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Abstract
This chapter is about the modeling of nematic liquid crystals (LCs) and their numerical
simulation. We begin with an overview of the basic physics of LCs and discuss some of
their many applications. Next, we delve into the modeling arguments needed to obtain
macroscopic order parameters which can be used to formulate a continuum model. We
then survey different continuum descriptions, namely the Oseen-Frank, Ericksen, and
Landau-de Gennes (Q-tensor) models, which essentially model the LC material like an
anisotropic elastic material. In particular, we review the mathematical theory underlying
the three different continuum models and highlight the different trade-offs of using these
models.
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Next, we consider the numerical simulation of these models with a survey of various
methods, with a focus on the Ericksen model. We then show how techniques from
the Ericksen model can be combined with the Landau-de Gennes model to yield a
Q-tensor model that exactly enforces uniaxiality, which is relevant for modeling many
nematic LC systems. This is followed by an in-depth numerical analysis, using tools
from �-convergence, to justify our discrete method. We also show several numerical
experiments and comparisons with the standard Landau-de Gennes model.
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Defects
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1 Physics of liquid crystals

1.1 Fundamentals

The name “liquid crystal” appears self-contradictory. A crystal has a rigid
molecular structure and so is associated with being a solid. How could a crystal
be liquid? Thinking more broadly, a crystal is matter that possesses some kind
of macroscopic order, such as having individual molecules arranged in a lattice.
On the other hand, a liquid has no macroscopic order.

Liquid crystals (LCs) are a meso-phase of matter, having a degree of macro-
scopic order that is between a liquid and a solid (Virga, 1994). A classic solid
crystal has both translational order (points in the lattice do not move) and ori-
entational order (neighboring molecules have similar orientation). A LC has no
strong translational order, i.e. the molecules are free to slide about, but they must
roughly maintain the same orientation with neighboring molecules. Thus, LCs
have partial orientational order.

The initial, accidental discovery of LCs is classically attributed to the Aus-
trian botanist Friedrich Reinitzer (Reinitzer, 1888, 1989), who was studying
carrots. While heating cholesteryl benzoate, he saw the material exhibit an LC
phase. In order to better understand this, he sought the help of German physicist,
Otto Lehmann (Lehmann, 1889) who had experimental apparatus capable of
better analysis. After this initial work, Lehmann continued to study LCs, while
Reinitzer moved on. Further information on the history of LCs can be found in
Sluckin et al. (2004), which contains translations of Reinitzer’s and Lehmann’s
initial papers. Moreover, one can consult (de Gennes and Prost, 1995; de Jeu,
2012; Luckhurst and Veracini, 1994; Mottram and Newton, 2014) for more de-
tails on the basic physics of LCs.

The LC state may be obtained as a function of temperature between the
crystalline and isotropic liquid phases; in such a case, the material is called
a thermotropic LC. Other classes include lyotropic and metallotropic LCs, in
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which concentration of the LC molecules in a solvent or the ratio between or-
ganic and inorganic molecules determine the phase transitions, respectively.

Let us consider thermotropic LCs. In a crystalline solid, molecules exhibit
both long-range ordering of the positions of the centers and orientation of the
molecules. As the substance is heated, the molecules gain kinetic energy and
large molecular vibrations usually make these two ordering types disappear.
This results in a fluid phase. In substances capable of producing an LC meso-
phase, the long-range orientational ordering survives until a higher temperature
than the long-range positional ordering. Whenever long-range positional order-
ing is completely absent, but orientational order remains, the LC is regarded
as nematic. At lower temperatures, the molecules may order along a preferred
direction, forming layered structures: this is called the smectic phase. In turn,
smectic mesophases may be classified into subclasses (such as smectics A,
smectics C and hexatic smectics), depending on the type and degree of posi-
tional and orientational order (de Gennes and Prost, 1995). Some substances
with chiral molecules (i.e. different from their mirror image) may give rise to a
cholesteric mesophase, in which the structure possesses a helical distortion.

This chapter will only consider nematic LCs, and regard their molecules as
rods, elongated in one direction and thin in the other two directions. Imagining
a bunch of thin rods packed together, it is natural to expect the orientation of
neighboring rods to be similar, but the rods are free to slide along each other.
Indeed, the partial order of LCs is essentially due to the anisotropic shape of the
LC molecules. Naturally, most LC molecules do not possess axial symmetry.
If the molecules resemble more laths than rods, it is expected that the energy
interaction can be minimized if the molecules are fully aligned; this necessarily
involves a certain degree of biaxiality. Roughly, this was the rationale behind
the prediction of the biaxial nematic phase by Freiser (1970).

Since that seminal work, empirical evidence of biaxial states in certain ly-
otropic LCs has been well documented (see Yu and Saupe, 1980, for example).
Nevertheless, for thermotropic LCs the nematic biaxial phase remained elusive
for a long period, and was first reported long after Freiser’s original prediction
(Acharya et al., 2004; Madsen et al., 2004; Prasad et al., 2005). As pointed out
by Sonnet and Virga (2012, Section 4.1),

The vast majority of nematic liquid crystals do not, at least in homogeneous
equilibrium states, show any sign of biaxiality.

Therefore, in this chapter, we shall focus mainly on uniaxial LCs. We discuss
three models for the equilibrium configurations. Uniaxiality is naturally built
into both the Oseen-Frank and the Ericksen models, as the LC orientation is
modeled by a vector field. In contrast, the Landau-de Gennes model represents
molecular orientation by means of a tensor field, and thus accounts for biaxiality.
However, one can enforce uniaxiality and obtain a model that is not equivalent
to either the Ericksen or the Oseen-Frank models. In particular, the uniaxially
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constrained Landau-de Gennes model represents the LC molecule orientation by
a line field, and thus it allows for non-orientable configurations. We will discuss
this with more detail in Section 4.

1.2 Applications

The most well-known application of LCs is in electronic displays (Hoogboom
et al., 2007; Roques-Carmes et al., 2004), which is due to an LC’s birefringence
property. Indeed, some LC materials polarize light (depending on the orientation
of molecules) and this can be controlled through external fields, such as electric
fields. This, combined with sophisticated engineering, delivers the flat panel LC
display.

However, many newer uses for LCs are being found in material science, that
either further build on LCs ability to manipulate light or take advantage of the
mechanical properties of the material’s anisotropy (Lagerwall and Scalia, 2012).
For example, Humar and Muševič (2010) demonstrates three dimensional LC
droplets that act as lasers, which may be used as bio-sensors. Self-assembly
of rigid particles (inclusions) immersed in an LC medium (Čopar et al., 2014,
2015) has the potential to make new materials. Clever optical effects with LC
droplets (Schwartz et al., 2018) provide novel means of creating secure “mark-
ers” that cannot be counterfeit.

Furthermore, LC models provide a test bed for investigating continuum mod-
els of complex fluids (e.g. Ericksen-Leslie (Cruz et al., 2013; Mottram et al.,
2013; Walkington, 2011)), especially swarms of bacteria (Vicsek and Zafeiris,
2012; Marchetti et al., 2013; Giomi, 2015) which is sometimes called active
matter (Ramaswamy, 2010, 2017; Doostmohammadi et al., 2018; Miles et al.,
2019). The shape of a bacterium is very reminiscent of LC molecules (elongated
rods) so it is not surprising that LC models, coupled with fluid dynamics, may
be reused. Therefore, LC research is a very active field within physics, mathe-
matics, biology, and soft-matter in general.

2 Modeling of nematic liquid crystals

We review three models for the equilibrium states of LCs. Specifically, we
show how to obtain a continuum description by an appropriate averaging over
molecules. This leads to continuum mechanics type models that derive from
minimizing an energy; we refer to de Gennes and Prost (1995), Virga (1994),
Mottram and Newton (2014) for more details on the modeling of LCs.

2.1 Order parameters

Modeling individual LC molecules is certainly viable via molecular dynamics or
Monte Carlo methods (Biscarini et al., 1995; Vanzo et al., 2012; Moreno-Razo
et al., 2012; Whitmer et al., 2013; Teixeira-Souza et al., 2015; Changizrezaei
and Denniston, 2017) and has the advantage of being based on first principles
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(i.e. completely “correct”), but is also very expensive computationally. In order
to build on these models for, say, coupling to fluids or doing optimal design,
we require a macroscopic description of LCs. Usually, the transition between
phases of different symmetry is described in terms of an order parameter, that
represents the extent to which the configuration of the more symmetric phase
differs from that of the less symmetric phase.

In the following discussion, we fix the spatial dimension to be d = 3. As a
first step, suppose we have an ensemble of LC molecules in a small region where
the state of each molecule is defined by its orientation in R3, i.e. let p ∈ S2 be
a vector in the unit sphere that indicates the orientation of an LC molecule.
Let ρ(p) ≥ 0 be the probability distribution of the orientation of LC molecules.
Obviously, the distribution of LC molecules may vary in space (and in time), e.g.
ρ ≡ ρ(x,p), but we shall omit the dependence on these variables for simplicity
of notation. It is reasonable to assume that an LC molecule is just as likely to be
observed with orientation p as −p; hence, ρ satisfies ρ(p) = ρ(−p). Based on
this head-to-tail symmetry, it must be that∫

S2
pρ(p) dp = 0, (1)

so direct averaging does not yield a useful order parameter.
Therefore, the first nontrivial information on the molecule distribution is

given by the second moments of ρ, namely:∫
S2

ppT ρ(p) dp = M, (2)

where M ∈ R3×3 is symmetric and effectively captures the average state of
the LC molecules (i.e. this is a useful order parameter). For a uniformly ran-
dom (isotropic) distribution of LC molecules, ρ(p) = 1/(4π) and M = Miso =
(1/3)I. Thus, it is convenient to define an auxiliary matrix

Q := M − Miso, (3)

which is symmetric and traceless, i.e.

Q ∈ � :=
{

Q ∈R3×3 | Q = QT , tr Q = 0
}

. (4)

Clearly, for an isotropic distribution of LC molecules, Q = 0. However, as
pointed out in Virga (1994, Sec. 1.3.4), Q = 0 is a necessary but not sufficient
condition for isotropy. For the sake of obtaining a continuum theory in which
microscopic order is described by Q only, we shall regard all distributions satis-
fying Q = 0 as isotropic.

We can further characterize Q by its eigenframe and is often written in the
form:

Q = s1(n1 ⊗ n1) + s2(n2 ⊗ n2) − 1

3
(s1 + s2)I, (5)
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where n1, n2 are orthonormal eigenvectors of Q, with eigenvalues given by

λ1 = 2s1 − s2

3
, λ2 = 2s2 − s1

3
, λ3 = − s1 + s2

3
, (6)

where λ3 corresponds to the eigenvector n3 ⊥ n1,n2. The eigenvalues of Q are
constrained by

−1

3
≤ λi =

∫
S2

(p · ni )
2ρ(p) dp − 1

3
≤ 2

3
, i = 1,2,3. (7)

When all eigenvalues are equal, since Q is traceless, we must have λ1 = λ2 =
λ3 = 0 and s1 = s2 = 0, i.e. the distribution of LC molecules is isotropic. If two
eigenvalues are equal, i.e.

λ1 = λ2 ⇔ s1 = s2,

λ1 = λ3 ⇔ s1 = 0,

λ2 = λ3 ⇔ s2 = 0,

(8)

then we encounter a uniaxial state, in which either molecules prefer to orient in
alignment with the simple eigenspace (in case it corresponds to a positive eigen-
value) or perpendicular to it (in case it corresponds to a negative eigenvalue). If
all three eigenvalues are distinct, then the state is called biaxial. We recall that,
as discussed in Section 1.1, most nematic LCs can be effectively modeled as
uniaxial states.

Let us consider a uniaxial state for Q, that can be written in the equivalent
form

Q = s

(
n ⊗ n − 1

3
I
)

. (9)

Above, n is the main eigenvector with eigenvalue λ = 2s/3; the other two eigen-
values equal −s/3. The scalar field s is called the degree of orientation of the
LC molecules. Taking into account identity (6) and the restriction (7), it follows
that the physically meaningful range is s ∈ [−1/2,1]. As Fig. 1 illustrates, the s

variable characterizes the local order. In case s = 1, the molecular long axes are
in perfect alignment with the direction of n, whereas s = −1/2 represents the
state in which all molecules are perpendicular to n.

Remark 1 (Problems in 2d). The discussion above simplifies considerably
when d = 2. Indeed, the fact that Q is a zero-trace tensor forces it to be uniaxial.
Writing Q as (9), we deduce that its eigenvalues are λ1 = s/2, with eigenvec-
tor n, and λ2 = −λ1, with eigenvector n⊥. Because eigenvalues are constrained
to satisfy λi ∈ (−1/2,1/2), we deduce that the physically meaningful range is
s ∈ (−1,1). Actually, one can further simplify to s ∈ [0,1) by noting that a state
with director n and degree of orientation s < 0 is equivalent to a state with
director m ⊥ n and degree of orientation −s.
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FIGURE 1 The degree-of-orientation variable s(x) provides information on the probability distri-
bution ρ(x, ·) over a local ensemble. The case s = 1 corresponds to a Dirac delta distribution, and
represents the state of perfect alignment in which all molecules in the ensemble are parallel to n(x).
Likewise, s = −1/2 represents the state in which ρ(x, ·) is a uniform distribution on the unit circle
perpendicular to n(x). Finally, when s(x) = 0, ρ(x, ·) is a uniform distribution on S2; such a state
is regarded as a defect in the LC.

2.2 Continuum mechanics

Given the order parameter, we still need a model to determine its state as a
function of space. For modeling equilibrium states, this amounts to finding mini-
mizers of an energy functional. A common approach from continuum mechanics
(Holzapfel, 2000; Temam and Miranville, 2005; Truesdell, 1976) is to construct
the “simplest” functional possible that is quadratic in gradients of the order pa-
rameter whilst obeying standard laws of physics, such as frame indifference and
material symmetries.

2.2.1 Oseen-Frank
If we assume Q has the form (9), and assume s is constant, then Q is fully
determined by n. Hence, we may take n to be the order parameter, which is
usually called the director. If we now seek the simplest energy functional that
is quadratic in gradients of n, and obeying symmetry relations such as n ≡ −n,
then we obtain the Oseen-Frank energy (Virga, 1994):

EOF[n] := 1

2

∫
�

WOF(n,∇n) dx,

WOF(n,∇n) := k1(div n)2 + k2(n · curl n)2 + k3|n × curl n|2
+ (k2 + k4)[tr([∇n]2) − (div n)2],

(10)

where |n| = 1 and {ki}4
i=1 are independent material parameters. Note that min-

imizing EOF subject to |n| = 1 is a non-convex optimization problem. We give
more discussion on mathematical issues, such as regularity of minimizers, in
Section 3. The Oseen-Frank model has been used extensively in the modeling
of LC-based flat panel pixel displays, so in that sense has been very successful.
As a simplification, one can take k1 = k2 = k3 = 1, k4 = 0 to obtain

EOF,one[n] := 1

2

∫
�

|∇n|2 dx, (11)
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which is known as the one-constant approximation.
There are two main drawbacks to using (10) or (11). First, the state of the LC

molecules is unaffected by the sign of n. For example, if n = n(x) is a minimizer
of EOF, then arbitrarily changing the sign of n on any subset of the domain �

does not affect the state of the LC molecules. However, changing the sign of
n at points arbitrarily close together leads to very large gradients in n, which
of course affects the energy. Thus, the energy in (10) does not fully respect the
basic symmetry condition n ≡ −n of nematic LCs.

However, even allowing for the smoothest possible configurations of the di-
rector, boundary conditions may force another problem. For example, suppose
� is a simply connected open set containing the origin, and suppose we fix
n = x/|x| on the boundary ∂�. Then, by the Poincaré-Hopf Theorem, every
smooth vector field v in � that coincides with n on ∂� must have at least a zero
with non-zero index. Therefore, the unit-length vector field n = v/|v| must have
a point of discontinuity. Moreover, if � ⊂ R2, then EOF,one[n] = ∞ by basic
arguments. Since defects naturally occur in many LC systems, this is a major
problem with the Oseen-Frank model.

If � ⊂ R3, then EOF,one[n] for a point defect is actually finite. However, for
line defects in R3 such as

n(x1, x2, x3) = (x1, x2,0)T − (a1, a2,0)T

|(x1, x2,0) − (a1, a2,0)| , (12)

which is a two dimensional point defect extruded in the x3-direction, one has
EOF,one[n] = ∞. The same holds true for curvilinear defects in R3.

Remark 2. This discussion on defects is not merely academic; defects do occur
in LC systems. For example, Gu and Abbott (2000) gives experimental evidence
for the “Saturn-ring” defect which is a closed curvilinear loop in R3 that sur-
rounds a rigid inclusion. Other examples of LC defects can be found in Dierking
et al. (2005), Goodby (2012), Kinderlehrer et al. (1993), Tojo et al. (2009),
Čopar et al. (2015).

2.2.2 Landau-de Gennes
When defects are relevant to an LC system, the Oseen-Frank model is not appro-
priate. A better model, using Q as the order parameter, is the Landau-de Gennes
energy (de Gennes and Prost, 1995; Sonnet and Virga, 2012):

ELdG[Q] :=
∫

�

WLdG(Q,∇Q) dx + 1

ηB

∫
�

ψLdG(Q) dx,

WLdG(Q,∇Q) := 1

2

(
L1|∇Q|2 + L2|∇ · Q|2 + L3(∇Q)T : ∇Q

)
,

(13)

where {Li}3
i=1, ηB are material parameters, ψLdG is a “bulk” (thermotropic) po-

tential and
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|∇Q|2 := (∂kQij )(∂kQij ), |∇ · Q|2 := (∂jQij )
2,

(∇Q)T : ∇Q := (∂jQik)(∂kQij ),
(14)

and we use the convention of summation over repeated indices. This is a rela-
tively simple form for WLdG; more complicated models can also be considered
(Mottram and Newton, 2014; de Gennes and Prost, 1995; Sonnet and Virga,
2012).

The bulk potential ψLdG is a double-well type of function that confines the
eigenvalues of Q to the physically meaningful range λi ∈ [−1/d,1 − 1/d],
where the simplest form is given by

ψLdG(Q) = K + A

2
tr(Q2) − B

3
tr(Q3) + C

4

(
tr(Q2)

)2
. (15)

Above, A, B, C are material parameters such that A has no sign, and B, C are
positive; K is a convenient constant.

