm),

1 ≤ l ≤ min(r + 1, t), for all h, C > 0 is an independent constant, and 1 ≤ q ≤ ∞ is

such that W l,p(T̂ ) ↪→ Lq(T̂ ).
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We have the following scaling result.

Lemma SM4.3. There is a constant C > 0, independent of h and m, such that

‖nTϕn‖Lq(∂Tm) ≤ ‖ϕ‖Lq(∂Tm) ≤ Ch1/q−2/p‖ϕ‖Lp(Tm), for any 1 ≤ q, p ≤ ∞,
(SM4.11)

for all ϕ̂ := (detBm
T )2(Bm

T )−1(ϕ ◦ FmT )(Bm
T )−T ∈ Pr(T 1;S), where r ≥ 0.

SM5. Discrete inf-sup condition. We recall [SM2, Lem. 5.1].

Lemma SM5.1. Assume the domain Ω is piecewise linear, i.e., m = 1. Then,

sup
ϕ∈V 1

h

|b1h (ϕ, v) |
‖ϕ‖0,h,1

≥ C0‖v‖2,h,1, ∀v ∈W 1
h , ∀h > 0,(SM5.1)

holds for any degree r ≥ 0, where C0 > 0 is independent of h.

SM6. Proof of Theorem 5.3. In lieu of Remark 4.7, we let |||·|||h denote any
norm on Wh for which the inf-sup condition holds.

Step 1. First, form the usual “error equations”:

(SM6.1) a (σ − σh,ϕh) + bh (ϕh, w − wh) + bh (σ − σh, vh) = 0,

for all (vh,ϕh) ∈ Wh × Vh. By the standard theory of mixed methods, one obtains
the following abstract convergence result as a special case of [SM3, Thm. 5.2.1]:

‖σh −ϕh‖0,h ≤
1

α0
sup

ωh∈Vh

|a (σ −ϕh,ωh) + bh (ωh, w − vh) |
‖ωh‖0,h

+
1

β0

(
A0

α0

)1/2

sup
zh∈Wh

|bh (σ −ϕh, zh) |
|||zh|||h

,

(SM6.2)

|||wh − vh|||h ≤
C

β0

(
1 +

A
1/2
0

α
1/2
0

)
sup

ωh∈Vh

|a (σ −ϕh,ωh) + bh (ωh, w − vh) |
‖ωh‖0,h

+
C2

PA0

β2
0

sup
zh∈Wh

|bh (σ −ϕh, zh) |
|||zh|||h

,

(SM6.3)

for all vh ∈Wh, ϕh ∈ Vh. Next, set vh = Ihw, ϕh = Πhσ.
Step 2. Let l1 := min(r + 1, t − 2) and l2 := min(r + 2, t). If |||·|||h = ‖ · ‖2,h,

(4.21), (4.31) and the interpolation estimates (SM3.7), (SM4.10) imply

‖σh−Πhσ‖0,h + ‖wh − Ihw‖2,h ≤ C‖σ −Πhσ‖0,h
+ C‖∇(w − Ihw)‖L2(ΩS) + Ch‖∇2(w − Ihw)‖L2(T∂,h)

≤ C
(
hl1+1−2/p‖σ‖W l1,p(Ω) + hl2−2/p‖w‖W l2,p(Ω)

)
,

(SM6.4)

where C > 0 is an independent constant.
Therefore, by the triangle inequality,

‖σ − σh‖0,h ≤ C
(
hl1+1−2/p‖σ‖W l1,p(Ω) + hl2−2/p‖w‖W l2,p(Ω)

)
,(SM6.5)

‖w − wh‖2,h ≤ C
(
hl1+1−2/p‖σ‖W l1,p(Ω)

)
+ C min

{
hl2−1−2/p‖w‖W l2,p(Ω), ‖w‖H2(Ω)

}
,

(SM6.6)
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for some independent constant C > 0.
Step 3. If |||·|||h = |·|H1(Ω), (4.21), (4.31) and the interpolation estimates (SM3.7),

(SM4.10) imply

‖σh −Πhσ‖0,h + ‖∇(wh − Ihw)‖L2(Ω) ≤ C‖σ −Πhσ‖0,h

+ C
(
‖∇(w − Ihw)‖L2(ΩS) + h‖∇2(w − Ihw)‖L2(T∂,h)

)
≤ Chl1+1−2/p‖σ‖W l1,p(Ω) + Chl2−2/p‖w‖W l2,p(Ω),

(SM6.7)