Stationary points of ψLdG are either uniaxial or isotropic Q-tensors (Majum-
dar, 2010); for such, ψLdG is a quartic polynomial on the degree of orientation
s in (9), which has a local extremum at s = 0. A straightforward calculation
shows that s = 0 is a maximum if and only if A ≤ 0 (because B, C > 0). Thus,
in three dimensions it is typical to let A ≤ 0 in order to favor uniaxial states over
isotropic states, so throughout this paper we assume that

A ≤ 0, B,C > 0, (16)

which implies that ψLdG(Q) ≥ 0 assuming K is suitably chosen. In two dimen-

sions, tr(Q3) = 0, because Q2 = s2

4 I. Hence, B is irrelevant when d = 2, and it
is necessary that A be strictly negative in order to have a stable nematic phase.
This also implies that ψLdG is an even function of s if Q is uniaxial (see Re-
mark 1).

In the same spirit as in (11), one can take L1 = 1, L2 = L3 = 0 to obtain a
one-constant approximation

ELdG,one[Q] := 1

2

∫
�

|∇Q|2 dx + 1

ηB

∫
�

ψLdG(Q) dx. (17)

2.2.3 Remarks on uniaxiality
As we discussed in Section 1.1, the biaxial phase is elusive among thermotropic
nematic LCs: it took about 30 years after Freiser’s prediction (Freiser, 1970) to
empirically observe a nematic biaxial phase (Acharya et al., 2004; Madsen et
al., 2004; Prasad et al., 2005). Moreover, in the Landau-de Gennes theory, there
is no a priori constraint on the eigenvalues of the tensor Q, in contrast with the
probabilistic definition from (2) and (3).

In Majumdar (2010) it is shown that, in the low-temperature regime, the
Landau-de Gennes model can lead to Q having physically unrealistic eigen-
values. As a remedy, Ball and Majumdar (2010) propose a continuum energy
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functional that interpolates between the Landau-de Gennes energy and the
mean-field Maier-Saupe energy. This gives rise to the bulk potential

ψB(Q) := T inf
ρ∈AQ

∫
Sd−1

ρ(p) lnρ(p)dp − κ|Q|2,

where T denotes the absolute temperature, κ is a constant related to the strength
of intramolecular interactions and AQ is the set of probability distributions that
yield the tensor Q,

AQ =
{
ρ : Sd−1 → [0,∞),

∫
Sd−1

ρ(p) dp = 1,

Q =
∫
Sd−1

(
ppT − 1

d
I
)

ρ(p) dp
}
.

This potential satisfies the key property ψB(Q) → ∞ as any of the eigenvalues
λi approaches the boundary of the physically meaningful range.

Clearly, if uniaxiality is built into the model, for instance by forcing Q to
have the form (9), then keeping the eigenvalues within the physically meaning-
ful range reduces to guaranteeing that a single parameter (s) lies in a suitable
range. This is an important simplification if, for example, the energy has the
form (13) or if there is a large external forcing. Clearly, another approach to
enforce uniaxiality is to consider a director model. If we allow for a variable
degree of orientation, then we are led to the Ericksen model, that we discuss in
the next section.

2.2.4 Ericksen model
Though the Landau-de Gennes model is quite general, it can be fairly expensive
when d = 3. In such a case, since Q ∈R3×3 and symmetric, it has five indepen-
dent variables. Moreover, the bulk potential ψLdG is a non-linear function of Q,
which couples all five variables together when seeking a minimizer of ELdG.

Therefore, we present the Ericksen model of LCs, which is an intermediate
model between Oseen-Frank and Landau-de Gennes. Assuming that Q is uniax-
ial (9), we can take s and n as order parameters and obtain an energy analogous
to (10) (Ericksen, 1991; Virga, 1994):

Eerk[s,n] := 1

2

∫
�

Werk(s,∇s,n,∇n) dx + 1

ηB

∫
�

ψerk(s) dx,

Werk(s,∇s,n,∇n) = k1s
2(div n)2 + k2s

2(n · curl n)2 + k3s
2|n × curl n|2

+(k2 + k4)s
2[tr([∇n]2) − (div n)2] + b1|∇s|2 + b2(∇s · n)2

+ b3s(div n)(∇s · n) + b4s∇s · [∇n]n,

(18)
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where |n| = 1, and {ki}4
i=1 and {bi}4

i=1 are material constants. Moreover, we
have the one-constant version of (18):

Eerk,one[s,n] := κ

2

∫
�

|∇s|2 dx + 1

2

∫
�

s2|∇n|2 dx + 1

ηB

∫
�

ψerk(s) dx, (19)

where κ > 0 is a single material parameter, and ψerk is a double-well potential
like ψLdG, except acting on s.

We point out that both (18) and (19) are degenerate in the sense that s may
vanish, which allows for n to have discontinuities (i.e. defects) with finite en-
ergy. Indeed, the hallmark of this model is to regularize defects using s, but still
retain part of the Oseen-Frank model. Discontinuities in n may still occur in the
singular set

S := {x ∈ � : s(x) = 0}. (20)

For problems in R3, because n ∈ S2, it is uniquely defined by two param-
eters. Thus, in such a case the Ericksen model only has three scalar order
parameters, as opposed to five in the Landau-de Gennes model. Another advan-
tage of the Ericksen model is that s and n are easy to decouple when searching
for a minimizer numerically.

Additionally, the parameter κ in (19) plays a major role in the occurrence
of defects. Assuming that s equals a sufficiently large positive constant on ∂�,
if κ is large, then

∫
�

κ|∇s|2dx dominates the energy and s stays close to such
a positive constant within the domain �. Thus, defects are less likely to occur.
If κ is small (say κ < 1), then

∫
�

s2|∇n|2dx dominates the energy, and s may
vanish in regions of � and induce a defect. This is confirmed by the numerical
experiments in Nochetto et al. (2015, 2017).

Remark 3 (Orientability). Director field models –either Oseen-Frank or
Ericksen– are more than adequate in some situations, although in general they
introduce a nonphysical orientational bias into the problem. Even though LC
molecules may be polar, in nematics one always finds that the states with n
and −n are equivalent (Gramsbergen et al., 1986). At the molecular level, this
means that the same number of molecules point “up” and “down”. Therefore,
line-fields are more appropriate for modeling nematic LCs.

Another issue with the use of the vector field n as an order parameter instead
of the matrix Q is that the only allowable defects in such a case are integer-order
defects. On the other hand Q, specifically n ⊗ n in (9), is able to represent line
fields having half-integer defects. These have been largely observed and docu-
mented in experiments, see for example (Brinkman and Cladis, 1982; Ohzono et
al., 2017) and references therein. We point out that, if a line field is orientable,
then a vector field representation is essentially equivalent (Ball and Zarnescu,
2007, 2011).
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2.3 Dynamics

Dynamic LC models become more complicated than the ones discussed in
Section 2.2. The simplest setting is to assume the dynamics are dictated by
a gradient flow (Burger, 2002; Doğan et al., 2007; Braides, 2014). Let t rep-
resent “time” and suppose that u ≡ u(x, t) is an evolving solution such that
limt→∞ u(·, t) =: u∗ is a local minimizer of some energy functional J (u) that
is bounded below by a constant. If u(x,0) := u0 is the initial guess, then the
energy minimizing evolution can be found via (steepest) gradient descent:

(∂tu(·, t), v) = −δuJ (u;v), (21)

for all perturbations v in an appropriate space, where (·, ·) is the L2(�) inner
product, and δuJ (u;v) is the variational derivative of J (u) with respect to u in
the direction v. Formally, the solution of (21) will converge to a local minimizer
of J depending on the initial guess u0 (Doğan et al., 2007).

We can approximate this evolution by a time semi-discrete scheme known
as minimizing movements (see De Giorgi, 2006, Ch. “New problems on mini-
mizing movement”, Braides, 2014, Ch. 7). Discretizing in time, we let uk(x) ≈
u(x, kδt), where δt > 0 is a finite time step and k is the time index. Next, define
an auxiliary functional

Fk(u) := J (u) + 1

2δt
‖u − uk‖2

�. (22)

Treating u0 as given, setting δt > 0, and initializing k = 0, we iterate the follow-
ing scheme:

1. Let uk+1 := arg minFk(u).
2. Update k := k + 1.

At each iteration, we solve the variational problem δuFk(u;v) = 0 for all v, i.e.(
uk+1 − uk

δt
, v

)
= −δuJ (uk+1;v), ∀v, (23)

which is a backward Euler discretization of (21). The following properties of
this scheme are immediate:

J (uk+1) ≤ J (uk+1) + 1

2δt
‖uk+1 − uk‖2

� = min
u

Fk(u) ≤ J (uk),

‖uk+1 − uk‖2
� ≤ −2δt (J (uk+1) − J (uk)) .

(24)

Both (21) and the minimizing movement scheme may be applied to any of the
energy functionals we have discussed.

More realistic dynamics can be derived by generalizing the L2(�) in-
ner product and coupling in other PDE constraints (such as Stokes flow) us-
ing Onsager’s variational framework of minimum energy dissipation (Onsager,
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1931a,b; Lin and Liu, 1995, 2001; Qian et al., 2006; Hyon et al., 2010). We refer
the interested reader to Liu and Walkington (2000), Walkington (2011), Cruz et
al. (2013), González and Gutiérrez-Santacreu (2013), Yang et al. (2013), Zhao
et al. (2016) for more information on dynamical theories for LCs.

3 Mathematical formulation

We revisit the LC models discussed in Section 2.2 with an emphasis on their
mathematical formulation. Functional minimization must include an admissi-
ble set in which to find the minimizer. In other words, we describe the function
spaces over which to minimize the energies given in Section 2.2, as well as other
mathematical issues. Although often overlooked, the function space is an im-
portant part of a continuum mathematical model (Ball, 2017; Ball et al., 2015).
For example, Lavrentiev gap phenomena between Sobolev and special bounded
variation (SBV) functions in certain nematic LC models are examined in Bed-
ford (2016).

3.1 Oseen-Frank

Taking the first variation of EOF and setting to zero yields the first order opti-
mality conditions, i.e. the PDE satisfied by a minimizer. For simplicity, let us
consider the one-constant energy EOF,one whose minimization problem is as
follows

min
v∈H 1

g (�)
EOF,one[v], subject to |v| = 1, a.e., (25)

where H 1
g (�) = {

v ∈ H 1(�) | v|∂� = g
}
. This is an instance of the harmonic

map problem (Schoen and Yau, 1994; Schoen and Uhlenbeck, 1982; Brezis et
al., 1986; Brezis, 2003; Jost, 2017; Struwe, 2008). The Euler-Lagrange equation
for a minimizer of (25), in strong form, is given by

−�n − |∇n|2n = 0, in �, n = g, on ∂�. (26)

The existence of minimizers is complicated if defects are present, unless the
boundary data g is sufficiently restricted (recall the discussion in Section 2.2.1).

There is an extensive literature on numerical methods to find a minimizer of
(25), e.g. Hu et al. (2009), Cohen et al. (1989), Lin and Luskin (1989), Alouges
(1997), Bartels (2006, 2015), all of which solve the non-convex minimization
problem iteratively. Their main contribution is in how they handle the unit length
constraint, |n| = 1, at each iteration. For instance, Lagrange multipliers may
be used by solving the linearized Euler-Lagrange equation in a saddle point
framework (Hu et al., 2009). Alternatively, one can project the current (iterative)
solution onto the constraint manifold (see the algorithm in Section 3.3.4 for an
example), which usually takes advantage of a discrete maximum principle that
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is built into the method (Cohen et al., 1989; Alouges, 1997; Bartels, 2015). One
can find more recent methods for Oseen-Frank type models coupled to other
physics in Adler et al. (2015a,b, 2016), Gartland and Ramage (2015).

For this paper, our main interest is in modeling defects such that they have
finite energy, so we will not discuss more on the extensive literature of harmonic
maps and their numerical approximation.

3.2 Landau-de Gennes

We follow Davis and Gartland (1998) to outline the basic theory of the Landau-
de Gennes model. We also write down a numerical method to simulate Landau-
de Gennes motivated by Bajc et al. (2016), Davis and Gartland (1998), Zhao
and Wang (2016).

3.2.1 Theoretical background
First, we define the function space for Q when seeking a minimizer:

V(P) :=
{

Q ∈ H 1(�) | Q ∈ � a.e. in �, Q|�D
= P

}
, (27)

where 
 is defined by (4), �D ⊂ � and P ∈ H 1(�) is arbitrary such that P(x) ∈
� for a.e. x ∈ �. For the sake of generality, we slightly modify the energy ELdG

in (13):

ELdG[Q] :=
∫

�

WLdG(Q,∇Q) dx + 1

ηB

∫
�

ψLdG(Q) dx

+ η�

∫
�

f�(Q) dS(x) −
∫

�

χLdG(Q) dx,

(28)

where WLdG is given in (13), ψLdG is given in (15), η� ≥ 0, and a Rapini-
Papoular type anchoring energy (Barbero and Durand, 1986) is used:

f�(Q) = 1

2
tr (Q − Q�)2 ≡ 1

2
|Q − Q�|2, (29)

where Q� ∈ H 1(�) is given and Q�(x) ∈ � for all x ∈ �. The extra term in-
volving f� gives an energetic way to penalize boundary conditions, provided
η� is large enough.

The functional χLdG(·) accounts for external forcing effects, e.g. from an
electric field. For example, the energy density of a dielectric with fixed boundary
potential is given by −1/2 D ·E (Walker, 2018), where the electric displacement
D is related to the electric field E by the linear constitutive law (Feynman et al.,
1964; de Gennes and Prost, 1995; Biscari and Cesana, 2007):

D = εE = ε̄E + εaQE, ε(Q) = ε̄I + εaQ, (30)
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where ε is the LC material’s dielectric tensor and ε̄, εa are constitutive dielectric
permittivities. Thus, in the presence of an electric field, χLdG(·) becomes

χLdG(Q) = −1

2
D · E = −1

2

[
ε̄|E|2 + εaE · QE

]
. (31)

The minimization problem for the Landau-de Gennes energy functional (28)
is as follows

min
Q∈V(QD)

ELdG[Q], (32)

where QD ∈ H 1(�) is given and QD(x) ∈ � for a.e. x ∈ �. This minimiza-
tion problem is not as delicate as (25); for instance, there is no non-convex,
unit-length constraint. Existence of a minimizer is guaranteed by the following
results (taken from Davis and Gartland, 1998, Lem. 4.1).

Theorem 1 (Coercivity). Let aLdG (·, ·) : H 1(�)×H 1(�) →R be the symmet-
ric bilinear form defined by

aLdG (Q,P) =
∫

�

L1∇Q : ∇P + L2(∇ · Q) · (∇ · P) + L3(∇Q)T : ∇Pdx.

(33)

Then aLdG (·, ·) is bounded. If L1, L2, L3 satisfy

0 < L1, −L1 < L3 < 2L1, −3

5
L1 − 1

10
L3 < L2, (34)

then there is a constant C > 0 such that aLdG (Q,Q) ≥ C|Q|2
H 1(�)

for all

Q ∈ H 1(�). Moreover, if |�D| > 0, then there is a constant C′ > 0 such that
aLdG (Q,Q) ≥ C′‖Q‖2

H 1(�)
for all Q ∈ V(0).

Combining Theorem 1 with the form of the energy in (28) and other basic
results (see Davis and Gartland, 1998, Lem. 4.2, Thm. 4.3) we arrive at the
following result.

Theorem 2 (Existence of a minimizer). Let ELdG be of the form (28), and as-
sume that QD and �D are defined as above and that χLdG is a bounded linear
functional on V(QD). Then (32) has at least one minimizer.

The Euler-Lagrange equation for a minimizer of (32), in weak form, is as
follows. Find Q ∈V(QD) such that

δQELdG[Q;P] := aLdG (Q,P)

+ 1

ηB

∫
�

∂ψLdG(Q)

∂Q
: Pdx + η�

∫
�

∂f�(Q)

∂Q
: PdS(x)

−
∫

�

∂χLdG(Q)

∂Q
: Pdx = 0, ∀P ∈V(0),

(35)
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where the variational derivatives are given by

∂ψLdG(Q)

∂Q
: P =

[
AQ − B Q2 + C tr(Q2)Q

]
: P,

∂f�(Q)

∂Q
: P = [Q − Q�] : P

∂χLdG(Q)

∂Q
: P = −1

2
εaE · PE,

(36)

where we used

∂tr(Q2)

∂Q
: P = 2 Q : P,

∂tr(Q3)

∂Q
: P = 3 Q2 : P,

∂
(
tr(Q2)

)2

∂Q
: P = 4 tr(Q2)Q : P.

(37)

The strong form of the Euler-Lagrange equation is given by

− (
L1∂k∂kQij + (L2 + L3)∂j ∂kQik

)
+ 1

ηB

[
AQij − B QikQkj + C tr(Q2)Qij

]
= −1

2
εaEiEj , in �,

Qij = Q0,ij , on �D,

− (
L1νk∂kQij + L2νj ∂kQik + L3νk∂jQik

)= Qij − Q�,ij , on � \ �D,

(38)

for 1 ≤ i, j ≤ 3, where ν ≡ [νk]3
k=1 is the unit outer normal of �. If L2 = L3 = 0,

E = 0, and �D = �, then the strong form simplifies to

−�Q + 1

ηB

[
AQ − B Q2 + C tr(Q2)Q

]
= 0, in �, Q = QD, on �D,

(39)

which is an elliptic Dirichlet problem with non-linear lower order term due to
the bulk potential. From Davis and Gartland (1998, Thm 6.3), we have

Theorem 3 (Regularity). Let � be a bounded, open, connected set, and assume
� is either convex or C1,1, and assume �D ≡ � := ∂�. Moreover, let F(Q) :=∫
�

χLdG(Q) dx be a bounded linear functional on L2(�). Then any solution of
(35) is in H 2(�) ∩ H 1

0 (�).

3.2.2 Numerical method
One can try to solve (35) either directly (Davis and Gartland, 1998; Gartland and
Ramage, 2015), or look for an energy minimizer (Lee et al., 2002; Ravnik and
Žumer, 2009; Zhao and Wang, 2016; Bajc et al., 2016). To better compare with
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our method for the uniaxially constrained Landau-de Gennes model (Section 4),
we adopt the later approach and state a simple gradient flow method to find a
minimizer of (32).

Let t represent “time” and suppose that Q ≡ Q(x, t) is an evolving solution
such that limt→∞ Q(·, t) =: Q∗ is a local minimizer of ELdG, where Q(x,0) =
Q0, and Q0 ∈ V(QD) is the initial guess for the minimizer. Next, we evolve
Q(·, t) according to the following L2(�) gradient flow:

(∂tQ(·, t),P) = −δQELdG[Q;P], ∀P ∈ V(0), (40)

where the variational derivative is given in (35). Formally, the solution of (40)
will converge to Q∗.

We derive a numerical scheme for approximating (40) by first discretizing
in time by minimizing movements (see Section 2.3). Let Qk(x) ≈ Q(x, kδt),
where δt > 0 is a finite time-step, and k is the time index. Then (40) becomes a
sequence of variational problems. Given Qk , find Qk+1 ∈ V(QD) such that(

Qk+1 − Qk

δt
,P

)
= −δQELdG[Qk+1;P], ∀P ∈ V(0), (41)

which is equivalent to

Qk+1 = arg min
Q∈V(QD)

F (Q), F (Q) := 1

2δt
‖Q − Qk‖2

L2(�)
+ ELdG[Q], (42)

and yields the useful property F(Qk+1) ≤ F(Qk). However, (41) is a fully-
implicit equation and requires an iterative solution because of the non-linearity
in ψLdG(Q). For convenience, we shall, instead, use a semi-implicit approach
via convex splitting (Wise et al., 2009; Zhao and Wang, 2016; Xu et al., 2019).
Let us define the following split of (15):

ψc(Q) = K + A + D

2
tr(Q2),

ψe(Q) = D

2
tr(Q2) + B

3
tr(Q3) − C

4

(
tr(Q2)

)2
,

⇒ ψLdG(Q) ≡ ψc(Q) − ψe(Q),

(43)

where D > 0 is chosen sufficiently large. Indeed, for all Q that satisfy the physi-
cal eigenvalue ranges (7), ψc and ψe are both convex functions if D > 0 is large
enough.

Therefore, referring to (35), we obtain the following semi-implicit weak for-
mulation of (41). Given Qk , find Qk+1 ∈ V(QD) such that
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(
Qk+1 − Qk

δt
,P

)
+ aLdG (Qk+1,P) + 1

ηB

∫
�

∂ψc(Qk+1)

∂Q
: Pdx

+ η�

∫
�

∂f�(Qk+1)

∂Q
: PdS(x) = 1

ηB

∫
�

∂ψe(Qk)

∂Q
: Pdx

+
∫

�

∂χLdG(Qk)

∂Q
: Pdx, ∀P ∈ V(0),

(44)

where the left-hand-side of (44) is linear in Qk+1 and the right-hand-side is
explicitly known at each iteration.

Next, we approximate (44) by a finite element method, so we introduce some
basic notation and assumptions in that regard. We assume that � ⊂ R3 is dis-
cretized by a conforming shape regular triangulation Th = {Ti} consisting of
simplices, i.e. we define �h := ∪T ∈Th

T . Furthermore, we define the space of
continuous piecewise linear functions on �h:

Vh(�h) :=
{
v ∈ C0(�h) | v|T ∈ P1(T ), ∀T ∈ Th

}
, (45)

where Pk(T ) is the space of polynomials of degree ≤ k on T .
Next, we discretize (44) by a P1 approximation of the Q variable denoted

Qh. With the following notation

Q ∈ � ⇔ Q =
⎡⎣q11 q12 q13

q12 q22 q23
q13 q23 q33

⎤⎦ , where q33 := −q11 − q22, (46)

we approximate Q by Qh ∈ Qh:

Qh(�h) := {
P ∈ C0(�h) | P ∈ �, pij |T ∈ P1(T ),

1 ≤ i, j,≤ 3, ∀T ∈ Th

}
.

(47)

We point out that enforcing (46) at the mesh nodes guarantees that Qh(x) ∈ 


for all x ∈ �. Additionally, other bases can be used to represent Q (Gartland et
al., 1991). Therefore, the minimization problem (28) becomes

min
Qh∈Qh∩V(QD,h)

ELdG[Qh], (48)

where QD,h := IhQD and Ih denotes the Lagrange interpolation operator. We
find a local minimizer of (48) by solving a finite element approximation of (44),
i.e. given Qh,k , find Qh,k+1 ∈Qh ∩V(QD,h) such that(

Qh,k+1 − Qh,k

δt
,Ph

)
+ aLdG

(
Qh,k+1,Ph

)+ A + D

ηB

(
Qh,k+1,Ph

)
+ η�

(
Qh,k+1,Ph

)
�

= η� (IhQ�,Ph)� − 1

2
εa (Ih(E ⊗ E),Ph)

1

ηB

([
D Qh,k + B Q2

h,k − C tr(Q2
h,k)Qh,k

]
,Ph

)
, ∀Ph ∈ Qh ∩V(0),

(49)
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where we have written the scheme more explicitly. We iterate this procedure
until some stopping criterium is achieved. Numerical results for the standard
LdG model are given in Section 4.5.2 and Section 7.

3.3 Ericksen

The (general) Ericksen model was originally proposed in Ericksen (1991); see
also Virga (1994) for another description. In this section, we concentrate on the
one-constant model of Ericksen and review its theoretical aspects, which can be
found in Ambrosio (1990a,b), Lin (1991). Moreover, we describe a robust nu-
merical method for finding local minimizers of the one-constant Ericksen model
(see Nochetto et al., 2017, 2018 for more details).

3.3.1 Energy minimization framework
We review a few hypotheses required to have a well-posed energy minimiza-
tion problem, and some key features of the one-constant Ericksen energy. For
convenience, we re-state (19) here:

Eerk[s,n] :=
∫

�

s2|∇n|2 dx ≡ (s∇n, s∇n) ,

Eerk−m[s,n] := κ

2
(∇s,∇s) + 1

2
Eerk[s,n],

Eerk,bulk[s] := 1

ηB
(ψerk(s),1)

Eerk,one[s,n] := Eerk−m[s,n] + Eerk,bulk[s],

(50)

where Eerk−m is the “main” part of Ericksen’s energy. Note that the double well
potential ψerk : (−1/2,1) → R is a C2 function that satisfies (Ericksen, 1991;
Ambrosio, 1990a; Lin, 1991):

1. lim
s→1

ψerk(s) = lim
s→−1/2

ψerk(s) = ∞,

2. ψerk(0) > ψerk(s
∗) = min

s∈[−1/2,1]ψerk(s) = 0, for some s∗ ∈ (0,1),

3. ψ ′
erk(0) = 0,

(51)

where s = 0 is a local maximum of ψerk.
If s �= 0 and constant, then Eerk,one[s,n] effectively reduces to the Oseen-

Frank (one-constant) energy
∫
�

|∇n|2. When s is variable, Eerk,one[s,n] avoids
singular energies when defects (discontinuities in n) are present by allowing s

to vanish wherever there are defects. Hence, all defects must be contained in the
singular set (cf. (20))

S = {x ∈ � : s(x) = 0}.
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Existence of minimizers was shown in Ambrosio (1990a), Lin (1991)
through the following clever trick. By introducing the auxiliary variable u := sn,
one can rewrite Eerk−m[s,n] as

Eerk−m[s,n] = Ẽerk−m[s,u] := 1

2

∫
�

[
(κ − 1)|∇s|2 + |∇u|2

]
dx, (52)

which uses ∇u = n ⊗ ∇s + s∇n and the unit length constraint |n| = 1. Thus,
the total energy in terms of s and u is

Ẽerk,one[s,u] = Ẽerk−m[s,u] + Eerk,bulk[s]. (53)

The advantage of (52) is that it is quadratic in terms of s and u, which makes
the (closed) admissible set of minimizers straightforward to define (Ambrosio,
1990a; Lin, 1991):

Aerk := {(s,n) ∈ H 1(�) × [L∞(�)]d : (s,u,n) satisfies (55),

with u ∈ [H 1(�)]d}, (54)

where

u = sn, −1/2 ≤ s ≤ 1 a.e. in �, and n ∈ Sd−1 a.e. in �, (55)

is called the structural condition of Aerk. If we write (s,u,n) in Aerk, then this
is equivalent to (s,n) in Aerk, u in [H 1(�)]d , and (s,u,n) satisfies (55). Indeed,
(52) only holds for (s,u,n) in Aerk. Sometimes, we refer to the identity u = sn
in (55) as the cone constraint for obvious reasons.

Boundary conditions are accounted for by functions g : Rd → R, r,q :
Rd → Rd so that the following is satisfied.

Hypothesis 1 (Regularity of boundary data). There exists g ∈ W 1,∞(Rd), r ∈
[W 1,∞(Rd)]d , q ∈ [L∞(Rd)]d , such that (g, r,q) satisfies (55) on Rd , i.e. r =
gq and q ∈ Sd−1 a.e. in Rd . Furthermore, we assume there is a fixed c0 > 0
(small) such that

c0 ≤ g ≤ 1 − c0, (56)

which implies that q ∈ [W 1,∞(Rd)]d . Moreover, let �s , �u, �n be open subsets
of ∂� on which to enforce Dirichlet conditions for s, u, n (respectively), and
assume that �u = �n ⊂ �s .

The admissible class, with boundary conditions, is given by

Aerk(g,q) := {
(s,n) ∈ Aerk : s|�s = g, n|�n = q

}
, (57)

and Hypothesis 1 guarantees that setting boundary conditions for (s,n) is mean-
ingful.

For technical reasons, we require the following assumption on ψerk.
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Hypothesis 2 (Growth of potential). Let c0 > 0 be taken from Hypothesis 1. The
bulk potential ψerk satisfies

ψerk(s) ≥ ψerk(1 − c0) for s ≥ 1 − c0,

ψerk(s) ≥ ψerk

(
−1

2
+ c0

)
for s ≤ −1

2
+ c0,

(58)

which is consistent with property 1 of ψerk in (51).

The existence of a minimizer (s,n) ∈ Aerk(g,q) of Eerk,one[s,n] is shown in
Ambrosio (1990a), Lin (1991), but is also a consequence of the �-convergence
theory that we review in Section 3.3.6.

3.3.2 Finite element discretization
The Ericksen model is degenerate in the director field n. This feature, that makes
it capable of capturing non-trivial defects, also makes its numerical analysis
difficult. Consequently, references on numerical methods for such a model are
scarce. We refer to Barrett et al. (2006), Calderer et al. (2002) and to Nochetto et
al. (2017, 2018) for finite element approximations to dynamics and equilibrium
configurations, respectively.

In this section we review (Nochetto et al., 2017, Sec. 2.2). First, discretize
� as we did in Section 3.2.2, i.e. � ⊂ Rd is approximated by �h which comes
from a conforming shape-regular mesh Th = {Ti} consisting of simplices. For
simplicity, we assume that � ≡ �h, i.e. that there is no geometric error caused
by the triangulation. Furthermore, let Nh be the set of nodes (vertices) of Th

and, with some abuse of notation, let N be the cardinality of Nh.
Next, define continuous piecewise linear finite element spaces on �:

Sh := {sh ∈ H 1(�) : sh|T ∈P1(T ),∀T ∈ Th},
Uh := {uh ∈ [H 1(�)]d : uh|T ∈P1(T ),∀T ∈ Th},
Nh := {nh ∈Uh : |nh(xi )| = 1,∀xi ∈Nh},

(59)

where the unit length constraint is enforced in Nh at the nodes (vertices) of
the mesh. Dirichlet boundary conditions are included via the following discrete
spaces (recall Hypothesis 1):

Sh(�s, gh) := {sh ∈ Sh : sh|�s = gh},
Uh(�u, rh) := {uh ∈ Uh : uh|�u = rh},
Nh(�n,qh) := {nh ∈ Nh : nh|�n = qh},

(60)

where gh := Ihg, rh := Ihr, and qh := Ihq is the discrete Dirichlet data. This
leads to the following discrete admissible class with boundary conditions:

Ah
erk(gh,qh) := {

(sh,nh) ∈ Sh(�s, gh) ×Nh(�n,qh) :
(sh,uh,nn) satisfies (62), with uh ∈Uh(�u, rh)

}
,

(61)
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where

uh = Ih(shnh), −1/2 ≤ sh ≤ 1 in �, and |nh(xi )| = 1,∀xi ∈ Nh, (62)

is called the discrete structural condition of Ah
erk. If we write (sh,uh,nh) in

Ah
erk, then this is equivalent to (sh,nh) in Ah

erk, uh in Uh, and (sh,uh,nh) sat-
isfies (62). We emphasize that the approximation we are considering is not
conforming. Indeed, the inclusion Ah

erk ⊂ Aerk fails because, at the discrete
level, we only impose the structural condition u = sn at the mesh nodes.

The discretization of Eerk[s,n] in (50) is non-standard because of the deli-
cate nature of the degenerate term s2|∇n|2. In fact, this requires us to make an
additional assumption on the meshes. We shall denote by φi the standard piece-
wise linear “hat” function associated with a node xi ∈Nh, so that {φi} are basis
functions of the spaces in (59). Moreover, we indicate with ωi = supp φi the
patch of a node xi (i.e. the “star” of elements in Th that contain the vertex xi).

Hypothesis 3 (Weak acuteness). For all h > 0, the mesh Th is weakly acute:

kij := −
∫

�

∇φi · ∇φjdx ≥ 0 for all i �= j. (63)

Condition (63) imposes a severe geometric restriction on Th (Ciarlet and
Raviart, 1973; Strang and Fix, 2008). We recall the following characterization
of (63) for d = 2.

Proposition 1 (Weak acuteness in two dimensions). For any pair of triangles
T1, T2 in Th that share a common edge e, let αi be the angle in Ti opposite to e

(for i = 1,2). If α1 + α2 ≤ π for every edge e, then (63) holds.

Generalizations of Proposition 1 to three dimensions involve the interior di-
hedral angles of tetrahedra (Brandts et al., 2008; Korotov et al., 2001). We also
point out that a non-obtuse tetrahedral mesh is automatically weakly acute.

We now motivate our discretization of Eerk[s,n]. Note that for all xi ∈ Nh

N∑
j=1

kij = −
N∑

j=1

∫
�

∇φi · ∇φjdx = 0,

because
∑N

j=1 φj = 1 in the domain � (i.e. {φj }Nj=1 is a partition of unity). So,

if Sh � sh =∑N
i=1 sh(xi )φi , then

∫
�

|∇sh|2dx = −
N∑

i=1

kii[sh(xi )]2 −
N∑

i,j=1,i �=j

kij sh(xi )sh(xj ),
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and using kii = −∑
j �=i kij and the symmetry kij = kji , we get

∫
�

|∇sh|2dx =
N∑

i,j=1

kij sh(xi )
(
sh(xi ) − sh(xj )

)
= 1

2

N∑
i,j=1

kij

(
sh(xi ) − sh(xj )

)2 = 1

2

N∑
i,j=1

kij

(
δij sh

)2
,

(64)

where we define

δij sh := sh(xi ) − sh(xj ), δij nh := nh(xi ) − nh(xj ). (65)

On the other hand, we discretize Eerk[s,n] by

Eh
erk[sh,nh] := 1

2

N∑
i,j=1

kij

(
sh(xi )

2 + sh(xj )
2

2

)
|δij nh|2, (66)

and the main part of the Ericksen energy by

Eh
erk−m[sh,nh] := κ

2
(∇sh,∇sh) + 1

2
Eh

erk[sh,nh],

= κ

2

⎛⎝1

2

N∑
i,j=1

kij

(
δij sh

)2

⎞⎠+ 1

2
Eh

erk[sh,nh].
(67)

Eq. (66) does not come from applying the standard discretization of∫
�

s2|∇n|2dx by piecewise linear finite elements (though it is a first order ap-
proximation). This special discretization of the energy preserves an important
energy inequality (see Lemma 1), which is crucial to proving the �-convergence
of our discrete energy with the degenerate coefficient s2 without regularization.

The double-well energy is discretized in the usual way,

Eh
erk,bulk[sh] := 1

ηB
(ψerk(sh),1) = 1

ηB

∫
�

ψerk(sh(x))dx. (68)

Therefore, our discrete minimization problem for the Ericksen model is as
follows. Find (s∗

h,n∗
h) ∈ Ah

erk(gh,qh) such that

(s∗
h,n∗

h) = arg min
(sh,nh)∈Ah

erk(gh,qh)

Eh
erk,one[sh,nh], (69)

where

Eh
erk,one[sh,nh] := Eh

erk−m[sh,nh] + Eh
erk,bulk[sh]. (70)
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We close with a result showing that (67) preserves the key structure of (52) at
the discrete level, and is a key component of the �-convergence of the method.
First, we recall that Ih denotes the Lagrange interpolation operator and intro-
duce s̃h := Ih|sh| and two discrete versions of the vector field u,

uh := Ih(shnh) ∈ Uh, ũh := Ih(̃shnh) ∈Uh. (71)

Note that both triplets (sh,uh,nh), (̃sh, ũh,nh) ∈ Sh ×Uh ×Nh satisfy (62). The
following is taken from Nochetto et al. (2017, Lem. 2.2).

Lemma 1 (Energy inequalities). Let the mesh Th satisfy (63). If (sh,nh) ∈
Ah

erk(gh,qh), then, for any κ > 0, the discrete energy (67) satisfies

Eh
erk−m[sh,nh] ≥ (κ−1)

∫
�

|∇sh|2dx+
∫

�

|∇uh|2dx =: Ẽh
erk−m[sh,uh], (72)

and

Eh
erk−m[sh,nh] ≥ (κ −1)

∫
�

|∇ s̃h|2dx+
∫

�

|∇ũh|2dx =: Ẽh
erk−m [̃sh, ũh]. (73)

3.3.3 Continuous gradient flow
We begin with a formal derivation of a gradient flow to find a local minimizer
of Eerk,one[s,n] in (50). Since s and n are coupled variables, we will have two
coupled gradient flows.

First, let as (·, ·) : H 1(�) × H 1(�) → R be a bounded bilinear form (inner
product) for s. For the sake of exposition, assume an L2(�) inner product, e.g.
as (s, z) := (s, z), but other choices can be made. Similar to (40), we define a
gradient flow for s:

as (∂t s(·, t), z) = −δsEerk,one[s,n; z], ∀z ∈ H 1
�s

(�), (74)

where H 1
�s

(�) := {z ∈ H 1(�) : z|�s = 0} preserves the boundary condition for
s, and the first variation is given by

δsEerk,one[s,n; z] = κ

∫
�

∇s · ∇z dx +
∫

�

sz|∇n|2 dx + 1

ηB

∫
�

ψ ′
erk(s)z dx.

(75)

Applying a formal integration by parts to (74) gives∫
�

∂t sz dx = −
∫

�

(
−κ�s + |∇n|2s + 1

ηB
ψ ′

erk(s)

)
z dx, for all z ∈ H 1

�s
(�),

(76)

where we use the implicit Neumann condition ν · ∇s = 0 on ∂� \ �s , with ν
being the outer unit normal of ∂�. Hence, s satisfies the (nonlinear) parabolic
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PDE:

∂t s − κ�s + |∇n|2s + 1

ηB
ψ ′

erk(s) = 0, in �,

s = g, on �s, ν · ∇s = 0, on ∂� \ �s.