Therefore, by the triangle inequality,

‖σ − σh‖0,h + ‖∇(w − wh)‖L2(Ω) ≤ C
(
hl1+1−2/p‖σ‖W l1,p(Ω) + hl2−2/p‖w‖W l2,p(Ω)

)
,

(SM6.8)

for some independent constant C > 0.
Step 4. We use a duality argument to get a better estimate for ‖∇(w−wh)‖L2(Ω),

in the low regularity case and when r = 0. Let d ∈ H−1(Ω), and let τ ∈ V , ρ ∈ W
solve (2.17) with f replaced by d, i.e.,

a (ϕ, τ ) + bh (τ , v) + bh (ϕ, ρ) = −〈d, v〉 , ∀(ϕ, v) ∈ V ×W.(SM6.9)

Then, ‖τ‖W 1,p(Ω) + ‖ρ‖W 3,p(Ω) ≤ C‖d‖H−1(Ω). Next, set ϕ = σ − σh, v = w − wh:

−〈d,w − wh〉 = a (σ − σh, τ ) + bh (τ , w − wh) + bh (σ − σh, ρ) .(SM6.10)

Next, combine with (SM6.1):

−〈d,w − wh〉 = a (σ − σh, τ −ϕh) + bh (τ −ϕh, w − wh)

+ bh (σ − σh, ρ− vh) , ∀(ϕh, vh) ∈ Vh ×Wh.
(SM6.11)

Now set vh = Ihρ, ϕh = Πhτ :

|〈d,w − wh〉| ≤ |a (σ − σh, τ −Πhτ )|+ |bh (τ −Πhτ , w − wh)|
+ |bh (σ − σh, ρ− Ihρ)| .

(SM6.12)

Let us estimate the terms involving bh (·, ·). First, adding and subtracting Ihw:

|bh (τ −Πhτ , w − wh) | ≤ |bh (τ −Πhτ , w − Ihw)|+ |bh (τ −Πhτ , Ihw − wh)|
≤ |bh (τ , w − Ihw)|
+ |bh (Πhτ , w − Ihw)|+ |bh (τ −Πhτ , Ihw − wh)|
≤ |〈d,w − Ihw〉|

+C‖Πhτ‖L2(ΩS)

(
‖∇(w − Ihw)‖L2(ΩS) + h‖∇2(w − Ihw)‖L2(T∂,h)

)
,

+ C‖τ −Πhτ‖H0
h(ΩS)‖∇(Ihw − wh)‖L2(ΩS),

(SM6.13)

where we used (SM6.9) (for τ ) and (4.21). Interpolation estimates, for r = 0 and
minimal regularity, and (SM6.7) give

|bh (τ −Πhτ , w − wh) | ≤ C‖d‖H−1(Ω)

(
‖∇(w − Ihw)‖L2(Ω) + h‖∇2(w − Ihw)‖L2(T∂,h)

)
+ C‖τ −Πhτ‖H0

h(ΩS)‖∇(Ihw − wh)‖L2(ΩS)

≤ C
[
h+

(
h2−2/p

)2
]
‖d‖H−1(Ω)‖f‖H−1(Ω).

(SM6.14)
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For the next term, we use (2.17) (for σ) and (4.21):

|bh (σ − σh, ρ− Ihρ)| ≤ |bh (σ, ρ− Ihρ)|+ |bh (σh, ρ− Ihρ)|
≤ |〈f, ρ− Ihρ〉|

+C‖σh‖L2(ΩS)

(
‖∇(ρ− Ihρ)‖L2(ΩS) + h‖∇2(ρ− Ihρ)‖L2(T∂,h)

)
,

(SM6.15)

Again, interpolation estimates, for r = 0 and minimal regularity give

|bh (σ − σh, ρ− Ihρ)| ≤ C‖f‖H−1(Ω)

[
‖∇(ρ− Ihρ)‖L2(Ω)

+ h‖∇2(ρ− Ihρ)‖L2(T∂,h)

]
≤ Ch‖f‖H−1(Ω)‖d‖H−1(Ω).

(SM6.16)

Step 5. Lastly, for r = 0 and minimal regularity, we have

|a (σ − σh, τ −Πhτ )| ≤ C‖σ − σh‖L2(Ω)‖τ −Πhτ‖L2(Ω)

≤ Ch2−2/p
(
h2−2/p

)
‖d‖H−1(Ω)‖f‖H−1(Ω),

(SM6.17)

where we used (SM6.5). Therefore,

‖∇(w − wh)‖L2(Ω) ≤ C sup
d∈H−1(Ω)

〈d,w − wh〉
‖d‖H−1(Ω)

≤ C max
(
h, h4−4/p

)
‖f‖H−1(Ω).

(SM6.18)
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