(77)

Next, given (s,n) ∈ Aerk(g,q), we consider the space of tangential varia-
tions of n:

V⊥(s,n) :=
{

v ∈ [L2(�)]d : v · n = 0 a.e. in �, and sv ∈ [H 1(�)]d
}

, (78)

which is connected with the constraint n ∈ Sd−1 in the following sense. If n ≡
n(x, t) is evolving director field such that |n|2 = 1, then

0 = ∂t |n|2 = 2∂tn · n ⇒ ∂tn ∈ V⊥(s,n).

Indeed, introducing a tangential perturbation of n: p(t) = n + tv where v ∈
V⊥(s,n), we have that |p|2 = 1 + t2|v|, which preserves |n| = 1 up to second
order in t . We remark that if s ≥ c0 > 0 in �, then v ∈ V⊥(n) is necessarily in
[H 1(�)]d .

Let an (·, ·) : V⊥(s,n) × V⊥(s,n) → R be a bounded bilinear form (inner
product) for tangential variations of n. For the sake of exposition, assume an
L2(�) inner product, e.g. an (t,v) := (t,v), but other choices can be made. Sim-
ilar to (74), we define a gradient flow for n:

an (∂tn(·, t),v) = −δnEerk,one[s,n;v], ∀v ∈V⊥(s,n) ∩ [H 1
�n

(�)]d , (79)

where ∂tn = 0 on �n preserves the boundary condition for n, and the first vari-
ation is given by

δnEerk,one[s,n;v] =
∫

�

s2∇n · ∇vdx. (80)

Applying a formal integration by parts to (79) gives∫
�

∂tn · vdx = −
∫

�

−∇ · (s2∇n) · vdx, ∀v ∈ V⊥(s,n) ∩ [H 1
�n

(�)]d , (81)

where we use the implicit Neumann condition ν · ∇n = 0 on ∂� \ �n. Hence, n
satisfies the (nonlinear) degenerate parabolic PDE:

∂tn − ∇ · (s2∇n) = 0, in �,

n = q, on �n, ν · ∇n = 0, on ∂� \ �n.
(82)

Assuming (s,n) evolve according to (77), (82), we have that

∂tEerk,one[s,n] = δsEerk,one[s,n; ∂t s] + δnEerk,one[s,n; ∂tn],
= −as (∂t s, ∂t s) − an (∂tn, ∂tn) ≤ 0,

(83)
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and therefore the energy is monotonically decreasing.

3.3.4 Discrete gradient flow
Here we discuss a discrete quasi-gradient flow algorithm, as described in No-
chetto et al. (2017, Section 4.2.2). Let (sk

h,nk
h) ∈ Ah

erk(gh,qh) where k indicates
a “time-step” index. To simplify notation, we write

sk
i := sk

h(xi ), nk
i := nk

h(xi ), zi := zh(xi ), vi := vh(xi ).

Using a fully implicit, backward Euler time discretization for ∂t s, and ap-
plying the finite element space discretization in Section 3.3.2, we discretize (74)
by

as

(
sk+1
h − sk

h

δt
, zh

)
= −δsE

h
erk,one[sk+1

h ,nk+1
h ; zh], ∀zh ∈ Sh(�s,0), (84)

where δt > 0 is a finite time step. The discrete variational derivative is given by

δsE
h
erk,one[sk

h,nk
h; zh] = κ

(
∇sk

h,∇zh

)
+ 1

2
δsE

h
erk[sk

h,nk
h; zh]

+ 1

ηB

(
ψ ′

erk(s
k
h), zh

)
,

δsE
h
erk[sk

h,nk
h; zh] =

N∑
i,j=1

kij |δij nk
h|2

(
sk
i zi + sk

j zj

2

)
.

(85)

Next, we define the discrete version of (78):

V⊥
h (nh) = {vh ∈Uh : vh(xi ) · nh(xi ) = 0, for all nodes xi ∈Nh}. (86)

Using a “linearized” backward Euler time discretization for ∂tn, and the finite
element space discretization in Section 3.3.2, we discretize (79) by

an

(
nk+1

h − nk
h

δt
,vh

)
= −δnEh

erk,one[sk+1
h ,nk+1

h ;vh],

∀vh ∈ V⊥
h (nk

h) ∩Uh(�u,0),

subject to |nk+1
h (xi )| = 1, for all nodes xi ∈Nh,

(87)

where the discrete variational derivative is given by

δnEh
erk,one[sk

h,nk
h;vh] = 1

2
δnEh

erk[sk
h,nk

h;vh],

δnEh
erk[sk

h,nk
h;vh] =

N∑
i,j=1

kij

(
(sk

i )2 + (sk
j )2

2

)
(δij nk

h) · (δij vh).

(88)
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Thus, a possible algorithm is the following. Given (sk
h,nk

h) ∈ Ah
erk(gh,qh),

solve (84), (87) simultaneously to obtain (sk+1
h ,nk+1

h ) ∈ Ah
erk(gh,qh). Starting

from an initial guess (s0
h,n0

h) ∈ Ah
erk(gh,qh), we iterate this until some conver-

gence criterium is achieved.
Unfortunately, this is a fully coupled non-linear system of equations with

a non-convex constraint |nh(xi )| = 1. Therefore, we adopt to split the gradient
flow iteration into three sequential steps. In order to obtain a monotone, energy
decreasing scheme, we first employ a convex splitting approach (Wise et al.,
2009; Shen and Yang, 2010a,b) for the double well potential ψerk, i.e. we write
it as a difference of two convex functions ψc, ψe:

ψerk(s) = ψc(s) − ψe(s). (89)

With this, and recalling (84), (85), we make the following approximation(
ψ ′

erk(s
k+1
h ), zh

)
:=

(
ψ ′

c(s
k+1
h ), zh

)
−
(
ψ ′

e(s
k
h), zh

)
. (90)

The following result is from Nochetto et al. (2017, Lem. 4.1).

Lemma 2 (Convex-concave splitting). For any sk
h and sk+1

h in Sh, (90) implies

(
ψerk(s

k+1
h ),1

)
−
(
ψerk(s

k
h),1

)
≤
(
ψ ′

erk(s
k+1
h ), sk+1

h − sk
h

)
. (91)

We can now formulate our alternating direction, discrete gradient flow algo-
rithm. Given (s0

h,n0
h) ∈Ah

erk(gh,qh), iterate Steps 1-3 for k ≥ 0:

1. Tangential flow for nh. First, linearize nk+1
h by ñk+1

h := nk
h + tkh, for some

tkh ∈V⊥
h (nk

h)∩H 1
�n

(�) to be determined. Note that ñk+1
h /∈Nh. Next, choose

ak
n (th,vh) := δnEh

erk[sk
h, th;vh] which is an effective (discrete) inner product

on V⊥
h (nk

h).
Then, assuming time step is unity, we replace (87) by: find tkh ∈ V⊥

h (nk
h) ∩

H 1
�n

(�) such that

ak
n

(
tkh,vh

)
= −δnEh

erk[sk
h,nk

h;vh], ∀vh ∈V⊥
h (nk

h) ∩Uh(�u,0). (92)

2. Projection. Define nk+1
h ∈ Nh(�n,qh) by

nk+1
i := ñk+1

i

|̃nk+1
i | ≡ nk

i + tki∣∣nk
i + tki

∣∣ , at all nodes xi ∈ Nh. (93)
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3. Gradient flow for sh. Using (sk
h,nk+1

h ), find sk+1
h in Sh(�s, gh) such that(

sk+1
h − sk

h

δt
, zh

)
= −δsE

h
erk,one[sk+1

h ,nk+1
h ; zh], ∀zh ∈ Sh(�s,0),

= −κ
(
∇sk+1

h ,∇zh

)
− 1

2
δsE

h
erk[sk+1

h ,nk+1
h ; zh]

− 1

ηB

(
ψ ′

erk(s
k+1
h ), zh

)
, ∀zh ∈ Sh(�s,0).

(94)

The following result, taken from Nochetto et al. (2017, Thm. 4.2), shows the
robustness of this algorithm.

Theorem 4 (Energy decrease). Let Th satisfy (63). The iterate (sk+1
h ,nk+1

h ) of
the above algorithm exists and satisfies

Eh
erk,one[sk+1

h ,nk+1
h ] ≤ Eh

erk,one[sk
h,nk

h] − 1

δt

∫
�

(sk+1
h − sk

h)2dx (95)

Equality holds if and only if (sk+1
h ,nk+1

h ) = (sk
h,nk

h).

After summing in k in (95), the estimate

Eh
erk,one[sK

h ,nK
h ] ≤ Eh

erk,one[s0
h,n0

h] − 1

δt

K−1∑
k=0

‖sk+1
h − sk

h‖2
L2(�)

follows immediately. Therefore, if we set as termination criterion that ‖sk+1
h −

sk
h‖L2(�) < ε for some prescribed tolerance ε > 0, the algorithm must finish in

a finite number of iterations.

Remark 4 (Projection is energy-decreasing). In order to guarantee that Step 2
above is energy decreasing, we need to use the weak-acuteness assumption on
the mesh from Hypothesis 3, cf. Alouges (1997), Bartels (2006), Nochetto et al.
(2017).

Example 1. We illustrate the energy monotonicity with a computational exper-
iment. We consider the square � = (0,1)2 and set κ = 1 and ηB = 1 in the
Ericksen energy. The double-well potential we consider is such that its convex
splitting (recall (89)) is

ψerk(s) = ψc(s) − ψe(s)

:= 63.0s2 − (−16s4 + 21.33333333333333s3 + 57s2).
(96)

We point out that ψerk has a local minimum at s = 0 and a global minimum at
s = s∗ := 0.750025. We impose Dirichlet boundary conditions for both s and n
on �s = �n = ∂�,

s = s∗, n(x, y) = (cos θ, sin θ)�, θ(x, y) = 3 atan2 (x − 0.3, y − 0.6) , (97)
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where atan2 : R2 \ {0} → [−π,π] is the four quadrant inverse tangent function,
namely, atan2(x0, y0) is the angle between the positive x-axis and the ray to the
point (x0, y0). This gives a defect of degree +3.

We consider the gradient flow algorithm discussed in Section 3.3.4 with time
step δt = 10−1, initialized with (s0

h,n0
h) ≡ (s∗, (1,0)�) in the interior nodes,

and with stopping criterion ‖sk+1
h − sk

h‖L2(�) < 10−8. Fig. 2 illustrates the en-
ergy monotonicity property of our algorithm, that finishes in 328 steps. Fig. 3
shows the evolution of the iterates at some steps in the algorithm. We ob-
tain an equilibrium configuration in which three point defects are present in
the domain. More precisely, at the final configuration the degree of orienta-
tion sh reaches local minima approximately at sh(0.20,0.78) ≈ 8.0 × 10−3,
sh(0.31,0.35) ≈ 4.9 × 10−3 and sh(0.63,0.58) ≈ 3.3 × 10−3.

FIGURE 2 Evolution of the discrete Ericksen energy Eh
erk,one[sk

h
,nk

h
] in Example 1.

FIGURE 3 Director field n in Example 1. In red, we highlight the regions where s < 3 × 10−2.
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3.3.5 Theoretical tools
The singular set S = {s = 0} plays a critical role in the �-convergence analysis.
The following basic result from Evans (1998, Ch.5, exer. 17) is used repeatedly
when dealing with the singular set.

Lemma 3 (Null gradient on level sets). Let u ∈ H 1(�). Then, ∇u = 0 a.e. on
the set {u = c}, where c ∈R.

Since ψerk diverges at s = −1/2 and s = 1, it is useful to truncate s away
from s = −1/2,1. The next result, which is a slight modification of Nochetto et
al. (2017, Lem. 3.1), clarifies this.

Lemma 4 (Truncation). Assume (g,q) satisfies Hypothesis 1 (recall c0 > 0).
Let (s,u,n) ∈Aerk(g,q) and define

�s�ρ := max

{
−1

2
+ ρ,min{s,1 − ρ}

}
, (98)

for any ρ ≥ 0, and set �u�ρ := �s�ρ n. Then, (�s�ρ , �u�ρ ,n) ∈ Aerk(g,q) for
all ρ ≤ c0 and ∥∥(s,u) − (�s�ρ , �u�ρ)

∥∥
H 1(�)

→ 0, as ρ → 0.

This is also implies that

Eerk−m[�s�ρ ,n] ≤ Eerk−m[s,n], (
ψerk(�s�ρ),1

)≤ (ψerk(s),1) , (99)

assuming Hypothesis 2 holds as well.
The same assertion holds for any (sh,uh,nh) ∈ Ah

erk(gh,qh) except the trun-
cation is defined node-wise, i.e. (Ih �sh�ρ ,Ih �uh�ρ ,nh) ∈ Ah

erk(gh,qh) and

Eh
erk−m[Ih �sh�ρ ,nh] ≤ Eh

erk−m[sh,nh],
(
ψerk(Ih �sh�ρ),1

)≤ (ψerk(sh),1) .

(100)

The following proposition (taken from Nochetto et al., 2017, Prop. 3.2) is
needed to construct a recovery sequence (see Section 3.3.6).

Proposition 2 (Regularization in Aerk(g,q)). Suppose the boundary data sat-
isfies Hypothesis 1. Let (s,u,n) ∈ Aerk(g,q), with − 1

2 + ρ ≤ s ≤ 1 − ρ a.e.
in � for any ρ such that 0 ≤ ρ ≤ c0. Then, given δ > 0, there exists a triple
(sδ,uδ,nδ) ∈Aerk(g,q), such that sδ ∈ W 1,∞(�), uδ ∈ [W 1,∞(�)]d , and

‖(s,u) − (sδ,uδ)‖H 1(�) ≤ δ,

−1

2
+ ρ ≤ sδ(x) ≤ 1 − ρ, ∀x ∈ �.
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Thus, there exists Zε ⊂ � such that |Zε | < ε and (sδ,uδ) converges uniformly
on � \ Zε .

Moreover, define nδ := uδ/sδ if sδ �= 0, and take nδ to be any unit vector if
sδ = 0. Then, nδ → n in [L2(� \ S)]d . Moreover, for each fixed ε > 0, nδ is
Lipschitz on � \ {|sδ| ≤ ε} with Lipschitz constant proportional to ε−1.

3.3.6 Gamma convergence
We briefly review the main results of Nochetto et al. (2017) needed to prove
�-convergence of Eh

erk,one[sh,nh] to Eerk,one[s,n]. For the existence of a recov-
ery sequence we have Nochetto et al. (2017, Lem. 3.3).

Lemma 5 (lim-sup inequality). Let (sε,uε,nε)∈Aerk(g, r,q)∩[W 1,∞(�)]1+2d

be the functions constructed in Proposition 2, for any ε > 0, and let (sε,h,uε,h,

nε,h) ∈ Ah
erk(gh, rh,qh) be their Lagrange interpolants. Then

Eerk−m[sε,nε] = lim
h→0

Eh
erk−m[sε,h,nε,h]

= lim
h→0

Ẽh
erk−m[sε,h,uε,h] = Ẽerk−m[sε,uε].

(101)

The next result (Nochetto et al., 2017, Lem. 3.4) is needed for the lim-inf
inequality.

Lemma 6 (Weak lower semi-continuity). The energy
∫
�

Lh(wh,∇wh)dx, with

Lh(wh,∇wh) := (κ − 1)|∇Ih|wh||2 + |∇wh|2, (102)

is well defined for any wh ∈Uh and is weakly lower semi-continuous in H 1(�),
i.e. for any weakly convergent sequence wh ⇀ w in H 1(�), we have

lim inf
h→0

∫
�

Lh(wh,∇wh) dx ≥
∫

�

(κ − 1)|∇|w||2 + |∇w|2dx. (103)

A basic part of any �-convergence result is an equi-coercivity result (No-
chetto et al., 2017, Lem. 3.5).

Lemma 7 (Coercivity). For any (sh,uh,nh) ∈Ah
erk(gh, rh,qh), we have

Eh
erk−m[sh,nh] ≥ min{κ,1}max

{∫
�

|∇uh|2dx,

∫
�

|∇sh|2dx

}
as well as (recall (71))

Eh
erk−m[sh,nh] ≥ min{κ,1}max

{∫
�

|∇ũh|2dx,

∫
�

|∇Ih|sh||2dx

}
.

The following result is a modification of Nochetto et al. (2017, Lem. 3.6),
which characterizes the limit functions in our �-convergence result.
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Lemma 8. Let (sh,uh,nh) in Ah
erk and suppose (sh,uh) converges weakly to

(s,u) in [H 1(�)]1+d . Then, (sh,uh) converges to (s,u) strongly in [L2(�)]1+d ,
a.e. in �, where −1/2 ≤ s ≤ 1, |s| = |u| a.e. in �, and there exists a director
field n : � → Sd−1, with n ∈ [L2(�)]d ∩ [L∞(�)]d , such that u = sn a.e. in �.
Thus, (s,u,n) in Aerk.

Furthermore, nh converges to n in [L2(� \ S)]d and a.e. in � \ S , and for
each fixed ε > 0:

1. there exists Z′
ε ⊂ � such that |Z′

ε | < ε and (sh,uh) converges uniformly to
(s,u) on � \ Z′

ε;
2. nh → n uniformly on � \ (Sε ∪ Z′

ε), where Sε = {|s(x)| ≤ ε}.
Note: the same results hold for (̃sh, ũh,nh) in Ah

erk converging to (̃s, ũ,n) in
Aerk, where s̃ := |s|, and ũ := s̃n (recall (71)).

Combining the above results, Nochetto et al. (2017, Thm. 3.7) demonstrates
�-convergence of our discrete energy to the continuous energy.

Theorem 5 (Convergence of global discrete minimizers). Let {Th} satisfy
(63). If (sh,uh,nh) ∈ Aerk(gh, rh,qh) is a sequence of global minimizers of
Eh

erk,one[sh,nh] in (70), then every cluster point is a global minimizer of the
continuous energy Eerk,one[s,n] in (50).

4 The uniaxially constrained Q-model

In this section, we address the mathematical formulation of the minimization
problem for the one-constant Landau-de Gennes energy ELdG,one (cf. (17)) un-
der the uniaxiality constraint (9). For three-dimensional problems, the approach
discussed in Section 3.2.2 has two drawbacks.

First, a basic argument (Sonnet and Virga, 2012) shows that minimizers of
Q �→ ∫

�
ψLdG(Q) have the form of a uniaxial nematic (9). This is false for

ELdG,one in (17) with general boundary conditions. Thus, minimizers of the
form (46) violate the algebraic form of (9) and exhibit a biaxial escape (Palffy-
muhoray et al., 1994; Sonnet et al., 1995; Lamy, 2013). This is analogous to the
escape to the 3rd dimension in LC director models (Virga, 1994). This is not
desirable if the underlying nematic LC is guaranteed to be uniaxial, which is the
case in most thermotropic materials.

In second place, the minimization problem (48) leads to a non-linear system
with five coupled variables in 3-D, which is expensive to solve and possibly not
robust (Lee et al., 2002; Ravnik and Žumer, 2009; Zhao and Wang, 2016; Zhao
et al., 2016).

These drawbacks motivate us to enforce the uniaxiality constraint (9) in the
Landau-de Gennes one-constant energy (17). The model we obtain has simi-
larities with the Ericksen model, but it has the advantage of allowing for non-
orientable minimizers that exhibit half-integer order defects. We also point out
that in 2-D, this approach is equivalent to minimizing (17) because, according
to Remark 1, Q-tensors must be uniaxial.
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The approach we pursue is based on the Ericksen model (Section 3.3).
Namely, we shall use (s,n) as variables, where n is a (possibly non-orientable)
vector field, and then recover Q by means of (9), namely

Q = s

(
n ⊗ n − 1

d
I
)

.

Compared to directly minimizing (17) using the Q-tensor as a variable, this will
allow us to derive an algorithm that can find a minimizer by solving a sequence
of linear systems of smaller dimension. See Ball et al. (2015, Prop. 1, pg. 11) for
a different approach to enforcing uniaxiality.

Finally, we comment that uniaxial models effectively arise in a small elas-
tic constant limit. In Majumdar and Zarnescu (2010), Majumdar and Zarnescu
studied the one-constant model (17) with a small bulk coefficient ηB (which is
equivalent to a small elastic constant). They showed that, under suitable bound-
ary conditions, in the limit ηB → 0, Landau-de Gennes minimizers converge to
minimizers for the Oseen-Frank energy. The analysis in Majumdar and Zarnescu
(2010) is refined in Nguyen and Zarnescu (2013), where the dependence of the
difference between the solution to both models with respect to ηB is analyzed.

4.1 Modeling assumptions

For a uniaxially constrained Q-tensor as in (9), we write � = n ⊗ n, which will
be treated as a control variable in minimizing (17). We introduce the set

Ld−1 = {A ∈ Rd×d : there exists n ∈ Sd−1, A = n ⊗ n}, (104)

which can be identified with the real projective space RPd−1 through the map

n ⊗ n �−→ {n,−n}.
This illustrates that the uniaxially constrained Landau-de Gennes model takes
into account the molecular direction but not the orientation. In contrast to the
Oseen-Frank and Ericksen models, the Q-tensor model allows for half-integer
defects.

Because ∇Q = ∇s ⊗
(
� − 1

d
I
)

+ s∇�, we have

|∇Q|2 = |∇s|2
∣∣∣∣� − 1

d
I

∣∣∣∣2 + s2|∇�|2 + 2s

[
∇s ⊗

(
� − 1

d
I
)]

: ∇�.

A direct calculation gives
∣∣∣� − 1

d
I
∣∣∣2 = d−1

d
and

[
∇s ⊗

(
� − 1

d
I
)]

: ∇� = 0,

and therefore

|∇Q|2 = d − 1

d
|∇s|2 + s2|∇�|2.



346 Handbook of Numerical Analysis

Also, the equalities:

for d = 2: (1/2)s2 = tr(Q2), 0 = tr(Q3), (1/4)s4 = (tr(Q2))2,

for d = 3: (2/3)s2 = tr(Q2), (2/9)s3 = tr(Q3), (4/9)s4 = (tr(Q2))2,

follow immediately. Therefore, in the one-constant approximation of the uniax-
ially constrained Q-tensor model, the energy (17) becomes

ELdG,one[Q] = Euni[s,�] := Euni−m[s,�] + ELdG,bulk[s],
Euni−m[s,�] := 1

2

(
d − 1

d

∫
�

|∇s|2 dx + Euni[s,�]
)

,

Euni[s,�] :=
∫

�

s2|∇�|2 dx,

ELdG,bulk[s] := 1

ηB

∫
�

ψLdG(s) dx,

(105)

where, with some abuse of notation, we write ψLdG(s) := ψLdG(Q).
It is apparent that (105) has the same form as the Ericksen energy (19), with

the only difference that � replaces n. Thus, we introduce a change of variable
analogous to the one in the Ericksen case; we set U = s� and rewrite

Euni−m[s,�] = Ẽuni−m[s,U] := 1

2

(
− 1

d

∫
�

|∇s|2 dx +
∫

�

|∇U|2 dx

)
. (106)

From the discussion in Section 2.1, we recall that the degree of orientation
needs to satisfy s ∈ [− 1

d−1 ,1]. In the same spirit as before, we define the admis-
sible class as

Auni := {(s,�) ∈ H 1(�) × [L∞(�)]d×d :(s,U,�) satisfies (108),

with u ∈ [H 1(�)]d}, (107)

with the structural condition

− 1

d − 1
≤ s ≤ 1, U = s�, � ∈ Ld−1 a.e. in �. (108)

In the same fashion as we did with the Ericksen model, we shall write
(s,U,�) in Auni, to denote (s,�) in Auni, U in [H 1(�)]d×d , and (s,U,�)

satisfies (108). In order to enforce boundary conditions on (s,U), possibly on
different parts of the boundary, we assume the following condition (cf. Hypoth-
esis 1).

Hypothesis 4. There exist functions g ∈ W 1,∞(Rd), R ∈ [W 1,∞(Rd)]d×d , M ∈
[L∞(Rd)]d×d , such that (g,R,M) satisfies (108) on Rd , i.e. R = gM and M ∈
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Ld−1 a.e. in Rd . Furthermore, we assume that g satisfies (56), that is, there is a
fixed c0 > 0 (small) such that

c0 ≤ g ≤ 1 − c0.

The latter implies that M is of class H 1 in a neighborhood of ∂� and satisfies
g−1R = M ∈ Ld−1 on ∂�.

Moreover, let �s , �U, �� be open subsets of ∂� on which to enforce Dirich-
let conditions for s, U, � (respectively), and assume that �U = �� ⊂ �s .

With these boundary conditions, we have the following restricted admissible
class,

Auni(g,M) := {
(s,�) ∈ Auni : s|�s = g, �|�� = M

}
, (109)

and Hypothesis 4 guarantees that setting boundary conditions for (s,�) is
meaningful.

Finally, we require the double-well potential to effectively confine the degree
of orientation variable s to a meaningful range.

Hypothesis 5 (Landau-de Gennes potential). The coefficients A,B,C in (15)
are such that

ψLdG(s) ≥ ψLdG(1 − δ0) for s ≥ 1 − δ0,

ψLdG(s) ≥ ψLdG

(
− 1

d − 1
+ δ0

)
for s ≤ − 1

d − 1
+ δ0.

(110)

Moreover, we modify ψLdG near the bounds s = −1/(d − 1) and s = 1 so that
ψLdG(·) diverges (recall (51)).

4.2 Discretization

We discretize � in the same fashion as in Section 3.3.2. We assume � ⊂ Rd

is partitioned by a conforming simplicial shape-regular triangulation Th = {Ti},
with no geometric error caused by domain approximation. Moreover, we main-
tain the weak-acuteness mesh assumption (cf. Hypothesis 3).

Next, we consider continuous linear Lagrange finite element spaces on �.
That is, the space for sh is Sh as in (59), while the spaces for the tensor variables
Uh and �h are

Uh := {Uh ∈ [H 1(�)]d×d : Uh|T ∈P1(T ),∀T ∈ Th},
Th := {�h ∈Uh : �h(xi) ∈ Ld−1,∀xi ∈Nh},

(111)

where Th imposes the rank-one, unit norm constraint only at the vertices of
the mesh. Dirichlet boundary conditions are included via the following discrete
spaces:
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Sh(�s, gh) := {sh ∈ Sh : sh|�s = gh},
Uh(�U,Rh) := {Uh ∈ Uh : Uh|�U = Rh},
Th(��,Mh) := {�h ∈ Th : �h|�� = Mh},

(112)

where gh := Ihg, Rh := IhR, and Mh := IhM are the discrete Dirichlet data.
This leads to the following discrete admissible class with boundary conditions:

Ah
uni(gh,Mh) := {

(sh,�h) ∈ Sh(�s, gh) ×Th(��,Mh) :
(sh,Uh,�n) satisfies (114), with Uh ∈Uh(�U,Rh)

}
,

(113)

where

Uh = Ih(sh�h), − 1

d − 1
≤ sh ≤ 1 in �, and �h(xi) ∈ Ld−1,∀xi ∈ Nh,

(114)

is called the discrete structural condition of Ah
uni. If we write (sh,Uh,�h) ∈

Ah
uni, then this is equivalent to (sh,�h) ∈ Ah

uni, Uh ∈ Uh, and (sh,Uh,�h) sat-
isfies (62). In view of Hypothesis 4, we can also impose the Dirichlet condition
�h = Ih[g−1

h Rh] on ∂�.
The discrete version of Euni−m[s,�] is derived similarly to the Ericksen

case. We set

δij sh := sh(xi) − sh(xj ), δij�h := �h(xi) − �h(xj ), (115)

and define the main part of the discrete energy to be

Eh
uni−m[sh,�h] :=d − 1

4d

n∑
i,j=1

kij

(
δij sh

)2

+ 1

4

n∑
i,j=1

kij

(
sh(xi)

2 + sh(xj )
2

2

)
|δij�h|2.

(116)

Above, the first term corresponds to

1

2

n∑
i,j=1

kij

(
δij sh

)2 =
∫

�

|∇sh|2dx,

while the second term is a first order approximation of 1
2

∫
�

s2|∇�|2dx. For
convenience, we shall denote

Eh
uni[sh,�h] := 1

2

n∑
i,j=1

kij

(
sh(xi)

2 + sh(xj )
2

2

)
|δij�h|2. (117)
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The bulk energy is discretized in the same way as before,

Eh
LdG,bulk[sh] := 1

ηB

∫
�

ψLdG(sh)dx. (118)

With the notation introduced above, the formulation of the discrete problem
reads as follows. Find (sh,�h) ∈ Sh(�s, gh) × Th(��,Mh) such that the fol-
lowing energy is minimized:

Eh
uni[sh,�h] := Eh

uni−m[sh,�h] + Eh
LdG,bulk[sh]. (119)

Because the discrete spaces consist of piecewise linear functions, the struc-
tural condition Uh = sh�h is only satisfied at the mesh nodes (cf. (114)).
Therefore, there is a variational crime that we need to account for. Similarly to
Lemma 1, the discrete Landau-de Gennes energy possesses an energy inequality
property (Borthagaray et al., 2020, Lem. 1). For our analysis, we introduce the
functions

s̃h = Ih(|sh|), Ũh = Ih(|sh|�h), (120)

and remark that (̃sh, Ũh,�h) satisfies (114).

Lemma 9 (Energy inequality). Let the mesh Th satisfy (63). Then, for all
(sh,Uh,�h) ∈Ah

uni(gh,Rh,Mh), the discrete energy satisfies

Eh
uni−m[sh,�h] − Ẽh

uni−m[sh,Uh] = Eh, (121)

as well as

Eh
uni−m[sh,�h] − Ẽh

uni−m [̃sh, Ũh] ≥ Ẽh, (122)

where

Ẽh
uni−m[sh,Uh] := 1

2

(
− 1

d

∫
�

|∇sh|2dx +
∫

�

|∇Uh|2dx

)
,

and

Eh := 1

8

n∑
i,j=1

kij

(
δij sh

)2∣∣δij�h

∣∣2 ≥ 0, Ẽh := 1

8

n∑
i,j=1

kij

(
δij s̃h

)2∣∣δij�h

∣∣2 ≥ 0.

(123)

4.3 Gradient flow

4.3.1 Continuous gradient flow
We discuss a formal gradient flow to find local minimizers of Euni[s,�] in
(105). More precisely, we revisit (40), and impose the uniaxial constraint (9).
Because our control variables are s and �, we shall evolve these two quantities
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separately, although the resulting gradient flows are coupled. For the sake of
exposition, we consider an L2 gradient flow for both s and �, although other
choices can be made.

We define

as (∂t s(·, t), z) = −δsEuni[s,�; z], ∀z ∈ H 1
�s

(�), (124)

where H 1
�s

(�) := {z ∈ H 1(�) : z|�s = 0} preserves the boundary condition for

s and, as in Section 3.3.3, we shall consider as (·, ·) as the standard L2-inner
product. Upon applying a formal integration by parts to this equality and using
the Neumann condition ν · ∇s = 0 on ∂� \ �s , it follows that s satisfies

∂t s − d − 1

d
�s + |∇�|2s + 1

ηB
ψ ′

LdG(s) = 0, in �,

s = g, on �s, ν · ∇s = 0, on ∂� \ �s.

(125)

We now consider the evolution of the � variable. For that purpose, we need
a characterization of the tangent space T�Ld−1 at � ∈ Ld−1. Following Bartels
and Raisch (2014), given � = n⊗n, we consider a smooth curve γγγ : (−δ, δ) →
Sd−1 such that γγγ (0) = n, and set ��� : (−δ, δ) → Ld−1, ���(t) = γγγ (t)⊗γγγ (t). Then,
setting v := dγγγ

dt
(0) ∈ TnS

d−1, we obtain V ∈ T�Ld−1 by

V = d���

dt
(0) =

(
d

dt
γγγ (t) ⊗γγγ (t)

)∣∣∣∣
t=0

= n ⊗ v + v ⊗ n.

Thus, at � = n ⊗ n, there is a bijection between T�Ld−1 and TnS
d−1.

This motivates us to define the space of tangential variations of � = n ⊗ n
as

V⊥(s,�) := {
V ∈ [L2(�)]d×d : V = n ⊗ v + v ⊗ n, v · n = 0 a.e. in �,

sV ∈ [H 1(�)]d×d
}
.

(126)

Clearly, the restriction v ·n = 0 a.e. in � is sufficient to guarantee orthogonality,
because

(v ⊗ n) : (n ⊗ n) = (v · n)(n · n) = 0 if v · n = 0.

Moreover, if s ≥ c0 > 0 in �, then V ∈V⊥(s,�) must belong to [H 1(�)]d .
Additionally, considering a tangential perturbation of �, T = � + δtV

with V ∈ V⊥(s,�) preserves the constraint |�| = 1 up to second order, since
|T|2 = 1 + δt2|V|2. However, our discrete gradient flow algorithm shall exploit
the identification T�Ld−1 � TnS

d−1 to consider vector-valued perturbations
(instead of tensor-valued). Namely, if we take tangential variations in n and
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set W := (n + δtv) ⊗ (n + δtv) with v ∈ TnS
d−1, then this yields a tangential

variation of � up to second order,

W = � + δtV + δt2v ⊗ v, V = n ⊗ v + v ⊗ n ∈V⊥(s,�). (127)

We set a gradient flow for � as follows:

a� (∂t�(·, t),V) = −δ�Euni[s,�;V], ∀V ∈ V⊥(s,�) ∩ [H 1
��

(�)]d×d .

(128)

Assume that a� (·, ·) above is the inner product in L2(�). After an integration
by parts, it follows that � satisfies

∂t� − ∇ · (s2∇�) = 0, in �,

n = M, on ��, ν · ∇� = 0, on ∂� \ ��.
(129)

Assuming (s,n) evolve according to (125), (129), it follows that

∂tEuni[s,�] = δsEuni[s,�; ∂t s] + δ�Euni[s,�; ∂t�],
= −‖∂t s‖L2(�) − ‖∂t�‖L2(�) ≤ 0,

(130)

and therefore the energy is monotonically decreasing.

4.3.2 Discrete gradient flow
Given k ≥ 0, let (sk

h,�k
h) ∈ Ah

uni(gh,Mh) and we write

sk
i := sk

h(xi ), �k
i := �k

h(xi ), nk
i := nk

h(xi ), zi := zh(xi ), vi := vh(xi ).

We consider the finite element discretization discussed in Section 4.2 and use
a fully implicit, backward Euler time discretization for ∂t s, to discretize (124)
by

as

(
sk+1
h − sk

h

δt
, zh

)
= −δsE

h
uni[sk+1

h ,�k+1
h ; zh], ∀zh ∈ Sh(�s,0), (131)

where δt > 0 is a finite time step and Sh(�s,0) is defined according to (112).
The discrete variational derivative is given by

δsE
h
uni[sk

h,�k
h; zh] = d − 1

d
(∇sk

h,∇zh) + 1

2
δsE

h
uni[sk

h,�k
h; zh]

+ 1

ηB
(ψ ′

LdG(sk
h), zh),

δsE
h
uni[sk

h,�k
h; zh] =

N∑
i,j=1

kij |δij�
k
h|2

(
sk
i zi + sk

j zj

2

)
.

(132)
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The discrete version of (126), where �h = nh ⊗ nh at the mesh nodes, is
defined by

V⊥
h (�h) = {Vh ∈Uh : Vh(xi ) = nh(xi ) ⊗ vh(xi ) + vh(xi ) ⊗ nh(xi ),

vh(xi ) · nh(xi ) = 0, for all nodes xi ∈Nh}.
(133)

Thus, a natural way to discretize (128) would be

a�

(
�k+1

h − �k
h

δt
,Vh

)
= −δ�Eh

uni[sk+1
h ,�k+1

h ;Vh],

∀Vh ∈V⊥
h (�k

h) ∩Uh(�U,0),

subject to �k+1
h (xi ) ∈ Ld−1, for all nodes xi ∈Nh,

(134)

where the discrete variational derivatives are given by

δ�Eh
uni[sk

h,�k
h;Vh] = 1

2
δ�Eh

uni[sk
h,�k

h;Vh],

δ�Eh
uni[sk

h,�k
h;Vh] =

N∑
i,j=1

kij

(
(sk

i )2 + (sk
j )2

2

)
(δij�

k
h) : (δij Vh).

(135)

Therefore, we could consider the following algorithm: given (sk
h,�k

h) ∈
Ah

uni(gh,Mh), solve (131), (134) simultaneously to obtain (sk+1
h ,�k+1

h ) ∈
Ah

uni(gh,Mh). Starting from an initial guess (s0
h,�0

h) ∈Ah
uni(gh,Mh), we iterate

this until some convergence criterium is achieved. This algorithm yields a fully
coupled non-linear system of equations with the constraint �k+1

h (xi ) ∈ Ld−1.
There are two simplifications to be made. First, in the same fashion as we did

for the Ericksen model in Section 3.3.4, we split the gradient flow iteration into
three steps. Namely, we evolve �h, resulting in a tangential update that does
not necessarily belong to Ld−1 at the nodes; after this, we need to project this
update; and finally, evolve sh with a gradient flow step.

However, the second step in this algorithm is problematic: projecting an
arbitrary tensor onto Ld−1 is more challenging than the simple unit length
normalization step in the algorithm from Section 3.3.4. Therefore, instead of
looking for tensor variations of �, we shall exploit the identification between
the tangent spaces T�Ld−1 and TnS

d−1 to obtain a vectorial update.
We point out that if �k+1

h was a tangential update, so that

�k+1
i − �k

i = nk
i ⊗ ti + ti ⊗ nk

i

for some ti such that nk
i · ti = 0, then we could replace the Frobenius inner

product by a vectorial one:

(�k+1
i − �k

i ) : Vi = 2tki · vi , ∀Vi = nk
i ⊗ vi + vi ⊗ nk

i .
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Therefore, instead of (134) we consider, for �k
i = nk

i ⊗ nk
i ,

1

δt
an

(
tkh,vh

)
= −δ�Eh

uni[sk+1
h ,�k

h + nk
h ⊗ tkh + tkh ⊗ nk

h;Vh],
∀Vh ∈ V⊥

h (nk
h) ∩Uh(�u,0).

(136)

Upon taking the update ñk+1
i = nk

i + tki , we can recover the constraint �k+1
i ∈

Ld−1 by considering

�k+1
i = ñk+1

i

|̃nk+1
i | ⊗ ñk+1

i

|̃nk+1
i | .

Because of the second-order inconsistency committed when updating �

with a non-tangential variation (recall (127)), we need a careful selection of
the an (·, ·)-form. Moreover, near the discrete singular set, namely wherever sk

h

is small, it is critical to allow for relatively large variations tkh in order to ac-
celerate the algorithm. Given a function ω ∈ L∞(�) with ω ≥ 0, we define the
weighted H 1-space

‖v‖H 1
ω(�) :=

(∫
�

|v(x)|2 dx +
∫

�

|∇v(x)|2 ω(x)dx

)1/2

,

and we write by (·, ·)H 1
ω(�) its inner product. In the algorithm below, we shall

consider the weight ω = (sk
h)2.

Finally, we point out that the double well potential can be treated in the same
way as for the Ericksen model. Indeed, by using a convex-concave splitting
ψLdG = ψc − ψe and considering the approximation(

ψ ′
LdG(sk+1

h ), zh

)
:=

(
ψ ′

c(s
k+1
h ), zh

)
−
(
ψ ′

e(s
k
h), zh

)
, (137)

we obtain an unconditionally stable evolution for Eh
LdG,bulk[sh] (cf. Lemma 2).

Our discrete quasi-gradient flow algorithm is as follows. Given (s0
h,�0

h) ∈
Ah

uni(gh,Mh), with �0
h = n0

h ⊗ n0
h, and a time step δt > 0, iterate Steps 1–3 for

k ≥ 0:

1. (Weighted) tangent flow step for �h: find tkh ∈ V⊥
h (nk

h) ∩ H 1
��

(�) and

Tk
h = nk

h ⊗ tkh + tkh ⊗ nk
h, such that

1

δt
(tkh,vh)H 1

(sk
h
)2

(�) = −δ�Eh
uni[sk

h,�k
h + Tk

h;Vh],

∀Vh = nk
h ⊗ vh + vh ⊗ nk

h, vh ∈Vh ∩ H 1
��

(�).

(138)
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2. Projection: update �k+1
h ∈ Th(��,Mh) by

�k+1
h (xi) := nk

h(xi) + tkh(xi)

|nk
h(xi) + tkh(xi)|

⊗ nk
h(xi) + tkh(xi)

|nk
h(xi) + tkh(xi)|

, ∀xi ∈Nh. (139)

3. Gradient flow step for sh: find sk+1
h ∈ Sh(�s, gh) such that, for all zh ∈

Sh(�s,0),

1

δt

(
sk+1
h − sk

h, zh

)
= −δsE

h
uni[sk+1

h ,�k+1
h ; zh],

= −d − 1

d

(
∇sk+1

h ,∇zh

)
− 1

2
δsE

h
uni[sk+1

h ,�k+1
h ; zh]

− 1

ηB

(
ψ ′

LdG(sk+1
h ), zh

)
.

(140)

Under a mild time-step restriction, this algorithm is energy-decreasing
(Borthagaray et al., 2020, Thm. 2).

Theorem 6 (Energy decrease). Assume the family of meshes is weakly acute (cf.
Hypothesis 3) and δt < Chd/2. Then, it holds that

Eh
uni[sN

h ,�N
h ] + 1

δt

(
N−1∑
k=0

‖tkh‖2
H 1

(sk
h
)2

(�)
+ ‖sk+1

h − sk
h‖2

L2(�)

)
≤ Eh

uni[s0
h,�0

h]

∀N ≥ 1.

Thus, the discrete energy is monotonically decreasing.

Remark 5 (CFL condition). The use of the weighted H 1
(sk

h)2(�)-norm in Step 1

is needed to bound the second-order consistency error (126). This, in turn, leads
to the stability constraint δt ≤ Chd/2 because of the use of an inverse estimate
between L∞(�) and L2(�) (Borthagaray et al., 2020). However, if (sk

h)2 is
bounded away from zero, then a milder CFL condition can be obtained, namely
δt ≤ Chd/2−1| logh|−1 (Bartels and Raisch, 2014).

4.4 Gamma convergence

The roadmap to prove �-convergence of the discrete energy minimization prob-
lems to the continuous one is the same as for the Ericksen model, and makes
use of the general philosophy (Braides, 2002),

equi-coerciveness + �-convergence ⇒ convergence of minimum problems.

As a first step, we remark that truncating the double-well potential decreases
energy.
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Lemma 10 (Truncation). Assume (g,M) satisfies Hypothesis 4. Let (s,U,�) ∈
Aerk(g,M) and, given ρ ≥ 0, consider �s�ρ as in (98), namely: define

�s�ρ := max

{
−1

2
+ ρ,min{s,1 − ρ}

}
.

Define �U�ρ := �s�ρ �. Then, (�s�ρ , �U�ρ ,n) ∈Aerk(g,R) for all ρ ≤ c0 and∥∥(s,U) − (�s�ρ , �U�ρ)
∥∥

H 1(�)
→ 0, as ρ → 0.

This is also implies that

Euni−m[�s�ρ ,�] ≤ Euni−m[s,�], ELdG,bulk[�s�ρ] ≤ ELdG,bulk[s],

where we also assume Hypothesis 5.
The same assertion holds for any (sh,Uh,�h) ∈Ah

uni(gh,Mh) if the trunca-
tion is defined node-wise. Namely, if (Ih �sh�ρ ,Ih �Uh�ρ ,�h) ∈ Ah

uni(gh,Mh)

then

Eh
uni−m[Ih �sh�ρ ,�h] ≤ Eh

uni−m[sh,�h], Eh
LdG,bulk[Ih �sh�ρ] ≤ Eh

LdG,bulk[sh].

Because our discrete admissible class is defined by enforcing the structural
conditions nodewise, we use Lagrange interpolation to construct a recovery se-
quence (i.e., to prove the lim-sup property needed for �-convergence). However,
the natural space for (s,U) is [H 1(�)]1+d×d (cf. (107)), and thus this construc-
tion cannot be done a priori: the Lagrange interpolant of an admissible pair
(s,U) may not be defined at all if d ≥ 2. This motivates the following result,
which is a counterpart of Proposition 2. Essentially, it guarantees that Lipschitz
continuous functions are H 1-dense in the admissible class.

Proposition 3 (Regularization in Auni(g,M)). Suppose the boundary data sat-
isfies Hypothesis 4. Let (s,U,�) ∈ Auni(g,M), with − 1

d−1 + ρ ≤ s ≤ 1 − ρ

a.e. in � for any ρ such that 0 ≤ ρ ≤ c0. Then, given ε > 0, there exists a triple
(sε,Uε,�ε) ∈Auni(g,M), such that sε ∈ W 1,∞(�), Uε ∈ [W 1,∞(�)]d×d , and

‖(s,U) − (sε,Uε)‖H 1(�) ≤ ε,

− 1

d − 1
+ ρ ≤ sε(x) ≤ 1 − ρ, ∀x ∈ �.

Thus, there exists Zδ ⊂ � such that |Zδ| < ε and (sε,Uε) converges uniformly
on � \ Zδ .

Moreover, define �ε := Uε/sε if sε �= 0, and take �ε to be any tensor in
Ld−1 if sε = 0. Then, �ε → � in [L2(� \S)]d . Moreover, for each fixed δ > 0,
�ε is Lipschitz on � \ {|sε | ≤ δ} with Lipschitz constant proportional to δ−1.
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The proof of the proposition above is more delicate than for the Ericksen
case. Indeed, smoothening the tensor field � involves convolution and thus
breaks its uniaxial structure. Therefore, uniaxiality needs to be rebuilt into the
regularized field. We recall that, for instance in three dimensions, the eigenval-
ues of the uniaxial Q tensor Q = s(� − 1

3 I) are {2s/3,−s/3,−s/3}. Heuristi-
cally, convolution with a localized kernel should not affect much the eigenframe
of �(x) if s is uniformly positive in a neighborhood of x. In such a case, one
can simply extract the leading eigenspace to construct a uniaxial field. However,
if s is not uniformly positive the argument does not carry. To deal with this, the
idea in Borthagaray et al. (2020, Prop. 7) is to regularize the positive semidefi-
nite field |s|� within a scale δ, to rebuild the uniaxiality and, for a coarser scale
σ ≥ δ, to recover the sign of s by using a suitably regularized sign function.

Once we know that Lipschitz continuous functions are dense among the
admissible pairs (s,U), we can build a recovery sequence by using Lagrange
(nodal) interpolation.

Lemma 11 (lim-sup inequality). Let (sε,Uε,�ε) ∈ Auni(g,R,M) be the func-
tions constructed in Proposition 3, for any ε > 0, and let (sε,h,Uε,h,�ε,h) ∈
Ah

uni(gh,Rh,Mh) be their Lagrange interpolants. Then

Euni−m[sε,�ε] = lim
h→0

Eh
uni−m[sε,h,�ε,h]

= lim
h→0

Ẽh
uni−m[sε,h,Uε,h] = Ẽuni−m[sε,Uε].

Weak lower semi-continuity follows by the same arguments as in the Erick-
sen case.

Lemma 12 (Weak lower semi-continuity). The energy
∫
�

Lh(Wh,∇Wh)dx,
with

Lh(Wh,∇Wh) := − 1

d
|∇Ih|Wh||2 + |∇Wh|2,

is well defined for any Wh ∈Uh and is weakly lower semi-continuous in H 1(�),
i.e. for any weakly convergent sequence Wh ⇀ W in H 1(�), we have

lim inf
h→0

∫
�

Lh(Wh,∇Wh) dx ≥
∫

�

− 1

d
|∇|W||2 + |∇W|2dx. (141)

Proof. Indeed, “flattening” the matrix W ∈ Rd×d to a vector w ∈ Rd2
, we can

use the same proof from Lemma 6 to prove the result because the norm of the
gradient of the flattened matrix equals the Fröbenius norm of ∇Uh; recall that
κ = (d − 1)/d .

The next result shows that the discrete energy controls the H 1 norms of
both sh and Uh. This gives us the compactness needed to prove convergence of
discrete minimizers towards minimizers of the uniaxially constrained Landau-
de Gennes energy (105).
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Lemma 13 (Coercivity). For any (sh,Uh,�h) ∈ Ah
uni(gh,Rh,Mh), we have

Eh
uni−m[sh,�h] ≥ d − 1

d
max

{∫
�

|∇Uh|2dx,

∫
�

|∇sh|2dx

}

as well as (recall (71))

Eh
uni−m[sh,nh] ≥ d − 1

d
max

{∫
�

|∇Ũh|2dx,

∫
�

|∇Ih|sh||2dx

}
.

Next, we prove that the limit functions satisfy the Landau-de Gennes admis-
sibility condition (109) (cf. Borthagaray et al., 2020, Lem. 9).

Lemma 14. Let (sh,Uh,�h) in Ah
uni and suppose (sh,Uh) converges weakly

to (s,U) in [H 1(�)]1+d×d . Then, (sh,Uh) converges to (s,U) strongly in
[L2(�)]1+d×d , a.e. in �, where −1/(d − 1) ≤ s ≤ 1, |s| = |U| a.e. in �, and
there exists a field � : � → Ld−1, so that � ∈ [L∞(�)]d×d , such that U = s�

a.e. in �. Thus, (s,U,�) in Auni.
Furthermore, �h converges to � in [L2(� \ S)]d×d and a.e. in � \ S , �

admits a Lebesgue gradient on �\S , that satisfies the identity |∇U|2 = |∇s|2 +
s2|∇�|2 a.e. in � \ S , and for each fixed ε > 0:

1. there exists Z′
ε ⊂ � such that |Z′

ε | < ε and (sh,Uh) converges uniformly to
(s,U) on � \ Z′

ε;
2. �h → � uniformly on � \ (Sε ∪ Z′

ε), where Sε = {|s(x)| ≤ ε}.
Note: the same results hold for (̃sh, Ũh,�h) in Ah

erk converging to (̃s, Ũ,�)

in Auni, where s̃ := |s|, and Ũ := s̃� (recall (120)).

Collecting Lemmas 11–14, a standard argument yields the �-convergence of
our discrete energy to the continuous energy.

Theorem 7 (Convergence of global discrete minimizers). Let {Th} satisfy
(63). If (sh,Uh,�h) ∈ Auni(gh,Rh,Mh) is a sequence of global minimizers
of Eh

uni[sh,�h] in (119), then every cluster point is a global minimizer of the
continuous energy Euni[s,�] in (105).

4.5 Numerical experiment

We simulate a curved line defect in the unit cube (0,1)3 that exhibits a +1/2
degree “point” defect in each horizontal plane of the cube; hence, the line field
is non-orientable. We first simulate the uniaxially constrained model, then the
standard LdG model.
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4.5.1 Uniaxially constrained model
The double-well potential with a convex splitting is given by

ψLdG(s) = ψc(s) − ψe(s)

:= (36.7709s2 + 1) − (−7.39101s4 + 4.51673s3 + 39.27161s2),

(142)

with ηB = 1/16, and note that ψLdG has a local maximum at s = 0 and a global
minimum at s = s∗ := 0.700005531 with ψLdG(s∗) = 0.

The boundary conditions for � were constructed in the following way. Let
θ0(x, y) define a +1/2 degree defect in the plane, located at (0.3,0.3) by

θ0(x, y) = 1

2
atan2

(
y − 0.3

x − 0.3

)
, (143)

where atan2 is the four-quadrant inverse tangent function (analogous to (97)).
Likewise, let θ1(x, y) define a +1/2 degree defect in the plane, located at
(0.7,0.7). Next, define the Dirichlet boundary �s = �� = ∂� \ �o, where
�o := � ∩ ({z = 0} ∪ {z = 1}). Then, the Dirichlet conditions are

s = s∗, n(x, y) = (cos θ, sin θ,0), � = n ⊗ n,

θ(x, y, z) = (1 − z)θ0(x, y) + zθ1(x, y) + πz,
(144)

with vanishing Neumann condition on �o. Basically, the boundary conditions
consist of rotating a planar +1/2 degree point defect as a function of z. The
solution is computed with the gradient flow approach in Section 4.3.2 and time
step δt = 10−3, and initialized with

s = s∗, n = (cosα, sinα,0), � = n ⊗ n, α(x, y, z) = θ2(x, y) + πz,

where θ2(x, y) corresponds to a +1/2 degree defect centered at (0.5,0.5); this
configuration has an initial energy of Eh

uni[sh,�h] = 10.013214.
Fig. 4 shows three dimensional views of the minimizing configuration,

where as Fig. 5 shows four horizontal slices of the solution. A non-orientable
line defect is observed, with final energy Eh

uni[sh,�h] = 5.2042593769 and
min(sh) ≈ 2.145 × 10−2.

4.5.2 The standard LdG model
Next, we simulate the model in Section 3.2.1. We use the boundary conditions
in (144) and the double-well potential in (142). In terms of the standard LdG
model, the Dirichlet boundary conditions on �D := �s ≡ �� are

Q = s∗
(

� − 1

3
I
)

on �D, (145)
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FIGURE 4 A +1/2 degree line defect in a 3-D cube domain (Section 4.5.1). Left: line field �

is shown at levels z = 0.0, 0.5, 1.0 (colored by s). Right: The s = 0.05 iso-surface is shown that
contains the line defect. In each horizontal plane, the line field exhibits a +1/2 degree point defect
in 2-D. The twisting of the line defect is due to the choice of boundary conditions.

where � is taken from (144), with vanishing Neumann condition on �o; this
is consistent with the boundary conditions in (144). Moreover, the double-well
potential is given by (15), (43), where

K = 1.0, A = −7.502104, B = 60.975813,

C = 66.519069, D = 552.230967,
(146)

which is consistent with the double well potential (142). The minimizer is
computed using the gradient flow approach in Section 3.2.2, with time step
δt = 0.01, and initialized with the minimizer from the uniaxial model. All other
parameters are the same.

For visualizing the solution, we shall use the biaxiality parameter (Majum-
dar and Zarnescu, 2010, eqn. (25)), given by

β(Q) = 1 − 6

(
tr(Q3)

)2(
tr(Q2)

)3
, (147)

where 0 ≤ β(Q) ≤ 1 and has the properties:

1. β(Q) = 0 if and only if Q is uniaxial, i.e. Q has the form (9);
2. β(Q) = 1 if and only if s1/s2 = 2, where s1, s2 appear in the biaxial form

(5).

In other words, β(Q) provides a simple measure of uniaxiality versus biaxiality.
Fig. 6 shows three dimensional views of the minimizing configuration,

whereas Fig. 7 shows the biaxiality and point-wise l2 error |(Quni − QLdG)(x)|
between the uniaxial (uni) and standard LdG solutions. A non-orientable line
defect is observed, with final energy Eh

uni[sh,�h] = 4.5533587 and achieves a
maximum biaxiality of 1.0.
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FIGURE 5 Horizontal slices of the +1/2 degree line defect in a 3-D cube domain shown in Fig. 4
(Section 4.5.1). Top: left is z = 0.2, right is z = 0.4. Bottom: left is z = 0.6, right is z = 0.8. The
location of the point defect in each plane rotates with the boundary conditions.

5 Colloidal effects

The presence of a colloidal particle in suspension in a LC material modifies the
topology of the domain. This, in turn, can induce interesting equilibrium states
with non-trivial defect configurations. A famous example is the so-called Saturn
ring defect (Alama et al., 2016; Gu and Abbott, 2000), which is a circular ring
of defect surrounding a spherical hole inside the LC domain (see Fig. 8). Fig. 9
shows more detail on the director configuration for the Saturn ring defect. The
boundary conditions on the spherical inclusion are n = ν (the unit normal of
the spherical hole) on �i and n = (0,0,1)T on �o. Note that the disclination
ring can have an alternate configuration (see right plot in Fig. 9), which depends
on the size of the particle (Wang et al., 2016; Fukuda et al., 2004; Ravnik and
Žumer, 2009). Either way, we emphasize that the presence of the hole can force
a defect in the LC.
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FIGURE 6 A +1/2 degree line defect in a 3-D cube domain (Section 4.5.2). Left: line field (taken
as the dominant eigenvector of Q) is shown at levels z = 0.0, 0.5, 1.0 (colored by the effective
s := (3/2)λ, where λ is the dominant eigenvalue). Right: The s = 0.22 iso-surface is shown that
contains the line defect. In each horizontal plane, the line field exhibits a +1/2 degree point defect
in 2-D. The solution looks qualitatively a little different from Fig. 4.

FIGURE 7 View of the biaxiality and l2 error of the solution in Fig. 6 (Section 4.5.2). Left: clearly,
there is a high degree of biaxiality near the defect. Right: plots of the l2 error |(Quni − QLdG)(x)|
are shown. The error is larger near the defect and, interestingly, it increases as a function of z.

This section discusses the capabilities of the Ericksen and uniaxially con-
strained Landau-de Gennes models, and the corresponding numerical methods
described in sections 3.3.2 and 4.2, to capture defects in the presence of colloids.
We shall model colloids as spherical inclusions inside the LC domain.

5.1 Conforming non-obtuse mesh

Given an arbitrary domain, it may be quite difficult to generate a conforming,
non-obtuse, tetrahedral mesh. As far as we know, the question of whether it is
possible to generate a non-obtuse tetrahedral mesh of a general three dimen-
sional domain remains open.
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FIGURE 8 Saturn ring defect in a director field model. A spherical colloidal particle is shown
with normal anchoring conditions on its boundary (i.e. the director field n is normal to the sphere).
The singular set S (where s = 0) is marked by the thick curve and occurs depending on the outer
boundary conditions (away from the sphere) imposed on n.

FIGURE 9 Illustration of Saturn ring defect pattern. Left: a two dimensional vertical slice of the
domain shown in Fig. 8; thick lines show the line field n⊗n. The defect region is marked by the two
grayed circles. Right: another possible defect configuration (Wang et al., 2016; Fukuda et al., 2004;
Ravnik and Žumer, 2009). The ring has a much smaller radius and is below the spherical inclusion.

Here we report on numerical results over a certain non-obtuse mesh of a
cylindrical domain with a hole cut out. We refer to Nochetto et al. (2018, Sec.
5.1.1) for details about the mesh construction. For the simulations in this section,
the domain � is a “prism” type of cylindrical domain with square cross-section
[−0.25

√
2,0.75

√
2]2, is centered about the z = 0 plane, and has height 6. It

contains a spherical inclusion, with boundary �i , centered at (
√

2/4,
√

2/4,0)

with radius 0.283/
√

2.
For the Ericksen model, one could in principle consider the strong anchoring

conditions

n = ν on �i, n = (0,0,1)� on �o = ∂� \ �i, s = s∗ on ∂�, (148)

where ν is the outer unit normal of the spherical inclusion and s∗ is the global
minimum of the double well potential (96). These boundary conditions do not
lead to a ring-like defect, but rather to disperse/point defects, depending on the
value of κ in Eerk−m (cf. Nochetto et al., 2018, Sec. 5.1.2).
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Instead of (148), we consider the following boundary conditions:

n = ν on �i, s = s∗ on ∂�,

n interpolates between (0,0,−1)� and (0,0,1)� on �o.
(149)

Fig. 10 shows the outcome of a numerical simulation with κ = 1, and a
gradient flow with initial conditions s = s∗,

n(x, y, z) = (0,0,−1)� if z < 0,

n(x, y, z) = (0,0,1)� if z ≥ 0.

FIGURE 10 Simulation results for the Ericksen model with boundary conditions (149). The surface
mesh of the internal hole is shown and the defect region is indicated by the s = 0.12 iso-surface
(plotted in red). The director field n is depicted with white arrows.

Importantly, the structure of the director field does not coincide with the one
expected from the Landau-de Gennes model (Alama et al., 2016). Here, at every
vertical slice, the defect in the director field has degree −1, while in Alama et
al. (2016) the degree of the defect is −1/2. The Ericksen model imposes an
orientability constraint that is not part of the physical problem.

The uniaxially-constrained Landau-de Gennes model is capable of capturing
such a non-orientable configuration. We impose the strong anchoring conditions

n = ν on �i, n = (0,0,1)� on �o, � = n ⊗ n on ∂�, s = s∗ on ∂�,

(150)

where now s∗ = 0.7 is the global minimum of the double-well potential

ψLdG(s) = ψc(s) − ψe(s)

:= (36.770913s2 + 1)

− (−7.3910077s4 + 4.5167269s3 + 39.271614s2).

(151)

We take a time step δt = 10−3 for the gradient flow, which is initiated with
s = s∗ and n = (0,0,1)�. Fig. 11 displays the final configuration of (s,�).
A cross-section shows the non-orientability of the resulting line field.
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FIGURE 11 Simulation results for the uniaxially-constrained Landau-de Gennes model with
boundary conditions (150). In the left panel, the line field is plotted with color scale based on s,
and the −1/2 degree defect are visible on the left and right sides of the spherical inclusion. The
right panel shows the s = 0.25 isosurface in blue.

5.2 Immersed boundary method

Mesh weak-acuteness imposes a hard geometric constraint on the meshes, and
can be extremely difficult to satisfy in implementations in three dimensions. As
an alternative to it, Nochetto et al. (2018, Section 5.2) proposes an immersed
boundary approach to deal with general colloid shapes. This approach consists
in representing the LC domain by using a phase field function and to incorporate
a penalty term into the energies to weakly enforce boundary conditions on the
colloid’s boundary.

5.2.1 Colloid representation

Assume the colloid is given by an open set �c ⊂⊂ �, and let �̂c ⊂ Rd be a
reference shape such that there is an affine parametrization F :Rd →Rd ,

x̂ = F(x) = Zx + b, �̂c = F(�c).

Above, Z is a rotation matrix and b a translation vector. We also use the signed
distance functions to ∂�̂c and ∂�c, that we denote by d and d̂ respectively, and
are related by

d(x) = d(F(x̂)) = d̂(x̂), ∀x ∈Rd .

Applying the chain rule, we also deduce the identity

∇xd(x) = ∇x̂d̂(x̂)Z.

Next, we introduce a phase field function to approximate the colloidal do-
main. Given ε > 0, that will represent the thickness of the transition, we consider
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φref
ε :R→ (−1,1), φref

ε (t) = 1

2

(
2

π
arctan

(
− t

ε

)
+ 1

)
.

Using this reference phase field function, we define

φε(x) = φref
ε (d(x)) = φref

ε (d̂(x̂)),

that yields

|∇xφε(x)|2 =
(

1

πε

)2 1(
1 +

(
d̂(F(x))

ε

)2
)2

|∇x̂d̂(F(x))|2.

In order to motivate the penalty term that will account for the colloidal inclu-
sion, we note a relation between bulk and surface integrals. Given f ∈ C(�), let

Jε(f ) := ε
|Sd−1|

2

∫
�

f (x)|∇φε(x)|2dx. (152)

Then, in the limit ε → 0, Jε recovers the surface integral of f ,

lim
ε→0

Jε(f ) =
∫

∂�c

f (x)dS(x). (153)

5.2.2 Weak anchoring
Boundary conditions can either be imposed by a Dirichlet condition (strong
anchoring) or by an energetic penalization term (weak anchoring). Indeed, in
some physical situations, weak anchoring is a better reflection of the physics
(de Gennes and Prost, 1995; Virga, 1994). We take advantage of this for model-
ing colloids (Araki and Tanaka, 2006; Conradi et al., 2009; Čopar et al., 2014,
2015).

Specifically, we incorporate penalization terms Eerk,a and Euni,a into ei-
ther Eerk,one or Euni, and corresponding terms in the discrete energies. In the
Q-tensor model, a standard approach is to add the energy term

Jν(Q) = Kν
a

2

∫
∂�c

|Q − Qν |2dS(x), (154)

where Qν is the preferred state for Q on the boundary of the colloid, which
is imposed by an energetic penalization with Kν

a as the weighting term. For
example, Qν may have the form (Mottram and Newton, 2014)

Qν = s∗
(

ν ⊗ ν − 1

d
I
)

, (155)

which is a uniaxial tensor, where ν is the unit vector normal to ∂�c; this is called
a uniaxial, homeotropic (normal anchoring) condition.

Another popular weak anchoring condition is called planar degenerate an-
choring, whose purpose is to enforce a uniaxial state at the boundary with the
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director orthogonal to ν (Fournier and Galatola, 2005; Ravnik and Žumer, 2009;
Changizrezaei and Denniston, 2017). Let

Q̃ := Q + s

d
I, Q̃⊥ := [I − ν ⊗ ν] Q̃ [I − ν ⊗ ν] ; (156)

we point out that, with our notation, Q̃ = s� = U. Thus, we include the follow-
ing energy term

J⊥(Q) = K⊥
a,1

2

∫
∂�c

|Q̃ − Q̃⊥|2dS(x) + K⊥
a,2

2

∫
∂�c

(
|Q̃|2 − (s∗)2

)2
dS(x),

(157)

where the quartic term is necessary in the standard LdG model to fully enforce
a uniaxial state (Fournier and Galatola, 2005, eqn. (4)) when d = 3.

Remark 6. For some LC materials, in certain specialized experimental con-
ditions, some biaxiality can be observed near the boundary despite using a
uniaxial boundary condition (Sluckin and Poniewierski, 1985; Fournier and
Galatola, 2005).

Let us now consider the effect of imposing the uniaxial constraint Q =
s(� − 1

d
I) on the weak anchoring energies. Starting with normal anchoring

(154), (155), we expand |Q − Qν |2, exploiting that Q, Qν are uniaxial (cf. (9)),
symmetric, and that |�| = 1, |ν| = 1, and so obtain

|Q − Qν |2 = 2ss∗ (|�|2|ν|2 − �ν · �ν
)

+ d − 1

d
(s − s∗)2|�|2. (158)

Since ν = ∇φε/|∇φε | on ∂�c, we combine the identity above with (152) and
(153) to introduce the continuous weak normal anchoring energy for the uniax-
ially constrained Landau-de Gennes model:

Jν[s,�] :=Kν
a

2
|Sd−1|ε

∫
�

2ss∗ (|�|2|∇φε |2 − �∇φε · �∇φε

)
+ Kν

a

2
|Sd−1|ε

∫
�

|∇φε |2 d − 1

d
(s − s∗)2|�|2.

(159)

To better see the structure of (158), we write � = n⊗n, use that |�|2 = |n|2,
and get

|Q − Qν |2 = 2ss∗ (|n|2|ν|2 − (n · ν)2
)

+ d − 1

d
(s − s∗)2|n|2

= nT

[
2ss∗ (I − ν ⊗ ν) + d − 1

d
(s − s∗)2I

]
n (160)

= nT

[(
2ss∗ + d − 1

d
(s − s∗)2

)
(I − ν ⊗ ν)
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+ d − 1

d
(s − s∗)2 (ν ⊗ ν)

]
n =: nT H νn.

It follows immediately from this identity that the matrix H ν is uniformly posi-
tive semi-definite. Therefore, for the Ericksen model, this motivates to consider
the weak normal anchoring energy

Jν[s,n] :=Kν
a

2
|Sd−1|ε

∫
�

2ss∗ (|n|2|∇φε |2 − (n · ∇φε)
2
)

+ Kν
a

2
|Sd−1|ε

∫
�

|∇φε |2 d − 1

d
(s − s∗)2|n|2.

(161)

Next, we proceed similarly for the weak planar degenerate anchoring (156),
(157). Expanding, and using that �2 = �, we get

|Q̃ − Q̃⊥|2 = s2
∣∣∣� − [I − ννT ][� − (�ν)νT ]

∣∣∣2
= s2

[
2|�ν|2 − (νT �ν)2

]
= s2(� : ν ⊗ ν) [2 − (� : ν ⊗ ν)] ,

(162)

and (
|Q̃|2 − (s∗)2

)2 =
(
s2|�|2 − (s∗)2

)2 = (s − s∗)2(s + s∗)2, (163)

which yields a slightly complicated energy functional for imposing planar an-
choring with a desired degree of orientation, s∗. At this point, it is worthwhile
to revisit the modeling assumptions made in posing (157). The main motivation
for choosing (157) is to enforce planar degenerate anchoring with a uniaxiality
constraint. However, our approach enforces uniaxiality in a more explicit way,
so other energy penalization terms may be used to achieve planar anchoring.

Indeed, (� : ν ⊗ ν)2 � (� : ν ⊗ ν) when |� : ν ⊗ ν| is small, e.g. when
planar anchoring is achieved. Hence, it is reasonable to make the following ap-
proximation

|Q̃ − Q̃⊥|2 ≈ 2s2(� : ν ⊗ ν). (164)

Moreover, we can replace (163) by (2s∗)2(s − s∗)2 as a simpler way to enforce
the degree of orientation on the surface. Therefore, combining with the phase-
field approach, we assume the following continuous weak planar degenerate
anchoring energy for the uniaxially constrained Landau-de Gennes model:

J⊥[s,�] :=K⊥
a,1

2
|Sd−1|ε

∫
�

2s2 (∇φε · �∇φε)

+ K⊥
a,2

2
|Sd−1|ε

∫
�

|∇φε |2(2s∗)2(s − s∗)2|�|2.
(165)
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Furthermore, writing � = n ⊗ n, we have

J⊥[s,n] :=K⊥
a,1

2
|Sd−1|ε

∫
�

2s2 (n · ∇φε)
2

+ K⊥
a,2

2
|Sd−1|ε

∫
�

|∇φε |2(2s∗)2(s − s∗)2|n|2.
(166)

Then, we can define the anchoring energies for the uniaxially constrained
Landau-de Gennes and the Ericksen models respectively by Euni,a[s,�] :=
Jν[s,�] + J⊥[s,�] and Eerk,a[s,n] := Jν[s,n] + J⊥[s,n]. In case K⊥

a,1 =
K⊥

a,2 = 0 (resp. Kν
a = 0), this yields weak normal (resp. weak planar degenerate)

anchoring; otherwise, it gives rise to a weak oblique anchoring.
Clearly, if � = n ⊗ n in �, then Euni,a[s,�] ≡ Eerk,a[s,n]. Note that the

energies (161) and (166) are insensitive to changes in the sign of n. With this,
we seek to minimize the total energies

Eerk,one[s,n] := Eerk−m[s,n] + Eerk,bulk[s] + Eerk,a[s,n],
Euni[s,�] := Euni−m[s,�] + ELdG,bulk[s] + Euni,a[s,�],

under suitable boundary conditions.
Next, we give a discrete counterpart of Eerk,a[s,n]. For convenience, we

define the following discrete bilinear forms:

an
h(nh,vh) := Kν

a

∫
�

Ih

{
2shs

∗ ((nh · vh)|∇φε |2 − (∇φε · nh)(∇φε · vh)
)

+ |∇φε |2 d − 1

d
(sh − s∗)2(nh · vh)

}
+ K⊥

a,1

∫
�

Ih

{
2s2

h (nh · ∇φε) (vh · ∇φε)
}

+ K⊥
a,2

∫
�

Ih

{
|∇φε |24(s∗)2(sh − s∗)2(nh · vh)

}
,

as
h(sh, zh) := Kν

a

∫
�

Ih

{
shzh|∇φε |2 d − 1

d
|nh|2

}
+ K⊥

a,1

∫
�

Ih

{
shzh2 (nh · ∇φε)

2
}

+ K⊥
a,2

∫
�

Ih

{
shzh|∇φε |24(s∗)2|nh|2

}
,

ωs
h(zh) := Kν

a

∫
�

Ih

{
2zhs

∗ (|nh|2|∇φε |2 − (nh · ∇φε)
2
)}

ζ s
h(zh) := Kν

a

∫
�

Ih

{
zhs

∗|∇φε |2 d − 1

d
|nh|2

}
+ K⊥

a,2

∫
�

Ih

{
zhs

∗|∇φε |24(s∗)2|nh|2
}

,

(167)
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where Ih is the Lagrange interpolant. These expressions correspond to using the
so-called mass lumping quadrature which, for all f ∈ C0(�), reads

∫
�

Ihf =
∑
T ∈Th

∫
T

Ihf =
∑
T ∈Th

|T |
d + 1

d+1∑
i=1

f (xi
T ), (168)

where {xi
T }d+1

i=1 are the vertices of T . This quadrature rule is exact for piecewise
linear polynomials and has the advantage that the finite element realization of
(167) is a diagonal matrix, which induces the following monotonicity result
(proved in Nochetto et al., 2018, Lem. 6).

Lemma 15 (Monotone property for lumped mass matrix). Let mh : Uh ×Uh →
R be a bilinear form defined by

mh(nh,vh) :=
∫

�

Ih [nh · H(x)vh]dx,

where H is a continuous d × d symmetric positive semi-definite matrix. If
|nh(xi)| ≥ 1 at all nodes xi in Nh, then

mh(nh,nh) ≥ mh

(
nh

|nh| ,
nh

|nh|
)

.

To apply Lemma 15 to the first bilinear form in (167) we observe that H =
H ν + H⊥

1 + H⊥
2 , where H ν is given in (160), and

H⊥
1 = 2s2

h∇φε ⊗ ∇φε, H⊥
2 = |∇φε |24(s∗)2(sh − s∗)2I.

Since H ν , H⊥
1 , H⊥

2 are all positive semi-definite, H is symmetric positive semi-
definite, thus

an
h(nh,nh) ≥ an

h

(
nh

|nh| ,
nh

|nh|
)

. (169)

Therefore, we take the discrete weak anchoring energy to be

Eh
erk,a[sh,nh] := |Sd−1|ε an

h(nh,nh)

2
, (170)

and the discrete total energy is then given by

Eh
erk,one[sh,nh] := Eh

erk−m[sh,nh] + Eh
erk,bulk[sh] + Eh

erk,a[sh,nh],
Eh

uni[sh,�h] := Eh
uni−m[sh,�h] + Eh

LdG,bulk[sh] + Eh
uni,a[sh,�h],

again noting that Eh
uni,a[sh,�h] ≡ Eh

erk,a[sh,nh].
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Because an
h(nh,nh) = as

h(sh, sh) + ωs
h(sh) + ζ s

h(s∗ − 2sh), a straightforward
calculation yields, for zh ∈ Sh(�s,0) and vh ∈ V⊥

h (nh) ∩Uh(�u,0),

δshE
h
erk,a[sh,nh; zh] = |Sd−1|ε

(
as
h(sh, zh) + ωs

h(zh)

2
− ζ s

h(zh)

)
,

δnh
Eh

erk,a[sh,nh;vh] = |Sd−1|εan
h(nh,vh),

(171)

where Sh(�s,0) and Uh(�u,0) are defined in (60), and V⊥
h (nh) is given by (86).

Thus, for the computation of discrete minimizers, the first variation formulas
(171) must be incorporated into the algorithm described in Section 3.3.3.

Remark 7. Since Eh
uni,a[sh,�h] ≡ Eh

erk,a[sh,nh] (because �h = Ihnh ⊗
nh), proving �-convergence for the discrete energy with weak anchoring
Eh

erk,a[sh,nh] is exactly the same as in Nochetto et al. (2018, Sec. 8).

5.2.3 Computational colloid example
We simulate a Saturn-ring defect by using the phase field approach described
in Section 5.2.2. More precisely, we consider the double-well potential (151)
with ηB = 1/16, and represent a spherical colloidal inclusion centered at
(0.5,0.5,0.5) with radius 0.2 by means of a phase field function with ε =
6 × 10−2. The domain is � = (0,1)3, and we set homogeneous Neumann con-
ditions on �o := � ∩ ({z = 0} ∪ {z = 1}), and the Dirichlet boundary conditions

s = s∗, n(x, y) = (0,0,1), � = n ⊗ n

on �s = �� = ∂� \ �o.
Fig. 12 shows the result of the gradient flow algorithm described in Sec-

tion 5.2.2 with time-step δt = 10−2 and initialized with

s = s∗, n(x, y) = (0,0,1), � = n ⊗ n.

The double-well potential and boundary conditions on ∂� are essentially the
same as in the experiment described in Section 5.1 for the uniaxially-constrained
Landau-de Gennes model; therefore, it is no surprise that the results are similar
to those illustrated in Fig. 11.

6 Electric fields

The LC models can be augmented by considering external forces acting on
them. Here we discuss the incorporation of an electric field into the Ericksen
(resp. Landau-de Gennes) model. This is achieved by adding another term to
the energies Eerk,one (resp. Euni).
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FIGURE 12 Simulation results for the uniaxially-constrained Landau-de Gennes model under the
setting described in Section 5.2.3. The left panel displays the line field � on the plane {x = 0.5},
with color scale based on the degree of orientation s. Two defects of order −1/2 are visible on the
sides of the colloid. The right panel shows the degree of orientation on the same plane, and the
isosurface s = 0.25 is depicted in blue.

6.1 Modified energies

We now consider energies of the form

Eerk,one[s,n] = Eerk−m[s,n] + Eerk,bulk[s] + Eerk,ext[s,n]
Euni[s,�] = Euni−m[s,�] + ELdG,bulk[s] + Euni,ext[s,�], (172)

where we represent the external field energies in either the Ericksen and Landau-
de Gennes models by Eerk,ext[s,n] and Euni,ext[s,�], respectively. Given an
electric field E, we consider (Biscari and Cesana, 2007; de Gennes and Prost,
1995)

Eerk,ext[s,n] := −Kext

2

(
ε̄

∫
�

(1 − sγa)|E|2 + εa

∫
�

s(E · n)2
)

, (173)

Euni,ext[s,�] := −Kext

2

(
ε̄

∫
�

(1 − sγa)|E|2 + εa

∫
�

s �E · E
)

. (174)

Above, the constant Kext is a weighting parameter. If we let ε‖, ε⊥ be the
dielectric permittivities in the directions parallel and orthogonal to the LC
molecules, then ε̄ = (ε‖ +(d −1)ε⊥)/d is the average dielectric permittivity and
εa = ε‖ − ε⊥ is the dielectric anisotropy. Finally, γa = εa/(dε̄) is a dimension-
less ratio; whenever 0 ≤ ε⊥ ≤ ε‖, it must be 0 ≤ γa ≤ 1. Note that the definition
of the dielectric constants here accounts for the dimension d .
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From (173) and (174), it is evident that, independently of s and the electric
constants, if � = n ⊗ n then Eerk,ext[s,n] ≡ Euni,ext[s,�]. Thus, our treatment
of both energies follows the same pattern.

We point out that, although the second integrals in (173) and (174) are
bounded, they may be negative. Hence, some care is required in discretizing the
electric energy in order to preserve our energy decreasing minimization scheme.
First, define a discrete bilinear form analogous to (167):

eh(sh,nh,vh) =
∫

�

Ih

[
|εa||E|2(nh · vh) − εash(E · nh)(E · vh)

]
. (175)

To apply Lemma 15, we see that the matrix H reads

H = |εa||E|2I − εashE ⊗ E,

and is therefore symmetric and positive semi-definite since |sh| ≤ 1. Conse-
quently, whenever |nh| ≥ 1,

eh(sh,nh,nh) ≥ eh

(
sh,

nh

|nh| ,
nh

|nh|
)

. (176)

We now define the discrete counterpart of (172) to be

Eh
erk,one[sh,nh] := Eh

erk−m[sh,nh] + Eh
erk,bulk[sh]

+ Eh
erk,a[sh,nh] + Eh

erk,ext[sh,nh],
(177)

where the discrete electric energy is similar to (173) and is given by

Eh
erk,ext[sh,nh] = Kext

2

(
−ε̄

∫
�

(1 − shγa)|E|2 + eh(sh,nh,nh) − |εa|
∫

�

|E|2
)

.

(178)

Observe that (178) is an approximation of

Eh
erk,ext[sh,nh] = Kext

2

(
− ε̄

∫
�

(1 − shγa)|E|2 − εa

∫
�

sh(E · nh)
2

+ |εa|
∫

�

|E|2(|nh|2 − 1)
)
,

(179)

where the “extra” term is non-positive and consistent (i.e. it vanishes as h → 0
provided the singular set S has zero Lebesgue measure). Moreover,

∫
�

|E|2|n|2
is constant at the continuous level, whence the extra term does not fundamen-
tally change the energy. However, it is needed to ensure the projection step in
the algorithm decreases the (discrete) energy, which is guaranteed by (176).



The Q-tensor model with uniaxial constraint Chapter | 5 373

We take first order variations of Eh
erk,ext in the directions zh ∈ Sh(�s,0) and

vh ∈ V⊥
h (nh) ∩Uh(�u,0), to obtain

δshE
h
erk,ext[sh,nh; zh] = Kext

2

(
ε̄

∫
�

zhγa|E|2 − εa

∫
�

Ih

[
zh(E · nh)

2
])

,

δnh
Eh

erk,ext[sh,nh;vh] = Kext eh(sh,nh,vh).

Remark 8. Since Eh
uni,ext[sh,�h] ≡ Eh

erk,ext[sh,nh] (because �h = Ihnh⊗nh),
proving �-convergence for the discrete energy with the electric field contribu-
tion Eh

erk,ext[sh,nh] is exactly the same as in Nochetto et al. (2018, Sec. 8).

6.2 Computational electric field example

We illustrate the effect of an electric field on the same configuration as in Sec-
tion 5.2.3. Namely, with the same colloidal inclusion and boundary conditions
as there, we incorporate the effect of a constant electric field E = (0,1,0). We
set the parameter Kext = 160.0, and the material constants ε‖ = 7/3, ε⊥ = 1/3,
that yield ε̄ = 1, εa = 2, γa = 2/3 in (178).

The results of our simulation, with the same gradient flow setting as in Sec-
tion 5.2.3, are shown in Figs. 13 and 14. The presence of a strong electric force
creates two noticeable effects. Clearly, the electric energy (174) is minimized
whenever the field � is aligned with E; thus, the LC molecules tend to deflect
to the y-axis in the domain. This creates a Freedericksz-type transition (Biscari
and Cesana, 2007; Hoogboom et al., 2007; Nochetto et al., 2018), in which the
director field deflects towards the y-axis to better align with the electric field and
this, in turn, gives rise to a defect region near the sides of the cube, on which � is
set to be vertical. Secondly, the Saturn-ring defect observed in Fig. 13 is rotated.
Instead of having a rotation axis parallel to the z-axis, the ring has a rotation
axis parallel to the y-axis. Fig. 14 shows alternative views of the simulation.

7 The Landau-de Gennes model with and without the
uniaxial constraint

Our uniaxially constrained LdG model allows us to probe the fundamental mod-
eling issue raised earlier in Section 1.1. Does uniaxiality significantly affect the
minimizing configuration? To the best of our knowledge, our method is the first
to simulate the LdG model with uniaxiality enforced as a hard constraint. Thus,
we can do a direct quantitative comparison of the “standard” LdG approach
against the uniaxially constrained case.

We revisit the Saturn-ring example in Section 5.1. In particular, we use the
boundary conditions in (150) and the double-well potential in (151) for the uni-
axially constrained model in (105). For the standard (one-constant) LdG model
in (17), we use the following boundary conditions
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FIGURE 13 Computational results for the uniaxially-constrained Landau-de Gennes model under
the presence of an electric field and a colloidal inclusion (represented using a phase field approach).
The left panel shows the line field � on the slice {x = 0.5}, while the right panel depicts the de-
gree of orientation on the same plane and the isosurface s = 0.4. As opposed to Fig. 12, the two
−1/2-degree defects are situated on top and bottom of the colloidal particle. The strong electric
field also creates a large defect region near the sides of the cube.

FIGURE 14 Another visualization of the experiment in Fig. 13. The left panel shows the degree of
orientation in the {y = 0.5} plane, while the right panel shows the {z = 0.5} plane. The Saturn-ring
is clearly aligned with the y-axis, and one can see a secondary line defect near the walls of the
domain aligned with the z-axis.

Q = s∗
(

ν ⊗ ν − 1

3
I
)

on �i,

Q = s∗
(

(0,0,1) ⊗ (0,0,1) − 1

3
I
)

on �o,

(180)
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which is consistent with the boundary conditions in (150). Moreover, the
double-well potential is given by (15), (43), where

K = 1.0, A = −7.502104, B = 60.975813,

C = 66.519069, D = 552.230967,
(181)

which is consistent with the double well potential (151). The initial guess for
the standard LdG model is chosen to be the minimizer Quni of the uniaxial
model. Both models were simulated using the following set of values for ηB:
{0.25,0.16,0.09,0.04}.

Table 1 shows a comparison of the energy Euni[Quni] with ELdG,one[Quni].
The relative error is small, but not zero, because the two numerical models are
different, i.e. the error is purely due to numerical discretization and a finite mesh
size. This table illustrates that the two numerical models are consistently imple-
mented.

TABLE 1 Comparison of the standard LdG model with the uniaxially
constrained model: model difference error. The relative error between
Euni[Quni] and ELdG,one[Quni] is shown.

ηB Euni[·]
(initial)

Euni[Quni]
(final)

ELdG,one[Quni]
(initial)

rel. error

0.25 7.5990605 2.6644532 2.6164206 0.018358114
0.16 7.5990605 2.8031773 2.7497279 0.019438097
0.09 7.5990605 3.0018994 2.9413466 0.020586758
0.04 7.5990605 3.2711983 3.2176374 0.016646014

0.0225 7.5990605 3.5063179 3.5156034 -0.002641225

The uniaxial solution Quni, for ηB = 0.25, is depicted in Fig. 11, in Sec-
tion 5.1. In Fig. 15, we show a direct numerical comparison of the minimizer
of the standard LdG model QLdG with Quni. On the left, we plot the biaxiality
parameter given in (147). Fig. 15 shows that QLdG achieves maximum biaxiality
near the defect.

On the right of Fig. 15, we plot the pointwise quantity |QLdG(x) − Quni(x)|
with a maximum value approximately 0.228 (note that QLdG and Quni are O(1)

tensors). Fig. 15 clearly shows that the two solutions are quite different near the
defect.

Moreover, the energy of the uniaxial minimizer is significantly higher than
the LdG minimizer, as shown in Table 2. The fact that it is higher is not sur-
prising –the uniaxial model is more constrained– but it is significantly higher,
which suggests that the two models could behave quite differently when other
physical effects (e.g. electric/magnetic fields) are present.
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FIGURE 15 Comparison of the standard LdG model with uniaxially constrained version, using the
Saturn-ring defect as example (Gu and Abbott, 2000) (Section 7). Left: the “standard” one-constant
LdG model exhibits maximum “biaxiality” near the defect. Right: the pointwise L2 error between
the minimizer from the standard model and the minimizer with uniaxial constraint.

TABLE 2 Comparison of the standard LdG model with the uniaxially con-
strained model: final energy error. The relative error between Euni[Quni]
and ELdG,one[QLdG] is shown.

ηB Euni[Quni] (final) ELdG,one[QLdG] (final) rel. error
0.25 2.6644532 2.1808923 0.22172614
0.16 2.8031773 2.2931235 0.22242754
0.09 3.0018994 2.4689709 0.21585046
0.04 3.2711983 2.7850147 0.17457129

0.0225 3.5063179 3.0643099 0.14424392

8 Conclusion

We discussed the modeling of nematic LCs and their numerical simulation.
We compared three models (namely, Oseen-Frank, Ericksen and Landau-
de Gennes) for the equilibrium state of LCs. Because most thermotropic LCs
do not exhibit any biaxiality, we focus on uniaxial LCs and compare Erick-
sen’s model with a uniaxially-constrained Landau-de Gennes model. For these,
we present robust finite element schemes, which �-converge to the continuous
problem as the mesh size tends to zero. For the solution of the resulting non-
linear equations, we design gradient flow-type algorithms that are proven to be
energy-decreasing.

We presented a variety of numerical experiments, illustrating the discretiza-
tions’ ability to capture non-trivial orientable and (for the Landau-de Gennes
model) non-orientable defects. Moreover, we incorporated additional energy
terms to model colloidal effects and the effect of external fields, such as electric
fields. Finally, we gave a detailed numerical study of the effect of imposing the
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uniaxial constraint (exactly) in the classic Landau-de Gennes model, which is a
major highlight of this work.
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Čopar, S., Tkalec, U., Muševič, I., Žumer, S., 2015. Knot theory realizations in nematic colloids.
Proceedings of the National Academy of Sciences 112 (6), 1675–1680.

Davis, T., Gartland, E., 1998. Finite element analysis of the Landau-de Gennes minimization prob-
lem for liquid crystals. SIAM Journal on Numerical Analysis 35 (1), 336–362.

de Gennes, P.G., Prost, J., 1995. The Physics of Liquid Crystals, 2nd edition. International Series of
Monographs on Physics, vol. 83. Oxford Science Publication, Oxford, UK.

De Giorgi, E., 2006. In: Maso, G.D., Forti, M., Miranda, M., Spagnolo, S.A., Ambrosio, L. (Eds.),
Selected Papers. In: Springer Collected Works in Mathematics.

de Jeu, W.H. (Ed.), 2012. Liquid Crystal Elastomers: Materials and Applications. Advances in Poly-
mer Science. Springer.

Dierking, I., Marshall, O., Wright, J., Bulleid, N., 2005. Annihilation dynamics of umbilical defects
in nematic liquid crystals under applied electric fields. Physical Review E 71, 061709.

Doğan, G., Morin, P., Nochetto, R.H., Verani, M., 2007. Discrete gradient flows for shape opti-
mization and applications. Computer Methods in Applied Mechanics and Engineering 196,
3898–3914.

Doostmohammadi, A., Ignés-Mullol, J., Yeomans, J.M., Sagués, F., 2018. Active nematics. Nature
Communications 9, 3246.



The Q-tensor model with uniaxial constraint Chapter | 5 379

Ericksen, J., 1991. Liquid crystals with variable degree of orientation. Archive for Rational Mechan-
ics and Analysis 113 (2), 97–120.

Evans, L.C., 1998. Partial Differential Equations. American Mathematical Society, Providence,
Rhode Island.

Feynman, R.P., Leighton, R.B., Sands, M., 1964. The Feynman Lectures on Physics. Addison-
Wesley Publishing Company.

Fournier, J.-B., Galatola, P., 2005. Modeling planar degenerate wetting and anchoring in nematic
liquid crystals. Europhysics Letters (EPL) 72 (3), 403–409.

Freiser, M., 1970. Ordered states of a nematic liquid. Physical Review Letters 24 (19), 1041.
Fukuda, J.-i., Stark, H., Yoneya, M., Yokoyama, H., 2004. Dynamics of a nematic liquid crystal

around a spherical particle. Journal of Physics: Condensed Matter 16 (19), S1957–S1968.
Gartland Jr, E.C., Palffy-Muhoray, P., Varga, R.S., 1991. Numerical minimization of the Landau-de

Gennes free energy: defects in cylindrical capillaries. Molecular Crystals and Liquid Crys-
tals 199 (1), 429–452.

Gartland, J.E.C., Ramage, A., 2015. A renormalized Newton method for liquid crystal director mod-
eling. SIAM Journal on Numerical Analysis 53 (1), 251–278.

Giomi, L., 2015. Geometry and topology of turbulence in active nematics. Physical Review X 5,
031003.

González, F.M.G., Gutiérrez-Santacreu, J.V., 2013. A linear mixed finite element scheme for a ne-
matic Ericksen-Leslie liquid crystal model. ESAIM: Mathematical Modelling and Numerical
Analysis 47, 1433–1464.

Goodby, J.W., 2012. Introduction to defect textures in liquid crystals. In: Chen, J., Cranton, W.,
Fihn, M. (Eds.), Handbook of Visual Display Technology. Springer, pp. 1290–1314.

Gramsbergen, E.F., Longa, L., de Jeu, W.H., 1986. Landau theory of the nematic-isotropic phase
transition. Physics Reports 135 (4), 195–257.

Gu, Y., Abbott, N.L., 2000. Observation of Saturn-ring defects around solid microspheres in nematic
liquid crystals. Physical Review Letters 85, 4719–4722.

Holzapfel, G.A., 2000. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John
Wiley & Sons, Inc..

Hoogboom, J., Elemans, J.A., Rowan, A.E., Rasing, T.H., Nolte, R.J., 2007. The development
of self-assembled liquid crystal display alignment layers. Philosophical Transactions of the
Royal Society of London A: Mathematical, Physical and Engineering Sciences 365 (1855),
1553–1576.

Hu, Q., Tai, X.-C., Winther, R., 2009. A saddle point approach to the computation of harmonic
maps. SIAM Journal on Numerical Analysis 47 (2), 1500–1523.
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